1
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner SN, Khurana Hershey GK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. Sci Immunol 2024; 9:eadd3085. [PMID: 38335270 PMCID: PMC11107477 DOI: 10.1126/sciimmunol.add3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Stanley B. DeVore
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Brittany Grashel
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Daniel Spagna
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jocelyn M. Biagini
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
2
|
Kenney HM, Battaglia J, Herman K, Beck LA. Atopic dermatitis and IgE-mediated food allergy: Common biologic targets for therapy and prevention. Ann Allergy Asthma Immunol 2024; 133:262-277. [PMID: 38908432 DOI: 10.1016/j.anai.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To highlight common mechanistic targets for the treatment of atopic dermatitis (AD) and IgE-mediated food allergy (IgE-FA) with potential to be effective for both diseases and prevent atopic progression. DATA SOURCES Data sources were PubMed searches or National Clinical Trials (NCT)-registered clinical trials related to AD, IgE-FA, and other atopic conditions, especially focused on the pediatric population. STUDY SELECTIONS Human seminal studies and/or articles published in the past decade were emphasized with reference to preclinical models when relevant. NCT-registered clinical trials were filtered by inclusion of pediatric subjects younger than 18 years with special focus on children younger than 12 years as a critical period when AD and IgE-FA diseases may often be concurrent. RESULTS AD and IgE-FA share several pathophysiologic features, including epithelial barrier dysfunction, innate and adaptive immune abnormalities, and microbial dysbiosis, which may be critical for the clinical progression between these diseases. Revolutionary advances in targeted biologic therapies have shown the benefit of inhibiting type 2 immune responses, using dupilumab (anti-interleukin-4Rα) or omalizumab (anti-IgE), to potentially reduce symptom burden for both diseases in pediatric populations. Although the potential for biologics to promote disease remission (AD) or sustained unresponsiveness (IgE-FA) remains unclear, the refinement of biomarkers to predict infants at risk for atopic disorders provides promise for prevention through timely intervention. CONCLUSION AD and IgE-FA exhibit common features that may be leveraged to develop biologic therapeutic strategies to treat both conditions and even prevent atopic progression. Future studies should be designed with consistent age stratification in the pediatric population and standardized regimens of adjuvant oral immunotherapy or dose escalation (IgE-FA) to improve cross-study interpretation.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jennifer Battaglia
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Katherine Herman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Division of Allergy and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
3
|
Ndhlovu GON, Javkar KG, Matuvhunye T, Ngondoh F, Jamrozy D, Bentley S, Shittu AO, Dube FS. Investigating genomic diversity of Staphylococcus aureus associated with pediatric atopic dermatitis in South Africa. Front Microbiol 2024; 15:1422902. [PMID: 39224215 PMCID: PMC11366657 DOI: 10.3389/fmicb.2024.1422902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Staphylococcus aureus frequently colonizes the skin and nose of patients with atopic dermatitis (AD), a disease associated with skin barrier dysfunction and chronic cutaneous inflammation. Published genomic studies on AD-associated S. aureus in pediatric populations in sub-Saharan Africa are limited. Objectives To investigate the phenotypic and genomic diversity of S. aureus in children with and without AD during early childhood. Data setting and participants A cross-sectional study of 220 children (aged 9-38 months) with AD (cases) and without AD (controls) from Cape Town and Umtata, South Africa. Main outcomes and measures S. aureus phenotypic and genomic diversity were investigated using whole-genome sequencing, antibiotic susceptibility testing and biofilm microtiter assay. Results Of the 124 S. aureus isolates recovered from 220 children, 96 isolates (79 cases and 17 controls) with high-quality sequences were analyzed. Isolates from cases showed greater phenotypic resistance to gentamicin (10%), rifampicin (4%), chloramphenicol (4%), and exhibited multidrug resistance (9%) than in controls. Furthermore, the isolates from cases formed stronger biofilms than those from controls (76% vs. 35%, p = 0.001), but showed no dominance of any virulence factor gene or mobile genetic elements. There was no significant difference in the distribution of immune evasion cluster types between cases and controls. However, IEC type G was identified only among cases. Conclusion and relevance AD-associated S. aureus has phenotypic and genetic features that are important for successful pathogenic colonization and survival. Further studies are needed to assess the pathological implications of colonization of various S. aureus lineages in vivo to elucidate their pathological contribution to AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kiran G. Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Takudzwa Matuvhunye
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Froodia Ngondoh
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria
- Institute of Medical Microbiology, University Hospital Munster, Munster, Germany
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER, Curry JM, Cassat JE, Skaar EP. Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus. Nat Commun 2024; 15:6734. [PMID: 39112491 PMCID: PMC11306626 DOI: 10.1038/s41467-024-51144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics are examined using both quantitative proteomics and transposon sequencing. These screens indicate that arginine metabolism is involved in antibiotic tolerance within a biofilm and support the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction induces antibiotic tolerance via inhibition of protein synthesis. In murine skin and bone infection models, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Jeffrey A Freiberg
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Valeria M Reyes Ruiz
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin C Murdoch
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin R Green
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jacob M Curry
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Cassat
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
6
|
Eisenbraun EL, Vulpis TD, Prosser BN, Horswill AR, Blackwell HE. Synthetic Peptides Capable of Potent Multigroup Staphylococcal Quorum Sensing Activation and Inhibition in Both Cultures and Biofilm Communities. J Am Chem Soc 2024; 146:15941-15954. [PMID: 38832917 PMCID: PMC11321086 DOI: 10.1021/jacs.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.
