1
|
Wang X, Wang J, Huang L, Huang G. Capsiate Improves Glucose Metabolism by Improving Insulin Sensitivity in Diabetic Retinopathy Mice. Curr Eye Res 2024:1-8. [PMID: 39431723 DOI: 10.1080/02713683.2024.2412296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Capsiate (cap) is a metabolite that affects a number of biological processes, and diabetic retinopathy (DR) is now known to be the primary cause of end-stage eye illness. METHODS In order to examine the effects of the cap intervention on body weight, nutritional intake, changes in body weight composition, glucose metabolism levels, retinopathy, and oxidative stress levels, we proposed using a mouse model of diabetic retinopathy caused by STZ. RESULTS Our findings demonstrated that, in addition to increasing lean body mass and lowering fat body mass content, cap intervention significantly improved body weight and dietary consumption in STZ mice. Additionally, our results on glucose metabolism revealed that cap had a significant impact on insulin resistance and the stabilization of OGTT levels. In conclusion, we examined the levels of oxidative stress and retinopathy. We discovered that the cap intervention greatly reduced the levels of MDA and significantly improved the levels of VEGF and retinopathy. In contrast, the STZ group's levels of SOD, CAT, and GSH were significantly higher. CONCLUSIONS According to our research, the Cap intervention improved the damage caused by diabetic retinopathy by reversing the levels of oxidative stress and the disrupted state of glucose metabolism, which in turn decreased the levels of VEGF.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, Anhui Medical University Affiliated Lu'an People's Hospital, Lu'an City, Fujian Province, China
| | - Jingwen Wang
- Department of Nutrition, Quanzhou Medical College, Quanzhou City, Fujian Province, China
| | - Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Guangqian Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
2
|
Yang J, Li W, Lin X, Liang W. A lactate metabolism-related gene signature to diagnose osteoarthritis based on machine learning combined with experimental validation. Aging (Albany NY) 2024; 16:205873. [PMID: 39418100 DOI: 10.18632/aging.205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lactate is gradually proved as the essential regulator in intercellular signal transduction, energy metabolism reprogramming, and histone modification. This study aims to clarify the diagnosis value of lactate metabolism-related genes in osteoarthritis (OA). METHODS Lactate metabolism-related genes were retrieved from the MSigDB. GSE51588 was downloaded from the Gene Expression Omnibus (GEO) as the training dataset. GSE114007, GSE117999, and GSE82107 datasets were adopted for external validation. Genomic difference detection, protein-protein interaction network analysis, LASSO, SVM-RFE, Boruta, and univariate logistic regression (LR) analyses were used for feature selection. Multivariate LR, Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB) were used to develop the multiple-gene diagnosis models. 12 control and 12 OA samples were collected from the local hospital for re-verification. The transfection assays were conducted to explore the regulatory ability of the gene to the apoptosis and vitality of chondrocytes. RESULTS Through the bioinformatical analyses and machine learning algorithms, SLC2A1 and NDUFB9 of the 273 lactate metabolism-related genes were identified as the significant diagnosis biomarkers. The LR, RF, SVM, and XGB models performed impressively in the cohorts (AUC > 0.7). The local clinical samples indicated that SLC2A1 and NDUFB9 were both down-regulated in the OA samples (both P < 0.05). The knockdown of NDUFB9 inhibited the viability and promoted the apoptosis of the CHON-001 cells treated with IL-1beta (both P < 0.05). CONCLUSIONS A lactate metabolism-related gene signature was constructed to diagnose OA, which was validated in multiple independent cohorts, local clinical samples, and cellular functional experiments.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Wenjun Li
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children’s Medical Center, Tianhe, Guangzhou 510623, Guangdong Province, China
| | - Wei Liang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
3
|
Di J, Xi Y, Wu Y, Di Y, Xing X, Zhang Z, Xiang C. Gut microbiota metabolic pathways: Key players in knee osteoarthritis development. Exp Gerontol 2024; 196:112566. [PMID: 39226947 DOI: 10.1016/j.exger.2024.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To confirm the causality of gut microbiota pathway abundance and knee osteoarthritis (KOA). METHODS Microbial metabolic pathways were taken as exposures, with data from the Dutch Microbiome Project (DMP). Data on KOA from the UK Biobank were utilized as endpoints. In addition, we extracted significant and independent single nucleotide polymorphisms as instrumental variables. Two-sample Mendelian randomization (MR) analysis was applied to explore the causal relationship between gut microbiota pathway abundance and KOA, and MR-Egger and weighted median were used as additional validation of the MR results. Meanwhile, Cochran Q, MR-Egger intercept, MR-PRESSO, and leave-one-out were used to perform sensitivity analyses on the MR results. RESULTS MR results showed that enterobactin biosynthesis, diacylglycerol biosynthesis I, Clostridium acetobutylicum acidogenic fermentation, glyoxylate bypass and tricarboxylic acid cycle were the risk factors for KOA. (OR = 1.13,95%CI = 1.04-1.23;OR = 1.12,95%CI = 1.04-1.20;OR = 1.14,95%CI = 1.04-1.26; OR = 1.06,95%CI = 1.00-1.12) However, adenosylcobalamin salvage from cobinamide I, hexitol fermentation to lactate formate ethanol and acetate, purine nucleotides degradation II aerobic, L tryptophan biosynthesis and inosine 5 phosphate biosynthesis III pathway showed significant protection against KOA. (OR = 0.93,95%CI = 0.86-1.00;OR = 0.94,95%CI = 0.88-1.00;OR = 0.91,95%CI = 0.86-0.97;OR = 0.95,95%CI = 0.92-0.99; OR = 0.91, 95%CI = 0.85-0.98) Further multiplicity and sensitivity analyses demonstrated the robustness of the results. CONCLUSION Our study identified specific metabolic pathways in gut microbiota that promote or inhibit KOA, which provides the most substantial evidence-based medical evidence for the pathogenesis and prevention of KOA.
