1
|
Duan B, Feng Q, Li L, Huang J. CircDDX21 alleviates trophoblast dysfunction and Treg differentiation in recurrent spontaneous abortion via miR-520a-5p/ FOXP3/PD-L1 axis. J Assist Reprod Genet 2024; 41:3539-3557. [PMID: 39400646 PMCID: PMC11706825 DOI: 10.1007/s10815-024-03281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a common complication during pregnancy, which is a burden to patients both physically and mentally. Circular RNAs (circRNAs) play important roles in RSA. However, the roles of circDDX21 in RSA development remain unknown. METHODS Decidual samples were harvested from healthy pregnant women and RSA patients. In HTR-8/SVneo and Bewo trophoblast cells, proliferation and migration were analyzed by cell counting kit-8 (CCK-8)/5-ethynyl-2'-deoxyuridine (EdU) staining and transwell/wound healing assays, respectively. CD4+ T cells from peripheral blood mononuclear cells of patients were incubated with trophoblast-conditioned medium. Regulatory T cells (Treg) proliferation was detected by carboxyfluorescein succinimidyl ester (CFSE) assay. Treg proportion, Treg/T helper 17 cells (Th17) ratio, and cytokines were measured using flow cytometry. The association among genes was validated using dual-luciferase assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP). RESULTS CircDDX21 and Forkhead box P3 (FOXP3) decreased, while miR-520a-5p increased in the decidual tissues of RSA patients. CircDDX21 overexpression promoted trophoblast proliferation and migration, and facilitated CD4+ T cell differentiation into Treg. CircDDX21 targeted miR-520a-5p to elevate FOXP3. MiR-520a-5p overexpression reversed the promoted trophoblast cell function of circDDX21 overexpression in HTR-8/SVneo cells. FOXP3 overexpression reversed the repressed trophoblast cell function elicited by miR-520a-5p overexpression in HTR-8/SVneo cells. FOXP3 promoted Treg differentiation by transcriptionally upregulating programmed cell death ligand 1 (PD-L1). CONCLUSION CircDDX21 ameliorated trophoblast dysfunction and Treg differentiation in RSA via miR-520a-5p/FOXP3/PD-L1 axis.
Collapse
Affiliation(s)
- Biao Duan
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Reproductive Medicine Center, Chongqing University Three Gorges Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404000, China.
| | - Qing Feng
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Li Li
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiangfang Huang
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
3
|
Xing Y, Wang H, Chao C, Ding X, Li G. Gestational diabetes mellitus in the era of COVID-19: Challenges and opportunities. Diabetes Metab Syndr 2024; 18:102991. [PMID: 38569447 DOI: 10.1016/j.dsx.2024.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND AIMS The impact of the coronavirus disease 2019 (COVID-19) pandemic on pregnant women, especially those with gestational diabetes mellitus (GDM), has yet to be fully understood. This review aims to examine the interaction between GDM and COVID-19 and to elucidate the pathophysiological mechanisms underlying the comorbidity of these two conditions. METHODS We performed a systematic literature search using the databases of PubMed, Embase, and Web of Science with appropriate keywords and MeSH terms. Our analysis included studies published up to January 26, 2023. RESULTS Despite distinct clinical manifestations, GDM and COVID-19 share common pathophysiological characteristics, which involve complex interactions across multiple organs and systems. On the one hand, infection with severe acute respiratory syndrome coronavirus 2 may target the pancreas and placenta, resulting in β-cell dysfunction and insulin resistance in pregnant women. On the other hand, the hormonal and inflammatory changes that occur during pregnancy could also increase the risk of severe COVID-19 in mothers with GDM. Personalized management and close monitoring are crucial for treating pregnant women with both GDM and COVID-19. CONCLUSIONS A comprehensive understanding of the interactive mechanisms of GDM and COVID-19 would facilitate the initiation of more targeted preventive and therapeutic strategies. There is an urgent need to develop novel biomarkers and functional indicators for early identification and intervention of these conditions.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Hong Wang
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Cong Chao
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Xueteng Ding
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guoju Li
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
4
|
