1
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
2
|
Vionnet J, Torres-Yaguana J, Miquel R, Abraldes JG, Wall J, Kodela E, Lozano JJ, Ruiz P, Navasa M, Marshall A, Nevens F, Gelson W, Leithead J, Masson S, Jaeckel E, Taubert R, Tachtatzis P, Eurich D, Simpson KJ, Bonaccorsi-Riani E, Ferguson J, Quaglia A, Demetris AJ, Lesniak AJ, Elstad M, Delord M, Douiri A, Rebollo-Mesa I, Martinez-Llordella M, Silva JAF, Markmann JF, Sánchez-Fueyo A. Randomized trial investigating the utility of a liver tissue transcriptional biomarker in identifying adult liver transplant recipients not requiring maintenance immunosuppression. Am J Transplant 2024:S1600-6135(24)00749-4. [PMID: 39706366 DOI: 10.1016/j.ajt.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
The maintenance of stable allograft status in the absence of immunosuppression (IS), known as operational tolerance, can be achieved in a small proportion of liver transplant recipients, but we lack reliable tools to predict its spontaneous development. We conducted a prospective, multicenter, biomarker-strategy design, IS withdrawal clinical trial to determine the utility of a predictive biomarker of operational tolerance. The biomarker test, originally identified in a patient cohort with high operational tolerance prevalence, consisted of a 5-gene transcriptional signature measured in liver tissue collected before initiating IS weaning. One hundred sixteen adult stable liver transplant recipients were randomized 1:1 to either arm A (IS withdrawal regardless of biomarker status) or arm B (IS withdrawal in biomarker-positive recipients). Immunosuppression withdrawal was initiated in 82 participants, rejection occurred in 54 (67.5%), and successful discontinuation of IS was achieved in 22 (27.5%), but only 13 (16.3%) met operational tolerance histologic criteria (10 in arm A; 3 in arm B). The biomarker test did not yield useful information in selecting patients able to successfully discontinue IS. Operational tolerance was associated with time posttransplant, recipient age, presence of circulating exhausted CD8+ T cells, and a reduced number of immune synapses within the graft.
Collapse
Affiliation(s)
- Julien Vionnet
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK; Transplantation Center, Service of Immunology and Allergy, and Servide of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jorge Torres-Yaguana
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK
| | - Rosa Miquel
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK; Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Juan G Abraldes
- Liver Unit, Division of Gastroenterology, University of Alberta, Edmonton, Canada; Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
| | - Jurate Wall
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK
| | - Juan-Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Barcelona, Spain
| | - Pablo Ruiz
- Hospital Clinic Barcelona, Instituto de Investigaciones Biomédicas August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miguel Navasa
- Hospital Clinic Barcelona, Instituto de Investigaciones Biomédicas August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aileen Marshall
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Frederik Nevens
- Department of Hepatology, University Hospital Leuven, Leuven, Belgium
| | - Will Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joanna Leithead
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Steven Masson
- Newcastle National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - James Ferguson
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust and National Institute for Health and Social Care Research (NIHR) Birmingham Biomedical Research Centre (BRC), Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Anthony J Demetris
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew J Lesniak
- Department of Pathology, Division of Transplantation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Elstad
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Marc Delord
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Irene Rebollo-Mesa
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Marc Martinez-Llordella
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK; Quell Therapeutics Ltd, London, UK
| | - Juliete A F Silva
- Immune Tolerance Network, Seattle, Washington, USA; Emory University, School of Medicine, Department of Surgery, Division of Transplantation, Atlanta, USA
| | - James F Markmann
- Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, School of Immunology and Microbial Sciences, King's College London University and King's College Hospital, London, UK.
| |
Collapse
|
3
|
Tharmaraj D, Mulley WR, Dendle C. Current and emerging tools for simultaneous assessment of infection and rejection risk in transplantation. Front Immunol 2024; 15:1490472. [PMID: 39660122 PMCID: PMC11628869 DOI: 10.3389/fimmu.2024.1490472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Infection and rejection are major complications that impact transplant longevity and recipient survival. Balancing their risks is a significant challenge for clinicians. Current strategies aimed at interrogating the degree of immune deficiency or activation and their attendant risks of infection and rejection are imprecise. These include immune (cell counts, function and subsets, immunoglobulin levels) and non-immune (drug levels, viral loads) markers. The shared risk factors between infection and rejection and the bidirectional and intricate relationship between both entities further complicate transplant recipient care and decision-making. Understanding the dynamic changes in the underlying net state of immunity and the overall risk of both complications in parallel is key to optimizing outcomes. The allograft biopsy is the current gold standard for the diagnosis of rejection but is associated with inherent risks that warrant careful consideration. Several biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines (CXCL9 and CXCL10), show significant promise in improving subclinical and clinical rejection risk prediction, which may reduce the need for allograft biopsies in some situations. Integrating conventional and emerging risk assessment tools can help stratify the individual's short- and longer-term infection and rejection risks in parallel. Individuals identified as having a low risk of rejection may tolerate immunosuppression wean to reduce medication-related toxicity. Serial monitoring following immunosuppression reduction or escalation with minimally invasive tools can help mitigate infection and rejection risks and allow for timely diagnosis and treatment of these complications, ultimately improving allograft and patient outcomes.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - William R. Mulley
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Claire Dendle
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
4
|
Nicosia M, Valujskikh A. Recognizing Complexity of CD8 T Cells in Transplantation. Transplantation 2024; 108:2186-2196. [PMID: 38637929 PMCID: PMC11489323 DOI: 10.1097/tp.0000000000005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
5
|
Al-Adra D, Lan R, Jennings H, Weinstein KN, Liu Y, Verhoven B, Zeng W, Heise G, Levitsky M, Chlebeck P, Liu YZ. Single cell RNA-sequencing identifies the effect of Normothermic ex vivo liver perfusion on liver-resident T cells. Transpl Immunol 2024; 86:102104. [PMID: 39128812 PMCID: PMC11387148 DOI: 10.1016/j.trim.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Normothermic ex vivo liver perfusion (NEVLP) is an exciting strategy to preserve livers prior to transplant, however, the effects of NEVLP on the phenotype of tissue-resident immune cells is largely unknown. The presence of tissue-resident memory T cells (TRM) in the liver may protect against acute rejection and decrease allograft dysfunction. Therefore, we investigated the effects of NEVLP on liver TRMs and assessed the ability of anti-inflammatory cytokines to reduce TRM activation during NEVLP. METHODS Rat livers underwent NEVLP with or without the addition of IL-10 and TGF-β. Naïve and cold storage livers served as controls. Following preservation, TRM T cell gene expression profiles were assessed through single cell RNA sequencing (scRNA-seq). Differential gene expression analysis was performed with Wilcoxon rank sum test to identify differentially expressed genes (DEGs) associated with a specific treatment group. Using the online Database for Annotation, Visualization and Integrated Discovery (DAVID), gene set enrichment was then conducted with Fisher's exact test on DEGs to highlight differentially regulated pathways and functional terms associated with treatment groups. RESULTS Through scRNA-seq analysis, an atlas of liver-resident memory T cell subsets was created for all livers. TRM T cells could be identified in all livers, and through scRNA-seq, DEG was identified with Wilcoxon rank sum test at FDR < 0.05. Based on the gene set enrichment analysis of DEGs using Fisher's exact test, NEVLP is associated with downregulation of multiple gene enrichment pathways associated with surface proteins. Furthermore, NEVLP with anti-inflammatory cytokines was associated with down regulation of 52 genes in TRM T cells when compared to NEVLP alone (FDR <0.05), most of which are pro-inflammatory. CONCLUSION This is the first study to create an atlas of liver TRM T cells in the rat liver undergoing NEVLP and demonstrate the effects of NEVLP on liver TRM T cells at the single cell gene expression level.
