1
|
Bushra SMR, Safuan S, Bakar RA, Andrade LM, Abubakar BD, Nurul AA. Structural elucidation and anti-asthmatic effects of semi-crystalline polysaccharides from Lignosus rhinocerotis (Cooke) Ryvarden. Int J Biol Macromol 2025; 299:140103. [PMID: 39842582 DOI: 10.1016/j.ijbiomac.2025.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation. Lignosus rhinocerotis (LR), a medicinal mushroom rich in polysaccharide, has been traditionally used to treat various diseases, including asthma. This study aimed to fractionate, characterize and evaluate the anti-asthmatic effects of polysaccharides from LR (LRP). LRP was isolated and characterized using high-performance liquid chromatography (HPLC), x-ray diffraction analysis (XRD), fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. In an OVA-induced asthma model, BALB/c mice were sensitized, challenged, and intranasally treated with LRP. Experimental findings demonstrated that LRP exhibits a semi-crystalline nature with predicted structure of → 4)-α-D-Glcp-(1 → and → 3)-β-D-Glcp-(1→. LRP significantly reduced eosinophilia, Th2 cytokines, and IgE levels. Histological analysis revealed LRP's ability to decrease epithelial damage and epithelial and smooth muscle thickness in lung. Reductions in inflammatory cell infiltration, mucus production, and transforming growth factor (TGF)-β1 expression were observed, although not statistically significant. Gene expression analysis indicated that LRP significantly downregulated the inducible nitric oxide synthase (iNOS) expression. This study highlights a detailed structural analysis of LRP and its potential as an alternative for the management of asthma. Further research is needed to elucidate the precise mechanisms of action and optimize its therapeutic application.
Collapse
Affiliation(s)
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ruzilawati Abu Bakar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Bishir Daku Abubakar
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University, Dutse, Nigeria
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Ishii Y, Shiota A, Takao T, Yamamoto N, Ogawa T, Jo A, Shinozaki S, Fukuyama S, Koga T, Ito M, Tanaka H, Tamura A, Tsukita S, Matsumoto K, Okamoto I, Kan-O K. Claudin-3 deficiency inhibits allergic responses in an ovalbumin-induced asthma mouse model. Allergol Int 2025:S1323-8930(24)00158-8. [PMID: 39809629 DOI: 10.1016/j.alit.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Yumiko Ishii
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayaka Shiota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, Fukuoka, Japan
| | - Tomoaki Takao
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Norio Yamamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Jo
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Shinozaki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroo Tanaka
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan; Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Tamura
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan; Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan; Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Koichiro Matsumoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Respirology, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Pybus HJ, Dangarh P, Ng MYM, Lloyd CM, Saglani S, Tanaka RJ. Mechanistic modelling of allergen-induced airways disease in early life. Sci Rep 2025; 15:368. [PMID: 39747954 PMCID: PMC11696187 DOI: 10.1038/s41598-024-83204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Asthma affects approximately 300 million individuals worldwide and the onset predominantly arises in childhood. Children are exposed to multiple environmental irritants, such as viruses and allergens, that are common triggers for asthma onset, whilst their immune systems are developing in early life. Understanding the impact of allergen exposures on the developing immune system and resulting alterations in lung function in early life will help prevent the onset and progression of allergic asthma in children. In this study, we developed an in silico model describing the pulmonary immune response to a common allergen, house dust mite, to investigate its downstream impact on the pathophysiology of asthma, including airway eosinophilic inflammation, remodelling, and lung function. We hypothesised that altered epithelial function following allergen exposure determines the onset of airway remodelling and abnormal lung function, which are irreversible with current asthma therapies. We calibrated the in silico model using age appropriate in vivo data from neonatal and adult mice. We validated the in silico model using in vivo data from mice on the effects of current treatment strategies. The in silico model recapitulates experimental observations and provides an interpretable in silico tool to assess airway pathology and the underlying immune responses upon allergen exposure. The in silico model simulations predict the extent of bronchial epithelial barrier damage observed when allergen sensitisation occurs and demonstrate that epithelial barrier damage and impaired immune maturation are critical determinants of reduced lung function and asthma development. The in silico model demonstrates that both epithelial barrier repair and immune maturation are potential targets for therapeutic intervention to achieve successful asthma prevention.
Collapse
Affiliation(s)
- Hannah J Pybus
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Prakrati Dangarh
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Man Yin Melanie Ng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, SW3 6NP, UK.
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Pan M, Zhang L, Chang S, Jiang X, Shen J, Feng X, Xu F, Zha X, Chen X, Fan X. Poly-l-arginine promotes ferroptosis in asthmatic airway epithelial cells by modulating PBX1/GABARAPL1 axis. Int J Biol Macromol 2025; 286:138478. [PMID: 39645127 DOI: 10.1016/j.ijbiomac.2024.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Eosinophils play a featured role among inflammatory cells participating in the onset and development of asthma. Activated eosinophils release several cytotoxic granular proteins, such as major basic protein (MBP), posing a significant threat to airway epithelium. Ferroptosis, a novel form of cell death, is gaining recognition for its involvement in asthma pathogenesis, though the specific mechanisms remain largely unknown. Herein, we revealed that poly-l-arginine (PLA), an MBP mimic, induced ferroptosis in airway epithelium by downregulating γ-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1). Reduced GABARAPL1 expression was further confirmed in ovalbumin (OVA)-induced asthma mice and PLA-treated human airway organoids (hAOs). Mechanistically, PLA activated mechanistic target of rapamycin complex 1 (mTORC1) signaling, inhibiting pre-B-cell leukemia transcription factor 1 (PBX1), which in turn leads to transcriptional downregulation of GABARAPL1. Furthermore, MBP extracted from eosinophils, similar to PLA, induced ferroptosis in airway epithelial cells, as well as modulating mTORC1/PBX1/GABARAPL1 pathway. Finally, Ferrostatin-1 treatment or GABARAPL1 overexpression alleviated ferroptosis and airway inflammation in asthmatic mice. Overall, our findings highlight the cell communication between eosinophils and airway epithelial cells. MBP modulates the mTORC1/PBX1/GABARAPL1 axis, thereby serving as a significant contributor to ferroptosis in airway epithelium and airway inflammation. This suggests that suppressing ferroptosis in airway epithelium or targeting eosinophils and MBP could lead to novel therapeutic strategies for asthma management.
Collapse
Affiliation(s)
- Min Pan
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Ling Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Shuang Chang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xueqin Jiang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Jiapan Shen
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xiaoxia Feng
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Fangzhou Xu
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xu Chen
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China.
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China.
| |
Collapse
|
5
|
Xia Z, Zhao X, Wang L, Huang L, Yang Y, Yin X, He L, Aga Y, Kahaer A, Yang S, Hao L, Chen C. Amelioration of Inflammation in Rats with Experimentally Induced Asthma by Spenceria ramalana Trimen Polyphenols via the PI3K/Akt Signaling Pathway. Int J Mol Sci 2024; 26:165. [PMID: 39796021 PMCID: PMC11720363 DOI: 10.3390/ijms26010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Spenceria ramalana Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats. Initially, the potential therapeutic mechanism of the polyphenolic components in SRT on OVA + CS-induced asthma was predicated by network pharmacology analysis. Subsequently, in vivo experiments identified that SRT polyphenols exhibit significant anti-asthmatic activities, primarily mediated by lowering inflammatory cell counts such as the WBC (white blood cell), eosinophils, and neutrophils, decreasing the expression of inflammatory cytokines (IL-4, IL-5, IL-13, and TNF-α), alleviating lung histological damage (reduced inflammation, collagen deposition, and mucus secretion), and enhancing the epithelial barrier integrity (upregulation of ZO-1, occludin, and claudin-1). Additionally, SRT polyphenols downregulated the PI3K/Akt (Phosphoinositide 3-kinase/protein kinase B) signaling pathway, improved gut microbiota disruption, and regulated fecal metabolites (glucose-6-glutamate, PS (16:0/0:0), 8-aminocaprylic acid, galactonic acid, Ascr#10, 2,3,4,5,6,7-hexahydroxyheptanoic acid, phosphodimethylethanolamine, muramic acid, 9-oxohexadeca-10e-enoic acid, and sedoheptulose) in asthmatic rats. In conclusion, SRT polyphenols exerted multifaceted protective effects against OVA + CS-induced asthma in rats, highlighting their potential value in preventing asthma via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhaobin Xia
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Xing Zhao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lu Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Lin Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Yanwen Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Xiangyu Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Luyu He
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Yuebumo Aga
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Ankaer Kahaer
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Shiyu Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lili Hao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Chaoxi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
6
|
Barbet K, Schmitz MS, Westhölter D, Kamler M, Rütten S, Thiebes AL, Sitek B, Bayer M, Schedel M, Reuter S, Darwiche K, Luengen AE, Taube C. Bronchoscopic biopsies - a novel source for primary airway epithelial cells in respiratory research. Respir Res 2024; 25:439. [PMID: 39719562 DOI: 10.1186/s12931-024-03060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Using primary airway epithelial cells (AEC) is essential to mimic more closely different types and stages of lung disease in humans while reducing or even replacing animal experiments. Access to lung tissue remains limited because these samples are generally obtained from patients who undergo lung transplantation for end-stage lung disease or thoracic surgery for (mostly) lung cancer. We investigated whether forceps or cryo biopsies are a viable alternative source of AEC compared to the conventional technique. METHODS AECs were obtained ex vivo from healthy donor lung tissue using the conventional method and two biopsy procedures (forceps, cryo). The influence of the isolation method on the quality and function of AEC was investigated at different time-points during expansion and differentiation in air-liquid interface cultures. In addition, fully-differentiated AECs were stimulated with house dust mite extract (HDM) to allow functional analyses in an allergic in vitro model. Vitality or differentiation capacity were determined using flow cytometry, scanning electron microscope, periodic acid-Schiff reaction, immunofluorescence staining, and proteomics. RESULTS As anticipated, no significant differences between each of the sampling methods were detected for any of the measured outcomes. The proteome composition was comparable for each isolation method, while donor-dependent effects were observed. Treatment with HDM led to minor differences in mucociliary differentiation. CONCLUSIONS Our findings confirmed the adequacy of these alternative approaches for attaining primary AECs, which can now expand the research for a broader range of lung diseases and for studies at an earlier stage not requiring lung surgery.