Collapse
Affiliation(s)
- Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujia Xi
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yawen Wu
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yijing Di
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinglong Xing
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhibo Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
6
|
Feng J, Deng X, Hao P, Zhu Z, Li T, Yuan X, Hu J, Wang Y. Intra-articular injection of platinum nanozyme-loaded silk fibroin/pullulan hydrogels relieves osteoarthritis through ROS scavenging and ferroptosis suppression. Int J Biol Macromol 2024; 280:135863. [PMID: 39307511 DOI: 10.1016/j.ijbiomac.2024.135863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of osteoarthritis (OA). Consequently, it is speculated that anti-ferroptosis agents could represent a novel therapeutic strategy for managing OA. In this study, a hydrogel incorporating platinum (Pt) nanozyme was synthesized by dispersing Pt nanoparticles (NPs) within a matrix of silk fibroin (SF) and oxidized pullulan (oxPL). This hydrogel allows for a substantial and sustained release of up to 30 days. The gelation time (from 140.3 ± 42.3 s to 460.0 ± 40.0 s), swelling capacity (from 57.7 ± 3.8 % to 24.0 ± 7.0 %), and degradation rate (from 60.3 ± 4.7 % to 32.0 ± 4.6 %) of the hydrogels can be modulated by adjusting the Pt NP content. The Pt@SF/oxPL hydrogel effectively eliminates ROS due to its catalase-like and superoxide dismutase-like enzymatic properties. In vitro studies demonstrated that Pt@SF/oxPL efficiently mitigated the process of ferroptotic cell death in chondrocytes. More critically, intra-articular administration of Pt@SF/oxPL showcased therapeutic advantages by both protecting and stimulating the regeneration of cartilage throughout the progression of OA. Collectively, this study suggests that Pt@SF/oxPL hydrogels could potentially serve as an effective treatment for OA, presenting a novel nanozyme-based therapeutic approach for this condition.
Collapse
Affiliation(s)
- JunWei Feng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Xia Deng
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Peng Hao
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - ZongDong Zhu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China
| | - XinWei Yuan
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiang Hu
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Yue Wang
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
7
|
Huang H, Lin Y, Xin J, Sun N, Zhao Z, Wang H, Duan L, Zhou Y, Liu X, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li H, Ma H, Bai Y, Wei L, Ni X. Fluoride exposure-induced gut microbiota alteration mediates colonic ferroptosis through N 6-methyladenosine (m 6A) mediated silencing of SLC7A11. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116816. [PMID: 39096685 DOI: 10.1016/j.ecoenv.2024.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Fluoride exposure is widespread worldwide and poses a significant threat to organisms, particularly to their gastrointestinal tracts. However, due to limited knowledge of the mechanism of fluoride induced intestinal injury, it has been challenging to develop an effective treatment. To address this issue, we used a series of molecular biology in vitro and in vivo experiments. NaF triggered m6A mediated ferroptosis to cause intestinal damage. Mechanistically, NaF exposure increased the m6A level of SLC7A11 mRNA, promoted YTHDF2 binding to m6A-modified SLC7A11 mRNA, drove the degradation of SLC7A11 mRNA, and led to a decrease in its protein expression, which eventually triggers ferroptosis. Moreover, NaF aggravated ferroptosis of the colon after antibiotics destroyed the composition of gut microbiota. 16 S rRNA sequencing and SPEC-OCCU plots, Zi-Pi relationships, and Spearman correlation coefficients verified that Lactobacillus murinus (ASV54, ASV58, and ASV82) plays a key role in the response to NaF-induced ferroptosis. Collectively, NaF-induced gut microbiota alteration mediates severe intestinal cell injury by inducing m6A modification-mediated ferroptosis. Our results highlight a key mechanism of the gut in response to NaF exposure and suggest a valuable theoretical basis for its prevention and treatment.
Collapse
Affiliation(s)
- Haonan Huang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Department of Gastroenterology, Southern Medical University Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhifang Zhao
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Sun LL, He HY, Li W, Jin WL, Wei YJ. The solute carrier transporters (SLCs) family in nutrient metabolism and ferroptosis. Biomark Res 2024; 12:94. [PMID: 39218897 PMCID: PMC11367818 DOI: 10.1186/s40364-024-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death caused by damage to lipid membranes due to the accumulation of lipid peroxides in response to various stimuli, such as high levels of iron, oxidative stress, metabolic disturbance, etc. Sugar, lipid, amino acid, and iron metabolism are crucial in regulating ferroptosis. The solute carrier transporters (SLCs) family, known as the "metabolic gating" of cells, is responsible for transporting intracellular nutrients and metabolites. Recent studies have highlighted the significant role of SLCs family members in ferroptosis by controlling the transport of various nutrients. Here, we summarized the function and mechanism of SLCs in ferroptosis regulated by ion, metabolic control of nutrients, and multiple signaling pathways, with a focus on SLC-related transporters that primarily transport five significant components: glucose, amino acid, lipid, trace metal ion, and other ion. Furthermore, the potential clinical applications of targeting SLCs with ferroptosis inducers for various diseases, including tumors, are discussed. Overall, this paper delves into the novel roles of the SLCs family in ferroptosis, aiming to enhance our understanding of the regulatory mechanisms of ferroptosis and identify new therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Li-Li Sun
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hai-Yan He
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Yi-Ju Wei
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
9
|
Lu X, Li D, Lin Z, Gao T, Gong Z, Zhang Y, Wang H, Xia X, Lu F, Song J, Xu G, Jiang J, Ma X, Zou F. HIF-1α-induced expression of the m6A reader YTHDF1 inhibits the ferroptosis of nucleus pulposus cells by promoting SLC7A11 translation. Aging Cell 2024; 23:e14210. [PMID: 38783692 PMCID: PMC11488328 DOI: 10.1111/acel.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The nucleus pulposus is in a hypoxic environment in the human body, and when intervertebral disc degeneration (IVDD) occurs, the hypoxic environment is disrupted. Nucleus pulposus cell (NPC) ferroptosis is one of the causes of IVDD. N6-methyladenosine (m6A) and its reader protein YTHDF1 regulate cellular activities by affecting RNA metabolism. However, the regulation of ferroptosis in NPCs by m6A-modified RNAs under hypoxic conditions has not been as well studied. In this study, through in vitro and in vivo experiments, we explored the underlying mechanism of HIF-1α and YTHDF1 in regulating ferroptosis in NPCs. The results indicated that the overexpression of HIF-1α or YTHDF1 suppressed NPC ferroptosis; conversely, the knockdown of HIF-1α or YTHDF1 increased ferroptosis levels in NPCs. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region. Polysome profiling results showed that YTHDF1 promoted the translation of SLC7A11 and consequently the expression of the anti-ferroptosis protein GPX4 by binding to m6A-modified SLC7A11 mRNA. In conclusion, HIF-1α-induced YTHDF1 expression reduces NPC ferroptosis and delays IVDD by promoting SLC7A11 translation in a m6A-dependent manner.