Collapse
Affiliation(s)
- David Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ruoxin Lan
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Heather Jennings
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristin N Weinstein
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yongjun Liu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bret Verhoven
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Weifeng Zeng
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grace Heise
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mia Levitsky
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
6
|
Sailliet N, Dupuy A, Brinas F, Renaudin K, Colas L, Kerleau C, Nguyen TVH, Fourgeux C, Poschmann J, Gosset C, Giral M, Degauque N, Mai HL, Danger R, Brouard S. Regulatory B Cells Expressing Granzyme B from Tolerant Renal Transplant Patients: Highly Differentiated B Cells with a Unique Pathway with a Specific Regulatory Profile and Strong Interactions with Immune System Cells. Cells 2024; 13:1287. [PMID: 39120317 PMCID: PMC11311295 DOI: 10.3390/cells13151287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of our study was to determine whether granzyme B-expressing regulatory B cells (GZMB+ B cells) are enriched in the blood of transplant patients with renal graft tolerance. To achieve this goal, we analysed two single-cell RNA sequencing (scRNAseq) datasets: (1) peripheral blood mononuclear cells (PBMCs), including GZMB+ B cells from renal transplant patients, i.e., patients with stable graft function on conventional immunosuppressive treatment (STA, n = 3), drug-free tolerant patients (TOL, n = 3), and patients with antibody-mediated rejection (ABMR, n = 3), and (2) ex-vivo-induced GZMB+ B cells from these groups. In the patient PBMCs, we first showed that natural GZMB+ B cells were enriched in genes specific to Natural Killer (NK) cells (such as NKG7 and KLRD1) and regulatory B cells (such as GZMB, IL10, and CCL4). We performed a pseudotemporal trajectory analysis of natural GZMB+ B cells and showed that they were highly differentiated B cells with a trajectory that is very different from that of conventional memory B cells and linked to the transcription factor KLF13. By specifically analysing GZMB+ natural B cells in TOLs, we found that these cells had a very specific transcriptomic profile associated with a reduction in the expression of HLA molecules, apoptosis, and the inflammatory response (in general) in the blood and that this signature was conserved after ex vivo induction, with the induction of genes associated with migration processes, such as CCR7, CCL3, or CCL4. An analysis of receptor/ligand interactions between these GZMB+/- natural B cells and all of the immune cells present in PBMCs also demonstrated that GZMB+ B cells were the B cells that carried the most ligands and had the most interactions with other immune cells, particularly in tolerant patients. Finally, we showed that these GZMB+ B cells were able to infiltrate the graft under inflammatory conditions, thus suggesting that they can act in locations where immune events occur.
Collapse
Affiliation(s)
- Nicolas Sailliet
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Amandine Dupuy
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - François Brinas
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Karine Renaudin
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- CHU Nantes, Service d’Anatomie et Cytologie Pathologiques, 44000 Nantes, France
| | - Luc Colas
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Thi-Van-Ha Nguyen
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Cynthia Fourgeux
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Jérémie Poschmann
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Clément Gosset
- Service de Néphrologie et Transplantation rénale—CHU Pasteur2, 06000 Nice, France;
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- Centre d’Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, 44000 Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes Université, 44000 Nantes, France
| | - Nicolas Degauque
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Hoa Le Mai
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, 44000 Nantes, France; (N.S.); (F.B.); (K.R.); (L.C.); (C.K.); (T.-V.-H.N.); (C.F.); (J.P.); (M.G.); (N.D.); (H.L.M.); (R.D.)
- Centre d’Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, 44000 Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes Université, 44000 Nantes, France
| |
Collapse
|
7
|
Amini L, Kaeda J, Weber O, Reinke P. Low-dose Interleukin-2 Therapy: Fine-tuning Treg in Solid Organ Transplantation? Transplantation 2024; 108:1492-1508. [PMID: 38294829 PMCID: PMC11188637 DOI: 10.1097/tp.0000000000004866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024]
Abstract
Regulatory T cells (Treg), a subset of CD4 + T cells, are potent regulators of immune reactions, which have been shown to be a promising therapeutic alternative to toxic immunosuppressive drugs. Data support the utility of Treg in managing immunopathologies, including solid organ transplant rejection, graft-versus-host disease, and autoimmune disorders. Notably, reports suggest that interleukin-2 (IL-2) is critical to survival of Treg, which constitutively express high levels of CD25, that is, the IL-2 receptor α-chain, and are exquisitely sensitive to IL-2, even at very low concentrations in contrast to effector T cells, which only upregulate IL-2 receptor α-chain on activation. This has led to the notion of using low doses of exogenous IL-2 therapeutically to modulate the immune system, specifically Treg numbers and function. Here, we summarize developments of clinical experience with low-dose IL-2 (LD-IL-2) as a therapeutic agent. So far, no clinical data are available to support the therapeutic use of LD-IL-2 therapy in the solid organ transplant setting. For the latter, fine-tuning by biotechnological approaches may be needed because of the narrow therapeutic window and off-target effects of LD-IL-2 therapy and so to realize the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health – Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Weber
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health – Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Shao B, Zhang JY, Ren SH, Qin YF, Wang HD, Gao YC, Kong DJ, Hu YH, Qin H, Li GM, Wang H. Recombinant human IL-37 attenuates acute cardiac allograft rejection in mice. Cytokine 2024; 179:156598. [PMID: 38583255 DOI: 10.1016/j.cyto.2024.156598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ya-Fei Qin
- Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - De-Jun Kong
- School of Medicine, Nankai University, Tianjin, China.
| | - Yong-Hao Hu
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Hong Qin
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Guang-Ming Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair.
| |
Collapse
|
9
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Berenguer M, de Martin E, Hessheimer AJ, Levitsky J, Maluf DG, Mas VR, Selzner N, Hernàndez-Èvole H, Lutu A, Wahid N, Zubair H. European Society for Organ Transplantation Consensus Statement on Biomarkers in Liver Transplantation. Transpl Int 2023; 36:11358. [PMID: 37711401 PMCID: PMC10498996 DOI: 10.3389/ti.2023.11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Currently, one-year survival following liver transplantation (LT) exceeds 90% in large international registries, and LT is considered definitive treatment for patients with end-stage liver disease and liver cancer. Recurrence of disease, including hepatocellular carcinoma (HCC), significantly hampers post-LT outcomes. An optimal approach to immunosuppression (IS), including safe weaning, may benefit patients by mitigating the effect on recurrent diseases, as well as reducing adverse events associated with over-/under-IS, including chronic kidney disease (CKD). Prediction of these outcome measures-disease recurrence, CKD, and immune status-has long been based on relatively inaccurate clinical models. To address the utility of new biomarkers in predicting these outcomes in the post-LT setting, the European Society of Organ Transplantation (ESOT) and International Liver Transplant Society (ILTS) convened a working group of experts to review literature pertaining to primary disease recurrence, development of CKD, and safe weaning of IS. Summaries of evidence were presented to the group of panelists and juries to develop guidelines, which were discussed and voted in-person at the Consensus Conference in Prague November 2022. The consensus findings and recommendations of the Liver Working Group on new biomarkers in LT, clinical applicability, and future needs are presented in this article.
Collapse
Affiliation(s)
- Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario la Fe - IIS La Fe Valencia, CiberEHD and University of Valencia, Valencia, Spain
| | - Eleonora de Martin
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Amelia J. Hessheimer
- General & Digestive Surgery, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel G. Maluf
- Program in Transplantation, Department of Surgery, University of Maryland Medical Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Valeria R. Mas
- Surgical Sciences Research in Transplantation, Chief Surgical Sciences Division, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nazia Selzner
- Ajmera Transplant Center, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Alina Lutu
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Inserm UMR-S 1193, Université Paris-Saclay, Villejuif, France
| | - Nabeel Wahid
- Division of Gastroenterology and Hepatology, Department of Medicine, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haseeb Zubair
- Surgical Sciences Division, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung allograft acceptance in mice. Nat Commun 2023; 14:1383. [PMID: 36914624 PMCID: PMC10011523 DOI: 10.1038/s41467-023-36924-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.
Collapse
|
12
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
13
|
Pérez-Escobar J, Jimenez JV, Rodríguez-Aguilar EF, Servín-Rojas M, Ruiz-Manriquez J, Safar-Boueri L, Carrillo-Maravilla E, Navasa M, García-Juárez I. Immunotolerance in liver transplantation: a primer for the clinician. Ann Hepatol 2023; 28:100760. [PMID: 36179797 DOI: 10.1016/j.aohep.2022.100760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
The use of immunosuppressive medications for solid organ transplantation is associated with cardiovascular, metabolic, and oncologic complications. On the other hand, the development of graft rejection is associated with increased mortality and graft dysfunction. Liver transplant recipients can withdraw from immunosuppression without developing graft injury while preserving an adequate antimicrobial response - a characteristic known as immunotolerance. Immunotolerance can be spontaneously or pharmacologically achieved. Contrary to the classic dogma, clinical studies have elucidated low rates of true spontaneous immunotolerance (no serologic or histological markers of immune injury) among liver transplant recipients. However, clinical, serologic, and tissue biomarkers can aid in selecting patients in whom immunosuppression can be safely withdrawn. For those who failed an immunosuppression withdrawal trial or are at high risk of rejection, pharmacological interventions for immunotolerance induction are under development. In this review, we provide an overview of the mechanisms of immunotolerance, the clinical studies investigating predictors and biomarkers of spontaneous immunotolerance, as well as the potential pharmacological interventions for inducing it.