Collapse
Affiliation(s)
- Kimberly Barbet
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
| | - Mona S Schmitz
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany.
- Department of Translational Pulmonology, Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany.
| | - Dirk Westhölter
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Essen, Essen, Germany
| | - Stephan Rütten
- Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Anja L Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Barbara Sitek
- Medical Proteom-Center (MPC) Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Malte Bayer
- Medical Proteom-Center (MPC) Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Michaela Schedel
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
- Department of Pulmonology, University Medical Center Essen, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
- Present address: Basic and Translational Lung Research, Departments of Pneumology, Mainz University Medical Center, Mainz, Germany
| | - Kaid Darwiche
- Interventional Pulmonology, Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
| | - Anja E Luengen
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen, Germany
| |
Collapse
|
7
|
Boomer J, Choi J, Alsup A, McGregor MC, Lieu J, Johnson C, Hall C, Shi X, Kim T, Goss C, Lew D, Christensen S, Woodruff P, Hastie A, Mauger D, Wenzel SE, Hoffman E, Schechtman KB, Castro M. Increased Muc5AC and Decreased Ciliated Cells in Severe Asthma Partially Restored by Inhibition of IL-4Rα Receptor. Am J Respir Crit Care Med 2024; 210:1409-1420. [PMID: 38935626 PMCID: PMC11716027 DOI: 10.1164/rccm.202307-1266oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. Objectives: To study IL-13-induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. Methods: Quantitative computed tomography of the lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 with severe asthma, 11 with nonsevere asthma, and 18 healthy participants) in SARPIII (Severe Asthma Research Program III) and measured for mucin and cilia-related proteins. Epithelial cells were differentiated at air-liquid interface (ALI) with IL-13 with or without dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF), and epithelial integrity (transepithelial electrical resistance [TEER]). Measurements and Main Results: Increased Muc5AC (mucin 5AC) (Δ + 263.2 ± 92.7 luminosity/epithelial area) and decreased ciliated cells (Δ - 0.07 ± 0.03 Foxj1+ cells/epithelial area) were observed in biopsies from patients with severe asthma when compared with healthy control subjects (P < 0.01 and P = 0.047, respectively). RNA sequencing of endobronchial cell brushings confirmed a Muc5AC increase with a decrease in a five-gene cilia-related mean in patients with severe asthma compared with healthy subjects (all P < 0.05). IL-13 (5 ng/ml)-differentiated ALI cultures of healthy and asthmatic samples (from participants with severe and nonsevere asthma) increased Muc5AC, decreased cilia (α-aceytl-tubulin) in samples from healthy participants (Δ + 6.5% ± 1.5%, Δ - 14.1% ± 2.7%; all P < 0.001 respectively) and participants with asthma (Δ + 4.4% ± 2.5%, Δ - 13.1% ± 2.7%; P = 0.084, P < 0.001 respectively), and decreased epithelial integrity (TEER) in samples from healthy participants (-140.9 ± 21.3 [ohms], P < 0.001), while decreasing CBF in samples from participants with asthma (Δ - 4.4 ± 1.7 [Hz], P < 0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC, but there was restoration of cilia in healthy participants and participants with asthma (absolute increase of 67.5% and 32.5% cilia, all P < 0.05, respectively), whereas CBF increased (Δ + 3.6 ± 1.1 [Hz], P < 0.001) and TEER decreased (only in asthma, Δ - 37.8 ± 16.2 [ohms], P < 0.05). Conclusions: IL-13 drives features of airway remodeling in severe asthma, which are partially reversed by inhibiting the IL-4Rα receptor in vitro.
Collapse
Affiliation(s)
- Jonathan Boomer
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander Alsup
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Julia Lieu
- Division of Pulmonary and Critical Care Medicine and
| | | | - Chase Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaosong Shi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Taewon Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Charles Goss
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daphne Lew
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Stephanie Christensen
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Prescott Woodruff
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Annette Hastie
- Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Eric Hoffman
- Departments of Radiology, Biomedical Engineering and Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kenneth B. Schechtman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
8
|
Wang H, Song X, Wang Y, Yang T, Liu W, Mou Y, Ren C, Song X. Interleukin 1β Mediates the Pathogenesis of Nasal Mucosal Epithelial Barrier Dysfunction in Allergic Rhinitis. J Inflamm Res 2024; 17:9071-9085. [PMID: 39588138 PMCID: PMC11586497 DOI: 10.2147/jir.s488340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background The nasal mucosal epithelial barrier is the primary site of allergic rhinitis (AR). Interleukin-1β (IL-1β), as a crucial factor in immune inflammation, not only plays a crucial role in hypersensitivity reactions but also affects the digestive mucosa and skin epithelial barrier. However, the role of IL-1β in the nasal mucosal epithelial barrier in AR has not been reported, and this study aimed to investigate the effect and possible mechanisms involved. Methods Dermatophagoides pteronyssinus 1 was used as an allergen to construct an AR mouse model and stimulate human nasal mucosal epithelial cells (HNEpCs) and observe the expression changes of IL-1β and epithelial barrier indicators CLDN1 and OCLN in mouse nasal mucosa and HNEpCs. Then, the possible mechanisms of action were explored via exogenous IL-1β stimulation and pharmacological inhibition of IL-1β or its receptor interleukin-1 receptor type 1 (IL-1R1). Results The results showed that Dermatophagoides pteronyssinus 1-primed mouse nasal mucosa or human HENpCs had increased expression of IL-1β and decreased CLDN1 and OCLN, and IL-1β could directly lead to reduced expression of epithelial barrier indexes in HNEpCs. In addition, inhibition of IL-1β or IL-1R1 can effectively alleviate the damage to the epithelial barrier. Conclusion IL-1β has a destructive effect on the nasal mucosal epithelial barrier in AR, and inhibition of IL-1β or its receptor IL-1R1 can effectively protect the nasal mucosal barrier. IL-1β is a potential target for the treatment of AR.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Wanchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| |
Collapse
|
9
|
Wang S, Tu Z, Li C, Jin X, Chen Z, Ye X, Xu S, Cai J, Cai C. STC-1 alleviates airway inflammation by regulating epithelial cell apoptosis through the 5-LO pathway. Inflammation 2024:10.1007/s10753-024-02181-5. [PMID: 39546157 DOI: 10.1007/s10753-024-02181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Airway inflammation plays a key role in the pathogenesis and development of asthma. Stanniocalcin-1 (STC-1) has powerful antioxidant, anti-inflammatory and anti-apoptotic functions but its impact on the airway inflammation in asthma lacks evidence. Here, we investigated the effect and potential mechanism of STC-1 on airway inflammation through asthmatic mice model and lipopolysaccharide (LPS)-treated BEAS-2B cells. The data showed that STC-1 treatment before the challenge exerted protective effect on ovalbumin (OVA)-induced asthmatic mice, i.e., decreased the inflammatory cell infiltration, mucus secretion, cytokine levels, apoptosis levels, and p38 MAPK signaling. Additionally, STC-1 reduced 5-LO expression. Meanwhile, STC-1 decreased p38 MAPK signaling, cytokine production, mucin MUC5AC production, 5-LO expression and nuclear translocation, and LTB4 production in vitro. Ultimately, transforming growth factor β (TGF- β ), as a 5-LO inducer, reversed the anti-inflammatory and anti-apoptotic effects of STC-1 in BEAS-2B cells by up-regulating 5-LO expression. It reveals the potential of STC-1 to act as an additional therapy to mitigate airway inflammation in asthma and inhibit 5-LO expression.