Jovandaric MZ, Babic S, Raus M, Medjo B. The Importance of Metabolic and Environmental Factors in the Occurrence of Oxidative Stress during Pregnancy. Int J Mol Sci 2023; 24:11964. [PMID: 37569340 PMCID: PMC10418910 DOI: 10.3390/ijms241511964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic changes in pregnant women begin in the first weeks after conception under the influence of placental hormones that affect the metabolism of all nutrients. An increased concentration of total lipids accompanies pregnancy and an increased accumulation of triglycerides in low-density lipoproteins (LDL) particles. Lipids in small dense LDL particles are more susceptible to oxidative modification than normal-density LDL particles. Unlike LDL high-density lipoproteins (HDL), lipoprotein particles have an atheroprotective role in lipid metabolism. The very growth of the fetus depends on the nutrition of both parents, so obesity is not only in the mother but also in the father. Nutritional programming of the offspring occurs through changes in lipid metabolism and leads to an increased risk for cardiometabolic diseases. Pregnancy is accompanied by an increased need for oxygen in the mitochondria of the placenta and a tendency to develop oxidative stress. Oxidative stress represents a disturbance in the balance of oxidation-reduction processes in the body that occurs due to the excessive production of free oxygen radicals that cellular homeostatic mechanisms are unable to neutralize. When the balance with the antioxidant system is disturbed, which happens when free oxygen radicals are in high concentrations, serious damage to biological molecules occurs, resulting in a series of pathophysiological and pathological changes, including cell death. Therefore, oxidative stress plays a significant role in the pathogenesis of many complications that can occur during pregnancy. The oxidative status of pregnant women is also influenced by socioeconomic living conditions, lifestyle habits, diet, smoking, and exposure to environmental air pollution. During a healthy pregnancy, the altered lipid profile and oxidative stress create an increased risk for premature birth and pregnancy-related diseases, and a predisposition to adult diseases.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Misela Raus
- Department of Neonatology, University Children’s Hospital, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Medjo
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department Pediatrics and Neonatal Intensive Care, University Children’s Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, Wang D, Jiao Y, Liu A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2023; 13:1067661. [PMID: 36700222 PMCID: PMC9869165 DOI: 10.3389/fimmu.2022.1067661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
Collapse
Affiliation(s)
- Mengyu Jing
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hongxia Qiu
- Department of Obstetrics, Hangzhou Fuyang Women And Children Hospital, Fuyang, China
| | - Weihua He
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Yonghui Jiao
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| |
Collapse
|
6
|
Tim-3: An inhibitory immune checkpoint is associated with maternal-fetal tolerance and recurrent spontaneous abortion. Clin Immunol 2022; 245:109185. [DOI: 10.1016/j.clim.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
7
|
The imbalance of T-cell immunoglobulin and ITIM domain and CD226 on regulatory T cell in recurrent spontaneous abortion patients. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Yang S, Feng T, Ma C, Wang T, Chen H, Li L, Liu Y, Zhou B, Zhou R, Li H. Early Pregnancy Human Decidua Gamma/Delta T Cells Exhibit Tissue Resident and Specific Functional Characteristics. Mol Hum Reprod 2022; 28:6618535. [PMID: 35758607 DOI: 10.1093/molehr/gaac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
A successful pregnancy is a complicated process that builds upon two aspects of the maternal immune system that need to be balanced. As one of the indispensable groups of immune cell at the maternal-fetal interface, the decidual gamma/delta (γδ) T cells have attracted research attention in normal pregnancy and miscarriage. However, the role of γδ T cells in fetal growth remains poorly understood. Here we found that the γδ T cell population resident in decidua during early pregnancy was enriched and secreted growth factors including growth differentiation factor 15 (GDF15) and bone morphogenetic protein 1 (BMP1). A diminution in such growth factors may impair fetal development and result in fetal growth restriction. We also observed that early decidual γδ T cells exhibited stronger cytokine-secretion characteristics, but that their cytotoxic actions against A549 cells were weaker, compared with γδ T cells in peripheral blood mononuclear cells (PBMCs). In addition, the functional abilities of early decidual γδ T cells in promoting trophoblast cell proliferation, migration, invasion, and tube formation were also significantly more robust than in γδ T cells of PBMCs. These findings highlight the importance of γδ T cells in fetal growth and maternal immunotolerance during pregnancy, and show that they differ from γδ T cells in PBMCs. We thus recommend additional investigation in this research area to further elucidate a role for γδ T cells in pregnancy.