Collapse
Affiliation(s)
- Emma L. Eisenbraun
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Troy D. Vulpis
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Brendan N. Prosser
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
7
|
Abdurrahman G, Pospich R, Steil L, Gesell Salazar M, Izquierdo González JJ, Normann N, Mrochen D, Scharf C, Völker U, Werfel T, Bröker BM, Roesner LM, Gómez-Gascón L. The extracellular serine protease from Staphylococcus epidermidis elicits a type 2-biased immune response in atopic dermatitis patients. Front Immunol 2024; 15:1352704. [PMID: 38895118 PMCID: PMC11183529 DOI: 10.3389/fimmu.2024.1352704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Background Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.
Collapse
Affiliation(s)
- Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Rebecca Pospich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Leif Steil
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Mrochen
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Lennart M. Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lidia Gómez-Gascón
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Fritz B, Halling AS, Cort IDP, Christensen MO, Rønnstad ATM, Olesen CM, Knudgaard MH, Zachariae C, Heegaard S, Thyssen JP, Bjarnsholt T. RNA-sequencing of paired tape-strips and skin biopsies in atopic dermatitis reveals key differences. Allergy 2024; 79:1548-1559. [PMID: 38477552 DOI: 10.1111/all.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD. METHODS Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared. RESULTS Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies. CONCLUSIONS This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.
Collapse
Affiliation(s)
- Blaine Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Isabel Díaz-Pinés Cort
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | - Claus Zachariae
- Department of Allergy, Skin, and Venereology, Gentofte Hospital, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Steffen Heegaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen NV, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| |
Collapse
|
9
|
Lundgren S, Sonesson A. Effect of Potassium Permanganate on Staphylococcal Isolates Derived from the Skin of Patients with Atopic Dermatitis. Acta Derm Venereol 2024; 104:adv18642. [PMID: 38415865 PMCID: PMC10916795 DOI: 10.2340/actadv.v104.18642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
In atopic dermatitis (AD), Staphylococcus aureus frequently colonizes lesions, leading to superinfections that can then lead to exacerbations. The presence of biofilm-producing isolates has been associated with worsening of the disease. Potassium permanganate is used as a topical treatment of infected eczema, blistering conditions, and wounds. Little is known of its effects against microbes in AD skin. The aim of this study was to explore antibacterial and antibiofilm properties of potassium permanganate against staphylococcal isolates derived from AD skin. Viable count and radial diffusion assays were used to investigate antibacterial effects of potassium permanganate against planktonic staphylococcal isolates. The antibiofilm effects were assessed using biofilm assays and scanning electron microscopy. The Staphylococcus aureus isolates were completely killed when exposed to 0.05% of potassium permanganate. In concentrations of 0.01%, potassium permanganate inhibited bacterial biofilm formation. Eradication of established staphylococcal biofilm was observed in concentrations of 1%. Electron microscopy revealed dense formations of coccoidal structures in growth control and looser formations of deformed bacteria when exposed to potassium permanganate. This suggests antibacterial and antibiofilm effects of potassium permanganate against staphylococcal isolates derived from AD skin, when tested in vitro, and a potential role in the treatment of superinfected AD skin.