Collapse
Affiliation(s)
- Shijia Wang
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Tu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zehong Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuyao Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jihao Cai
- Renji College of Wenzhou Medical University, Wenzhou, China
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- To whom correspondence should be addressed at Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Hao Y, Wang W, Zhang L, Li W. Pyroptosis in asthma: inflammatory phenotypes, immune and non-immune cells, and novel treatment approaches. Front Pharmacol 2024; 15:1452845. [PMID: 39611173 PMCID: PMC11603363 DOI: 10.3389/fphar.2024.1452845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Pyroptosis is a form of inflammatory programmed cell death, and is activated by pathogen infections or endogenous danger signals. The canonical pyroptosis process is characterized by the inflammasome (typically NLRP3)-mediated activation of caspase-1, which in turn cleaves and activates IL-1β and IL-18, as well as gasdermin D, which is a pore-forming executor protein, leading to cell membrane rupture, and the release of proinflammatory cytokines and damage-associated molecular pattern molecules. Pyroptosis is considered a part of the innate immune response. A certain level of pyroptosis can help eliminate pathogenic microorganisms, but excessive pyroptosis can lead to persistent inflammatory responses, and cause tissue damage. In recent years, pyroptosis has emerged as a crucial contributor to the development of chronic inflammatory respiratory diseases, such as asthma. The present study reviews the involvement of pyroptosis in the development of asthma, in terms of its role in different inflammatory phenotypes of the disease, and its influence on various immune and non-immune cells in the airway. In addition, the potential therapeutic value of targeting pyroptosis for the treatment of specific phenotypes of asthma is discussed.
Collapse
Affiliation(s)
- Yuqiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, Digestive Diseases Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Song Y, Chen Y, Cai H, Zhu G, Zeng Y, Abuduxukuer Z, Chen K, Wang J, Ye L, Jin M. Lentinan attenuates allergic airway inflammation and epithelial barrier dysfunction in asthma via inhibition of the PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155965. [PMID: 39214015 DOI: 10.1016/j.phymed.2024.155965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergic asthma has been regarded as an inflammatory disease mediated by type 2 immunity. The treatment of progressive forms of asthma remains unsatisfactory despite substantial progress in drug development. Lentinan (LTN), a specific polysaccharide derived from Lentinus edodes, exhibits anti-inflammatory and immunomodulatory functions. Nevertheless, the effect and underlying mechanisms of Lentinan on asthma remain unclear. PURPOSE This research investigated the regulatory role of Lentinan on allergic airway inflammation and epithelial barrier dysfunction in HDM (house dust mite)-induced asthma. STUDY DESIGN HDM-induced C57BL/6 mice received different dosages of Lentinan through intraperitoneal injections, to observe the effect of Lentinan against allergic airway inflammation and epithelial barrier dysfunction in asthma. METHODS Mice were intranasally administered HDM extract solution on days 0, 1, 2 and on days 8 to 12, establishing the allergic asthma model. On days 8 to 12, mice were intraperitoneally administered varying doses of Lentinan (5/10/20mg/kg) 1h before HDM challenge. On day 14, samples were harvested for analysis. Cell counting, flow cytometry, ELISA, HE and PAS staining, IF staining, western blotting, RT-PCR, and bioinformatic analysis were conducted to delve into the underlying functions and mechanisms of Lentinan in asthma. RESULTS Our study revealed that the treatment of Lentinan significantly ameliorated allergic airway inflammation and improved epithelial barrier dysfunction in experimental mice. Following Lentinan treatment, there was a significant reduction in eosinophil counts, accompanied by a diminished presence of type 2 cytokines. Reversal of epithelial barrier dysfunction after treatment was also observed. The therapeutic mechanism involved suppression of the PI3K/AKT/ NF-κB pathway. CONCLUSION Our research illuminated the protective role of Lentinan in allergic airway inflammation and impaired epithelial barrier, suggesting LTN could be an innovative and promising candidate for asthma treatment.
Collapse
Affiliation(s)
- Yansha Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Cai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiping Zhu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Zeng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilinuer Abuduxukuer
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Chen
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Mori A, Vermeer M, van den Broek LJ, Heijmans J, Nicolas A, Bouwhuis J, Burton T, Matsumura K, Ohashi K, Ito S, Kramer B. High-throughput Bronchus-on-a-Chip system for modeling the human bronchus. Sci Rep 2024; 14:26248. [PMID: 39482373 PMCID: PMC11528030 DOI: 10.1038/s41598-024-77665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Airway inflammation, a protective response in the human body, can disrupt normal organ function when chronic, as seen in chronic obstructive pulmonary disease (COPD) and asthma. Chronic bronchitis induces goblet cell hyperplasia and metaplasia, obstructing airflow. Traditional animal testing is often replaced by in vitro three-dimensional cultures of human epithelial cells to assess chronic cell responses. However, these cells are cultured horizontally, differing from the tubular structure of the human airway and failing to accurately reproduce airway stenosis. To address this, we developed the Bronchus-on-a-Chip (BoC) system. The BoC uses a novel microfluidic design in a standard laboratory plate, embedding 62 chips in one plate. Human bronchial epithelial cells were cultured against a collagen extracellular matrix for up to 35 days. Characterization included barrier integrity assays, microscopy, and histological examination. Cells successfully cultured in a tubular structure, with the apical side air-lifted. Epithelial cells differentiated into basal, ciliated, and secretory cells, mimicking human bronchial epithelium. Upon exposure to inducers of goblet cell hyperplasia and metaplasia, the BoC system showed mucus hyperproduction, replicating chronic epithelial responses. This BoC system enhances in vitro testing for bronchial inflammation, providing a more human-relevant and high-throughput method.
Collapse
Affiliation(s)
- Akina Mori
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | | | | | | | - Arnaud Nicolas
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Josse Bouwhuis
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Todd Burton
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Kazushi Matsumura
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kazuhiro Ohashi
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Bart Kramer
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| |
Collapse
|
13
|
Luo X, Wang Y, Mao Y, Xu X, Gu W, Li W, Mao C, Zheng T, Dong L. Nebulization of Hypoxic hUCMSC-EVs Attenuates Airway Epithelial Barrier Defects in Chronic Asthma Mice by Transferring CAV-1. Int J Nanomedicine 2024; 19:10941-10959. [PMID: 39493276 PMCID: PMC11531287 DOI: 10.2147/ijn.s476151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Background Nebulization of hypoxic human umbilical cord mesenchymal stem cell-derived extracellular vesicles (Hypo-EVs) can suppress airway inflammation and remodeling in a chronic asthmatic mouse; however, the exact mechanism remains unclear. Recently, airway epithelial barrier defects have been regarded as crucial therapeutic targets in asthma. The aim of this study was to investigate whether and how Hypo-EVs protect against the disruption of the airway epithelial barrier under asthmatic conditions. Methods The therapeutic effects of Hypo-EVs on airway epithelial barrier defects were evaluated in ovalbumin (OVA)-induced asthmatic mice and in IL-4 and IL-13-induced HBE135-E6E7 cell models by detecting cell monolayer leakage and junctional protein expression. The protein levels in Hypo-EVs were determined by Western blotting, and a gene knockdown approach was used to investigate the biofactors in Hypo-EVs. Results Nebulization of Hypo-EVs directly alleviated airway epithelial barrier defects in asthmatic mice, as evidenced by colocalization with bronchial epithelial cells, decreased albumin concentration, and increased ZO-1 and E-cadherin expression. In vitro, Hypo-EV treatment dramatically rescued the increase in airway cell permeability, and upregulated the ZO-1 and E-cadherin protein expressions. Based on WB analysis, we found that caveolin-1 (CAV-1) was strongly enriched in Hypo-EVs. The knockdown of CAV-1 protein levels in Hypo-EVs significantly impaired Hypo-EV-mediated barrier protection in vitro and in vivo. Moreover, CAV-1 knockdown significantly abolished the beneficial effects of Hypo-EVs on airway inflammation and remodeling in asthmatic mice. In addition, we showed that IL-4/IL-13-induced airway epithelial barrier defects were mainly related to activation of STAT6 phosphorylation (p-STAT6), and overexpression of CAV-1 or Hypo-EV treatment inhibited the levels of p-STAT6 in IL-4/IL-13-induced HBE135-E6E7 cells. Conclusion Nebulization of Hypo-EVs can attenuate airway epithelial barrier defects in asthma by delivering CAV-1 to inhibit p-STAT6 expression and may be used to treat other barrier defect diseases.