Collapse
Affiliation(s)
- Juanita Pérez-Escobar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose Victor Jimenez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika Faride Rodríguez-Aguilar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maximiliano Servín-Rojas
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesus Ruiz-Manriquez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luisa Safar-Boueri
- Comprehensive Transplant Center, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eduardo Carrillo-Maravilla
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miquel Navasa
- Liver Transplant Unit, Hepatology Service, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ignacio García-Juárez
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
14
|
Cui B, Chen XJ, Sun J, Li SP, Zhou GP, Sun LY, Wei L, Zhu ZJ. Dendritic cells originating exosomal miR-193b-3p induces regulatory T cells to alleviate liver transplant rejection. Int Immunopharmacol 2023; 114:109541. [PMID: 36700764 DOI: 10.1016/j.intimp.2022.109541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exosomes exert considerable influence in mediating regulatory T (Treg) cells differentiation, which attach great importance to attenuating acute cellular rejection after liver transplantation (LT). And, miRNAs are known to play essential roles in cell-cell communication delivered by exosomes. However, the function of exosomal miRNAs in regulating Treg cells after LT remains unknown. Here, we performed an expression profiling analysis of exosome-miRNAs from human plasma after LT and investigated their immunoregulatory effects on Treg cells. METHODS Fifty-eight LT patients and nine donors were included in this report. miRNA profiles in plasma exosomes were analyzed using next-generation sequencing. Flow cytometry, HE and multiplex immunofluorescent staining were used to identify Treg cells in the liver and peripheral blood. A lentiviral vector system was used to overexpress miR-193b-3p in dendritic cells (DCs), and exosomes isolated from these transfected cells were co-cultured with spleen lymphocytesin vitro. A quantitative Real-time PCR and enzyme-linked immunosorbent assay were used to detect the expression of cytokines. RESULTS Treg cell infiltration was increased in the liver along with Th17 and CD8+ T cell, and it was down-regulated in peripheral blood in the acute rejection group. High-throughput sequencing revealed that miR-193b-3p was markedly up-regulated in plasma exosomes of non-rejection LT patients. The NLRP3 inflammasome was screened as a target for miR-193b-3p based on target prediction and functional enrichment analyses. Exosomal miR-193b-3p derived from DCs increased Treg cells as demonstrated in vitro. miR-193b-3p overexpression down-regulated NLRP3 as well as the inflammatory cytokines IL-1β and IL-17A while increasing levels of the cytokines IL-10 and TGF-β. CONCLUSION DC derived exosomal miR-193b-3p promoted Treg cells by inhibiting NLRP3 expression. These findings not only provide a new perspective on the mechanisms, but also hold great promise for the treatment or prevention of liver allograft rejection.
Collapse
Affiliation(s)
- Bin Cui
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Aviation General Hospital, Beijing 100012, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Jie Sun
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Shi-Peng Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Li-Ying Sun
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China; Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Lin Wei
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China.
| |
Collapse
|
15
|
Lim TY, Perpiñán E, Londoño MC, Miquel R, Ruiz P, Kurt AS, Kodela E, Cross AR, Berlin C, Hester J, Issa F, Douiri A, Volmer FH, Taubert R, Williams E, Demetris AJ, Lesniak A, Bensimon G, Lozano JJ, Martinez-Llordella M, Tree T, Sánchez-Fueyo A. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J Hepatol 2023; 78:153-164. [PMID: 36087863 DOI: 10.1016/j.jhep.2022.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS CD4+CD25+Foxp3+ regulatory T cells (Tregs) are essential to maintain immunological tolerance and have been shown to promote liver allograft tolerance in both rodents and humans. Low-dose IL-2 (LDIL-2) can expand human endogenous circulating Tregs in vivo, but its role in suppressing antigen-specific responses and promoting Treg trafficking to the sites of inflammation is unknown. Likewise, whether LDIL-2 facilitates the induction of allograft tolerance has not been investigated in humans. METHODS We conducted a clinical trial in stable liver transplant recipients 2-6 years post-transplant to determine the capacity of LDIL-2 to suppress allospecific immune responses and allow for the complete discontinuation of maintenance immunosuppression (ClinicalTrials.gov NCT02949492). One month after LDIL-2 was initiated, those exhibiting at least a 2-fold increase in circulating Tregs gradually discontinued immunosuppression over a 4-month period while continuing LDIL-2 for a total treatment duration of 6 months. RESULTS All participants achieved a marked and sustained increase in circulating Tregs. However, this was not associated with the preferential expansion of donor-reactive Tregs and did not promote the accumulation of intrahepatic Tregs. Furthermore, LDIL-2 induced a marked IFNγ-orchestrated transcriptional response in the liver even before immunosuppression weaning was initiated. The trial was terminated after the first 6 participants failed to reach the primary endpoint owing to rejection requiring reinstitution of immunosuppression. CONCLUSIONS The expansion of circulating Tregs in response to LDIL-2 is not sufficient to control alloimmunity and to promote liver allograft tolerance, due, at least in part, to off-target effects that increase liver immunogenicity. Our trial provides unique insight into the mechanisms of action of immunomodulatory therapies such as LDIL-2 and their limitations in promoting alloantigen-specific effects and immunological tolerance. CLINICAL TRIALS REGISTRATION The study is registered at ClinicalTrials.gov (NCT02949492). IMPACT AND IMPLICATIONS The administration of low-dose IL-2 is an effective way of increasing the number of circulating regulatory T cells (Tregs), an immunosuppressive lymphocyte subset that is key for the establishment of immunological tolerance, but its use to promote allograft tolerance in the setting of clinical liver transplantation had not been explored before. In liver transplant recipients on tacrolimus monotherapy, low-dose IL-2 effectively expanded circulating Tregs but did not increase the number of Tregs with donor specificity, nor did it promote their trafficking to the transplanted liver. Low-dose IL-2 did not facilitate the discontinuation of tacrolimus and elicited, as an off-target effect, an IFNγ-orchestrated inflammatory response in the liver that resembled T cell-mediated rejection. These results, supporting an unexpected role for IL-2 in regulating the immunogenicity of the liver, highlight the need to carefully evaluate systemic immunoregulatory strategies with investigations that are not restricted to the blood compartment and involve target tissues such as the liver.
Collapse
Affiliation(s)
- Tiong Y Lim
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elena Perpiñán
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Maria-Carlota Londoño
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Unit, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Rosa Miquel
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Paula Ruiz
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ada S Kurt
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amy R Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Claudia Berlin
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | | | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gilbert Bensimon
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière et UPMC Pharmacologie, Paris-Sorbonne Université, Paris, France; Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France
| | - Juan José Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Carlos III Health Institute, Barcelona, Spain
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tim Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
16
|
Duizendstra AA, De Knegt RJ, Nagtzaam NMA, Betjes MGH, Dik WA, Litjens NHR, Kwekkeboom J. Minimal Development of Liver Fibrosis in Adult Tolerant Liver Transplant Recipients Late After Immunosuppressive Drug Weaning and Transplantation. Transplant Proc 2022; 54:1874-1880. [PMID: 36100485 DOI: 10.1016/j.transproceed.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Operationally tolerant liver transplant (LTx)-recipients can be weaned off immunosuppressive (IS) drugs without development of graft rejection. However, it is feared that liver fibrosis might develop after complete IS weaning. The purpose of this small single-center study was to assess liver fibrosis in adult tolerant LTx recipients long after LTx and IS weaning. METHODS Liver fibrosis was assessed in adult tolerant LTx-recipients (n = 9) using noninvasive transient elastography and measurements of multiple pro- and antifibrotic serum markers associated with liver fibrosis. The data was collected for 2 subsequent years; 8 and 9 years after IS weaning and 19 and 20 years after transplantation. Healthy individuals (n = 9) matched for age and sex were included as a reference for fibrosis-related serum markers. This study was conducted in accordance with the Declaration of Helsinki and approved by the medical ethics committee of our institution. RESULTS Transient elastography indicated that 7 of 9 tolerant LTx recipients had no or minimal liver fibrosis (F0-F1), whereas 2 recipients had moderate or severe liver fibrosis (F2-F3). Most fibrosis-related serum markers in tolerant LTx recipients were within or close to the range obtained for healthy individuals. CONCLUSIONS The results from this small, single-center study indicated that most adult tolerant LTx recipients have no or minimal liver graft fibrosis long after transplantation and IS weaning, and their fibrosis-related serum marker profile indicates an absence of a profibrotic status.