Collapse
Affiliation(s)
- Sigrid Lundgren
- Department of Dermatology and Venereology, Skåne University Hospital, Lund, Sweden; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center B14, Lund, Sweden.
| | - Andreas Sonesson
- Department of Dermatology and Venereology, Skåne University Hospital, Lund, Sweden; Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center B14, Lund, Sweden
| |
Collapse
|
10
|
Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol 2024; 132:187-195. [PMID: 37758055 DOI: 10.1016/j.anai.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide, affecting 20% of children and 5% of adults. One critical component in the pathophysiology of AD is the epidermal skin barrier, with its outermost layer, the stratum corneum (SC), conferring biochemical properties that enable resilience against environmental threats and maintain homeostasis. The skin barrier may be conceptualized as a key facilitator of complex interactions between genetics, host immunity, the cutaneous microbiome, and environmental exposures. The key genetic risk factor for AD development and persistence is a loss-of-function mutation in FLG, with recent advances in genomics focusing on rare variant discovery, establishment of pathogenic mechanisms, and exploration of the role of other epidermal differentiation complex gene variants in AD. Aberrant type 2 inflammatory responses down-regulate the transcription of key epidermal barrier genes, alter the composition of SC lipids, and induce further injury through a neurocutaneous feedback loop and the itch-scratch cycle. The dysbiotic epidermis exhibits reduced bacterial diversity and enhanced colonization with Staphylococcus and Malassezia species, which contribute to both direct barrier injury through the action of bacterial toxins and perpetuation of the inflammatory cascades. Enhanced understanding of each of the pathogenic mechanisms underpinning barrier disruption has led to the development of novel topical and systemic molecules, including interleukin (IL)-4Ra, IL-13, PDE4, and Janus-associated kinase inhibitors, whose clinical effectiveness exceeds conventional treatment modalities. In this narrative review, we aim to summarize the current understanding of the above-mentioned pathophysiological and therapeutic mechanisms, with a focus on the genetic, cellular, and molecular mechanisms underpinning AD development.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
12
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner S, Hershey GKK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290884. [PMID: 37333102 PMCID: PMC10274972 DOI: 10.1101/2023.06.02.23290884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic co-morbidities remain ill-defined. Herein, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aero allergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed co-incident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine TNF-α. These observations provide important insights into a potential mechanism underlying the development of allergic co-morbidity in early life in children with AD which involves altered NK-cell functional responses, and define an endotype of severe AD.
Collapse
|
13
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
14
|
De Tomassi A, Reiter A, Reiger M, Rauer L, Rohayem R, Ck-Care Study Group, Traidl-Hoffmann C, Neumann AU, Hülpüsch C. Combining 16S Sequencing and qPCR Quantification Reveals Staphylococcus aureus Driven Bacterial Overgrowth in the Skin of Severe Atopic Dermatitis Patients. Biomolecules 2023; 13:1030. [PMID: 37509067 PMCID: PMC10377005 DOI: 10.3390/biom13071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease with a microbiome dysbiosis towards a high relative abundance of Staphylococcus aureus. However, information is missing on the actual bacterial load on AD skin, which may affect the cell number driven release of pathogenic factors. Here, we combined the relative abundance results obtained by next-generation sequencing (NGS, 16S V1-V3) with bacterial quantification by targeted qPCR (total bacterial load = 16S, S. aureus = nuc gene). Skin swabs were sampled cross-sectionally (n = 135 AD patients; n = 20 healthy) and longitudinally (n = 6 AD patients; n = 6 healthy). NGS and qPCR yielded highly inter-correlated S. aureus relative abundances and S. aureus cell numbers. Additionally, intra-individual differences between body sides, skin status, and consecutive timepoints were also observed. Interestingly, a significantly higher total bacterial load, in addition to higher S. aureus relative abundance and cell numbers, was observed in AD patients in both lesional and non-lesional skin, as compared to healthy controls. Moreover, in the lesional skin of AD patients, higher S. aureus cell numbers significantly correlated with the higher total bacterial load. Furthermore, significantly more severe AD patients presented with higher S. aureus cell number and total bacterial load compared to patients with mild or moderate AD. Our results indicate that severe AD patients exhibit S. aureus driven increased bacterial skin colonization. Overall, bacterial quantification gives important insights in addition to microbiome composition by sequencing.