Collapse
Affiliation(s)
- Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China
| | - Weifeng Gu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Wen Li
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Jiang Y, Wang Y, Guo J, Wang Z, Wang X, Yao X, Yang H, Zou Y. Exploring potential therapeutic targets for asthma: a proteome-wide Mendelian randomization analysis. J Transl Med 2024; 22:978. [PMID: 39472987 PMCID: PMC11520847 DOI: 10.1186/s12967-024-05782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Asthma poses a significant global health challenge, characterized by high rates of morbidity and mortality. Despite available treatments, many severe asthma patients remain poorly managed, highlighting the need for novel therapeutic strategies. This study aims to identify potential drug targets for asthma by examining the influence of circulating plasma proteins on asthma risk. METHODS This study employs summary-data-based Mendelian randomization (MR) and two-sample MR methods to investigate the association between 2940 plasma proteins from the UK Biobank study and asthma. The analysis includes discovery (FinnGen cohort) and replication (GERA cohort) phases, with Bayesian colocalization used to validate the relationships between proteins and asthma. Furthermore, protein-protein interaction and druggability assessments were conducted on high-evidence strength protein biomarkers, and candidate drug prediction and molecular docking were performed for proteins without targeted drugs. Given the complexity of asthma pathogenesis, the study also explores the relationships between plasma proteins and asthma-related endpoints (e.g., obesity-related asthma, infection-related asthma, childhood asthma) to identify potential therapeutic targets for different subtypes. RESULTS In the discovery cohort, 75 plasma proteins were associated with asthma, including IL1RAP, IL1RL1, IL6, CXCL5, and CXCL8. Additionally, 6 proteins (IL4R, LTB, CASP8, MAX, PCDH12, and SCLY) were validated through co-localization analysis and validation cohort. The assessment of drug targetability revealed potential drug targets for IL4R, CASP8, and SCLY, while candidate drugs were predicted for LTB and MAX proteins. MAX exhibited strong binding affinity with multiple small molecules indicating a highly stable interaction and significant druggability potential. Analysis of the 75 proteins with 9 asthma-related endpoints highlighted promising targets such as DOK2, ITGAM, CA1, BTN2A1, and GZMB. CONCLUSION These findings elucidate the link between asthma, its related endpoints, and plasma proteins, advancing our understanding of molecular pathogenesis and treatment strategies. The discovery of potential therapeutic targets offers new insights into asthma drug target research.
Collapse
Affiliation(s)
- Yuhan Jiang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Yifan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zixuan Wang
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Xuelin Wang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxue Zou
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China.
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
15
|
Mo L, Wang X, Liao Y, Liu Y, Tang A, Li J, Yang P. Environmental pollutant 3-methyl-4-nitrophenol promotes the expression of oncostatin M to exacerbate airway allergic inflammation. Clin Exp Immunol 2024; 218:111-119. [PMID: 39192721 PMCID: PMC11482495 DOI: 10.1093/cei/uxae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Asthma exacerbation is a common clinical occurrence. The causal factors are not fully understood yet. Environmental pollution is linked to asthma exacerbation. The objective of this study is to elucidate the role of 3-methyl-4-nitrophenol (MNP), an environmental pollutant, in asthma exacerbation. In this study, an airway allergy mouse model was established with ovalbumin as a specific antigen with or without the presence of MNP. The results showed that, in a mouse model, the intensity of airway allergy was significantly increased by exposure to MNP. RNAseq results showed an increase in endoplasmic reticulum (ER) stress-associated molecules and the Osm expression in airway epithelial cells of mice with airway allergy. Exposure of epithelial cells to MNP in culture induced the expression of oncostatin M (OSM) and ER stress associated molecules. The OSM receptor was expressed by macrophages. OSM could drive macrophages to produce tumor necrosis factor-α (TNF-α). Inhibition of PERK, one of the key molecules of ER stress, or depletion of OSM receptor in macrophages, could effectively attenuate the MNP/ovalbumin protocol induced airway allergy. To sum up, by promoting ER stress, environmental pollutant MNP can cause airway epithelial cells to produce OSM. The latter induces macrophages to produce TNF-α, which can exacerbate airway allergy.
Collapse
Affiliation(s)
- Lihua Mo
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yun Liao
- Shenzhen Clinical College, Guangzhou Chinese Traditional Medial & Pharmaceutical University, Guangzhou, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy, First Affiliated Hospital, Guangzhou Medical University. Guangzhou, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
17
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
18
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Panchal MH, Swindle EJ, Pell TJ, Rowan WC, Childs CE, Thompson J, Nicholas BL, Djukanovic R, Goss VM, Postle AD, Davies DE, Blume C. Membrane lipid composition of bronchial epithelial cells influences antiviral responses during rhinovirus infection. Tissue Barriers 2024; 12:2300580. [PMID: 38179897 PMCID: PMC11583602 DOI: 10.1080/21688370.2023.2300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.
Collapse
Affiliation(s)
- Madhuriben H Panchal
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Emily J Swindle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Caroline E Childs
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| | - James Thompson
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin L Nicholas
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Victoria M Goss
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anthony D Postle
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Donna E Davies
- Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Brightling CE, Marone G, Aegerter H, Chanez P, Heffler E, Pavord ID, Rabe KF, Uller L, Dorscheid D. The epithelial era of asthma research: knowledge gaps and future direction for patient care. Eur Respir Rev 2024; 33:240221. [PMID: 39694589 PMCID: PMC11653196 DOI: 10.1183/16000617.0221-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
The Epithelial Science Expert Group convened on 18-19 October 2023, in Naples, Italy, to discuss the current understanding of the fundamental role of the airway epithelium in asthma and other respiratory diseases and to explore the future direction of patient care. This review summarises the key concepts and research questions that were raised. As an introduction to the epithelial era of research, the evolution of asthma management throughout the ages was discussed and the role of the epithelium as an immune-functioning organ was elucidated. The role of the bronchial epithelial cells in lower airway diseases beyond severe asthma was considered, as well as the role of the epithelium in upper airway diseases such as chronic rhinosinusitis. The biology and application of biomarkers in patient care was also discussed. The Epithelial Science Expert Group also explored future research needs by identifying the current knowledge and research gaps in asthma management and ranking them by priority. It was identified that there is a need to define and support early assessment of asthma to characterise patients at high risk of severe asthma. Furthermore, a better understanding of asthma progression is required. The development of new treatments and diagnostic tests as well as the identification of new biomarkers will also be required to address the current unmet needs. Finally, an increased understanding of epithelial dysfunction will determine if we can alter disease progression and achieve clinical remission.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, National Institute for Health and Care Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- Joint first authors
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, School of Medicine, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
- Joint first authors
| | - Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Ian D Pavord
- Respiratory Medicine, National Institute for Health and Care Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
- Chirstian-Alrechts University Kiel, Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Del Dorscheid
- Center for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Hussain S, Majumder N, Mazumder MHH, Lewis SE, Olapeju O, Velayutham M, Amin MS, Brundage K, Kelley EE, Vanoirbeek J. Intermittent ozone inhalation during house dust mite-induced sensitization primes for adverse asthma phenotype. Redox Biol 2024; 76:103330. [PMID: 39244793 PMCID: PMC11407077 DOI: 10.1016/j.redox.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The ability of air pollution to induce acute exacerbation of asthma is well documented. However, the ability of ozone (O3), the most reactive gaseous component of air pollution, to function as a modulator during sensitization is not well established. C57BL/6 J male mice were intranasally sensitized to house dust mite (HDM) (40 μg/kg) for 3 weeks on alternate days in parallel with once-a-week O3 exposure (1 ppm). Mice were euthanized 24 h following the last HDM challenge. Lung lavage, histology, lung function (both forced oscillation and forced expiration-based), immune cell profiling, inflammation (pulmonary and systemic), and immunoglobulin production were assessed. Compared to HDM alone, HDM + O3 leads to a significant increase in peribronchial inflammation (p < 0.01), perivascular inflammation (p < 0.001) and methacholine-provoked large airway hyperreactivity (p < 0.05). Serum total IgG and IgE and HDM-specific IgG1 were 3-5 times greater in HDM + O3 co-exposure compared to PBS and O3-exposed groups. An increase in activated/mature lung total and monocyte-derived dendritic cells (p < 0.05) as well as T-activated, and T memory lymphocyte subset numbers (p < 0.05) were noted in the HDM + O3 group compared to HDM alone group. Concurrent O3 inhalation and HDM sensitization also caused significantly greater (p < 0.05) lung tissue interleukin-17 pathway gene expression and mediator levels in the serum. Redox imbalance was manifested by impaired lung antioxidant defense and increased oxidants. O3 inhalation during allergic sensitization coalesces in generating a significantly worse TH17 asthmatic phenotype.