Collapse
Affiliation(s)
- Aafke A Duizendstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole M A Nagtzaam
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Erasmus MC Transplant Institute, Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
18
|
Gama JFG, Cardoso LMDF, Bisaggio RDC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022; 11:cells11152327. [PMID: 35954171 PMCID: PMC9367574 DOI: 10.3390/cells11152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The transplantation world changed significantly following the introduction of immunosuppressants, with millions of people saved. Several physicians have noted that liver recipients that do not take their medication for different reasons became tolerant regarding kidney, heart, and lung transplantations at higher frequencies. Most studies have attempted to explain this phenomenon through unique immunological mechanisms and the fact that the hepatic environment is continuously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic microorganism-associated molecular patterns (MAMPs) from commensal flora. These components are highly inflammatory in the periphery but tolerated in the liver as part of the normal components that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based on current evidence, although we hypothesize the participation of neuroendocrine-immune pathways, which have played a relevant role in autoimmune diseases. Cells found in the liver present receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of the neuroendocrine-immune system based on the current literature.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
| | - Rodrigo da Cunha Bisaggio
- Department of Biotechnology, Federal Institute of Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, Brazil;
| | - Jussara Lagrota-Candido
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil;
| | - Luiz A. Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Correspondence: or ; Tel.: +55-(21)-2562-1816 (ext. 1841)
| |
Collapse
|
19
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
20
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
21
|
Lee J, Kim D, Min B. Tissue Resident Foxp3+ Regulatory T Cells: Sentinels and Saboteurs in Health and Disease. Front Immunol 2022; 13:865593. [PMID: 35359918 PMCID: PMC8963273 DOI: 10.3389/fimmu.2022.865593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells are a CD4 T cell subset with unique immune regulatory function that are indispensable in immunity and tolerance. Their indisputable importance has been investigated in numerous disease settings and experimental models. Despite the extensive efforts in determining the cellular and molecular mechanisms operating their functions, our understanding their biology especially in vivo remains limited. There is emerging evidence that Treg cells resident in the non-lymphoid tissues play a central role in regulating tissue homeostasis, inflammation, and repair. Furthermore, tissue-specific properties of those Treg cells that allow them to express tissue specific functions have been explored. In this review, we will discuss the potential mechanisms and key cellular/molecular factors responsible for the homeostasis and functions of tissue resident Treg cells under steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Booki Min
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Booki Min,
| |
Collapse
|
22
|
Autologous Hematopoietic Stem Cell Transplantation for Liver Transplant Recipients With Recurrent Primary Sclerosing Cholangitis: A Pilot Study. Transplantation 2022; 106:562-574. [PMID: 34049362 DOI: 10.1097/tp.0000000000003829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is an indication for liver transplantation, but recurrence after liver transplantation is associated with poor outcomes often requiring repeat transplantation. We investigated whether autologous hematopoietic stem cell transplantation (aHSCT) could be used to stop progression of recurrent PSC and promote operational tolerance. METHODS Twelve patients with recurrent PSC were fully evaluated and 5 were selected for aHSCT. Autologous hematopoietic stem cells were collected, purified by CD34 immunomagnetic selection, and cryopreserved. Immunoablation using busulfan, cyclophosphamide, and rabbit antithymocyte globulin was followed by aHSCT. The primary endpoint of the study was the establishment of operational tolerance defined as lack of biochemical, histologic, and clinical evidence of rejection while off immunosuppression at 2 y post-aHSCT. RESULTS Two of the 5 patients achieved operational tolerance with no clinical or histologic evidence of PSC progression or allorejection. A third patient developed sinusoidal obstruction syndrome following aHSCT requiring repeat liver transplantation but has no evidence of PSC recurrence while on sirolimus monotherapy now >3 y after aHSCT. A fourth patient was weaned off immunosuppression but died 212 d after aHSCT from pericardial constriction. A fifth patient died from multiorgan failure. Immunosuppression-free allograft acceptance was associated with deletion of T-cell clones, loss of autoantibodies, and increases in regulatory T cells, transitional B cells, and programmed cell death protein-1 expressing CD8+ T cells in the 2 long-term survivors. CONCLUSIONS Although operational tolerance occurred following aHSCT, the high morbidity and mortality observed render this specific protocol unsuitable for clinical adoption.
Collapse
|
23
|
Chruscinski A, Rojas-Luengas V, Moshkelgosha S, Issachar A, Luo J, Yowanto H, Lilly L, Smith R, Renner E, Zhang J, Epstein M, Grant D, McEvoy CM, Konvalinka A, Humar A, Adeyi O, Fischer S, Volmer FH, Taubert R, Jaeckel E, Juvet S, Selzner N, Levy GA. Evaluation of a gene expression biomarker to identify operationally tolerant liver transplant recipients: the LITMUS trial. Clin Exp Immunol 2022; 207:123-139. [PMID: 35020854 PMCID: PMC8802178 DOI: 10.1093/cei/uxab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
LITMUS was a single-centre, Phase 2a study designed to investigate whether the gene biomarker FGL2/IFNG previously reported for the identification of tolerance in murine models could identify operationally tolerant liver transplant recipients. Multiplex RT-PCR was used to amplify eight immunoregulatory genes in peripheral blood mononuclear cells (PBMC) from 69 adult liver transplant recipients. Patients with PBMC FGL2/IFNG ≥ 1 and a normal liver biopsy underwent immunosuppression (IS) withdrawal. The primary end point was the development of operational tolerance. Secondary end points included correlation of tolerance with allograft gene expression and immune cell markers. Twenty-eight of 69 patients (38%) were positive for the PBMC tolerance biomarker and 23 proceeded to IS withdrawal. Nine of the 23 patients had abnormal baseline liver biopsies and were excluded. Of the 14 patients with normal biopsies, eight (57%) have achieved operational tolerance and are off IS (range 12–57 months). Additional studies revealed that all of the tolerant patients and only one non-tolerant patient had a liver gene ratio of FOXP3/IFNG ≥ 1 prior to IS withdrawal. Increased CD4+ T regulatory T cells were detected both in PBMC and livers of tolerant patients following IS withdrawal. Higher expression of SELE (gene for E-selectin) and lower expression of genes associated with inflammatory responses (GZMB, CIITA, UBD, LSP1, and CXCL9) were observed in the pre-withdrawal liver biopsies of tolerant patients by RNA sequencing. These results suggest that measurement of PBMC FGL2/IFNG may enrich for the identification of operationally tolerant liver transplant patients, especially when combined with intragraft measurement of FOXP3/IFNG. Clinical Trial Registration: ClinicalTrials.gov (LITMUS: NCT02541916).