Collapse
Affiliation(s)
- Xiao Lu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Dachuan Li
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Zhidi Lin
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Tian Gao
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Hongli Wang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jian Song
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| | - Fei Zou
- Department of OrthopedicsHuashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Arai Y, Cha R, Nakagawa S, Inoue A, Nakamura K, Takahashi K. Cartilage Homeostasis under Physioxia. Int J Mol Sci 2024; 25:9398. [PMID: 39273346 PMCID: PMC11395513 DOI: 10.3390/ijms25179398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Articular cartilage receives nutrients and oxygen from the synovial fluid to maintain homeostasis. However, compared to tissues with abundant blood flow, articular cartilage is exposed to a hypoxic environment (i.e., physioxia) and has an enhanced hypoxic stress response. Hypoxia-inducible factors (HIFs) play a pivotal role in this physioxic environment. In normoxic conditions, HIFs are downregulated, whereas in physioxic conditions, they are upregulated. The HIF-α family comprises three members: HIF-1α, HIF-2α, and HIF-3α. Each member has a distinct function in articular cartilage. In osteoarthritis, which is primarily caused by degeneration of articular cartilage, HIF-1α is upregulated in chondrocytes and is believed to protect articular cartilage by acting anabolically on it. Conversely, in contrast to HIF-1α, HIF-2α exerts a catabolic influence on articular cartilage. It may therefore be possible to develop a new treatment for OA by controlling the expression of HIF-1α and HIF-2α with drugs or by altering the oxygen environment in the joints.
Collapse
Affiliation(s)
- Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryota Cha
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kei Nakamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
11
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Bieri S, Möller B, Amsler J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? Int J Mol Sci 2024; 25:8212. [PMID: 39125782 PMCID: PMC11311315 DOI: 10.3390/ijms25158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Ferroptosis is a form of iron-dependent regulated cell death caused by the accumulation of lipid peroxides. In this review, we summarize research on the impact of ferroptosis on disease models and isolated cells in various types of arthritis. While most studies have focused on rheumatoid arthritis (RA) and osteoarthritis (OA), there is limited research on spondylarthritis and crystal arthropathies. The effects of inducing or inhibiting ferroptosis on the disease strongly depend on the studied cell type. In the search for new therapeutic targets, inhibiting ferroptosis in chondrocytes might have promising effects for any type of arthritis. On the other hand, ferroptosis induction may also lead to a desired decrease of synovial fibroblasts in RA. Thus, ferroptosis research must consider the cell-type-specific effects on arthritis. Further investigation is needed to clarify these complexities.
Collapse
Affiliation(s)
- Shania Bieri
- Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Jennifer Amsler
- Department of Rheumatology and Immunology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
14
|
Zhuo D, Xiao W, Tang Y, Jiang S, Geng C, Xie J, Ma X, Zhang Q, Tang K, Yu Y, Bai L, Zou H, Liu J, Wang J. Iron metabolism and arthritis: Exploring connections and therapeutic avenues. Chin Med J (Engl) 2024; 137:1651-1662. [PMID: 38867424 PMCID: PMC11268821 DOI: 10.1097/cm9.0000000000003169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 06/14/2024] Open
Abstract
ABSTRACT Iron is indispensable for the viablility of nearly all living organisms, and it is imperative for cells, tissues, and organisms to acquire this essential metal sufficiently and maintain its metabolic stability for survival. Disruption of iron homeostasis can lead to the development of various diseases. There is a robust connection between iron metabolism and infection, immunity, inflammation, and aging, suggesting that disorders in iron metabolism may contribute to the pathogenesis of arthritis. Numerous studies have focused on the significant role of iron metabolism in the development of arthritis and its potential for targeted drug therapy. Targeting iron metabolism offers a promising approach for individualized treatment of arthritis. Therefore, this review aimed to investigate the mechanisms by which the body maintains iron metabolism and the impacts of iron and iron metabolism disorders on arthritis. Furthermore, this review aimed to identify potential therapeutic targets and active substances related to iron metabolism, which could provide promising research directions in this field.
Collapse
Affiliation(s)
- Dachun Zhuo
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Yulong Tang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Shuai Jiang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Chengchun Geng
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- Department of Anthropology and Human Genetics, School of Life Sciences,Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200000, China
| | - Jiangnan Xie
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- Department of Anthropology and Human Genetics, School of Life Sciences,Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200000, China
| | - Xiaobei Ma
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Qing Zhang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
| | - Kunhai Tang
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Yuexin Yu
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Lu Bai
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
- Institute of Rheumatology, Immunology and Allergy, Allergy and Disease Research Center, Fudan University, Shanghai 200000, China
| | - Jing Liu
- Department of Rheumatology, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200000, China
| | - Jiucun Wang
- Division of Rheumatology, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200000, China
- Institute of Rheumatology, Immunology and Allergy, Allergy and Disease Research Center, Fudan University, Shanghai 200000, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
15
|
Cai Y, Zhang X, Yang C, Jiang Y, Chen Y. Melatonin alleviates high-fat-diet-induced dry eye by regulating macrophage polarization via IFT27 and lowering ERK/JNK phosphorylation. iScience 2024; 27:110367. [PMID: 39100927 PMCID: PMC11294704 DOI: 10.1016/j.isci.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Dry eye disease is the most common ocular surface disease globally, requiring a more effective treatment. We observed that a high-fat diet induced macrophage polarization to M1 and further induced inflammation in the meibomian and lacrimal glands. A four-week treatment with melatonin (MLT) eye drops can regulate macrophage polarization and alleviate dry eye signs. To investigate the therapeutic effects and mechanisms of action of MLT on high-fat-diet-induced dry eye disease in mice, RAW 264.7 cells pretreated with LPS and/or MLT underwent digital RNA with the perturbation of genes sequencing (DRUG-seq). Results showed that IFT27 was up-regulated, and MAPK pathways were suppressed after MLT pre-treatment. ERK/JNK phosphorylation was reduced in meibomian glands of MLT-treated dry eye mice and increased in IFT27 knockdown RAW 264.7 cells. In summary, MLT regulated macrophage polarization via IFT27 and reduced ERK/JNK phosphorylation. These results support that MLT is a promising medication for dry eye disease.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. Methods To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. Results and discussion Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Chen BY, Pathak JL, Lin HY, Guo WQ, Chen WJ, Luo G, Wang LJ, Sun XF, Ding Y, Li J, Diekwisch TGH, Liu C. Inflammation Triggers Chondrocyte Ferroptosis in TMJOA via HIF-1α/TFRC. J Dent Res 2024; 103:712-722. [PMID: 38766865 DOI: 10.1177/00220345241242389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Inflammation and loss of articular cartilage are considered the major cause of temporomandibular joint osteoarthritis (TMJOA), a painful condition of the temporomandibular joint (TMJ). To determine the cause of TMJ osteoarthritis in these patients, synovial fluid of TMJOA patients was compared prior to and after hyaluronic lavage, revealing substantially elevated levels of interleukin (IL) 1β, reactive oxidative stress (ROS), and an overload of Fe3+ and Fe2+ prior to lavage, indicative of ferroptosis as a mode of chondrocyte cell death. To ask whether prolonged inflammatory conditions resulted in ferroptosis-like transformation in vitro, we subjected TMJ chondrocytes to IL-1β treatment, resulting in a shift in messenger RNA sequencing gene ontologies related to iron homeostasis and oxidative stress-related cell death. Exposure to rat unilateral anterior crossbite conditions resulted in reduced COL2A1 expression, fewer chondrocytes, glutathione peroxidase 4 (GPX4) downregulation, and 4-hydroxynonenal (4-HNE) upregulation, an effect that was reversed after intra-articular injections of the ferroptosis inhibitor ferrostatin 1 (Fer-1). Our study demonstrated that ferroptosis conditions affected mitochondrial structure and function, while the inhibitor Fer-1 restored mitochondrial structure and the inhibition of hypoxia-inducible factor 1α (HIF-1α) or the transferrin receptor 1 (TFRC) rescued IL-1β-induced loss of mitochondrial membrane potential. Inhibition of HIF-1α downregulated IL-1β-induced TFRC expression, while inhibition of TFRC did not downregulate IL-1β-induced HIF-1α expression in chondrocytes. Moreover, inhibition of HIF-1α or TFRC downregulated the IL-1β-induced MMP13 expression in chondrocytes, while inhibition of HIF-1α or TFRC rescued IL-1β-inhibited COL2A1 expression in chondrocytes. Furthermore, upregulation of TFRC promoted Fe2+ entry into chondrocytes, inducing the Fenton reaction and lipid peroxidation, which in turn caused ferroptosis, a disruption in chondrocyte functions, and an exacerbation of condylar cartilage degeneration. Together, these findings illustrate the far-reaching effects of chondrocyte ferroptosis in TMJOA as a mechanism causing chondrocyte death through iron overload, oxidative stress, and articular cartilage degeneration and a potential major cause of TMJOA.