Collapse
Affiliation(s)
- Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - ChengYong Ma
- West China Hospital of Sichuan University, Chengdu, China
| | - Tiehao Wang
- West China Hospital of Sichuan University, Chengdu, China
| | - Hongqin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital,Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
10
|
Tian M, Hao F, Jin X, Sun X, Jiang Y, Wang Y, Li D, Chang T, Zou Y, Peng P, Xia C, Liu J, Li Y, Wang P, Feng Y, Wei M. ACLY ubiquitination by CUL3-KLHL25 induces the reprogramming of fatty acid metabolism to facilitate iTreg differentiation. eLife 2021; 10:62394. [PMID: 34491895 PMCID: PMC8423445 DOI: 10.7554/elife.62394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Inducible regulatory T (iTreg) cells play a central role in immune suppression. As iTreg cells are differentiated from activated T (Th0) cells, cell metabolism undergoes dramatic changes, including a shift from fatty acid synthesis (FAS) to fatty acid oxidation (FAO). Although the reprogramming in fatty acid metabolism is critical, the mechanism regulating this process during iTreg differentiation is still unclear. Here we have revealed that the enzymatic activity of ATP-citrate lyase (ACLY) declined significantly during iTreg differentiation upon transforming growth factor β1 (TGFβ1) stimulation. This reduction was due to CUL3-KLHL25-mediated ACLY ubiquitination and degradation. As a consequence, malonyl-CoA, a metabolic intermediate in FAS that is capable of inhibiting the rate-limiting enzyme in FAO, carnitine palmitoyltransferase 1 (CPT1), was decreased. Therefore, ACLY ubiquitination and degradation facilitate FAO and thereby iTreg differentiation. Together, we suggest TGFβ1-CUL3-KLHL25-ACLY axis as an important means regulating iTreg differentiation and bring insights into the maintenance of immune homeostasis for the prevention of immune diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ying Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Chang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yingying Zou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Pinghui Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yuanxi Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
11
|
Yan M, Zhang Y, Chang S. Chitosan Nanoparticles Loaded with TGF- β1 Inhibit Cervical Cancer Cell Progression Through Down-Regulation of MicroRNA-155 and Activation of Tim-3 Pathway. J Biomed Nanotechnol 2021; 17:1850-1857. [PMID: 34688330 DOI: 10.1166/jbn.2021.3146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chemically modified chitosan nanoparticles (NPs) are capable of releasing their own substances to target cells or tissues, improving microenvironment and promoting wound healing. This study aimed to explore the molecular mechanism underlying chitosan NPs loaded with TGF-β1 participating in cervical cancer (CC) progression. TGF-β1-loaded-chitosan NPs were prepared and particle size distribution, zeta potential and encapsulation efficiency of NPs were determined. MTT assay assessed the toxicity of NPs to macrophages. CC cells were co-cultured with TGF-β1-loaded chitosan NPs (experimental group) or pure chitosan NPs (control group) and cells were cultured alone to produce control group. After treatment, flow cytometry was conducted to detect apoptosis and cycle. Cancer cell migration was evaluated by Transwell assay, and miR-155 and Tim-3 expression was determined. At a ratio of 2:1 chitosan and TGF-β1, the particle size was102.65±11.98 nm, which was smallest, with high encapsulation rate of 81.26%, and low potential of 1.46±1.71. NP toxicity increased as concentration rose and relative cell proliferation rate was >80%, indicated as non-toxic. CC tissues had positive expression of CD163 and TGF-β1 (95%) (p < 0.05). Treatment with TGF-β1-loaded chitosan NPs induced increased apoptosis rate of 9.13±2.15%, reduced migration (67.65±9.91) and invaded cells (19.98±3.41), causing cell accumulation in the S phase when compared to the blank and control groups (p < 0.05). Besides, experimental group exhibited lower expression of miR-155 (0.39±0.59) and higher expression of Tim-3 (2.87± 0.51), which was higher than the blank group and control group. The optimal concentration ratio for producing TGF-β1-loaded chitosan NPs was 2:1, with less toxicity. The composite NPs suppressed malignant characteristics of CC cells through down-regulation of miR-155 and activation of Tim-3 signal pathway on the surface of macrophages, promoting secretion of macrophage inflammatory factors.