Collapse
Affiliation(s)
- Andrzej Chruscinski
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Vanessa Rojas-Luengas
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sajad Moshkelgosha
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Assaf Issachar
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | | | | | - Leslie Lilly
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Robert Smith
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Eberhard Renner
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Jianhua Zhang
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Maor Epstein
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - David Grant
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Caitriona M McEvoy
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Atul Humar
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Oyedele Adeyi
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sandra Fischer
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephen Juvet
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Nazia Selzner
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
24
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Vionnet J, Sánchez-Fueyo A. Biomarkers of Operational Tolerance After Liver Transplantation: Are We There Yet? Liver Transpl 2022; 28:15-16. [PMID: 34407265 DOI: 10.1002/lt.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Julien Vionnet
- Institute of Liver Studies, King's College London and King's College Hospital, London, United Kingdom.,Transplantation Center and Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College London and King's College Hospital, London, United Kingdom
| |
Collapse
|
26
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
28
|
Wang X, MacParland SA, Perciani CT. Immunological Determinants of Liver Transplant Outcomes Uncovered by the Rat Model. Transplantation 2021; 105:1944-1956. [PMID: 33417410 PMCID: PMC8376267 DOI: 10.1097/tp.0000000000003598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
For many individuals with end-stage liver disease, the only treatment option is liver transplantation. However, liver transplant rejection is observed in 24%-80% of transplant patients and lifelong drug regimens that follow the transplant procedure lead to serious side effects. Furthermore, the pool of donor livers available for transplantation is far less than the demand. Well-characterized and physiologically relevant models of liver transplantation are crucial to a deeper understanding of the cellular processes governing the outcomes of liver transplantation and serve as a platform for testing new therapeutic strategies to enhance graft acceptance. Such a model has been found in the rat transplant model, which has an advantageous size for surgical procedures, similar postoperative immunological progression, and high genome match to the human liver. From rat liver transplant studies published in the last 5 years, it is clear that the rat model serves as a strong platform to elucidate transplant immunological mechanisms. Using the model, we have begun to uncover potential players and possible therapeutic targets to restore liver tolerance and preserve host immunocompetence. Here, we present an overview of recent literature for rat liver transplant models, with an aim to highlight the value of the models and to provide future perspectives on how these models could be further characterized to enhance the overall value of rat models to the field of liver transplantation.
Collapse
Affiliation(s)
- Xinle Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sonya A MacParland
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
29
|
Aregay A, Engel B, Port K, Vondran FWR, Bremer B, Niehaus C, Khera T, Richter N, Jaeckel E, Cornberg M, Taubert R, Wedemeyer H. Distinct Immune Imprints of Post-Liver Transplantation Hepatitis C Persist Despite Viral Clearance. Liver Transpl 2021; 27:887-899. [PMID: 33641215 DOI: 10.1002/lt.26031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023]
Abstract
Recurrence or de novo infection of hepatitis C virus (HCV) after liver transplantation (LT) has been associated with progressive graft hepatitis that can be improved by treatment with novel direct-acting antivirals. Cases of rejection episodes have been described during and after HCV treatment. The evolution of innate and adaptive immune response during and after cure of HCV LT is unknown. We studied 74 protein biomarkers in the plasma of LT patients receiving antiviral therapy. In addition, deep immune phenotyping of both the myeloid and lymphoid immune cell subsets in peripheral blood mononuclear cells was performed. We found that LT patients with active HCV infection displayed distinct alterations of inflammatory protein biomarkers, such as C-X-Cmotif chemokine 10 (CXCL10), caspase 8, C-C motif chemokine 20 (CCL20), CCL19, interferon γ, CUB domain-containing protein 1 (CDCP1), interleukin (IL)-18R1, CXCL11, CCL3, IL8, IL12B, tumor necrosis factor-beta, CXCL6, osteoprotegerin, IL10, fms-related tyrosine kinase 3 ligand, hepatocyte growth factor, urokinase-type plasminogen activator, neurotrophin-3, CCL4, IL6, tumornecrosis factor receptor superfamily member 9, programmed death ligand 1, IL18, and monocyte chemotactic protein 1, and enrichment of peripheral immune cell subsets unlike patients without HCV infection who received transplants. Interestingly, patients who cleared HCV after LT did not normalize the altered inflammatory milieu nor did the peripheral immune cell subsets normalize to what would be seen in the absence of HCV recurrence. Overall, these data indicate that HCV-specific imprints on inflammatory analytes and immune cell subsets after LT are not completely normalized by therapy-induced HCV elimination. This is in line with the clinical observation that cure of HCV after LT did not trigger rejection episodes in many patients.
Collapse
Affiliation(s)
- Amare Aregay
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Niehaus
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tanvi Khera
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nicolas Richter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, DZIF, partner-site Hannover-Braunschweig, Hannover, Germany.,Centre for individualized infection medicine (CIIM), Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, DZIF, partner-site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
30
|
Feng S, Bucuvalas JC, Mazariegos GV, Magee JC, Sanchez-Fueyo A, Spain KM, Lesniak A, Kanaparthi S, Perito E, Venkat VL, Burrell BE, Alonso EM, Bridges ND, Doo E, Gupta NA, Himes RW, Ikle D, Jackson AM, Lobritto SJ, Jose Lozano J, Martinez M, Ng VL, Rand EB, Sherker AH, Sundaram SS, Turmelle YP, Wood-Trageser M, Demetris AJ. Efficacy and Safety of Immunosuppression Withdrawal in Pediatric Liver Transplant Recipients: Moving Toward Personalized Management. Hepatology 2021; 73:1985-2004. [PMID: 32786149 DOI: 10.1002/hep.31520] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Tolerance is transplantation's holy grail, as it denotes allograft health without immunosuppression and its toxicities. Our aim was to determine, among stable long-term pediatric liver transplant recipients, the efficacy and safety of immunosuppression withdrawal to identify operational tolerance. APPROACH AND RESULTS We conducted a multicenter, single-arm trial of immunosuppression withdrawal over 36-48 weeks. Liver tests were monitored biweekly (year 1), monthly (year 2), and bimonthly (years 3-4). For-cause biopsies were done at investigators' discretion but mandated when alanine aminotransferase or gamma glutamyltransferase exceeded 100 U/L. All subjects underwent final liver biopsy at trial end. The primary efficacy endpoint was operational tolerance, defined by strict biochemical and histological criteria 1 year after stopping immunosuppression. Among 88 subjects (median age 11 years; 39 boys; 57 deceased donor grafts), 33 (37.5%; 95% confidence interval [CI] 27.4%, 48.5%) were operationally tolerant, 16 were nontolerant by histology (met biochemical but failed histological criteria), and 39 were nontolerant by rejection. Rejection, predicted by subtle liver inflammation in trial entry biopsies, typically (n = 32) occurred at ≤32% of the trial-entry immunosuppression dose and was treated with corticosteroids (n = 32) and/or tacrolimus (n = 38) with resolution (liver tests within 1.5 times the baseline) for all but 1 subject. No death, graft loss, or chronic, severe, or refractory rejection occurred. Neither fibrosis stage nor the expression level of a rejection gene set increased over 4 years for either tolerant or nontolerant subjects. CONCLUSIONS Immunosuppression withdrawal showed that 37.5% of selected pediatric liver-transplant recipients were operationally tolerant. Allograft histology did not deteriorate for either tolerant or nontolerant subjects. The timing and reversibility of failed withdrawal justifies future trials exploring the efficacy, safety, and potential benefits of immunosuppression minimization.
Collapse
Affiliation(s)
- Sandy Feng
- Division of Transplantation, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - John C Bucuvalas
- Mount Sinai Kravis Children's Hospital and Recanati/Miller Transplantation Institute, Mount Sinai Health System, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - John C Magee
- Section of Transplant Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Emily Perito
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Veena L Venkat
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Estella M Alonso
- Siragusa Transplantation Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Nancy D Bridges
- Transplantation Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Edward Doo
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Nitika A Gupta
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ryan W Himes
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX
| | | | | | - Steven J Lobritto
- Center for Liver Diseases and Transplantation, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - Juan Jose Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Mercedes Martinez
- Center for Liver Diseases and Transplantation, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - Vicky L Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Transplant and Regenerative Medicine Center, The Hospital for Sick Children, University of Toronto, Toronto, OH, Canada
| | - Elizabeth B Rand
- Liver Transplant Program, The Children's Hospital of Pennsylvania, Philadelphia, PA
| | - Averell H Sherker
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Shikha S Sundaram
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Yumirle P Turmelle
- Division of Gastroenterology, Hepatology, and Nutrition, Washington University School of Medicine, St. Louis, MO
| | | | | |
Collapse
|
31
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
32
|
Strategies for Liver Transplantation Tolerance. Int J Mol Sci 2021; 22:ijms22052253. [PMID: 33668238 PMCID: PMC7956766 DOI: 10.3390/ijms22052253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Liver transplant (LT) recipients require life-long immunosuppression (IS) therapy to preserve allograft function. The risks of chronic IS include an increased frequency of malignancy, infection, renal impairment, and other systemic toxicities. Despite advances in IS, long-term LT outcomes have not been improved over the past three decades. Standard-of-care (SoC) therapy can, in rare cases, lead to development of operational tolerance that permits safe withdrawal of maintenance IS. However, successful IS withdrawal cannot be reliably predicted and, in current prospective studies, is attempted several years after the transplant procedure, after considerable exposure to the cumulative burden of maintenance therapy. A recent pilot clinical trial in liver tolerance induction demonstrated that peri-transplant immunomodulation, using a regulatory T-cell (Treg) approach, can reduce donor-specific alloreactivity and allow early IS withdrawal. Herein we review protocols for active tolerance induction in liver transplantation, with a focus on identifying tolerogenic cell populations, as well as barriers to tolerance. In addition, we propose the use of novel IS agents to promote immunomodulatory mechanisms favoring tolerance. With numerous IS withdrawal trials underway, improved monitoring and use of novel immunomodulatory strategies will help provide the necessary knowledge to establish an active liver tolerance induction protocol for widespread use.