Collapse
Affiliation(s)
- Salik Hussain
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA; Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA.
| | - Nairrita Majumder
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sara E Lewis
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Olapeju
- Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Murugesan Velayutham
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Md Shahrier Amin
- Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Kathleen Brundage
- Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeroen Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre for Environment and Health, Leuven, Belgium
| |
Collapse
|
22
|
Wang C, Zhong J, Hu J, Cao C, Qi S, Ma R, Fu W, Zhang X, Akdis CA, Gao Y. IL-37 protects against house dust mite-induced airway inflammation and airway epithelial barrier dysfunction via inhibiting store-operated calcium entry. Int Immunopharmacol 2024; 138:112525. [PMID: 38941668 DOI: 10.1016/j.intimp.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Airway epithelial barrier dysfunction has been proved to contribute to the development of type 2 inflammation of asthma. Interleukin (IL)-37 is a negative regulator of immune responses and allergic airway inflammation. However, whether IL-37 has any effect on airway epithelial barrier has been unknown. METHODS We evaluated the role of IL-37 in both mouse model and cultured 16HBE cells. Histology and ELISA assays were used to evaluate airway inflammation. FITC-dextran permeability assay was used to evaluate the airway epithelial barrier function. Immunofluorescence, western blot and quantitative Real-Time PCR (RT-PCR) were used to evaluate the distribution and expression of tight junction proteins. RT-PCR and Ca2+ fluorescence measurement were used to evaluate the mRNA expression and activity of store-operated calcium entry (SOCE). RESULTS IL-37 inhibited house dust mite (HDM)-induced airway inflammation and decreased the levels of IgE in serum and type 2 cytokines in bronchoalveolar lavage fluid (BALF) compared to asthmatic mice. IL-37 protected against HDM-induced airway epithelial barrier dysfunction, including reduced leakage of FITC-dextran, enhanced expression of TJ proteins, and restored the membrane distribution of TJ proteins. Moreover, IL-37 decreased the level of IL-33 in the BALF of asthmatic mice and the supernatants of HDM-treated 16HBE cells. IL-37 decreased the peak level of Ca2+ fluorescence induced by thapsigargin and HDM, and inhibited the mRNA expression of Orai1, suggesting an inhibiting effect of IL-37 on SOCE in airway epithelial cells. CONCLUSION IL-37 plays a protective role in airway inflammation and HDM-induced airway epithelial barrier dysfunction by inhibiting SOCE.
Collapse
Affiliation(s)
- Changchang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaqian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiquan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruxue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yadong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Agache I, Ricci-Cabello I, Canelo-Aybar C, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, D'Amato G, Damialis A, Del Giacco S, De Las Vecillas L, Dominguez-Ortega J, Galán C, Gilles S, Giovannini M, Holgate S, Jeebhay M, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Salazar J, Sousa-Pinto B, Colom M, Fiol-deRoque MA, Gorreto López L, Malih N, Moro L, Pardo MG, Pazo PG, Campos RZ, Saletti-Cuesta L, Akdis M, Alonso-Coello P, Jutel M, Akdis CA. The impact of exposure to tobacco smoke and e-cigarettes on asthma-related outcomes: Systematic review informing the EAACI guidelines on environmental science for allergic diseases and asthma. Allergy 2024; 79:2346-2365. [PMID: 38783343 DOI: 10.1111/all.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
To inform the clinical practice guidelines' recommendations developed by the European Academy of Allergy and Clinical Immunology systematic reviews (SR) assessed using GRADE on the impact of environmental tobacco smoke (ETS) and active smoking on the risk of new-onset asthma/recurrent wheezing (RW)/low lung function (LF), and on asthma-related outcomes. Only longitudinal studies were included, almost all on combustion cigarettes, only one assessing e-cigarettes and LF. According to the first SR (67 studies), prenatal ETS increases the risk of RW (moderate certainty evidence) and may increase the risk of new-onset asthma and of low LF (low certainty evidence). Postnatal ETS increases the risk of new-onset asthma and of RW (moderate certainty evidence) and may impact LF (low certainty evidence). Combined in utero and postnatal ETS may increase the risk of new-onset asthma (low certainty evidence) and increases the risk of RW (moderate certainty evidence). According to the second SR (24 studies), ETS increases the risk of severe asthma exacerbations and impairs asthma control and LF (moderate certainty evidence). According to the third SR (25 studies), active smoking increases the risk of severe asthma exacerbations and of suboptimal asthma control (moderate certainty evidence) and may impact asthma-related quality-of-life and LF (low certainty evidence).
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Ignacio Ricci-Cabello
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Primary Care Research Unit of Mallorca, Balearic Islands Health Services, Palma, Spain
- CIBER Biomedical Research Center in Epidemiology and Public Health (CIBERESP), Health Institute Carlos III (ISCIII), Madrid, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Carlos Canelo-Aybar
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM, University Hospital, University of Montpellier, Montpellier, France
| | - Lorenzo Cecchi
- SOSD Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- Medical School of Respiratory Allergy, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Leticia De Las Vecillas
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Javier Dominguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carmen Galán
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies Chair, Department of Environmental Health, Interim Director, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Munich - German Research Center for Environmental Health, Augsburg, Germany
- Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | | | - Bernardo Sousa-Pinto
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Miquel Colom
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Maria A Fiol-deRoque
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Primary Care Research Unit of Mallorca, Balearic Islands Health Services, Palma, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Prevention and Health Promotion Research Network (redIAPP)/Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Barcelona, Spain
| | - Lucía Gorreto López
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Gabinete técnico de atención primaria de Mallorca, Balearic Islands Health Services, Palma, Spain
| | - Narges Malih
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Primary Care Research Unit of Mallorca, Balearic Islands Health Services, Palma, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Laura Moro
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Marina García Pardo
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Servicio de urgencias de atención primaria de Inca, Balearic Islands Health Services, Palma, Spain
| | - Patricia García Pazo
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Rocío Zamanillo Campos
- Research Group in Primary Care and Promotion - Balearic Islands Community (GRAPP-caIB), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Primary Care Research Unit of Mallorca, Balearic Islands Health Services, Palma, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | | | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Pablo Alonso-Coello
- CIBER Biomedical Research Center in Epidemiology and Public Health (CIBERESP), Health Institute Carlos III (ISCIII), Madrid, Spain
- Iberoamerican Cochrane Centre, Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
24
|
Imayama I, Eccles JD, Ascoli C, Kudlaty E, Park GY. Body Weight and Allergic Asthma: A Narrative Review. J Clin Med 2024; 13:4801. [PMID: 39200943 PMCID: PMC11355285 DOI: 10.3390/jcm13164801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Obesity is a known risk factor for asthma development, progression, and exacerbation. Nevertheless, the underlying pathophysiological mechanisms explaining how obesity contributes to the development and progression of asthma have yet to be established. Here, we review human studies examining the associations between asthma and obesity, focusing on the literature from the past 10 years. Overall, current evidence suggests that while both asthma and obesity are complex diseases with significant heterogeneity, they both share various features of chronic inflammation. Furthermore, the interactions between asthma and obesity likely involve allergen-specific T helper type 2 (type 2) immune responses, as well as diverse non-type 2 inflammatory pathways. However, despite considerable progress, studies to date have not definitively elucidated the mechanisms that account for the observed association. A large-scale population-based study combined with translational immunological research, including targeted asthma therapies and pharmacological weight loss therapies, may be required to properly dissect the details of obesity-related asthma pathophysiology.