Collapse
Affiliation(s)
- B Y Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - J L Pathak
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - H Y Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - W Q Guo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - W J Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - G Luo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - L J Wang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - X F Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Ding
- School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - J Li
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - T G H Diekwisch
- School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - C Liu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Zhu K, Xie X, Hou F, Chen Y, Wang H, Jiang Q, Feng Y, Xiao P, Zhang Q, Xiang Z, Fan Y, Wu X, Li L, Song R. The Association Between Functional Variants in Long Non-coding RNAs and the Risk of Autism Spectrum Disorder Was Not Mediated by Gut Microbiota. Mol Neurobiol 2024:10.1007/s12035-024-04276-4. [PMID: 38861233 DOI: 10.1007/s12035-024-04276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The effect of functional variants in long non-coding RNA (lncRNA) gene regions on autism spectrum disorder (ASD) remains unclear. The present study aimed to investigate the association of functional variants located in lncRNA genes with the risk of ASD and explore whether gut microbiota would mediate the relationship. A total of 87 cases and 71 healthy controls were enrolled in the study. MassARRAY platform and 16S rRNA sequencing were respectively applied to assess the genotype of candidate SNPs and gut microbiota of children. The logistic regression models showed that the association between rs2295412 and the risk of ASD was statistically significant after Bonferroni adjustments. The risk of ASD decreased by 19% for each additional C allele carried by children in multiplicative models (OR = 0.81, 95% CI, 0.69-0.94, P = 0.007). Although we identified significant correlations between rs8113922 polymorphisms, Bifidobacteriales, and ASD, the mediating effect of gut microbiota on the relationship of the polymorphisms with the risk of ASD was not significant. The findings demonstrated that functional variants in lncRNA genes play an important role in ASD and gut microbiota could not mediate the association. Future studies are warranted to verify the results and search for more possible mechanisms of variants located in lncRNA genes implicated in ASD.
Collapse
Affiliation(s)
- Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Fang Hou
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Quan Zhang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Yixi Fan
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Xufang Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China
| | - Li Li
- Maternity and Children, Health Care Hospital of Luohu District, Shenzhen, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
19
|
Mao ZH, Gao ZX, Pan SK, Liu DW, Liu ZS, Wu P. Ferroptosis: a potential bridge linking gut microbiota and chronic kidney disease. Cell Death Discov 2024; 10:234. [PMID: 38750055 PMCID: PMC11096411 DOI: 10.1038/s41420-024-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
20
|
Chen J, Li L, Feng Y, Zhao Y, Sun F, Zhou X, Yiqi D, Li Z, Kong F, Kong X. MKLN1-AS promotes pancreatic cancer progression as a crucial downstream mediator of HIF-1α through miR-185-5p/TEAD1 pathway. Cell Biol Toxicol 2024; 40:30. [PMID: 38740637 PMCID: PMC11090931 DOI: 10.1007/s10565-024-09863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nuclear Proteins/metabolism
- Nuclear Proteins/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- TEA Domain Transcription Factors/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Lei Li
- Digestive Endoscopy Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yongpu Feng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yating Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Fengyuan Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xianzhu Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Du Yiqi
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Fanyang Kong
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Xiangyu Kong
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Li S, Han J, Cao J, Han H, Lu B, Wen T, Bian W. ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway in mice with osteoarthritis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2487-2501. [PMID: 38174997 DOI: 10.1002/tox.24131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Recent studies have shown that chondrocyte ferroptosis contributes importantly to the pathogenesis of osteoarthritis (OA). However, it is largely unknown how it is regulated. In this study, the data sets GSE167852 and GSE190184 were downloaded from the Gene Expression Omnibus (GEO) database, and 161 differentially expressed genes (DEGs) related to ferroptosis were screened by bioinformatics analysis. Subsequently, ADORA2B was screened as a candidate gene from DEGs, which was significantly upregulated in palmitic acid (PA) treated chondrocytes. CCK-8, EdU, Western blotting, and ferroptosis-related kits assays demonstrated that knockdown of ADORA2B constrained ferroptosis and promoted viability of chondrocytes. Overexpression of ADORA2B promoted ferroptosis, while the PI3K/Akt pathway inhibitor LY294002 reversed the promotion of ADORA2B on ferroptosis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated MYC was a transcription suppressor of ADORA2B, and overexpression of MYC promoted the viability, and inhibited the ferroptosis of chondrocytes, while ADORA2B overexpression abated the promotion of MYC on chondrocyte viability and the inhibition on ferroptosis. In vivo experiments showed that MYC overexpression alleviated cartilage tissue damage in OA mice, which was able to reversed by ADORA2B overexpression. In summary, ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway. Thus, ADORA2B can be used as a potential treatment target for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shen Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiangbo Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
22
|
Cui H, Wang Y, Ma J, Zhou L, Li G, Li Y, Sun Y, Shen J, Ma T, Wang Q, Feng X, Dong B, Yang P, Li Y, Ma X. Advances in exosome modulation of ferroptosis for the treatment of orthopedic diseases. Pathol Res Pract 2024; 257:155312. [PMID: 38663177 DOI: 10.1016/j.prp.2024.155312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Current treatments for orthopaedic illnesses frequently result in poor prognosis, treatment failure, numerous relapses, and other unpleasant outcomes that have a significant impact on patients' quality of life. Cell-free therapy has emerged as one of the most promising options in recent decades for improving the status quo. As a result, using exosomes produced from various cells to modulate ferroptosis has been proposed as a therapeutic method for the condition. Exosomes are extracellular vesicles that secrete various bioactive chemicals that influence disease treatment and play a role in the genesis and progression of orthopaedic illnesses. Ferroptosis is a recently defined kind of controlled cell death typified by large iron ion buildup and lipid peroxidation. An increasing number of studies indicate that ferroptosis plays a significant role in orthopaedic illnesses. Exosomes, as intercellular information transfer channels, have been found to play a significant role in the regulation of ferroptosis processes. Furthermore, accumulating research suggests that exosomes can influence the course of many diseases by regulating ferroptosis in injured cells. In order to better understand the processes by which exosomes govern ferroptosis in the therapy of orthopaedic illnesses. This review discusses the biogenesis, secretion, and uptake of exosomes, as well as the mechanisms of ferroptosis and exosomes in the therapy of orthopaedic illnesses. It focuses on recent research advances and exosome mechanisms in regulating iron death for the therapy of orthopaedic illnesses. The present state of review conducted both domestically and internationally is elucidated and anticipated as a viable avenue for future therapy in the field of orthopaedics.