Collapse
Affiliation(s)
- Amedeo De Tomassi
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Anna Reiter
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Luise Rauer
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, 86156 Augsburg, Germany
- Environmental Medicine, Technical University of Munich, 86156 Augsburg, Germany
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Ck-Care Study Group
- CK CARE, Christine-Kühne Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, 86156 Augsburg, Germany
- Environmental Medicine, Technical University of Munich, 86156 Augsburg, Germany
- CK CARE, Christine-Kühne Center for Allergy Research and Education, 7265 Davos, Switzerland
- ZIEL-Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Avidan U Neumann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, 86156 Augsburg, Germany
- CK CARE, Christine-Kühne Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Environmental Medicine, Technical University of Munich, 86156 Augsburg, Germany
- CK CARE, Christine-Kühne Center for Allergy Research and Education, 7265 Davos, Switzerland
| |
Collapse
|
15
|
Schuler CF, Billi AC, Maverakis E, Tsoi LC, Gudjonsson JE. Novel insights into atopic dermatitis. J Allergy Clin Immunol 2023; 151:1145-1154. [PMID: 36428114 PMCID: PMC10164702 DOI: 10.1016/j.jaci.2022.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
Recent research into the pathophysiology and treatment of atopic dermatitis (AD) has shown notable progress. An increasing number of aspects of the immune system are being implicated in AD, including the epithelial barrier, TH2 cytokines, and mast cells. Major advances in therapeutics were made in biologic cytokine and receptor antagonists and among Janus kinase inhibitors. We focus on these areas and address new insights into AD epidemiology, biomarkers, endotypes, prevention, and comorbidities. Going forward, we expect future mechanistic insights and therapeutic advances to broaden physicians' ability to diagnose and manage AD patients, and perhaps to find a cure for this chronic condition.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Emanual Maverakis
- Department of Dermatology, University of California-Davis, Sacramento, Calif
| | - Lam C Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
16
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
17
|
Maciag JJ, Chantraine C, Mills KB, Yadav R, Yarawsky AE, Chaton CT, Vinod D, Fitzkee NC, Mathelié-Guinlet M, Dufrêne YF, Fey PD, Horswill AR, Herr AB. Mechanistic basis of staphylococcal interspecies competition for skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525635. [PMID: 36747832 PMCID: PMC9900903 DOI: 10.1101/2023.01.26.525635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
Collapse
Affiliation(s)
- Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Catherine T. Chaton
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Divya Vinod
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Medical Sciences Undergraduate Program, University of Cincinnati, Cincinnati, OH
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Marion Mathelié-Guinlet
- Institut de Chimie et Biologie des Membranes et des Nano-Objets, CNRS UMR 5248, University of Bordeaux, Pessac, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
18
|
Sen CK, Roy S, Khanna S. Diabetic Peripheral Neuropathy Associated with Foot Ulcer: One of a Kind. Antioxid Redox Signal 2023. [PMID: 35850520 DOI: 10.1089/ars.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Significance: Diabetic peripheral neuropathy (DPN) associated with a diabetic foot ulcer (DFU) is likely to be complicated with critical factors such as biofilm infection and compromised skin barrier function of the diabetic skin. Repaired skin with a history of biofilm infection is known to be compromised in barrier function. Loss of barrier function is also observed in the oxidative stress affected diabetic and aged skin. Recent Advances: Loss of barrier function makes the skin prone to biofilm infection and cellulitis, which contributes to chronic inflammation and vasculopathy. Hyperglycemia favors biofilm formation as glucose lowering led to reduction in biofilm development. While vasculopathy limits oxygen supply, the O2 cost of inflammation is high increasing hypoxia severity. Critical Issues: The host nervous system can be inhabited by bacteria. Because electrical impulses are a part of microbial physiology, polymicrobial colonization of the host's neural circuit is likely to influence transmission of action potential. The identification of perineural apatite in diabetic patients with peripheral neuropathy suggests bacterial involvement. DPN starts in both feet at the same time. Future Directions: Pair-matched studies of DPN in the foot affected with DFU (i.e., DFU-DPN) compared with DPN in the without ulcer, and intact skin barrier function, are likely to provide critical insight that would help inform effective care strategies. This review characterizes DFU-DPN from a translational science point of view presenting a new paradigm that recognizes the current literature in the context of factors that are unique to DFU-DPN.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Lu X, Wang G, Xie Y, Tang W, Liu B, Zhang J. Efflux pump inhibitor combined with ofloxacin decreases MRSA biofilm formation by regulating the gene expression of NorA and quorum sensing. RSC Adv 2023; 13:2707-2717. [PMID: 36741169 PMCID: PMC9850365 DOI: 10.1039/d2ra06696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Carbonyl cyanide p-nitrophenylhydrazone (2e) displayed a lone or synergistic efficacy against MRSA (RSC Adv., 2020, 10, 17854). In this work, the synergistic mechanism of 2e with ofloxacin was studied. MRSA2858 had potential for biofilm formation, and the value of MBEC of 2e alone was 0.78-1.56 μM, while that of 2e + ofloxacin was 0.39-0.78 μM. 2e combined with ofloxacin showed a synergistic anti-biofilm effect against MRSA. Efflux pump inhibitor 2e can better bind to NorA protein. After MRSA2858 was treated with 2e of 1/2MIC (0.78 μM) and ofloxacin of 1/8MIC (0.097 μM), the transcript levels of efflux genes (norA) and quorum-sensing (QS) regulatory genes (agrA, sarA, icaA, hla) were substantially down-regulated, and alpha-hemolysin (Hla) was inhibited by 99.15%. 2e combined with ofloxacin was more effective than 2e alone in reducing bacterial load in vivo. All in all, efflux pump inhibitor 2e enhanced the bactericidal activities of antibiotics through regulating the gene expression of NorA and QS system.
