1
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Alibrandi S, Clemens A, Chun N. Complement and T cell activation in transplantation. Transplant Rev (Orlando) 2025; 39:100898. [PMID: 39615218 PMCID: PMC11710966 DOI: 10.1016/j.trre.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The complement system plays a critical role in modulating adaptive T cell responses. Coordination of the proinflammatory signaling cascade and complement regulators permits efficient T cell priming and survival, while minimizing off-target damage to healthy host cells. In the context of transplantation, anti-donor T cell immunity remains a barrier to long term graft health and complement-targeted therapies have shown the potential to significantly improve patient outcomes. Here we will review our current understanding of complement-mediated T cell function and how these findings may be harnessed in organ transplantation.
Collapse
Affiliation(s)
- Sara Alibrandi
- Translational Transplant Research Center and Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy; Nephrology Unit, University Hospital of Parma, Parma, Italy
| | - Angela Clemens
- Translational Transplant Research Center and Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nicholas Chun
- Translational Transplant Research Center and Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, NY, NY, USA.
| |
Collapse
|
3
|
Papadaki GF, Li Y, Monos DS, Bhoj VG. Cars pick up another passenger: Organ transplantation. Hum Immunol 2025; 86:111180. [PMID: 39591915 DOI: 10.1016/j.humimm.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
With over 30,000 patients having received CAR T cells as a treatment for malignancy, our experience in oncology has facilitated numerous efforts to adapt the CAR therapeutic platform for diseases and conditions beyond cancer. Recognition of their efficacy, where traditional small molecule or biologic therapies fail, has spurred multiple efforts leveraging CAR T cells for immune modulation in the setting of organ/tissue transplantation. In the present review, we discuss CAR T cell approaches that are currently under development, to target both humoral and cellular alloimmunity. These include CAR T platforms repurposed from oncology and autoimmune diseases, as well as ones designed specifically to target alloimmunity in transplant. We also present important challenges and application considerations that will need to be addressed before we can expect successful clinical translation. Finally, we highlight a few of the exciting advances currently in development that are likely to pave a smoother path to translating CAR T cell therapies into transplant patients.
Collapse
Affiliation(s)
- Georgia F Papadaki
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Li
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri S Monos
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vijay G Bhoj
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Kurt AS, Ruiz P, Landmann E, Elgosbi M, Kan Fung T, Kodela E, Londoño MC, Correa DM, Perpiñán E, Lombardi G, Safinia N, Martinez-Llordella M, Sanchez-Fueyo A. Conferring alloantigen specificity to regulatory T cells: A comparative analysis of cell preparations undergoing clinical development in transplantation. Am J Transplant 2025; 25:38-47. [PMID: 39299674 DOI: 10.1016/j.ajt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Conferring alloantigen-specificity to ex vivo expanded CD4+CD25+FOXP3+ regulatory T cells (Tregs) increases their capacity to counteract effector alloimmune responses following adoptive transfer into transplant recipients. Three strategies are currently undergoing clinical development, which involve the following: (1) expanding Tregs in the presence of donor B cells (donor alloantigen-reactive [DAR] Tregs); (2) culturing Tregs with donor cells in the presence of costimulation blockade (CSB-Tregs); and (3) transducing Tregs with an human leukocyte antigen A2-specific chimeric antigen receptor (CAR-Tregs). Our goal in this study was to assess the relative potency of each of these manufactured Treg products both in vitro and in vivo. When compared with polyclonal Tregs, all 3 manufacturing strategies increased the precursor frequency of alloreactive Tregs, and this was proportional to the overall in vitro immunosuppressive properties of the cell products. Accordingly, CAR-Tregs, which contained the highest frequency of donor-reactive Tregs, exhibited the strongest suppressive effects on a cell-per-cell basis. Similarly, in an in vivo mouse model of graft-vs-host disease, infusion of CAR-Tregs conferred a significantly longer recipient survival than any other Treg product. Our results highlighting the alloantigen-reactivity and associated immunosuppressive properties of different manufactured Treg products have implications for the mechanistic interpretation of currently ongoing clinical trials in transplantation.