Collapse
Affiliation(s)
- Hongwei Cui
- Tianjin Medical University Orthopedic Clinical College, Tianjin 300050, China; Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| | - Liyun Zhou
- Tianjin Medical University Orthopedic Clinical College, Tianjin 300050, China; Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yiyang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yadi Sun
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jiahui Shen
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Tiancheng Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xiaotian Feng
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| |
Collapse
|
23
|
Hsu YP, Huang TH, Liu ST, Huang SM, Chen YC, Wu CC. Glucosamine and Silibinin Alter Cartilage Homeostasis through Glycosylation and Cellular Stresses in Human Chondrocyte Cells. Int J Mol Sci 2024; 25:4905. [PMID: 38732122 PMCID: PMC11084729 DOI: 10.3390/ijms25094905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.
Collapse
Affiliation(s)
- Yu-Pao Hsu
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Tsung-Hsi Huang
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Yi-Chou Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237, Taiwan
| |
Collapse
|
24
|
Li P, Zhou J, Wang T, Li J, Wu W. Capsiate ameliorates secondary hyperparathyroidism by improving insulin sensitivity and inhibiting angiogenesis. J Cell Mol Med 2024; 28:e18202. [PMID: 38591872 PMCID: PMC11003359 DOI: 10.1111/jcmm.18202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Secondary hyperparathyroidism has a significant impact on the overall well-being of the body. Capsiates, known for their antioxidant and metabolic properties, have emerged as a promising alternative treatment for secondary hyperparathyroidism. This study aims to evaluate the effects and mechanisms of capsiates in the treatment of secondary hyperparathyroidism. To achieve our research objectives, we conducted a study on patients' serum and examined changes in metabolic markers using serum metabolomics. We induced secondary hyperparathyroidism in rat through dietary intervention and divided them into four groups. The first group, referred to as the Parathyroid Hormone (PTH) group, received a low-calcium and high-phosphate diet (0.2% calcium, 1.2% phosphorus). The second group served as the control group, receiving a standard phosphate and calcium diet (0.6% calcium, 0.6% phosphorus). The third group, called the capsiates group, consisted of rat from the control group treated with capsiates (intraperitoneal injection of 2 mg/kg capsiates for 2 weeks after 2 weeks of dietary intervention). The fourth group was the capsiates-treated PTH group. Subsequently, we conducted ribose nucleic acid (RNA) sequencing on parathyroid gland cells and evaluated serum thyroxine levels, oxidative stress, expression of proteins associated with vascular neogenesis, measurement of SOD, GSH and 3-nitrotyrosine, micro-CT and histological staining. The serum metabolomic data revealed a significant decrease in capsiate levels in the secondary hyperparathyroidism group. Administration of capsiates to PTH rat resulted in increased calcium levels compared to the PTH group. Additionally, the PTH + Capsiates group showed significantly lower levels of PTH and phosphate compared to the PTH group. The PTH group exhibited a notable increase in the quantity and size of mitochondria compared to the control group. Following capsiates administration to the PTH group, there was a significant reduction in the number of mitochondria and length of microvilli, but an increase in the size of mitochondria compared to the PTH group. Sequencing analysis revealed that vascular endothelial growth factor (VEGF) and Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) play crucial roles in this process. Vascular-related variables and downstream signalling were significantly elevated in hyperthyroidism and were alleviated with capsaicin treatment. Finally, combining capsiates with the PTH group improved bone mineral density, Tb.N, BV.TV, Cs.Th, Tt.Ar, OPG, Ob.TV and Oc.TV, as well as the mineral apposition rate, but significantly decreased Tb.Sp and Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) compared to the PTH group. The findings suggest that capsiates can improve secondary hyperparathyroidism and ameliorated osteoporosis outcomes by inhibiting angiogenesis and reducing oxidative stress.