Collapse
Affiliation(s)
- Meiling Yan
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu City, 476100, Henan, China
| | - Yali Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu City, 476100, Henan, China
| | - Shanshan Chang
- Department of Obstetrics and Gynecology, The First People's Hospital of Shangqiu City, 476100, Henan, China
| |
Collapse
|
12
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
13
|
Mayoral Andrade G, Vásquez Martínez G, Pérez-Campos Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Campos Mayoral E, Martínez Cruz M, Martínez Cruz R, Matias-Cervantes CA, Meraz Cruz N, Romero Díaz C, Cruz-Parada E, Pérez-Campos E. Molecules and Prostaglandins Related to Embryo Tolerance. Front Immunol 2020; 11:555414. [PMID: 33329514 PMCID: PMC7710691 DOI: 10.3389/fimmu.2020.555414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.
Collapse
Affiliation(s)
- Gabriel Mayoral Andrade
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Edgar Zenteno
- Department of Biochemistry, School of Medicine, UNAM, Mexico City, México
| | - Eduardo Pérez-Campos Mayoral
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Ruth Martínez Cruz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Noemi Meraz Cruz
- School of Medicine, Branch at National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos Romero Díaz
- Research Centre Medicine National Autonomous University of Mexico-Benito Juárez Autonomous University of Oaxaca (UNAM-UABJO), Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Eli Cruz-Parada
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
| |
Collapse
|
14
|
Wang S, Li M, Sun F, Chen C, Ye J, Li D, Qian J, Du M. Th17/Treg-cell balance in the peripheral blood of pregnant females with a history of recurrent spontaneous abortion receiving progesterone or cyclosporine A. Exp Ther Med 2020; 21:37. [PMID: 33273967 DOI: 10.3892/etm.2020.9469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
A successful pregnancy requires the maternal immune system to accept a fetus expressing allogeneic paternal antigens and provide competent responses to infections. Accordingly, maternal-fetal immune abnormalities may have an important role in the development of recurrent spontaneous abortion (RSA). Ever since the establishment of the association between immunologic abnormalities and RSA, various types of immune therapy to restore normal immune homeostasis have been increasingly developed. Although previous studies have focused on the maternal-fetal interface, non-invasive examination is of great importance in clinical practice. The present study investigated the balance between type-17 T-helper (Th17) and T-regulatory (Treg) cells in the peripheral blood to improve the current understanding of the pathogenesis of RSA. Imbalances in Th17/Treg cells and associated molecular profiles were observed in patients with RSA. Furthermore, it was determined that the immunosuppressant cyclosporine A reduced the proportion of Th17 cells and promoted Treg-cell dominance by upregulating the expression of co-inhibitory molecules in pregnant females with a history of RSA. Progesterone, the traditional maternal-care drug, also had a certain immunomodulatory role through restoring the levels of several co-inhibitory molecules (including T-cell immunoglobulin mucin family member-3, programmed cell death-1 and cytotoxic T-lymphocyte associated protein-4) in the treatment of RSA. Changes in these immune molecules within the maternal peripheral blood may be indicators for monitoring pregnancy and prediction of RSA.