Collapse
Affiliation(s)
- Ada Sera Kurt
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Paula Ruiz
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Emmanuelle Landmann
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marwa Elgosbi
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Tsz Kan Fung
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Elisavet Kodela
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | | | - Diana Marin Correa
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Elena Perpiñán
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK; Quell Therapeutics, London, UK
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, UK.
| |
Collapse
|
5
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High-affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. Mol Ther Methods Clin Dev 2024; 32:101385. [PMID: 39687729 PMCID: PMC11647616 DOI: 10.1016/j.omtm.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28-activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFN-γ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Pashkina E, Blinova E, Bykova M, Aktanova A, Denisova V. Cell Therapy as a Way to Increase the Effectiveness of Hematopoietic Stem Cell Transplantation. Cells 2024; 13:2056. [PMID: 39768148 PMCID: PMC11675046 DOI: 10.3390/cells13242056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a standard method for treating a number of pathologies, primarily blood diseases. Timely restoration of the immune system after HSCT is a critical factor associated with the development of complications such as relapses or secondary tumors and various infections, as well as the graft-versus-host reaction in allogeneic transplantation, which ultimately affects the survival of patients. Introduction into the recipient's body of immune system cells that are incapable of sensitization by recipient antigens during the period of immune reconstitution can increase the rate of restoration of the immune system, as well as reduce the risk of complications. This review presents the results of studies on cell therapy with various cell subpopulations of both bone marrow and mesenchymal origin during HSCT.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Vera Denisova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| |
Collapse
|
7
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Lin J, Liu S, Xue X, Lv J, Zhao L, Yu L, Wang H, Chen J. Injectable Genetic Engineering Hydrogel for Promoting Spatial Tolerance of Transplanted Kidney in Situ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408631. [PMID: 39498870 DOI: 10.1002/advs.202408631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility. It is revealed that iGE-Gel displayed with abundant regulatory cytokines and coinhibitory contact molecules, promoting the formation of immune tolerance in situ. The multiplex immunohistofluorescence confirmed tolerant niches is dominated by FOXP3+ Tregs and PDL1+ cells in the allograft, which reduced the drainage of alloantigens to subcapsular sinus of lymph nodes, and suppressed the formation of germinal centers. Remarkably, the proportion of alloreactive T cells (IFN-γ/IL-2) and B cells (IgG1/IgG2a/IgG3) as well as the serum titers of donor specific antibody (DSA) is decreased by iGE-Gel. In murine allogeneic transplantation, the injection of iGE-Gel significantly alleviated immune cell infiltration and complement damage in the graft, preserved the structure and function of renal cells and prolonged recipient survival period from 30.8 to 79.3 days, highlighting the potential of iGE-Gel as a transformative treatment in allotransplant.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liqin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
9
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Durgam SS, Rosado-Sánchez I, Yin D, Speck M, Mojibian M, Sayin I, Hynes GE, Alegre ML, Levings MK, Chong AS. CAR Treg synergy with anti-CD154 mediates infectious tolerance to dictate heart transplant outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614149. [PMID: 39386649 PMCID: PMC11463638 DOI: 10.1101/2024.09.20.614149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Successful allograft specific tolerance induction would eliminate the need for daily immunosuppression and improve post-transplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific Chimeric Antigen Receptors (CAR-Tregs) is a promising strategy, but as monotherapy, cannot prolong the survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57Bl/6 recipients, we show that HLA-A2-specific (A2) CAR Tregs was able to synergize with low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited endogenous non-A2 donor- specific T cell, B cell and antibody responses, and promoted a significant increase in endogenous FoxP3 + Tregs with indirect donor-specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FoxP3 neg A2.CAR T cells preferentially accumulated in rejecting allografts and endogenous donor-specific responses were not controlled. This study therefore provides the first evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity towards allograft tolerance.
Collapse
|
12
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
13
|
Yang L, He J, Liu J, Xie T, Tang Q. Application of chimeric antigen receptor therapy beyond oncology: A bibliometric and visualized analysis. Curr Res Transl Med 2024; 72:103442. [PMID: 38452444 DOI: 10.1016/j.retram.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Chimeric antigen receptor therapy beyond oncology has gained increasing attention. While a substantial number of publications have emerged in recent years, there has been a paucity of conducted bibliometric studies. Our objective is to systematically summarize and visually analyze the literature in the field of chimeric antigen receptors therapy beyond oncology and explore hotspots in this field. METHODS Web of Science Core Collection was selected as the data source, and the data was retrieved on December 23, 2022, according to the search strategy. CiteSpace 6.1.R6 and Vosviewer 1.6.18 were used to analyze publications and explore research hotspots and directions. RESULTS A total of 338 publications written by 1832 authors from 516 institutions in 42 countries/regions were selected for the analysis. The number of publications is steadily increasing annually. The United States emerged as the primary contributor, and University of Pennsylvania was the leading institution. Frontiers in Immunology boasted the highest number of published papers. Kitchen SG, Riley JL, and Scott DW were the most productive researchers in this field. The keyword cluster analysis identified HIV, autoimmune diseases, transplant related diseases and COVID-19 as the primary focus areas within the realm of chimeric antigen receptor therapy beyond oncology. CONCLUSION The advancement of chimeric antigen receptor therapy beyond oncology has witnessed rapid progress in recent years. We have explored the hotspots and research directions in this field. It is hoped that this study could provide references and directions for future clinical researches.