Collapse
Affiliation(s)
- Peiting Li
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Jianda Zhou
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Tianyin Wang
- Transplantation CenterThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Jun Li
- Department of Breast Thyroid SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Wei Wu
- Department of Breast Thyroid SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
25
|
Guan Z, Liu Y, Luo L, Jin X, Guan Z, Yang J, Liu S, Tao K, Pan J. Sympathetic innervation induces exosomal miR-125 transfer from osteoarthritic chondrocytes, disrupting subchondral bone homeostasis and aggravating cartilage damage in aging mice. J Adv Res 2024:S2090-1232(24)00122-X. [PMID: 38554999 DOI: 10.1016/j.jare.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive disease that poses a significant threat to human health, particularly in aging individuals: Although sympathetic activation has been implicated in bone metabolism, its role in the development of OA related to aging remains poorly understood. Therefore, this study aimed to investigate how sympathetic regulation impacts aging-related OA through experiments conducted both in vivo and in vitro. METHODS To analyze the effect of sympathetic regulation on aging-related OA, we conducted experiments using various mouse models. These models included a natural aging model, a medial meniscus instability model, and a load-induced model, which were used to examine the involvement of sympathetic nerves. In order to evaluate the expression levels of β1-adrenergic receptor (Adrβ1) and sirtuin-6 (Sirt6) in chondrocytes of naturally aging OA mouse models, we performed assessments. Additionally, we investigated the influence of β1-adrenergic receptor knockout or treatment with a β1-adrenergic receptor blocker on the progression of OA in aging mice and detected exosome release and detected downstream signaling expression by inhibiting exosome release. Furthermore, we explored the impact of sympathetic depletion through tyrosine hydroxylase (TH) on OA progression in aging mice. Moreover, we studied the effects of norepinephrine(NE)-induced activation of the β1-adrenergic receptor signaling pathway on the release of exosomes and miR-125 from chondrocytes, subsequently affecting osteoblast differentiation in subchondral bone. RESULTS Our findings demonstrated a significant increase in sympathetic activity, such as NE levels, in various mouse models of OA including natural aging, medial meniscus instability, and load-induced models. Notably, we observed alterations in the expression levels of β1-adrenergic receptor and Sirt6 in chondrocytes in OA mouse models associated with natural aging, leading to an improvement in the progression of OA. Critically, we found that the knockout of β1-adrenergic receptor or treatment with a β1-adrenergic receptor blocker attenuated OA progression in aging mice and the degraded cartilage explants produced more exosome than the nondegraded ones, Moreover, sympathetic depletion through TH was shown to ameliorate OA progression in aging mice. Additionally, we discovered that NE-induced activation of the β1-adrenergic receptor signaling pathway facilitated the release of exosomes and miR-125 from chondrocytes, promoting osteoblast differentiation in subchondral bone. CONCLUSION In conclusion, our study highlights the role of sympathetic innervation in facilitating the transfer of exosomal miR-125 from osteoarthritic chondrocytes, ultimately disrupting subchondral bone homeostasis and exacerbating cartilage damage in aging mice. These findings provide valuable insights into the potential contribution of sympathetic regulation to the pathogenesis of aging-related OA.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jianjun Yang
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jianfeng Pan
- Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China.
| |
Collapse
|
26
|
Xu D, Xie Y, Cheng J, He D, Liu J, Fu S, Hu G. Amygdalin Alleviates DSS-Induced Colitis by Restricting Cell Death and Inflammatory Response, Maintaining the Intestinal Barrier, and Modulating Intestinal Flora. Cells 2024; 13:444. [PMID: 38474407 DOI: 10.3390/cells13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to a cluster of intractable gastrointestinal disorders with an undetermined etiology and a lack of effective therapeutic agents. Amygdalin (Amy) is a glycoside extracted from the seeds of apricot and other Rosaceae plants and it exhibits a wide range of pharmacological properties. Here, the effects and mechanisms of Amy on colitis were examined via 16S rRNA sequencing, ELISA, transmission electron microscopy, Western blot, and immunofluorescence. The results showed that Amy administration remarkably attenuated the signs of colitis (reduced body weight, increased disease activity index, and shortened colon length) and histopathological damage in dextran sodium sulfate (DSS)-challenged mice. Further studies revealed that Amy administration significantly diminished DSS-triggered gut barrier dysfunction by lowering pro-inflammatory mediator levels, inhibiting oxidative stress, and reducing intestinal epithelial apoptosis and ferroptosis. Notably, Amy administration remarkably lowered DSS-triggered TLR4 expression and the phosphorylation of proteins related to the NF-κB and MAPK pathways. Furthermore, Amy administration modulated the balance of intestinal flora, including a selective rise in the abundance of S24-7 and a decline in the abundance of Allobaculum, Oscillospira, Bacteroides, Sutterella, and Shigella. In conclusion, Amy can alleviate colitis, which provides data to support the utility of Amy in combating IBD.
Collapse
Affiliation(s)
- Dianwen Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
27
|
Zhang J, Su T, Fan Y, Cheng C, Xu L, LiTian. Spotlight on iron overload and ferroptosis: Research progress in female infertility. Life Sci 2024; 340:122370. [PMID: 38141854 DOI: 10.1016/j.lfs.2023.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Iron is an essential trace element for organisms. However, iron overload, which is common in haematological disorders (e.g. haemochromatosis, myelodysplastic syndromes, aplastic anaemia, and thalassaemia, blood transfusion-dependent or not), can promote reactive oxygen species generation and induce ferroptosis, a novel form of programmed cell death characterised by excess iron and lipid peroxidation, thus causing cell and tissue damage. Infertility is a global health concern. Recent evidence has indicated the emerging role of iron overload and ferroptosis in female infertility by inducing hypogonadism, causing ovary dysfunction, impairing preimplantation embryos, attenuating endometrial receptivity, and crosstalk between subfertility-related disorders, such as polycystic ovary syndrome and endometriosis. In addition, gut microbiota and their metabolites are involved in iron metabolism, ferroptosis, and female infertility. In this review, we systematically elaborate on the current research progress in female infertility with a novel focus on iron overload and ferroptosis and summarise promising therapies targeting iron overload and ferroptosis to recover fertility in women. In summary, our study provides new insights into female infertility and offers literature references for the clinical management of female infertility associated with iron overload and ferroptosis, which may be beneficial for females with haematopoietic disorders suffering from both iron overload and infertility.
Collapse
Affiliation(s)
- Jinghua Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Tiantian Su
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Yuan Fan
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Cheng Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - LiTian
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China; Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
28
|
Wu H, Zhang P, Zhou J, Hu S, Hao J, Zhong Z, Yu H, Yang J, Chi J, Guo H. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. Am J Physiol Cell Physiol 2024; 326:C724-C741. [PMID: 38223927 DOI: 10.1152/ajpcell.00565.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.
Collapse
Affiliation(s)
- Haowei Wu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Peipei Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiedong Zhou
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Songqing Hu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinjin Hao
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haijun Yu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Juntao Yang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Hangyuan Guo
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
29
|
Wang J, Ni S, Zheng K, Zhao Y, Zhang P, Chang H. Phillygenin Alleviates Arthritis through the Inhibition of the NLRP3 Inflammasome and Ferroptosis by AMPK. Crit Rev Immunol 2024; 44:59-70. [PMID: 38618729 DOI: 10.1615/critrevimmunol.2024051467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We investigated the potential arthritis-inducing effects of Phillygenin and its underlying mechanisms. RAW264.7 cells were stimulated with lipopolysaccharide to induce inflammation. Phillygenin was found to reduce arthritis score, histopathological changes, paw edema, spleen index, and ALP levels in a dose-dependent manner in a model of arthritis. Additionally, Phillygenin was able to decrease levels of inflammation markers in serum samples of mice with arthritis and also inhibited inflammation markers in the cell supernatant of an in vitro model of arthritis. Phillygenin increased cell viability and JC-1 disaggregation, enhanced calcien-AM/CoCl2, reduced LDH activity levels and IL-1a levels, and inhibited Calcein/PI levels and iron concentration in an in vitro model. Phillygenin was also found to reduce ROS-induced oxidative stress and Ferroptosis, and suppress the NLRP3 inflammasome in both in vivo and in vitro models through AMPK. In the in vivo model, Phillygenin was observed to interact with AMPK protein. These findings suggest that Phillygenin may be a potential therapeutic target for preventing arthritis by inhibiting NLRP3 inflammasome and Ferroptosis through AMPK. This indicates that Phillygenin could have disease-modifying effects on arthritis.