Collapse
Affiliation(s)
- Xueer Lu
- Department of Clinical Laboratory, The Third People's Hospital of HefeiHefei230022China
| | - Guifeng Wang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Yunfeng Xie
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical UniversityHefei 230032China
| | - Biyong Liu
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| |
Collapse
|
20
|
Khoshnood S, Sadeghifard N, Mahdian N, Heidary M, Mahdian S, Mohammadi M, Maleki A, Haddadi MH. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. J Clin Lab Anal 2022; 37:e24814. [PMID: 36573013 PMCID: PMC9833984 DOI: 10.1002/jcla.24814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a pathogen responsible for nosocomial infections, especially in patients with burns and ventilator-associated pneumonia (VAP). The aims of this study was to compare the biofilm formation capacity, antimicrobial resistance patterns and molecular typing based on PFGE (Pulsed-Field Gel Electrophoresis) in A. baumannii isolated from burn and VAP patients. MATERIALS AND METHODS A total of 50 A. baumannii isolates were obtained from burn and VAP patients. In this study, we assessed antimicrobial susceptibility, biofilm formation capacity, PFGE fingerprinting, and the distribution of biofilm-related genes (csuD, csuE, ptk, ataA, and ompA). RESULTS Overall, 74% of the strains were multidrug resistant (MDR), and 26% were extensively drug-resistant (XDR). Regarding biofilm formation capacity, 52%, 36%, and 12% of the isolates were strong, moderate, and weak biofilm producers. Strong biofilm formation capacity significantly correlated with XDR phenotype (12/13, 92.3%). All the isolates harbored at least one biofilm-related gene. The most prevalent gene was csuD (98%), followed by ptk (90%), ataA (88%), ompA (86%), and csuE (86%). Harboring all the biofilm-related genes was significantly associated with XDR phenotype. Finally, PFGE clustering revealed 6 clusters, among which cluster No. 2 showed a significant correlation with strong biofilm formation and XDR phenotype. CONCLUSION Our findings revealed the variable distribution of biofilm-related genes among MDR and XDR A. baumannii isolates from burn and VAP patients. A significant correlation was found between strong biofilm formation capacity and XDR phenotype. Finally, our results suggested that XDR phenotype was predominant among strong-biofilm producer A. baumannii in our region.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | | - Nahid Mahdian
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Mohsen Heidary
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| | - Somayeh Mahdian
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Maryam Mohammadi
- Department of Microbiology, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Abbas Maleki
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | | |
Collapse
|
21
|
Lv H, Wang Y, Gao Z, Liu P, Qin D, Hua Q, Xu Y. Knowledge mapping of the links between the microbiota and allergic diseases: A bibliometric analysis (2002-2021). Front Immunol 2022; 13:1045795. [PMID: 36389800 PMCID: PMC9650552 DOI: 10.3389/fimmu.2022.1045795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 08/17/2023] Open
Abstract
Background In recent decades, dramatic changes in modern environmental exposures and lifestyles have resulted in a steep rise in the prevalence of allergic diseases such as asthma, allergic rhinitis, atopic dermatitis and food allergies. Evidence is mounting that the microbiota plays a crucial role in allergic disorder development and evolution. Therefore, a better understanding of allergic diseases within the context of the microbiota is urgently needed. This work aimed to comprehensively outline general characteristics, research hotspots, evolution routes, and emerging trends in this area. Methods Relevant publications from January 2002 to December 2021 were obtained from the Web of Science Core Collection on 5 August 2022. Bibliometric and visual analyses were performed using CiteSpace; VOSviewer; an online bibliometric platform; and Microsoft Excel 2019. Results In total, 2535 documents met the requirements. The annual number of publications has shown rapid growth in the last two decades. The USA, University of California System, and Isolauri E of the University of Turku were the most productive and influential country, institution, and author, respectively. The Journal of Allergy and Clinical Immunology was the most prolific and most cocited journal. High-frequency keywords included "gut microbiota", "asthma", "atopic dermatitis", "children", and "probiotics". Recent studies have focused on "atopic dermatitis", "skin", "asthma", and "probiotics", according to the cocitation analysis of references. Burst detection analysis of keywords showed that "community", "skin microbiome", "microbiome", "Staphylococcus aureus", and "chain fatty acid" were emerging research frontiers, which currently have ongoing bursts. Conclusion In the last 20 years, studies of the microbiota in allergic diseases have been flourishing, and the themes have been increasing in depth. These findings provide valuable references on the current research hotspots and gaps and development trends in the link between the microbiota and allergic diseases.