Collapse
Affiliation(s)
- Linxin Yang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Jinshen He
- Department of Orthopaedic Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Tianjian Xie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Qi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
14
|
Seltrecht N, Hardtke-Wolenski M, Iordanidis K, Jonigk D, Galla M, Schambach A, Buitrago-Molina LE, Wedemeyer H, Noyan F, Jaeckel E. Graft-Specific Regulatory T Cells for Long-Lasting, Local Tolerance Induction. Cells 2024; 13:1216. [PMID: 39056797 PMCID: PMC11274814 DOI: 10.3390/cells13141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Solid organ transplantation is hindered by immune-mediated chronic graft dysfunction and the side effects of immunosuppressive therapy. Regulatory T cells (Tregs) are crucial for modulating immune responses post-transplantation; however, the transfer of polyspecific Tregs alone is insufficient to induce allotolerance in rodent models. METHODS To enhance the efficacy of adoptive Treg therapy, we investigated different immune interventions in the recipients. By utilizing an immunogenic skin transplant model and existing transplantation medicine reagents, we facilitated the clinical translation of our findings. Specifically, antigen-specific Tregs were used. RESULTS Our study demonstrated that combining the available induction therapies with drug-induced T-cell proliferation due to lymphopenia effectively increased the Treg/T effector ratios. This results in significant Treg accumulation within the graft, leading to long-term tolerance after the transfer of antigen-specific Tregs. Importantly, all the animals achieved operational tolerance, which boosted the presence of adoptively transferred Tregs within the graft. CONCLUSIONS This protocol offers a means to establish tolerance by utilizing antigen-specific Tregs. These results have promising implications for future trials involving adoptive Treg therapy in organ transplantation.
Collapse
Affiliation(s)
- Nadja Seltrecht
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Haematology, Hannover Medical School, 30625 Hannover, Germany; (M.G.); (A.S.)
| | - Axel Schambach
- Institute of Experimental Haematology, Hannover Medical School, 30625 Hannover, Germany; (M.G.); (A.S.)
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany (L.E.B.-M.); (H.W.); (E.J.)
- Department of Liver Transplantation, Multi Organ Transplant Program, Toronto General Hospital, United Health Network, University of Toronto, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
15
|
Kath J, Franke C, Drosdek V, Du W, Glaser V, Fuster-Garcia C, Stein M, Zittel T, Schulenberg S, Porter CE, Andersch L, Künkele A, Alcaniz J, Hoffmann J, Abken H, Abou-el-Enein M, Pruß A, Suzuki M, Cathomen T, Stripecke R, Volk HD, Reinke P, Schmueck-Henneresse M, Wagner DL. Integration of ζ-deficient CARs into the CD3ζ gene conveys potent cytotoxicity in T and NK cells. Blood 2024; 143:2599-2611. [PMID: 38493479 PMCID: PMC11196866 DOI: 10.1182/blood.2023020973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR expression and redirection of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T cells exhibited comparable leukemia control to TCRα chain constant (TRAC)-replaced and lentivirus-transduced CAR-T cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.