Collapse
Affiliation(s)
- Ikuyo Imayama
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
- StatCare, Knoxville, TN 37919, USA
| | - Jacob D. Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Elizabeth Kudlaty
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| |
Collapse
|
25
|
Qiao L, Li SM, Liu JN, Duan HL, Jiang XF. Revealing the regulation of allergic asthma airway epithelial cell inflammation by STEAP4 targeting MIF through machine learning algorithms and single-cell sequencing analysis. Front Mol Biosci 2024; 11:1427352. [PMID: 39176391 PMCID: PMC11338762 DOI: 10.3389/fmolb.2024.1427352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Asthma comprises one of the most common chronic inflammatory conditions, yet still lacks effective diagnostic markers and treatment targets. To gain deeper insights, we comprehensively analyzed microarray datasets of airway epithelial samples from asthmatic patients and healthy subjects in the Gene Expression Omnibus database using three machine learning algorithms. Our investigation identified a pivotal gene, STEAP4. The expression of STEAP4 in patients with allergic asthma was found to be reduced. Furthermore, it was found to negatively correlate with the severity of the disease and was subsequently validated in asthmatic mice in this study. A ROC analysis of STEAP4 showed the AUC value was greater than 0.75. Functional enrichment analysis of STEAP4 indicated a strong correlation with IL-17, steroid hormone biosynthesis, and ferroptosis signaling pathways. Subsequently, intercellular communication analysis was performed using single-cell RNA sequencing data obtained from airway epithelial cells. The results revealed that samples exhibiting low levels of STEAP4 expression had a richer MIF signaling pathway in comparison to samples with high STEAP4 expression. Through both in vitro and in vivo experiments, we further confirmed the overexpression of STEAP4 in airway epithelial cells resulted in decreased expression of MIF, which in turn caused a decrease in the levels of the cytokines IL-33, IL-25, and IL-4; In contrast, when the STEAP4 was suppressed in airway epithelial cells, there was an upregulation of MIF expression, resulting in elevated levels of the cytokines IL-33, IL-25, and IL-4. These findings suggest that STEAP4 in the airway epithelium reduces allergic asthma Th2-type inflammatory reactions by inhibiting the MIF signaling pathway.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shi-meng Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-nian Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-lei Duan
- Department of Digestive, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Xiao-feng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Park JA. E-cad! That's a Big Switch from Epithelial Membrane Protein to Asthma Mediator. Am J Respir Cell Mol Biol 2024; 72:1-2. [PMID: 39088728 PMCID: PMC11707668 DOI: 10.1165/rcmb.2024-0310ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Jin-Ah Park
- Harvard school of public health, Boston, Massachusetts, United States;
| |
Collapse
|
27
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
28
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
30
|
Berdnikovs S, Newcomb DC, McKernan KE, Kuehnle SN, Haruna NF, Gebretsadik T, McKennan C, Ma S, Cephus JY, Rosas-Salazar C, Anderson LJ, Gern JE, Hartert T. Single cell profiling to determine influence of wheeze and early-life viral infection on developmental programming of airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602506. [PMID: 39026695 PMCID: PMC11257436 DOI: 10.1101/2024.07.08.602506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Although childhood asthma is in part an airway epithelial disorder, the development of the airway epithelium in asthma is not understood. We sought to characterize airway epithelial developmental phenotypes in those with and without recurrent wheeze and the impact of infant infection with respiratory syncytial virus (RSV). Nasal airway epithelial cells (NAECs) were collected at age 2-3 years from an a priori designed nested birth cohort of children from four mutually exclusive groups of wheezers/non-wheezers and RSV-infected/uninfected in the first year of life. NAECs were cultured in air-liquid interface differentiation conditions followed by a combined analysis of single cell RNA sequencing (scRNA-seq) and in vitro infection with respiratory syncytial virus (RSV). NAECs from children with a wheeze phenotype were characterized by abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation and a delayed onset of maturation. NAECs from children with wheeze also had increased diversity of currently known RSV receptors and blunted anti-viral immune responses to in vitro infection. The most dramatic changes in differentiation of cultured epithelium were observed in NAECs derived from children that had both wheeze and RSV in the first year of life. Together this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and increased RSV receptors, which may predispose to and amplify the effects of RSV infection in infancy and susceptibility to other asthma risk factors that interact with the airway mucosa. SUMMARY Nasal airway epithelial cells from children with wheeze are characterized by altered development and increased susceptibility to RSV infection.
Collapse
|
31
|
Yamada K, St Croix C, Stolz DB, Tyurina YY, Tyurin VA, Bradley LR, Kapralov AA, Deng Y, Zhou X, Wei Q, Liao B, Fukuda N, Sullivan M, Trudeau J, Ray A, Kagan VE, Zhao J, Wenzel SE. Compartmentalized mitochondrial ferroptosis converges with optineurin-mediated mitophagy to impact airway epithelial cell phenotypes and asthma outcomes. Nat Commun 2024; 15:5818. [PMID: 38987265 PMCID: PMC11237105 DOI: 10.1038/s41467-024-50222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Laura R Bradley
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanhan Deng
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuxia Zhou
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qi Wei
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bo Liao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Otolaryngology-Head & Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nobuhiko Fukuda
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Trudeau
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anuradha Ray
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jinming Zhao
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
32
|
Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y, Yazici D, Ardicli S, Akdis M, Nadeau K, Akdis CA. Lifestyle Changes and Industrialization in the Development of Allergic Diseases. Curr Allergy Asthma Rep 2024; 24:331-345. [PMID: 38884832 PMCID: PMC11233349 DOI: 10.1007/s11882-024-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW Modernization and Westernization in industrialized and developing nations is associated with a substantial increase in chronic noncommunicable diseases. This transformation has far-reaching effects on lifestyles, impacting areas such as economics, politics, social life, and culture, all of which, in turn, have diverse influences on public health. Loss of contact with nature, alternations in the microbiota, processed food consumption, exposure to environmental pollutants including chemicals, increased stress and decreased physical activity jointly result in increases in the frequency of inflammatory disorders including allergies and many autoimmune and neuropsychiatric diseases. This review aims to investigate the relationship between Western lifestyle and inflammatory disorders. RECENT FINDINGS Several hypotheses have been put forth trying to explain the observed increases in these diseases, such as 'Hygiene Hypothesis', 'Old Friends', and 'Biodiversity and Dysbiosis'. The recently introduced 'Epithelial Barrier Theory' incorporates these former hypotheses and suggests that toxic substances in cleaning agents, laundry and dishwasher detergents, shampoos, toothpastes, as well as microplastic, packaged food and air pollution damage the epithelium of our skin, lungs and gastrointestinal system. Epithelial barrier disruption leads to decreased biodiversity of the microbiome and the development of opportunistic pathogen colonization, which upon interaction with the immune system, initiates local and systemic inflammation. Gaining a deeper comprehension of the interplay between the environment, microbiome and the immune system provides the data to assist with legally regulating the usage of toxic substances, to enable nontoxic alternatives and to mitigate these environmental challenges essential for fostering a harmonious and healthy global environment.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Türkiye
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Türkiye
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
33
|
Devilliers MA, Brisebarre A, Petit LMG, Polette M, Deslée G, Djukanović R, Dormoy V, Perotin JM. Airway epithelial cell cilia transcriptomic dysregulation is associated with the inflammatory phenotype in asthma. Allergy 2024; 79:1982-1988. [PMID: 38372076 DOI: 10.1111/all.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Maëva A Devilliers
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Audrey Brisebarre
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Laure M G Petit
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Myriam Polette
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Department of Biopathology, University Hospital of Reims, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Department of Respiratory Diseases, University Hospital of Reims, Reims, France
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Valérian Dormoy
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
| | - Jeanne-Marie Perotin
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, Reims, France
- Department of Respiratory Diseases, University Hospital of Reims, Reims, France
| |
Collapse
|
34
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
35