Collapse
|
33
|
Kroemer A, Khan K, Kaufman SS, Kang J, Weiner J, Duttargi A, Belyayev L, Ashokkumar C, Sindhi R, Timofeeva OA, Zasloff M, Matsumoto CS, Fishbein TM. Operational tolerance in intestinal transplantation. Am J Transplant 2021; 21:876-882. [PMID: 32721092 PMCID: PMC8274367 DOI: 10.1111/ajt.16224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023]
Abstract
By presenting the first case report of true operational tolerance in an intestinal transplant patient, we aim to demonstrate that tolerance is possible in a field that has been hampered by suboptimal outcomes. Although operational tolerance has been achieved in liver and kidney transplantation, and some intestinal transplant patients have been able to decrease immunosuppression, this is the first instance of true operational tolerance after complete cessation of immunosuppression. A patient received a deceased-donor small intestinal and colon allograft with standard immunosuppressive treatment, achieving excellent graft function after overcoming a graft-versus-host-disease episode 5 months posttransplant. Four years later, against medical advice, the patient discontinued all immunosuppression. During follow-up visits 2 and 3 years after cessation of immunosuppression, the patient exhibited normal graft function with full enteral autonomy and without histological or endoscopic signs of rejection. Mechanistic analysis demonstrated immune competence against third party antigen, with in vitro evidence of donor-specific hyporesponsiveness in the absence of donor macrochimerism. This proof of principle case can stimulate future mechanistic studies on diagnostic and therapeutic strategies, for example, cellular therapy trials, that can lead to minimization or elimination of immunosuppression and, it is hoped, help revitalize the field of intestinal transplantation.
Collapse
Affiliation(s)
- Alexander Kroemer
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Khalid Khan
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Stuart S Kaufman
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jiman Kang
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Joshua Weiner
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Anju Duttargi
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Leonid Belyayev
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Chethan Ashokkumar
- The Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rakesh Sindhi
- The Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olga A Timofeeva
- Department of Pathology and Laboratory Medicine, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Michael Zasloff
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Cal S Matsumoto
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Thomas M Fishbein
- Center for Translational Transplant Medicine, MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
34
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
35
|
DSA Are Associated With More Graft Injury, More Fibrosis, and Upregulation of Rejection-associated Transcripts in Subclinical Rejection. Transplantation 2020; 104:551-561. [PMID: 31651790 DOI: 10.1097/tp.0000000000003034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Subclinical T cell-mediated rejection (subTCMR) is commonly found after liver transplantation and has a good short-term prognosis, even when it is left untreated. Donor-specific antibodies (DSA) are putatively associated with a worse prognosis for recipient and graft after liver transplantation. METHODS To assess the immune regulation in subTCMR grafts, gene expression of 93 transcripts for graft injury, tolerance, and immune regulation was analyzed in 77 biopsies with "no histologic rejection" (NHR; n = 25), "clinical TCMR" (cTMCR; n = 16), and subTCMR (n = 36). In addition, all available subTCMR biopsies (n = 71) were tested for DSA with bead assays. RESULTS SubTCMR showed heterogeneous and intermediate expression profiles of transcripts that were upregulated in cTCMR. Graft gene expression suggested a lower activation of effector lymphocytes and a higher activation of regulatory T cells in grafts with subTCMR compared to cTCMR. DSA positivity in subTCMR was associated with histological evidence of more severe graft inflammation and fibrosis. This more severe DSA+ associated graft injury in subTCMR was converged with an upregulation of cTCMR-associated transcripts. In nonsupervised analysis, DSA positive subTCMR mostly clustered together with cTCMR, while DSA negative subTCMR clustered together with NHR. CONCLUSIONS T cell-mediated rejection seems to form a continuum of alloimmune activation. Although subTCMR exhibited less expression of TCMR-associated transcript, DSA positivity in subTCMR was associated with an upregulation of rejection-associated transcripts. The identification of DSA positive subclinical rejection might help to define patients with more inflammation in the graft and development of fibrosis.
Collapse
|
36
|
Ronca V, Wootton G, Milani C, Cain O. The Immunological Basis of Liver Allograft Rejection. Front Immunol 2020; 11:2155. [PMID: 32983177 PMCID: PMC7492390 DOI: 10.3389/fimmu.2020.02155] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Liver allograft rejection remains a significant cause of morbidity and graft failure in liver transplant recipients. Rejection is caused by the recognition of non-self donor alloantigens by recipient T-cells. Antigen recognition results in proliferation and activation of T-cells in lymphoid tissue before migration to the allograft. Activated T-cells have a variety of effector mechanisms including direct T-cell mediated damage to bile ducts, endothelium and hepatocytes and indirect effects through cytokine production and recruitment of tissue-destructive inflammatory cells. These effects explain the histological appearances of typical acute T-cell mediated rejection. In addition, donor specific antibodies, most typically against HLA antigens, may give rise to antibody-mediated rejection causing damage to the allograft primarily through endothelial injury. However, as an immune-privileged site there are several mechanisms in the liver capable of overcoming rejection and promoting tolerance to the graft, particularly in the context of recruitment of regulatory T-cells and promotors of an immunosuppressive environment. Indeed, around 20% of transplant recipients can be successfully weaned from immunosuppression. Hence, the host immunological response to the liver allograft is best regarded as a balance between rejection-promoting and tolerance-promoting factors. Understanding this balance provides insight into potential mechanisms for novel anti-rejection therapies.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Unit Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Grace Wootton
- National Institute of Health Research Liver Biomedical Research Unit Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Owen Cain
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
37
|
Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T, Ohdan H. Strategies for Deliberate Induction of Immune Tolerance in Liver Transplantation: From Preclinical Models to Clinical Application. Front Immunol 2020; 11:1615. [PMID: 32849546 PMCID: PMC7412931 DOI: 10.3389/fimmu.2020.01615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver exhibits intrinsic immune regulatory properties that maintain tolerance to endogenous and exogenous antigens, and provide protection against pathogens. Such an immune privilege contributes to susceptibility to spontaneous acceptance despite major histocompatibility complex mismatch when transplanted in animal models. Furthermore, the presence of a liver allograft can suppress the rejection of other solid tissue/organ grafts from the same donor. Despite this immune privilege of the livers, to control the undesired alloimmune responses in humans, most liver transplant recipients require long-term treatment with immune-suppressive drugs that predispose to cardiometabolic side effects and renal insufficiency. Understanding the mechanism of liver transplant tolerance and crosstalk between a variety of hepatic immune cells, such as dendritic cells, Kupffer cells, liver sinusoidas endothelial cells, hepatic stellate cells and so on, and alloreactive T cells would lead to the development of strategies for deliberate induction of more specific immune tolerance in a clinical setting. In this review article, we focus on results derived from basic studies that have attempted to elucidate the immune modulatory mechanisms of liver constituent cells and clinical trials that induced immune tolerance after liver transplantation by utilizing the immune-privilege potential of the liver.
Collapse
Affiliation(s)
- Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Onoe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
38
|
Höfer A, Jonigk D, Hartleben B, Verboom M, Hallensleben M, Manns MP, Jaeckel E, Taubert R. Non-invasive screening for subclinical liver graft injury in adults via donor-specific anti-HLA antibodies. Sci Rep 2020; 10:14242. [PMID: 32859929 PMCID: PMC7455737 DOI: 10.1038/s41598-020-70938-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
The majority of liver grafts exhibit abnormal histological findings late after transplantation, even when liver enzymes are normal. Such subclinical graft injuries were associated with rejection and fibrosis progression in recent studies. The identification of non-invasive biomarkers for subclinical graft injury might help to individualize immunosuppression. Therefore, graft injury was assessed in 133 liver biopsies with normal/near normal liver enzymes from a prospective liver biopsy program. Cytokeratin-18 cell death marker (M65) and donor specific anti-HLA antibodies (DSA) were measured as non-invasive markers in paired plasma samples in addition to routine parameters. M65 was associated with subclinical graft injury but this association was too weak for reasonable clinical application. DSA positivity was associated with more graft inflammation (OR = 5.4) and more fibrosis (OR = 4.2). Absence of DSA excluded fibrosis in 87–89%, while presence of DSA excluded histological criteria for immunosuppression minimization attempts in 92–97%. While CK18 cell death marker had no diagnostic value for the detection of subclinical liver graft injury, DSA testing can help to preselect patients for immunosuppression reduction in case of DSA negativity, while DSA positivity should prompt elastography or liver biopsy for the assessment of subclinical graft injury.