Collapse
Affiliation(s)
- Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Staphylococcus aureus Biofilm Inhibiting Activity of Advanced Glycation Endproduct Crosslink Breaking and Glycation Inhibiting Compounds. Antibiotics (Basel) 2022; 11:antibiotics11101412. [PMID: 36290070 PMCID: PMC9598957 DOI: 10.3390/antibiotics11101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that plays a role in the pathogenesis of skin lesions in diabetes mellitus, atopic dermatitis, and psoriasis, all of which are associated with elevated non-enzymatic glycation biomarkers. The production of biofilm protects resident bacteria from host immune defenses and antibiotic interventions, prolonging pathogen survival, and risking recurrence after treatment. Glycated proteins formed from keratin and glucose induce biofilm formation in S. aureus, promoting dysbiosis and increasing pathogenicity. In this study, several glycation-inhibiting and advanced glycation endproduct (AGE) crosslink-breaking compounds were assayed for their ability to inhibit glycated keratin-induced biofilm formation as preliminary screening for clinical testing candidates. Ascorbic acid, astaxanthin, clove extract, n-phenacylthiazolium bromide, and rosemary extract were examined in an in vitro static biofilm model with S. aureus strain ATCC 12600. Near complete biofilm inhibition was achieved with astaxanthin (ED50 = 0.060 mg/mL), clove extract (ED50 = 0.0087 mg/mL), n-phenacylthiazolium bromide (ED50 = 5.3 mg/mL), and rosemary extract (ED50 = 1.5 mg/mL). The dosage necessary for biofilm inhibition was not significantly correlated with growth inhibition (R2 = 0.055. p = 0.49). Anti-glycation and AGE breaking compounds with biofilm inhibitory activity are ideal candidates for treatment of S. aureus dysbiosis and skin infection that is associated with elevated skin glycation.
Collapse
|
23
|
Leman G, Pavel P, Hermann M, Crumrine D, Elias PM, Minzaghi D, Goudounèche D, Roshardt Prieto NM, Cavinato M, Wanner A, Blunder S, Gruber R, Jansen-Dürr P, Dubrac S. Mitochondrial Activity Is Upregulated in Nonlesional Atopic Dermatitis and Amenable to Therapeutic Intervention. J Invest Dermatol 2022; 142:2623-2634.e12. [PMID: 35341734 DOI: 10.1016/j.jid.2022.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
Previous work has shown increased expression of genes related to oxidative stress in nonlesional atopic dermatitis (ADNL) skin. Although mitochondria are key regulators of ROS production, their function in AD has never been investigated. Energy metabolism and the oxidative stress response were studied in keratinocytes (KCs) from patients with ADNL or healthy controls. Moreover, ADNL human epidermal equivalents were treated with tigecycline or MitoQ. We found that pyruvate and glucose were used as energy substrates by ADNL KCs. Increased mitochondrial oxidation of (very) long-chain fatty acids, associated with enhanced complexes I and II activities, was observed in ADNL KCs. Metabolomic analysis revealed increased tricarboxylic acid cycle turnover. Increased aerobic metabolism generated oxidative stress in ADNL KCs. ADNL human epidermal equivalents displayed increased mitochondrial function and an enhanced oxidative stress response compared with controls. Treatment of ADNL human epidermal equivalents with tigecycline or MitoQ largely corrected the AD profile, including high p-65 NF-κB, abnormal lamellar bodies, and cellular damage. Furthermore, we found that glycolysis supports but does not supersede mitochondrial metabolism in ADNL KCs. Thus, aerobic metabolism predominates in ADNL but leads to oxidative stress. Therefore, mitochondria could be a reservoir of potential therapeutic targets in atopic dermatitis.