Collapse
Affiliation(s)
- Jonas Kath
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Glaser
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carla Fuster-Garcia
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Zittel
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline E. Porter
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Joshua Alcaniz
- Experimental Pharmacology & Oncology Berlin Buch GmbH, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology Berlin Buch GmbH, Berlin, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair Genetic Immunotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed Abou-el-Enein
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
- USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne, Cologne, Germany
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios L. Wagner
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Pham JPA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2024:e2400965. [PMID: 38843866 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John-Paul A Pham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - María M Coronel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Liu Y, Dong M, Chu Y, Zhou L, You Y, Pang X, Yang S, Zhang L, Chen L, Zhu L, Xiao J, Wang W, Qin C, Tian D. Dawn of CAR-T cell therapy in autoimmune diseases. Chin Med J (Engl) 2024; 137:1140-1150. [PMID: 38613216 PMCID: PMC11101238 DOI: 10.1097/cm9.0000000000003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in the treatment of hematological malignancies. Based on the immunomodulatory capability of CAR-T cells, efforts have turned toward exploring their potential in treating autoimmune diseases. Bibliometric analysis of 210 records from 128 academic journals published by 372 institutions in 40 countries/regions indicates a growing number of publications on CAR-T therapy for autoimmune diseases, covering a range of subtypes such as systemic lupus erythematosus, multiple sclerosis, among others. CAR-T therapy holds promise in mitigating several shortcomings, including the indiscriminate suppression of the immune system by traditional immunosuppressants, and non-sustaining therapeutic levels of monoclonal antibodies due to inherent pharmacokinetic constraints. By persisting and proliferating in vivo , CAR-T cells can offer a tailored and precise therapeutics. This paper reviewed preclinical experiments and clinical trials involving CAR-T and CAR-related therapies in various autoimmune diseases, incorporating innovations well-studied in the field of hematological tumors, aiming to explore a safe and effective therapeutic option for relapsed/refractory autoimmune diseases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunhui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luoqi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunfan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaowei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luyang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lifang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daishi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
18
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Wardell CM, Fung VC, Chen E, Haque M, Gillies J, Spanier JA, Mojibian M, Fife BT, Levings MK. Short Report: CAR Tregs mediate linked suppression and infectious tolerance in islet transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588414. [PMID: 38645184 PMCID: PMC11030375 DOI: 10.1101/2024.04.06.588414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.
Collapse
Affiliation(s)
- Christine M. Wardell
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Eleanor Chen
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Jana Gillies
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School; Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School; Minneapolis, MN, USA
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School; Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School; Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School; Minneapolis, MN, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, University of British Columbia; Vancouver, BC, Canada
- Dept of Surgery, University of British Columbia; Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia; Vancouver, BC, Canada
| |
Collapse
|
20
|
Knoedler L, Dean J, Diatta F, Thompson N, Knoedler S, Rhys R, Sherwani K, Ettl T, Mayer S, Falkner F, Kilian K, Panayi AC, Iske J, Safi AF, Tullius SG, Haykal S, Pomahac B, Kauke-Navarro M. Immune modulation in transplant medicine: a comprehensive review of cell therapy applications and future directions. Front Immunol 2024; 15:1372862. [PMID: 38650942 PMCID: PMC11033354 DOI: 10.3389/fimmu.2024.1372862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Noelle Thompson
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richmond Rhys
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Khalil Sherwani
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Ettl
- Department of Dental, Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Simon Mayer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Katja Kilian
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Adriana C. Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali-Farid Safi
- Faculty of Medicine, University of Bern, Bern, Switzerland
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Siba Haykal
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bohdan Pomahac
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kauke-Navarro
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587467. [PMID: 38617240 PMCID: PMC11014479 DOI: 10.1101/2024.03.31.587467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
23
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
24
|
Di Ianni M, Liberatore C, Santoro N, Ranalli P, Guardalupi F, Corradi G, Villanova I, Di Francesco B, Lattanzio S, Passeri C, Lanuti P, Accorsi P. Cellular Strategies for Separating GvHD from GvL in Haploidentical Transplantation. Cells 2024; 13:134. [PMID: 38247827 PMCID: PMC10814899 DOI: 10.3390/cells13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
GvHD still remains, despite the continuous improvement of transplantation platforms, a fearful complication of transplantation from allogeneic donors. Being able to separate GvHD from GvL represents the greatest challenge in the allogeneic transplant setting. This may be possible through continuous improvement of cell therapy techniques. In this review, current cell therapies are taken into consideration, which are based on the use of TCR alpha/beta depletion, CD45RA depletion, T regulatory cell enrichment, NK-cell-based immunotherapies, and suicide gene therapies in order to prevent GvHD and maximally amplify the GvL effect in the setting of haploidentical transplantation.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmine Liberatore
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Nicole Santoro
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Paola Ranalli
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Corradi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ida Villanova
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Barbara Di Francesco
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Stefano Lattanzio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Passeri
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Accorsi
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| |
Collapse
|
25
|
Eskandari SK, Daccache A, Azzi JR. Chimeric antigen receptor T reg therapy in transplantation. Trends Immunol 2024; 45:48-61. [PMID: 38123369 DOI: 10.1016/j.it.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.