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Del Duca E, Dahabreh D, Kim M, Bar J, Da Rosa JC, Rabinowitz G, Facheris P, Gómez-Arias PJ, Chang A, Utti V, Chowdhury A, Liu Y, Estrada YD, Laculiceanu A, Agache I, Guttman-Yassky E. Transcriptomic evaluation of skin tape-strips in children with allergic asthma uncovers epidermal barrier dysfunction and asthma-associated biomarkers abnormalities. Allergy 2024; 79:1516-1530. [PMID: 38375886 PMCID: PMC11247382 DOI: 10.1111/all.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tape-strips, a minimally invasive method validated for the evaluation of several skin diseases, may help identify asthma-specific biomarkers in the skin of children with allergic asthma. METHODS Skin tape-strips were obtained and analyzed with RNA-Seq from children with moderate allergic asthma (MAA) (n = 11, mean age 7.00; SD = 1.67), severe allergic asthma (SAA) (n = 9, mean age 9.11; SD = 2.37), and healthy controls (HCs) (n = 12, mean age 7.36; SD = 2.03). Differentially expressed genes (DEGs) were identified by fold change ≥2 with a false discovery rate <0.05. Transcriptomic biomarkers were analyzed for their accuracy in distinguishing asthma from HCs, their relationships with asthma-related outcomes (exacerbation rate, lung function-FEV1, IOS-R5-20, and lung inflammation-FeNO), and their links to skin (barrier and immune response) and lung (remodeling, metabolism, aging) pathogenetic pathways. RESULTS RNA-Seq captured 1113 in MAA and 2117 DEGs in SAA. Epidermal transcriptomic biomarkers for terminal differentiation (FLG/filaggrin), cell adhesion (CDH19, JAM2), lipid biosynthesis/metabolism (ACOT2, LOXL2) were significantly downregulated. Gene set variation analysis revealed enrichment of Th1/IFNγ pathways (p < .01). MAA and SAA shared downregulation of G-protein-coupled receptor (OR4A16, TAS1R3), upregulation of TGF-β/ErbB signaling-related (ACVR1B, EGFR, ID1/2), and upregulation of mitochondrial-related (HIGD2A, VDAC3, NDUFB9) genes. Skin transcriptomic biomarkers correlated with the annualized exacerbation rate and with lung function parameters. A two-gene classifier (TSSC4-FAM212B) was able to differentiate asthma from HCs with 100% accuracy. CONCLUSION Tape-strips detected epithelial barrier and asthma-associated signatures in normal-appearing skin from children with allergic asthma and may serve as an alternative to invasive approaches for evaluating asthma endotypes.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Dante Dahabreh
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Madeline Kim
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Jonathan Bar
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Grace Rabinowitz
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pedro Jesús Gómez-Arias
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Annie Chang
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Vivian Utti
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Amira Chowdhury
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Yeriel D. Estrada
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Alexandru Laculiceanu
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Ioana Agache
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| |
Collapse
|
37
|
Xie T, Liang J, Stripp B, Noble PW. Cell-cell interactions and communication dynamics in lung fibrosis. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:63-71. [PMID: 39169931 PMCID: PMC11332853 DOI: 10.1016/j.pccm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 08/23/2024]
Abstract
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis. A comprehensive cell atlas of the human lung, established with the facilitation of single-cell RNA transcriptomic analysis, has enabled the inference of intercellular communications using ligand-receptor databases. In this review, we provide a comprehensive overview of the modified cell-cell communications in lung fibrosis. We highlight the intricate interactions among the major cell types within the lung and their contributions to fibrogenesis. The insights presented in this review will contribute to a better understanding of the molecular mechanisms underlying lung fibrosis and may guide future research efforts in developing targeted therapies for this debilitating disease.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
38
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
39
|
Park MK, Park HK, Yu HS. The Recombinant Profilin from Free-Living Amoebae Induced Allergic Immune Responses via TLR2. J Inflamm Res 2024; 17:2915-2925. [PMID: 38764493 PMCID: PMC11100517 DOI: 10.2147/jir.s450866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Background Repeated exposure to recombinant profilin from Acanthamoeba (rAc-PF) induces allergic airway responses in vitro and in vivo. Based on the role of toll-like receptors (TLRs) in allergic airway diseases, TLRs play a central role in innate immune responses and the adaptive immune system and regulate responses against antigens through antigen-specific receptors. In this study, we attempted to determine the molecular mechanisms underlying rAc-PF-induced allergic inflammatory responses. Methods We determined the correlation between rAc-PF and TLRs and analyzed changes in allergic immune responses after blocking multiple TLR signaling under rAc-PF treatment conditions in vitro. We also compared allergic inflammatory responses in TLR2 knockout (KO) and wild-type (WT) mice. To investigate the effect of TLR2 on antigen prototyping and T cell activation in the inflammatory response induced by rAc-PF, we assessed maturation of BMDCs and polarization of naïve T cells by rAc-PF stimulation. Additionally, we compared changes in inflammation-related gene expression by rAc-PF treatment in primary lung epithelial cells isolated from TLR2 KO and WT mice. Results The rAc-PF treatment was increased the expression level of TLR2 and 9 in vitro. But, there were not significantly differ the others TLRs expression by rAc-PF treated group. And then, the mRNA expression levels of inflammation-related genes were reduced in the TLR2 or TLR9 antagonist-treated groups compared to those in the rAc-PF alone, were no difference the treated with the other TLRs (TLR4, 6, and 7/8) antagonist. The difference was higher in the TLR2 antagonist group. Additionally, the levels of airway inflammatory disease indicators were lower in the TLR2 KO group than in the WT group after rAc-PF treatment. Furthermore, the expression of bone marrow-derived dendritic cell (BMDC) surface molecular markers following rAc-PF stimulation was lower in TLR2 KO mice than in WT mice, and TLR2 KO in BMDCs resulted in a remarkable decline in Th2/17-related cytokine production and Th2/17 subset differentiation. In addition, the expression levels of rAc-PF-induced inflammatory genes were reduced inTLR2 KO primary lung cells compared to those in normal primary lung cells. Conclusion These results suggest that the rAc-PF-induced airway inflammatory response is regulated by TLR2 signaling.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye-Kyung Park
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
40
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
41
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
42
|
Gan S, Lin L, Chen Z, Zhang H, Tang H, Yang C, Li J, Li S, Yao L. Ferroptosis contributes to airway epithelial E-cadherin disruption in a mixed granulocytic asthma mouse model. Exp Cell Res 2024; 438:114029. [PMID: 38608805 DOI: 10.1016/j.yexcr.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.
Collapse
Affiliation(s)
- Sudan Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Liqin Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zemin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Hailing Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510180, China.
| | - Haixiong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Changyun Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Lihong Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
43
|
Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol 2024; 153:1181-1193. [PMID: 38395082 DOI: 10.1016/j.jaci.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andréanne Côté
- Quebec Heart and Lung Institute, Université Laval, Laval, Quebec, Canada; Department of Medicine, Université Laval, Laval, Quebec, Canada
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Christopher E Brightling
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
44
|
Chen C, Song X, Murdock DJ, Marcus A, Hussein M, Jalbert JJ, Geba GP. Association between allergic conditions and COVID-19 susceptibility and outcomes. Ann Allergy Asthma Immunol 2024; 132:637-645.e7. [PMID: 38242353 DOI: 10.1016/j.anai.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The relationship between underlying type 2 inflammation and immune response to COVID-19 is unclear. OBJECTIVE To assess the relationships between allergic conditions and COVID-19 susceptibility and outcomes. METHODS In the Optum database, adult patients with and without major allergic conditions (asthma, atopic dermatitis [AD], allergic rhinitis, food allergy, anaphylaxis, or eosinophilic esophagitis) and patients with and without severe asthma/AD were identified. Adjusted incidence rate ratios for COVID-19 were compared among patients with vs without allergic conditions or severe asthma/AD vs non-severe asthma/AD during April 1, 2020, to December 31, 2020. Among patients with COVID-19, adjusted hazard ratios (aHRs) of 30-day COVID-19-related hospitalization/all-cause mortality were estimated for the same comparisons during April 1, 2020, to March 31, 2022. RESULTS Patients with (N = 1,273,231; asthma, 47.2%; AD, 1.5%; allergic rhinitis, 58.6%; food allergy, 5.1%; anaphylaxis, 4.1%; eosinophilic esophagitis, 0.9%) and without allergic conditions (N = 2,278,571) were identified. Allergic conditions (adjusted incidence rate ratios [95% CI], 1.22 [1.21-1.24]) and asthma severity (1.12 [1.09-1.15]) were associated with increased incidence of COVID-19. Among patients with COVID-19 (patients with [N = 261,076] and without allergic conditions [N = 1,098,135] were matched on age, sex, region, index month), having an allergic condition had minimal impact on 30-day COVID-19-related hospitalization/all-cause mortality (aHR [95% CI] 0.96 [0.95-0.98]) but was associated with a lower risk of mortality (0.80 [0.78-0.83]). Asthma was associated with a higher risk of COVID-19-related hospitalization/all-cause mortality vs non-asthma allergic conditions (aHR [95% CI], 1.27 [1.25-1.30]), mostly driven by higher hospitalization. CONCLUSION Allergic conditions were associated with an increased risk of receiving COVID-19 diagnosis but reduced mortality after infection.