Collapse
Affiliation(s)
- Geraldine Leman
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Debra Crumrine
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominique Goudounèche
- Center of Electron Microscopy Applied to Biology, Faculty of Medicine Rangueil, Toulouse III, Paul Sabatier University, Toulouse, France
| | - Natalia M Roshardt Prieto
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Cavinato
- Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andrea Wanner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Ong PY. Atopic dermatitis: Is innate or adaptive immunity in control? A clinical perspective. Front Immunol 2022; 13:943640. [PMID: 35967329 PMCID: PMC9363562 DOI: 10.3389/fimmu.2022.943640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with barrier defects and immune dysregulations. The pathogenesis of AD involves the physical barrier as well as epithelial cells, which are considered a vital part of the innate immunity of the skin. The importance of filaggrin mutations in the pathogenesis of AD has also been well-established with reproducible results around the world in multiple studies and ethnic groups. This protein plays an important role in skin barrier functions and further reaffirms barrier defects as one of the primary causes of AD. The main epithelial cells, keratinocytes, function as a major sentinel for the skin in detecting danger signals or microbial pathogens, and trigger downstream immune responses. In AD, these cells express TSLP, IL-33 and IL-25, which lead to downstream systemic production of type 2 cytokines. In spite of major advances in our understanding of the innate immunity of AD, recent success in the systemic therapeutics of AD have focused on targeting the products of the adaptive immunity, particularly cytokines produced by T cells. In addition to type 2 cytokines, type 17 cytokines have also been implicated in the pathogenesis of AD. The current review examines the implications of these cytokines in AD from clinical perspectives.
Collapse
|
25
|
Ndhlovu GON, Dube FS, Moonsamy RT, Mankahla A, Hlela C, Levin ME, Lunjani N, Shittu AO, Abdulgader SM. Skin and nasal colonization of coagulase-negative staphylococci are associated with atopic dermatitis among South African toddlers. PLoS One 2022; 17:e0265326. [PMID: 35298533 PMCID: PMC8929619 DOI: 10.1371/journal.pone.0265326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Skin colonization with coagulase-negative staphylococci (CoNS) is generally beneficial, but recent investigations suggest its association with flares and atopic dermatitis (AD) severity. However, this relationship remains unclear.
Objective
To assess patterns of staphylococcal colonization and biofilm formation in toddlers with and without AD from rural and urban South African settings.
Methods
We conducted a cross-sectional study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. CoNS isolates were recovered from lesional, nonlesional skin samples and the anterior nares of participants. Identification of the staphylococci was achieved by MALDI-TOF mass spectrometry. The microtiter plate assay assessed in-vitro biofilm formation.
Results
CoNS and S. aureus commonly co-colonized nonlesional skin among cases (urban: 24% vs. 3%, p = 0.037 and rural 21% vs. 6%, p<0.001), and anterior nares in urban cases (24% vs. 0%, p = 0.002) than the control group. S. capitis colonization on nonlesional skin and anterior nares was positively associated with more severe disease in rural (48.3±10.8 vs. 39.7±11.5, P = 0.045) and urban cases (74.9±10.3 vs. 38.4±13, P = 0.004), respectively. Biofilm formation was similar between cases and controls, independent of rural-urban living.
Conclusion
CoNS colonization is associated with AD and disease severity and may be implicated in AD exacerbations. Studies are needed to understand their underlying pathological contribution in AD pathogenesis.