Collapse
Affiliation(s)
- Siawosh K Eskandari
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Andrea Daccache
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Bioscience Education and Research (UFR Biosciences), Claude Bernard University Lyon 1, Lyon, France
| | - Jamil R Azzi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
27
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Chen CY, Vander Kooi A, Cavedon A, Cai X, Hoggatt J, Martini PG, Miao CH. Induction of long-term tolerance to a specific antigen using anti-CD3 lipid nanoparticles following gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102043. [PMID: 37920545 PMCID: PMC10618827 DOI: 10.1016/j.omtn.2023.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Development of factor VIII (FVIII) inhibitors is a serious complication in the treatment of hemophilia A (HemA) patients. In clinical trials, anti-CD3 antibody therapy effectively modulates the immune response of allograft rejection or autoimmune diseases without eliciting major adverse effects. In this study, we delivered mRNA-encapsulated lipid nanoparticles (LNPs) encoding therapeutic anti-CD3 antibody (αCD3 LNPs) to overcome the anti-FVIII immune responses in HemA mice. It was found that αCD3 LNPs encoding the single-chain antibodies (Fc-scFv) can efficiently deplete CD3+ and CD4+ effector T cells, whereas αCD3 LNPs encoding double-chain antibodies cannot. Concomitantly, mice treated with αCD3 (Fc-scFv) LNPs showed an increase in the CD4+CD25+Foxp3+ regulatory T cell percentages, which modulated the anti-FVIII immune responses. All T cells returned to normal levels within 2 months. HemA mice treated with αCD3 LNPs prior to hydrodynamic injection of liver-specific FVIII plasmids achieved persistent FVIII gene expression without formation of FVIII inhibitors. Furthermore, transgene expression was increased and persistent following secondary plasmid challenge, indicating induction of long-term tolerance to FVIII. Moreover, the treated mice maintained their immune competence against other antigens. In conclusion, our study established a potential new strategy to induce long-term antigen-specific tolerance using an αCD3 LNP formulation.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Xiaohe Cai
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | | | - Carol H. Miao
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
31
|
Perpiñán E, Sanchez-Fueyo A, Safinia N. Immunoregulation: the interplay between metabolism and redox homeostasis. FRONTIERS IN TRANSPLANTATION 2023; 2:1283275. [PMID: 38993920 PMCID: PMC11235320 DOI: 10.3389/frtra.2023.1283275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Regulatory T cells are fundamental for the induction and maintenance of immune homeostasis, with their dysfunction resulting in uncontrolled immune responses and tissue destruction predisposing to autoimmunity, transplant rejection and several inflammatory and metabolic disorders. Recent discoveries have demonstrated that metabolic processes and mitochondrial function are critical for the appropriate functioning of these cells in health, with their metabolic adaptation, influenced by microenvironmental factors, seen in several pathological processes. Upon activation regulatory T cells rearrange their oxidation-reduction (redox) system, which in turn supports their metabolic reprogramming, adding a layer of complexity to our understanding of cellular metabolism. Here we review the literature surrounding redox homeostasis and metabolism of regulatory T cells to highlight new mechanistic insights of these interlinked pathways in immune regulation.
Collapse
Affiliation(s)
| | | | - N. Safinia
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Institute of Liver Studies, James Black Centre, King’s College London, London, United Kingdom
| |
Collapse
|
32
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Kath J, Franke C, Drosdek V, Du W, Glaser V, Fuster-Garcia C, Stein M, Zittel T, Schulenberg S, Porter CE, Andersch L, Künkele A, Alcaniz J, Hoffmann J, Abken H, Abou-El-Enein M, Pruß A, Suzuki M, Cathomen T, Stripecke R, Volk HD, Reinke P, Schmueck-Henneresse M, Wagner DL. Integration of ζ-deficient CARs into the CD3-zeta gene conveys potent cytotoxicity in T and NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.565518. [PMID: 38116030 PMCID: PMC10729737 DOI: 10.1101/2023.11.10.565518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3 ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3 ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and reprogramming of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3 ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3 ζ-CD19-CAR-T cells exhibited comparable leukemia control to T cell receptor alpha constant ( TRAC )-replaced and lentivirus-transduced CAR-T cells in vivo . Tuning of CD3 ζ-CAR-expression levels significantly improved the in vivo efficacy. Compared to TRAC -edited CAR-T cells, integration of a Her2-CAR into CD3 ζ conveyed similar in vitro tumor lysis but reduced susceptibility to activation-induced cell death and differentiation, presumably due to lower CAR-expression levels. Notably, CD3 ζ gene editing enabled reprogramming of NK cells without impairing their canonical functions. Thus, CD3 ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes. Key points Integration of ζ-deficient CARs into CD3 ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use CD3 ζ-editing platform allows CAR reprogramming of NK cells without affecting their canonical functions.