Collapse
Affiliation(s)
- Anne Höfer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hannover, Germany
| | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Björn Hartleben
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Murielle Verboom
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany. .,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany. .,European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hannover, Germany.
| |
Collapse
|
39
|
Dai H, Zheng Y, Thomson AW, Rogers NM. Transplant Tolerance Induction: Insights From the Liver. Front Immunol 2020; 11:1044. [PMID: 32582167 PMCID: PMC7289953 DOI: 10.3389/fimmu.2020.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A comparison of pre-clinical transplant models and of solid organs transplanted in routine clinical practice demonstrates that the liver is most amenable to the development of immunological tolerance. This phenomenon arises in the absence of stringent conditioning regimens that accompany published tolerizing protocols for other organs, particularly the kidney. The unique immunologic properties of the liver have assisted our understanding of the alloimmune response and how it can be manipulated to improve graft function and survival. This review will address important findings following liver transplantation in both animals and humans, and how these have driven the understanding and development of therapeutic immunosuppressive options. We will discuss the liver's unique system of immune and non-immune cells that regulate immunity, yet maintain effective responses to pathogens, as well as mechanisms of liver transplant tolerance in pre-clinical models and humans, including current immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition, we will address innovative therapeutic strategies, including mesenchymal stem cell, regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance or minimization of immunosuppression in the clinic.
Collapse
Affiliation(s)
- Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Yawen Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China.,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal Division, Westmead Hospital, Westmead, NSW, Australia.,Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
40
|
Lei H, Reinke P, Volk HD, Lv Y, Wu R. Mechanisms of Immune Tolerance in Liver Transplantation-Crosstalk Between Alloreactive T Cells and Liver Cells With Therapeutic Prospects. Front Immunol 2019; 10:2667. [PMID: 31803188 PMCID: PMC6877506 DOI: 10.3389/fimmu.2019.02667] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation (LTx) is currently the most powerful treatment for end-stage liver disease. Although liver allograft is more tolerogenic compared to other solid organs, the majority of LTx recipients still require long-term immune suppression (IS) to control the undesired alloimmune responses, which can lead to severe side effects. Thus, understanding the mechanism of liver transplant tolerance and crosstalk between immune cells, especially alloreactive T cells and liver cells, can shed light on more specific tolerance induction strategies for future clinical translation. In this review, we focus on alloreactive T cell mediated immune responses and their crosstalk with liver sinusoidal endothelial cells (LSECs), hepatocytes, hepatic stellate cells (HSCs), and cholangiocytes in transplant setting. Liver cells mainly serve as antigen presenting cells (APCs) to T cells, but with low expression of co-stimulatory molecules. Crosstalk between them largely depends on the different expression of adhesion molecules and chemokine receptors. Inflammatory cytokines secreted by immune cells further elaborate this crosstalk and regulate the fate of naïve T cells differentiation within the liver graft. On the other hand, regulatory T cells (Tregs) play an essential role in inducing and keeping immune tolerance in LTx. Tregs based adoptive cell therapy provides an excellent therapeutic option for clinical transplant tolerance induction. However, many questions regarding cell therapy still need to be solved. Here we also address the current clinical trials of adoptive Tregs therapy and other tolerance induction strategies in LTx, together with future challenges for clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Hong Lei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center of Advanced Therapies, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Kim MH, Akbari O, Genyk Y, Kohli R, Emamaullee J. Immunologic benefit of maternal donors in pediatric living donor liver transplantation. Pediatr Transplant 2019; 23:e13560. [PMID: 31402535 DOI: 10.1111/petr.13560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Long-term follow-up has suggested that pediatric LDLT may have superior outcomes compared to deceased donor recipients. In this review, we describe the subset of LDLT recipients with maternal donors that have lower reported rates of rejection and improved allograft survival. RECENT FINDINGS Pediatric LDLT recipients, particularly those with a primary diagnosis of biliary atresia who receive grafts from their mothers, have been reported to have lower rates of acute cellular rejection post-transplant and graft failure. Maternal-fetal microchimerism and the persistence of regulatory T cells may be related to improved outcomes observed in recipients with maternal donors. Further, recent studies have shown that up to 60% of pediatric LDLT recipients can undergo intentional withdrawal of immunosuppression and achieve long-term operational tolerance. The impact of graft type on operational tolerance has not been thoroughly investigated; however, investigation of tolerant pediatric LDLT patients with maternal donors may provide key insights into the mechanisms of immune tolerance. SUMMARY While excellent outcomes can be achieved in pediatric LDLT, there is still a measurable decrease in graft and patient survival over time post-transplant. Recipients of maternal donor liver transplants are a subset of patients who may be advantaged toward improved outcomes by means of immune tolerance.
Collapse
Affiliation(s)
- Michelle H Kim
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuri Genyk
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rohit Kohli
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Wang K, Song ZL, Wu B, Zhou CL, Liu W, Gao W. The T-helper cells 17 instead of Tregs play the key role in acute rejection after pediatric liver transplantation. Pediatr Transplant 2019; 23:e13363. [PMID: 30756444 DOI: 10.1111/petr.13363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Th17 and imbalance of Treg/Th17 might be one of the mechanisms of acute rejection. We aim to explore the role of Th17s in the balance of Treg/Th17 in acute rejection after LT in children diagnosed with BA. The ratios of Treg and Th17 in peripheral blood were detected by flow cytometry pre-LT, post-LT, and when rejection occurred. Treg proportion was higher before transplantation than at 2 weeks and 1 month after transplantation, with no statistical difference between 2 weeks and 1 month. However, Treg proportions were lower in pediatric recipients than healthy controls. The proportion of Tregs before anti-rejection treatment was lower than control group, with no statistical difference compared to the stable group and it showed no difference compared with that at 2 weeks and 1 month post-LT. The Th17 proportions were higher at 2 weeks and 1 month after transplantation than healthy controls. The Th17 proportion under the circumstances of rejection was higher than that in the stable group and control group; the proportion in stable group was higher than that in control group. After anti-rejection therapy, the proportions of Th17 were lower than those before therapy. In conclusion, the imbalance of Treg/Th17, especially Th17s instead of Tregs, may be one of the important mechanisms in acute rejection.
Collapse
Affiliation(s)
- Kai Wang
- Department of Transplant Surgery, Tianjin First Center Hospital, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Zhuo-Lun Song
- Department of Transplant Surgery, Tianjin First Center Hospital, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Bin Wu
- Department of Transplant Surgery, Tianjin First Center Hospital, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Chun-Lei Zhou
- Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China
| | - Wei Liu
- Blood Transfusion Department, Tianjin First Center Hospital, Tianjin, China
| | - Wei Gao
- Department of Transplant Surgery, Tianjin First Center Hospital, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.,Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| |
Collapse
|
43
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
44
|
Jaeckel E, Noyan F, Taubert R. Tipping the Balance. Transplantation 2018; 103:4-6. [PMID: 30586107 DOI: 10.1097/tp.0000000000002506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Tissue-Resident Lymphocytes in Solid Organ Transplantation: Innocent Passengers or the Key to Organ Transplant Survival? Transplantation 2018; 102:378-386. [PMID: 29135830 DOI: 10.1097/tp.0000000000002001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Short-term outcomes of solid organ transplantation have improved dramatically over the past several decades; however, long-term survival has remained static over the same period, and chronic rejection remains a major cause of graft failure. The importance of donor, or "passenger," lymphocytes to the induction of tolerance to allografts was recognized in the 1990s, but their precise contribution to graft acceptance or rejection has not been elucidated. Recently, specialized populations of tissue-resident lymphocytes in nonlymphoid organs have been described. These lymphocytes include tissue-resident memory T cells, regulatory T cells, γδ T cells, invariant natural killer T cells, and innate lymphoid cells. These cells reside in commonly transplanted solid organs, including the liver, kidneys, heart, and lung; however, their contribution to graft acceptance or rejection has not been examined in detail. Similarly, it is unclear whether tissue-resident cells derived from the pool of recipient-derived lymphocytes play a specific role in transplantation biology. This review summarizes the evidence for the roles of tissue-resident lymphocytes in transplant immunology, focussing on their features, functions, and relevance for solid organ transplantation, with specific reference to liver, kidney, heart, and lung transplantation.