Collapse
Affiliation(s)
- Jianghui Wang
- Department of Surgery, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province 050031, China
| | - Shufang Ni
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province 050031, China
| | - Kai Zheng
- Department of Surgery, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province 050031, China
| | - Yan Zhao
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province 050031, China
| | - Peihong Zhang
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province 050031, China
| | - Hong Chang
- Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine
| |
Collapse
|
30
|
Habaxi K, Wang W, Taximaimaiti M, Wang L. Methylation Regulation of LPCAT3 Improves Osteoarthritis by Regulating ACSL4 to Inhibit Chondrocyte Ferroptosis. Crit Rev Eukaryot Gene Expr 2024; 34:77-86. [PMID: 38073444 DOI: 10.1615/critreveukaryotgeneexpr.2023049244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
With the increasing aging population in China, the incidence rate of knee osteoarthritis is expected to rise annually. Therefore, we conducted a study to investigate the crucial role of LPCAT3 in osteoarthritis and its underlying mechanisms. We collected samples from normal volunteers (n = 12) and patients with osteoarthritis (n = 12) at our hospital. It was observed that LPCAT3 mRNA expression was reduced and positively correlated with IL-1β mRNA expression in patients with osteoarthritis. In a mouse model, LPCAT3 mRNA and protein expression were found to be suppressed. Furthermore, in an in vitro model, the enrichment level of LPCAT3 mRNA was inhibited by a specific m6A antibody through si-METTL3. Si-METTL3 also reduced the stability of LPCAT3 mRNA in the in vitro model. The inhibition of LPCAT3 was found to exacerbate osteoarthritis in the mouse model. Additionally, LPCAT3 was shown to reduce inflammation in the in vitro model. It was also observed that LPCAT3 reduced chondrocyte ferroptosis by inhibiting mitochondrial damage. LPCAT3 protein was found to interact with ACSL4 protein, and its up-regulation suppressed ACSL4 expression in the in vitro model. ACSL4 was identified as a target of LPCAT3 for suppressing mitochondrial damage in the in vitro model. In conclusion, this study demonstrates that LPCAT3 improves osteoarthritis by regulating ACSL4 to inhibit chondrocyte ferroptosis, thus providing a novel target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kaken Habaxi
- Department of Joint Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Wei Wang
- Department of Joint Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Maimaitiaili Taximaimaiti
- Department of Joint Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Li Wang
- Department of Joint Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| |
Collapse
|
31
|
Marchese L, Contartese D, Giavaresi G, Di Sarno L, Salamanna F. The Complex Interplay between the Gut Microbiome and Osteoarthritis: A Systematic Review on Potential Correlations and Therapeutic Approaches. Int J Mol Sci 2023; 25:143. [PMID: 38203314 PMCID: PMC10778637 DOI: 10.3390/ijms25010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this review is to systematically analyze the potential correlation between gut microbiota and osteoarthritis (OA) as well as to evaluate the feasibility of microbiota-targeted therapies for treating OA. Studies conducted from October 2013 to October 2023 were identified via a search on electronic databases such as PubMed, Web of Science, and Scopus, following established PRISMA statement standards. Two reviewers independently screened, assessed, and extracted relevant data, and then they graded the studies using the ROBINS I tool for non-randomized interventions studies and SYRCLE's risk-of-bias tool for animal studies. A search through 370 studies yielded 38 studies (24 preclinical and 14 clinical) that were included. In vivo research has predominantly concentrated on modifying the gut microbiota microenvironment, using dietary supplements, probiotics, and prebiotics to modify the OA status. Lactobacilli are the most thoroughly examined with Lactobacillus acidophilus found to effectively reduce cartilage damage, inflammatory factors, and pain. Additionally, Lactobacillus M5 inhibits the development of OA by preventing high-fat diet (HFD)-induced obesity and protecting cartilage from damage. Although there are limited clinical studies, certain compositions of intestinal microbiota may be associated with onset and progression of OA, while others are linked to pain reduction in OA patients. Based on preclinical studies, there is evidence to suggest that the gut microbiota could play a significant role in the development and progression of OA. However, due to the scarcity of clinical studies, the exact mechanism linking the gut microbiota and OA remains unclear. Further research is necessary to evaluate specific gut microbiota compositions, potential pathogens, and their corresponding signaling pathways that contribute to the onset and progression of OA. This will help to validate the potential of targeting gut microbiota for treating OA patients.
Collapse
Affiliation(s)
| | | | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (D.C.); (L.D.S.); (F.S.)