Collapse
|
34
|
Lescoat A, Kato H, Varga J. Emerging cellular and immunotherapies for systemic sclerosis: from mesenchymal stromal cells to CAR-T cells and vaccine-based approaches. Curr Opin Rheumatol 2023; 35:356-363. [PMID: 37650691 DOI: 10.1097/bor.0000000000000970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Although two targeted therapies have received recent approval for systemic sclerosis (SSc)-associated interstitial lung disease, they do not show major disease-modifying activity, highlighting the need for novel therapies and innovative paradigms. To that end, cellular therapies may represent a new opportunity for the treatment of SSc. The purpose of this review is to provide an up-to-date overview of emerging cell-based disease-modifying therapies in SSc. RECENT FINDINGS Initial small studies in patients with severe refractory systemic lupus erythematosus (SLE) using engineered regulatory cells show promising results. CD19-directed CAR-T have shown promising results in one case report of refractory diffuse cutaneous SSc patients. T cells engineered to express a chimeric autoantibody receptor (CAAR-T cells) may be even more relevant via the specific elimination of auto-reactive B cells. Targeting pro-fibrotic or senescence-related pathways may also constitute promising approaches in SSc. SUMMARY Building on the classification of the clinical phenotype and prediction of clinical trajectory based on individual patients' autoantigen and/or autoantibody profile, cellular therapies targeting the same autoantigen or related autoreactive cells may represent an unprecedented opportunity to implement personalized medicine in SSc.
Collapse
Affiliation(s)
- Alain Lescoat
- University of Rennes CHU Rennes, Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Hiroshi Kato
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Li T, Luo R, Su L, Lv F, Mei L, Yu Y. Advanced Materials and Delivery Systems for Enhancement of Chimeric Antigen Receptor Cells. SMALL METHODS 2023; 7:e2300880. [PMID: 37653606 DOI: 10.1002/smtd.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/12/2023] [Indexed: 09/02/2023]
Abstract
Chimeric antigen receptor (CAR) cell therapy is a great success and breakthrough in immunotherapy. However, there are still lots of barriers to its wide use in clinical, including long time consumption, high cost, and failure against solid tumors. For these challenges, researches are deplored to explore CAR cells to more appliable products in clinical. This minireview focuses on the advanced non-viral materials for CAR-T transfection ex vivo with better performance, delivery systems combined with other therapy for enhancement of CAR-T therapy in solid tumors. In addition, the targeted delivery platform for CAR cells in vivo generation as a breakthrough technology as its low cost and convenience. In the end, the prospective direction and future of CAR cell therapy are discussed.