Collapse
Affiliation(s)
- Chao Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Xue Song
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Andrea Marcus
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | |
Collapse
|
45
|
Połomska J, Sikorska-Szaflik H, Drabik-Chamerska A, Sozańska B, Dębińska A. Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. J Clin Med 2024; 13:2542. [PMID: 38731070 PMCID: PMC11084404 DOI: 10.3390/jcm13092542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
As the burden of mild asthma is not well understood, the significance of expanding research in the group of patients with mild asthma is emphasized. Thymic stromal lymphopoietin (TSLP) and interleukin 33 (IL-33) are involved in the pathogenesis of atopy and the immune response to inhaled environmental insults, such as allergens, in asthmatic patients. Objectives: The objective of this study was to explore the correlation between specific polymorphisms within the genes encoding TSLP and IL-33, as well as the concentrations of TSLP and IL-33 in the serum, and the occurrence of pediatric mild asthma. Methods: The analysis encompassed 52 pediatric patients diagnosed with mild bronchial asthma, including both atopic and non-atopic cases, and a control group of 26 non-asthmatic children. Recruitment was conducted through a comprehensive questionnaire. Parameters such as allergic sensitization, serum levels of circulating TSLP and IL-33, and the identification of single-nucleotide polymorphisms in TSLP (rs11466750 and rs2289277) and IL-33 (rs992969 and rs1888909) were assessed for all participants. Results: Significantly lower mean serum TSLP concentrations were observed in asthmatic subjects compared to the control group, with atopic asthma patients showing even lower TSLP levels than non-atopic counterparts. No significant differences were found in mean serum IL-33 concentrations between the two groups. Considering the allele model, for both tested SNPs of IL-33, we observed that patients with asthma, atopic asthma, and atopy statistically less frequently possess the risk allele. Conclusions: Our study findings suggest that IL-33 and TSLP do not serve as ideal biomarkers for mild asthma in children. Their effectiveness as biomarkers might be more relevant for assessing disease severity rather than identifying asthma in pediatric patients. Further research focusing on the association between TSLP and IL-33 gene polymorphisms and asthma is expected to significantly advance disease management.
Collapse
Affiliation(s)
- Joanna Połomska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland; (H.S.-S.); (A.D.-C.); (B.S.); (A.D.)
| | | | | | | | | |
Collapse
|
46
|
Roth D, Şahin AT, Ling F, Senger CN, Quiroz EJ, Calvert BA, van der Does AM, Güney TG, Tepho N, Glasl S, van Schadewijk A, von Schledorn L, Olmer R, Kanso E, Nawroth JC, Ryan AL. STRUCTURE-FUNCTION RELATIONSHIPS OF MUCOCILIARY CLEARANCE IN HUMAN AIRWAYS. RESEARCH SQUARE 2024:rs.3.rs-4164522. [PMID: 38746209 PMCID: PMC11092836 DOI: 10.21203/rs.3.rs-4164522/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.
Collapse
Affiliation(s)
- Doris Roth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Ayşe Tuğçe Şahin
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Feng Ling
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Erik J. Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tankut G. Güney
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Niels Tepho
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Sarah Glasl
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Janna C. Nawroth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| |
Collapse
|
47
|
Huang H, Qiao Y, Chu L, Ye C, Lin L, Liao H, Meng X, Zou F, Zhao H, Zou M, Cai S, Dong H. Up-regulation of HSP90α in HDM-induced asthma causes pyroptosis of airway epithelial cells by activating the cGAS-STING-ER stress pathway. Int Immunopharmacol 2024; 131:111917. [PMID: 38527402 DOI: 10.1016/j.intimp.2024.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Heat Shock protein 90 α (HSP90α), an main subtype of chaperone protein HSP90, involves important biological functions such as DNA damage repair, protein modification, innate immunity. However, the potential role of HSP90α in asthma occurrence and development is still unclear. This study aimed to elucidate the underlying mechanism of HSP90α in asthma by focusing on the cGAS-STING-Endoplasmic Reticulum stress pathway in inflammatory airway epithelial cell death (i.e., pyroptosis; inflammatory cell death). To accomplish that, we modeled allergen exposure in C57/6BL mice and bronchial epithelial cells with house dust mite. Protein technologies and immunofluorescence utilized to study the expression of HSP90α, activation of cGAS-STING pathway and pyroptosis. The effect of inhibitors on HDM-exposed mice detected by histological techniques and examination of bronchoalveolar lavage fluid. Results showed that HSP90α promotes asthma inflammation via pyroptosis and activation of the cGAS-STING-ER stress pathway. Treatment with the HSP90 inhibitor tanespimycin (17-AAG) significantly relieved airway inflammation and abrogated the effect of HSP90α on pyroptosis and cGAS-STING-ER stress in vitro and in vivo models of HDM. Further data indicated that up-regulation of HSP90α stabilized STING through interaction, which increased localization of STING on the ER. Activation of STING triggered ER stress and leaded to pyroptosis-related airway inflammation. The finding showed the potential role of pyroptosis caused by dysregulation of HSP90α on airway epithelial cells in allergic inflammation, suggested that targeting HSP90α in airway epithelial cells might prove to be a potential additional treatment strategy for asthma.
Collapse
Affiliation(s)
- Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Liu Y, Zhang Z, He Y, Li R, Zhang Y, Liu H, Wang Y, Ma W. Mitochondria protective and anti-apoptotic effects of peripheral benzodiazepine receptor and its ligands on the treatment of asthma in vitro and vivo. J Inflamm (Lond) 2024; 21:11. [PMID: 38641850 PMCID: PMC11031857 DOI: 10.1186/s12950-024-00383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/03/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Asthma is a prevalent respiratory inflammatory disease. Abnormal apoptosis of bronchial epithelial cells is one of the major factors in the progression of asthma. Peripheral benzodiazepine receptors are highly expressed in bronchial epithelial cells, which act as a component of the mitochondrial permeability transition pore to regulate its opening and closing and apoptosis of bronchial epithelial cells. We aimed to investigate the mechanisms by which peripheral benzodiazepine receptor and its ligands, agonist 4'-Chlorodiazepam (Ro5-4864) and antagonist 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11,195), modulate the mitochondrial function and cell apoptosis in the treatment of asthma. METHODS In vitro study, Ro5-4864 and PK 11,195 were utilized to pretreat cells prior to the inflammatory injury induced by Lipopolysaccharide. The reactive oxygen species, the apoptosis of cell, the mitochondrial membrane potentials, the ultrastructures of the mitochondria and the expression levels of peripheral benzodiazepine receptors and apoptosis-related proteins and genes were detected. In vivo study, mice were administrated intraperitoneally with Ro5-4864 and PK 11,195 before sensitized and challenged by ovalbumin. Serum IgE and bronchoalveolar lavage fluid cytokines were detected, and lung tissues were underwent the histopathological examination. RESULTS The ligands of peripheral benzodiazepine receptor counteracted the effects of the increase of reactive oxygen species, the elevated extent of apoptosis, the decrease of mitochondrial membrane potentials and the disruption of mitochondrial ultrastructures induced by Lipopolysaccharide. The ligands also promoted the expression of anti-apoptosis-related proteins and genes and inhibited the expression of pro-apoptosis-related proteins and genes. Besides, the ligands reduced the levels of serum IgE and bronchoalveolar lavage fluid cytokines in asthmatic mice and attenuated the histopathological damage of lungs. CONCLUSION Peripheral benzodiazepine receptor serves as a potential therapeutic target for the treatment of asthma, with its ligands exerting mitochondrial protective and anti-apoptotic effects on bronchial epithelial cells.
Collapse
Affiliation(s)
- Yurui Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Zhengze Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuewen He
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Ruogen Li
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuhao Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Hao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China.
| |
Collapse
|
49
|
Canè L, Poto R, Palestra F, Iacobucci I, Pirozzi M, Parashuraman S, Ferrara AL, Illiano A, La Rocca A, Mercadante E, Pucci P, Marone G, Spadaro G, Loffredo S, Monti M, Varricchi G. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci 2024; 25:4049. [PMID: 38612858 PMCID: PMC11012384 DOI: 10.3390/ijms25074049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.
Collapse
Affiliation(s)
- Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Ilaria Iacobucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marinella Pirozzi
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Seetharaman Parashuraman
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
| | - Amalia Illiano
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Antonello La Rocca
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Edoardo Mercadante
- Thoracic Surgery Unit—Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (A.I.); (A.L.R.); (E.M.)
| | - Piero Pucci
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies F. Salvatore, 80131 Naples, Italy; (I.I.); (P.P.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (R.P.); (F.P.); (A.L.F.); (G.M.); (G.S.); (S.L.)
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), 80131 Naples, Italy; (M.P.); (S.P.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
50
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|