| | | | | |
Collapse
|
32
|
An F, Zhang J, Gao P, Xiao Z, Chang W, Song J, Wang Y, Ma H, Zhang R, Chen Z, Yan C. New insight of the pathogenesis in osteoarthritis: the intricate interplay of ferroptosis and autophagy mediated by mitophagy/chaperone-mediated autophagy. Front Cell Dev Biol 2023; 11:1297024. [PMID: 38143922 PMCID: PMC10748422 DOI: 10.3389/fcell.2023.1297024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Ferroptosis, characterized by iron accumulation and lipid peroxidation, is a form of iron-driven cell death. Mitophagy is a type of selective autophagy, where degradation of damaged mitochondria is the key mechanism for maintaining mitochondrial homeostasis. Additionally, Chaperone-mediated autophagy (CMA) is a biological process that transports individual cytoplasmic proteins to lysosomes for degradation through companion molecules such as heat shock proteins. Research has demonstrated the involvement of ferroptosis, mitophagy, and CMA in the pathological progression of Osteoarthritis (OA). Furthermore, research has indicated a significant correlation between alterations in the expression of reactive oxygen species (ROS), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factors (HIFs) and the occurrence of OA, particularly in relation to ferroptosis and mitophagy. In light of these findings, our study aims to assess the regulatory functions of ferroptosis and mitophagy/CMA in the pathogenesis of OA. Additionally, we propose a mechanism of crosstalk between ferroptosis and mitophagy, while also examining potential pharmacological interventions for targeted therapy in OA. Ultimately, our research endeavors to offer novel insights and directions for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haizhen Ma
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rui Zhang
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhendong Chen
- Teaching Department of Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
33
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
34
|
Wen Y, Wang B, Shi P, Chu X, Shi S, Yao Y, Zhang L, Zhang F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin-Beck Disease, an Osteoarthropathy Endemic to China. Nutrients 2023; 15:4651. [PMID: 37960304 PMCID: PMC10650499 DOI: 10.3390/nu15214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a distinct osteoarthropathy in China with an unclear pathogenesis. This study aims to explore whether perturbations in the intestine metabolome could be linked to KBD individuals. Methods: An investigation was conducted in KBD endemic villages and fecal samples were collected. After applying inclusion and exclusion criteria, a total of 75 subjects were enrolled for this study, including 46 KBD (including 19 Grade I KBD and 27 Grade II KBD) and 29 controls. Untargeted metabolomics analysis was performed on the platform of UHPLC-MS. PLS-DA and OPLS-DA were conducted to compare the groups and identify the differential metabolites (DMs). Pathway analysis was conducted on MPaLA platform to explore the functional implication of the DMs. Results: Metabolomics analysis showed that compared with the control group, KBD individuals have a total of 584 differential metabolites with dysregulated levels such as adrenic acid (log2FC = -1.87, VIP = 4.84, p = 7.63 × 10-7), hydrogen phosphate (log2FC = -2.57, VIP = 1.27, p = 1.02 × 10-3), taurochenodeoxycholic acid (VIP = 1.16, log2FC = -3.24, p = 0.03), prostaglandin E3 (VIP = 1.17, log2FC = 2.67, p = 5.61 × 10-4), etc. Pathway analysis revealed several significantly perturbed pathways associated with KBD such as selenium micronutrient network (Q value = 3.11 × 10-3, Wikipathways), metabolism of lipids (Q value = 8.43 × 10-4, Reactome), free fatty acid receptors (Q value = 3.99 × 10-3, Reactome), and recycling of bile acids and salts (Q value = 2.98 × 10-3, Reactome). Subgroup comparisons found a total of 267 differential metabolites were shared by KBD vs. control, KBD II vs. control, and KBD I vs. control, while little difference was found between KBD II and KBD I (only one differential metabolite detected). Conclusions: KBD individuals showed distinct metabolic features characterized by perturbations in lipid metabolism and selenium-related bioprocesses. Our findings suggest that the loss of nutrients metabolism balance in intestine was involved in KBD pathogenesis. Linking the nutrients metabolism (especially selenium and lipid) to KBD cartilage damage should be a future direction of KBD study.
Collapse
Affiliation(s)
- Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Medical Department, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| |
Collapse
|
35
|
Jiménez-Muro M, Soriano-Romaní L, Mora G, Ricciardelli D, Nieto JA. The microbiota-metabolic syndrome axis as a promoter of metabolic osteoarthritis. Life Sci 2023; 329:121944. [PMID: 37453577 DOI: 10.1016/j.lfs.2023.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The relation between obesity and osteoarthritis (OA) development has been traditionally explained as consequence of the excessive joint effort derived of overweight. However, in the last two decades a metabolic OA has been suggested through diverse molecular mechanism implying metabolic syndrome, although more investigation must be conducted to elucidate it. Metabolic syndrome is responsible of the release of diverse inflammatory cytokines, specially the increased adipokine in obesity, causing a chronic low-grade inflammatory status that alters the joint homeostasis. In this scenario, the microbiota dysbiosis contribute by worsening the low-grade chronic inflammation or causing metabolic disorders mediated by endotoxemia generated by an increased lipopolysaccharides intake. This results in joint inflammation and cartilage degradation, which contributes to the development of OA. Also, the insulin resistance provoked by type 2 Diabetes contributes to the OA development. When intake patterns are considered, some coincidences can be pointed between the food patterns associated to the metabolic syndrome and the food patterns associated to OA development. Therefore, these coincidences support the idea of a molecular mechanism of the OA development caused by the molecular mechanism generated under the metabolic syndrome status. This review points the relation between metabolic syndrome and OA, showing the connected molecular mechanisms between both pathologies as well as the shared dietary patterns that promote or prevent both pathologies.
Collapse
Affiliation(s)
- Marta Jiménez-Muro
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Laura Soriano-Romaní
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain
| | - Gonzalo Mora
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Diego Ricciardelli
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Juan Antonio Nieto
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain.
| |
Collapse
|
36
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
37
|
Wang S, Song Y, Xu F, Liu HH, Shen Y, Hu L, Fu Y, Zhu L. Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury. Cell Signal 2023; 108:110698. [PMID: 37149072 DOI: 10.1016/j.cellsig.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Emerging evidence reveals the important role of ferroptosis in the pathophysiological process of acute lung injury (ALI). We aimed to identify and validate the potential ferroptosis-related genes of ALI through bioinformatics analysis and experimental validation. METHODS Murine ALI model was established via intratracheal instillation with LPS and confirmed by H&E staining and transmission electronic microscopy (TEM). RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between control and ALI model mice. The potential differentially expressed ferroptosis-related genes of ALI were identified using the limma R package. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene set enrichment analysis (GSEA), and protein-protein interactions (PPI) were applied for the differentially expressed ferroptosis-related genes. CIBERSORT tool was used to conduct immune cell infiltration analysis. Finally, protein expressions and RNA expression of ferroptosis DEGs were validated in vivo and in vitro by western blots and RT-qPCR. RESULTS Among 5009 DEGs, a total of 86 differentially expressed ferroptosis-related genes (45 up-regulated genes and 41 down-regulated genes) were identified in the lungs between control and ALI. GSEA analysis showed that the genes enriched were mainly involved in response to molecule of bacterial origin and fatty acid metabolic process. The GO and KEGG enrichment analysis indicated that the top 40 ferroptosis DEGs were mainly enriched in reactive oxygen species metabolic process, HIF-1signaling pathway, lipid and atherosclerosis, and ferroptosis. The PPI results and Spearman correlation analysis suggested that these ferroptosis-related genes interacted with each other. Immune infiltration analysis confirmed that ferroptosis DEGs were closely related to immune response. Consistent with the RNA-seq data, the western blot and RT-qPCR unveiled increased mRNA expressions of Cxcl2, Il-6, Il-1β, and Tnfα, and protein expressions of FTH1, TLR4 as well as decreased ACSL3 in LPS-induced ALI. In vitro, the upregulated mRNA levels of CXCL2, IL-6, SLC2A1, FTH1, TNFAIP3, and downregulated NQO1 and CAV1 in LPS-stimulated BEAS-2B and A549 cells were verified. CONCLUSION We identified 86 potential ferroptosis-related genes of LPS-induced ALI through RNA-seq. Several pivotal ferroptosis-related genes involved in lipid metabolism and iron metabolism were implicated in ALI. This study may be helpful to expand our understanding of ALI and provide some potential targets to counteract ferroptosis in ALI.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fan Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han Han Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|