Collapse
Affiliation(s)
- Tingxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ran Luo
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lina Su
- Department of Pharmacy, Qujing Medical College, Qujing, Yunnan, 655000, P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yongkang Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
36
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
38
|
Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, Boardman DA, Mojibian M, Raimondi G, Levings MK. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8:e167215. [PMID: 37669115 PMCID: PMC10619441 DOI: 10.1172/jci.insight.167215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A. Boardman
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Gille I, Hagedoorn RS, van der Meer-Prins EMW, Heemskerk MHM, Heidt S. Chimeric HLA antibody receptor T cells to target HLA-specific B cells in solid organ transplantation. HLA 2023; 102:436-448. [PMID: 37370222 DOI: 10.1111/tan.15146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
HLA-sensitized patients on the transplant waiting list harbor antibodies and memory B cells directed against allogeneic HLA molecules, which decreases the chance to receive a compatible donor organ. Current desensitization strategies non-specifically target circulating antibodies and B cells, warranting the development of therapies that specifically affect HLA-directed humoral immune responses. We developed Chimeric HLA Antibody Receptor (CHAR) constructs comprising the extracellular part of HLA-A2 or HLA-A3 coupled to CD28-CD3ζ domains. CHAR-transduced cells expressing reporter constructs encoding T-cell activation markers, and CHAR-transduced CD8+ T cells from healthy donors were stimulated with HLA-specific monoclonal antibody-coated microbeads, and HLA-specific B cell hybridomas. CHAR T cell activation was measured by upregulation of T cell activation markers and IFNγ secretion, whereas CHAR T cell killing of B cell hybridomas was assessed in chromium release assays and by IgG ELISpot. HLA-A2- and HLA-A3-CHAR expressing cells were specifically activated by HLA-A2- and HLA-A3-specific monoclonal antibodies, either soluble or coated on microbeads, as shown by CHAR-induced transcription factors. HLA-A2 and HLA-A3 CHAR T cells efficiently produced IFNγ with exquisite specificity and were capable of specifically lysing hybridoma cells expressing HLA-A2- or HLA-A3-specific B-cell receptors, respectively. Finally, we mutated the α3 domain of the CHAR molecules to minimize any alloreactive T-cell reactivity against CHAR T cells, while retaining CHAR activity. These data show proof of principle for CHAR T cells to serve as precision immunotherapy to specifically desensitize (highly) sensitized solid organ transplant candidates and to treat antibody-mediated rejection after solid organ transplantation.
Collapse
Affiliation(s)
- Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
41
|
Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E, Hardtke-Wolenski M. Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer's Disease. Cells 2023; 12:2115. [PMID: 37626926 PMCID: PMC10453937 DOI: 10.3390/cells12162115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that remains uncured. Its pathogenesis is characterized by the formation of β-amyloid (Aβ) plaques. The use of antigen-specific regulatory T cells (Tregs) through adoptive transfer has shown promise for the treatment of many inflammatory diseases, although the effectiveness of polyspecific Tregs is limited. Obtaining a sufficient number of antigen-specific Tregs from patients remains challenging. AIMS AND METHODS To address this problem, we used an antibody-like single-chain variable fragment from a phage library and subsequently generated a chimeric antigen receptor (CAR) targeting β-amyloid. RESULTS The β-amyloid-specific CARs obtained were stimulated by both recombinant and membrane-bound Aβ isolated from the murine brain. The generated CAR-Tregs showed a normal Treg phenotype, were antigen-specific activatable, and had suppressive capacity. CONCLUSION This study highlights the potential of CAR technology to generate antigen-specific Tregs and presents novel approaches for developing functional CARs.
Collapse
Affiliation(s)
- Valerie Saetzler
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Tobias Riet
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrea Schienke
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Pierre Henschel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Kiara Freitag
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Alexander Haake
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Frank L. Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (K.F.); (A.H.); (F.L.H.)
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 10117 Berlin, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.R.); (A.S.); (P.H.); (L.E.B.-M.); (F.N.); (E.J.)
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
42
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
43
|
Nash A, Lokhorst N, Veiseh O. Localized immunomodulation technologies to enable cellular and organoid transplantation. Trends Mol Med 2023:S1471-4914(23)00097-7. [PMID: 37301656 DOI: 10.1016/j.molmed.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Localized immunomodulation technologies are rapidly emerging as a new modality with the potential to revolutionize transplantation of cells and organs. In the past decade, cell-based immunomodulation therapies saw clinical success in the treatment of cancer and autoimmune diseases. In this review, we describe recent advances in engineering solutions for the development of localized immunomodulation techniques focusing on cellular and organoid transplantation. We begin by describing cell transplantation and highlighting notable clinical successes, particularly in the areas of stem cell therapy, chimeric antigen receptor (CAR)-T cell therapy, and islet transplantation. Next, we detail recent preclinical studies centered on genome editing and biomaterials to enhance localized immunomodulation. We close by discussing future opportunities to improve clinical and commercial success using these approaches to facilitate long-term immunomodulation technologies.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Nienke Lokhorst