Collapse
|
46
|
Campos-Varela I, Agudelo EZ, Terrault NA. Outcomes of antiviral treatment in hepatitis C virus liver transplant patients off immunosuppression in the direct acting antivirals era: A case series. Clin Transplant 2018; 32:e13303. [PMID: 29851150 DOI: 10.1111/ctr.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Clearance of hepatitis C virus (HCV) under antiviral therapy, including direct-acting antivirals (DAAs), has been associated with higher risk of rejection. Whether patients who are not on immunosuppression (IS) during DAA therapy are at higher risk of rejection is unknown. METHODS Four transplant recipients who were off IS and treated with DAA therapy were identified. RESULTS All patients were genotype 1 infection and treated for 12 weeks with sofosbuvir/ledipasvir/ribavirin. At the time of DAA therapy, patients were off IS for a median of 9.5 years. Time from liver transplant (LT) to treatment was 12.9 years. Median baseline ALT was 70 IU/L, at follow-up week 12 was 18 IU/L. No signs of rejection were observed during DAA therapy or follow-up after the end of therapy. All 4 patients obtained sustained virological response. CONCLUSION Direct-acting antivirals therapy in HCV patients off IS post-LT can be successfully undertaken without the need to restart IS.
Collapse
Affiliation(s)
- Isabel Campos-Varela
- Universidade de Santiago de Compostela (CLINURSID), Santiago de Compostela, Spain.,Department of Internal Medicine, Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eliana Z Agudelo
- Department of Medicine, University of California, San Francisco, CA, USA.,Department of Surgery, University of California, San Francisco, CA, USA
| | - Norah A Terrault
- Department of Medicine, University of California, San Francisco, CA, USA.,Department of Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
47
|
Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation. Transpl Int 2018; 30:776-784. [PMID: 28608637 DOI: 10.1111/tri.12998] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Modern immunosuppression drug regimens have produced excellent short-term survival after liver transplantation but it is generally accepted that the side effects of these medications remain a significant contributing factor for less satisfactory long term outcomes. The liver has unique tolerogenic properties as evidenced by the higher rates of operational tolerance seen in liver transplant recipients compared to other solid organ transplants, and therefore, liver transplantation offers an attractive setting in which to study tolerizing therapies. CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) are crucial for maintenance of self-tolerance and prevention of autoimmune disease and are therefore an appealing potential candidate for use as a tolerizing cell therapy. In this review, we summarize the evidence from drug withdrawal trials of spontaneous operational tolerance in liver transplantation, the unique immunology of the hepatic microenvironment, the evidence for the use of CD4+ CD25+ FOXP3+ regulatory T cells as a tolerance inducing therapy in liver transplantation and the challenges in producing clinical grade Treg cell products.
Collapse
Affiliation(s)
- Gavin P Whitehouse
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew Hope
- CRF GMP Unit, NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Alberto Sanchez-Fueyo
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
48
|
Durand M, Lacoste P, Danger R, Jacquemont L, Brosseau C, Durand E, Tilly G, Loy J, Foureau A, Royer PJ, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Degauque N, Magnan A, Brouard S. High circulating CD4 +CD25 hiFOXP3 + T-cell sub-population early after lung transplantation is associated with development of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2018; 37:770-781. [PMID: 29571601 DOI: 10.1016/j.healun.2018.01.1306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Chronic bronchiolitis obliterans syndrome (BOS) remains a major limitation for long-term survival after lung transplantation. The immune mechanisms involved and predictive biomarkers have yet to be identified. The purpose of this study was to determine whether peripheral blood T-lymphocyte profile could predict BOS in lung transplant recipients. METHODS An in-depth profiling of CD4+ and CD8+ T cells was prospectively performed on blood cells from stable (STA) and BOS patients with a longitudinal follow-up. Samples were analyzed at 1 and 6 months after transplantation, at the time of BOS diagnosis, and at an intermediate time-point at 6 to 12 months before BOS diagnosis. RESULTS Although no significant difference was found for T-cell compartments at BOS diagnosis or several months beforehand, we identified an increase in the CD4+CD25hiFoxP3+ T-cell sub-population in BOS patients at 1 and 6 months after transplantation (3.39 ± 0.40% vs 1.67 ± 0.22% in STA, p < 0.001). A CD4+CD25hiFoxP3+ T-cell threshold of 2.4% discriminated BOS and stable patients at 1 month post-transplantation. This was validated on a second set of patients at 6 months post-transplantation. Patients with a proportion of CD4+CD25hiFoxP3+ T cells up to 2.4% in the 6 months after transplantation had a 2-fold higher risk of developing BOS. CONCLUSIONS This study is the first to report an increased proportion of circulating CD4+CD25hiFoxP3+ T cells early post-transplantation in lung recipients who proceed to develop BOS within 3 years, which supports its use as a BOS predictive biomarker.
Collapse
Affiliation(s)
- Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Philippe Lacoste
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Lola Jacquemont
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Gaelle Tilly
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Jennifer Loy
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Pierre-Joseph Royer
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, Université de Versailles, Saint-Quentin-en-Yvelines, France
| | | | | | - Sacha Mussot
- Centre Chirurgical Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | - Johanna Claustre
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm U1055, Grenoble, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Centre d'Investigation Clinique Biothérapie, CHU Nantes, Nantes, France.
| | | |
Collapse
|
49
|
Transcriptomic studies in tolerance: Lessons learned and the path forward. Hum Immunol 2018; 79:395-401. [PMID: 29481826 DOI: 10.1016/j.humimm.2018.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/21/2022]
Abstract
Immunosuppression after solid organ transplantation is a delicate balance of the immune response and is a complex phenomenon with many factors involved. Despite advances in the care of patients receiving organ transplants the adverse effects associated with immunosuppressive agents and the risks of long-term immunosuppression present a series of challenges and the need to weigh the risks and benefits of either over or under-immunosuppression. Ideally, if all transplant recipients could develop donor-specific immunological tolerance, it could drastically improve long-term graft survival without the need for immunosuppressive agents. In the absence of this ideal situation, the next best approach would be to develop tools to determine the adequacy of immunosuppression in each patient, in a manner that would individualize or personalize therapy. Despite current genomics-based studies of tolerance biomarkers in transplantation there are currently, no clinically validated tools to safely increase or decrease the level of IS that is beneficial to the patient. However, the successful identification of biomarkers and/or mechanisms of tolerance that have implications on long-term graft survival and outcomes depend on proper integration of study design, experimental protocols, and data-driven hypotheses. The objective of this article is to first, discuss the progress made on genomic biomarkers of immunological tolerance and the future avenues for the development of such biomarkers specifically in kidney transplantation. Secondly, we provide a set of guiding principles and identify the pitfalls, advantages, and drawbacks of studies that generate genomic data aimed at understanding transplant tolerance that is applicable to all solid transplants.
Collapse
|
50
|
Biomarkers of immune tolerance in liver transplantation. Hum Immunol 2018; 79:388-394. [PMID: 29462637 DOI: 10.1016/j.humimm.2018.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
The liver exhibits intrinsic immune tolerogenic properties that contribute to a unique propensity toward spontaneous acceptance when transplanted, both in animal models and in humans. Thus, in contrast to what happens after transplantation of other solid organs, several years following liver transplantation a significant subset of patients are capable of maintaining normal allograft function with histological integrity in the absence of immunosuppressive drug treatment. Significant efforts have been put into identifying sensitive and specific biomarkers of tolerance in order to stratify liver transplant recipients according to their need for immunosuppressive medication and their likelihood of being able to completely discontinue it. These biomarkers are currently being validated in prospective clinical trials of immunosuppression withdrawal both in Europe and in the United States. These studies have the potential to transform the clinical management of liver transplant recipients by mitigating, at least in part, the burden of lifelong immunosuppression.
Collapse
|