Collapse
Affiliation(s)
- Songcun Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Mengdie Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Fengrun Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Chunqin Chen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Jiangfeng Ye
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Dajin Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Jinfeng Qian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| | - Meirong Du
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, P.R. China
| |
Collapse
|
15
|
Schumacher A, Zenclussen AC. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front Immunol 2019; 10:2896. [PMID: 31921157 PMCID: PMC6914810 DOI: 10.3389/fimmu.2019.02896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) serves as one of the first signals provided by the embryo to the mother. Exactly at the time when the first step of the implantation process is initiated and the blastocyst adheres to the maternal endometrium, the embryonic tissue starts to actively secrete hCG. Shortly thereafter, the hormone can be detected in the maternal circulation where its concentration steadily increases throughout early pregnancy as it is continuously released by the forming placenta. Accumulating evidence underlines the critical function of hCG for embryo implantation and placentation. hCG not only regulates biological aspects of these early pregnancy events but also supports maternal immune cells in their function as helpers in the establishment of an adequate embryo-endometrial relationship. In view of its early presence in the maternal circulation, hCG has the potential to influence both local uterine immune cell populations as well as peripheral ones. The current review aims to summarize recent literature on the participation of innate and adaptive immune cells in embryo implantation and placentation with a specific focus on their regulation by hCG.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
Wang S, Qian J, Sun F, Li M, Ye J, Li M, Du M, Li D. Bidirectional regulation between 1st trimester HTR8/SVneo trophoblast cells and in vitro differentiated Th17/Treg cells suggest a fetal-maternal regulatory loop in human pregnancy. Am J Reprod Immunol 2019; 81:e13106. [PMID: 30811743 PMCID: PMC6594139 DOI: 10.1111/aji.13106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Problem During normal pregnancy, delicate crosstalk is established between fetus‐derived trophoblasts and maternal immune cells to ensure maternal‐fetal tolerance and successful placentation. Dysfunction in these interactions has been highly linked to certain pregnancy complications. Method of study Naïve CD4+T cells were cultivated with or without 1st trimester derived trophoblast cell line HTR8/SVneo cells in the absence or presence of T helper 17 (Th17) or regulatory (Treg)cell‐inducing differentiation conditions. After 5 days of co‐culture, HTR8/SVneo cells and CD4+T cells were harvested and analyzed using flow cytometry. Results CD4+T cells exposed to HTR8/SVneo cells showed enhanced induction of CD4+Foxp3+Treg cells with strong expression of TGF‐β1 and inhibitory molecules (cytotoxic T lymphocyte‐associated protein‐4 [CTLA‐4], T‐cell immunoglobulin mucin‐3 [Tim‐3], and programmed cell death‐1 [PD‐1]). Though not effecting Th17 differentiation, exposure to HTR8/SVneo cells promoted increased expression of proliferative and apoptotic markers on Th17 cells. Co‐culture with Th0 cells, or differentiated Th17 or Treg cells, down‐regulated Caspase‐3 and MMP‐9 (but not MMP‐2) expression in HTR8/SVneo cells, while promoting Ki67 expression. Conclusions HTR8/SVneo cells regulated maternal CD4+T‐cell differentiation, resulting in the expansion of immunosuppressive Treg cells, while CD4+T cells might promote the growth, and control the invasiveness of HTR8/SVneo cells. Thus, a bidirectional regulatory loop might exist between trophoblasts and maternal immune cell subsets, thereby promoting harmonious maternal‐fetal crosstalk.
Collapse
Affiliation(s)
- Songcun Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jinfeng Qian
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Fengrun Sun
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mengdie Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiangfeng Ye
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|