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Moon S, Hong J, Go S, Kim BS. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng Regen Med 2023; 20:389-409. [PMID: 36920675 PMCID: PMC10219918 DOI: 10.1007/s13770-023-00525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system's involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy. Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
45
|
Zhang ZJ, Ding LY, Zuo XL, Feng H, Xia Q. A new paradigm in transplant immunology: At the crossroad of synthetic biology and biomaterials. MED 2023:S2666-6340(23)00142-3. [PMID: 37244257 DOI: 10.1016/j.medj.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Lu-Yue Ding
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China; Punan Branch (Shanghai Punan Hospital), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|
46
|
Pieper T, Roth KDR, Glaser V, Riet T, Buitrago-Molina LE, Hagedorn M, Lieber M, Hust M, Noyan F, Jaeckel E, Hardtke-Wolenski M. Generation of Chimeric Antigen Receptors against Tetraspanin 7. Cells 2023; 12:1453. [PMID: 37296574 PMCID: PMC10252682 DOI: 10.3390/cells12111453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Adoptive transfer of antigen-specific regulatory T cells (Tregs) has shown promising results in the treatment of autoimmune diseases; however, the use of polyspecific Tregs has limited effects. However, obtaining a sufficient number of antigen-specific Tregs from patients with autoimmune disorders remains challenging. Chimeric antigen receptors (CARs) provide an alternative source of T cells for novel immunotherapies that redirect T cells independently of the MHC. In this study, we aimed to generate antibody-like single-chain variable fragments (scFv) and subsequent CARs against tetraspanin 7 (TSPAN7), a membrane protein highly expressed on the surface of pancreatic beta cells, using phage display technology. We established two methods for generating scFvs against TSPAN7 and other target structures. Moreover, we established novel assays to analyze and quantify their binding abilities. The resulting CARs were functional and activated specifically by the target structure, but could not recognize TSPAN7 on the surface of beta cells. Despite this, this study demonstrates that CAR technology is a powerful tool for generating antigen-specific T cells and provides new approaches for generating functional CARs.
Collapse
Affiliation(s)
- Tom Pieper
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Medizinische Biotechnologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Viktor Glaser
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Tobias Riet
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50933 Cologne, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Maike Hagedorn
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Maren Lieber
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Medizinische Biotechnologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases & Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 47057 Essen, Germany
| |
Collapse
|
47
|
Henschel P, Landwehr-Kenzel S, Engels N, Schienke A, Kremer J, Riet T, Redel N, Iordanidis K, Saetzler V, John K, Heider M, Hardtke-Wolenski M, Wedemeyer H, Jaeckel E, Noyan F. Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 2023; 138:103057. [PMID: 37224732 DOI: 10.1016/j.jaut.2023.103057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The forkhead family transcription factor (FOXP3) is an essential regulator for the development of regulatory T cells (Tregs) and orchestrates both suppressive function and Treg lineage identity. Stable expression of FOXP3 enables Tregs to maintain immune homeostasis and prevent autoimmunity. However, under pro-inflammatory conditions, FOXP3 expression in Tregs can become unstable, leading to loss of suppressive function and conversion into pathogenic T effector cells. Therefore, the success of adoptive cell therapy with chimeric antigen receptor (CAR) Tregs is highly dependent on the stability of FOXP3 expression to ensure the safety of the cell product. To warrant the stable expression of FOXP3 in CAR-Treg products, we have developed an HLA-A2-specific CAR vector that co-expresses FOXP3. The transduction of isolated human Tregs with the FOXP3-CAR led to an increase in the safety and efficacy of the CAR-Treg product. In a hostile microenvironment, under pro-inflammatory and IL-2-deficient conditions, FOXP3-CAR-Tregs showed a stable expression of FOXP3 compared to Control-CAR-Tregs. Furthermore, additional exogenous expression of FOXP3 did not induce phenotypic alterations and dysfunctions such as cell exhaustion, loss of functional Treg characteristics or abnormal cytokine secretion. In a humanized mouse model, FOXP3-CAR-Tregs displayed an excellent ability to prevent allograft rejection. Furthermore, FOXP3-CAR-Tregs revealed coherent Treg niche-filling capabilities. Overexpression of FOXP3 in CAR-Tregs has thereby the potential to increase the efficacy and reliability of cellular products, promoting their clinical use in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Pierre Henschel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sybille Landwehr-Kenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Niklas Engels
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Goettingen, Germany
| | - Andrea Schienke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jakob Kremer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Riet
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nella Redel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Valerie Saetzler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina John
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Institute of Medical Microbiology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, Toronto, University of Toronto, Canada
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
48
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
49
|
Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol 2023; 44:468-483. [PMID: 37100644 DOI: 10.1016/j.it.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.
Collapse
Affiliation(s)
- Sebastian Bittner
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
50
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|