Collapse
Affiliation(s)
- Gillian O. N. Ndhlovu
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rasalika T. Moonsamy
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Department of Medicine and Pharmacology, Division of Dermatology, Walter Sisulu University, Umtata, South Africa
| | - Carol Hlela
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Michael E. Levin
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla Lunjani
- Department of Paediatric, Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Shima M. Abdulgader
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
26
|
Abstract
The skin microbiome is a key component of pathogenesis in atopic dermatitis (AD). The skin of AD patients is characterized by microbial dysbiosis, with a reduction of microbial diversity and overrepresentation of pathogenic Staphylococcus aureus (S. aureus). Recent exciting studies have elucidated an importance of establishing an appropriate immune response to microbes in early life and uncovered the new mechanisms of microbial community dynamics in modulating our skin microbiome. Several microbes are associated with AD pathogenesis, with proposed pathogenic effects from S. aureus and Malassezia. The complex relationships between microbes within the skin microbiome consortia includes various species, such as Staphylococcal, Roseomonas and Cutibacterium strains, that can inhibit S. aureus and are potential probiotics for AD skin. Numerous microbes are now also reported to modulate host response via communication with keratinocytes, specialized immune cells and adipocytes to improve skin health and barrier function. This increased understanding of skin microbiota bioactives has led to new biotherapeutic approaches that target the skin surface microenvironment for AD treatment.
Collapse
|
27
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
28
|
Hülpüsch C, Weins AB, Traidl‐Hoffmann C, Reiger M. A new era of atopic eczema research: Advances and highlights. Allergy 2021; 76:3408-3421. [PMID: 34407212 DOI: 10.1111/all.15058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Atopic eczema (AE) is an inflammatory skin disease with involvement of genetic, immunological and environmental factors. One hallmark of AE is a skin barrier disruption on multiple, highly interconnected levels: filaggrin mutations, increased skin pH and a microbiome dysbiosis towards Staphylococcus aureus overgrowth are observed in addition to an abnormal type 2 immune response. Extrinsic factors seem to play a major role in the development of AE. As AE is a first step in the atopic march, its prevention and appropriate treatment are essential. Although standard therapy remains topical treatment, powerful systemic treatment options emerged in the last years. However, thorough endotyping of the individual patients is still required for ideal precision medicine approaches in future. Therefore, novel microbial and immunological biomarkers were described recently for the prediction of disease development and treatment response. This review summarizes the current state of the art in AE research.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| | - Andreas B. Weins
- Department of Dermatology Faculty of Medicine University of Augsburg Augsburg Germany
| | - Claudia Traidl‐Hoffmann
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
- ZIEL Technical University of Munich Freising Germany
| | - Matthias Reiger
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| |
Collapse
|
29
|
Abstract
The stratum corneum is the outermost layer of the epidermis and is thus directly exposed to the environment. It consists mainly of corneocytes, which are keratinocytes in the last stage of differentiation, having neither nuclei nor organelles. However, they retain keratin filaments embedded in filaggrin matrix and possess a lipid envelope which protects the body from desiccation. Despite the desiccated, nutrient-poor, and acidic nature of the skin making it a hostile environment for most microorganisms, this organ is colonized by commensal microbes. Among the classic skin commensals are Propionibacterium acnes and coagulase-negative staphylococci (CoNS) with Staphylococcus epidermidis as a leading species. An as-yet-unanswered question is what enables S. epidermis to colonize skin so successfully. In their recent article, P. D. Fey and his colleagues (P. Roy, A. R. Horswill, and P. D. Fey, mBio 12:e02908-20, 2021, https://doi.org/10.1128/mBio.02908-20) have brought us one step closer to answering this question.
Collapse
|
30
|
Kopfnagel V, Dreyer S, Zeitvogel J, Pieper DH, Buch A, Sodeik B, Rademacher F, Harder J, Werfel T. Free human DNA attenuates the activity of antimicrobial peptides in atopic dermatitis. Allergy 2021; 76:3145-3154. [PMID: 34176149 DOI: 10.1111/all.14992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND The high susceptibility of AD patients to microbial skin infections has been attributed to a deficient antimicrobial peptide (AMP) expression, which is contradicted by a growing amount of recent studies clearly demonstrating that AMP expression is not impaired in lesional skin of AD patients. The reasons for the high susceptibility of AD patients to microbial infections are still unknown. METHODS The influence of self-DNA on the antimicrobial activity of RNase 7, LL-37, and hBD2 has been investigated using antibacterial and antiviral assays. The amount of self-DNA on skin has been analyzed by skin rinsings and subsequent quantification using dsDNA assays. DNA source was identified by qPCR. RESULTS Complex formation of the AMPs with self-DNA significantly impaired their antibacterial activity against Staphylococcus aureus and their antiviral activity against HSV-1. The inhibition of the antibacterial activity was dependent on the DNA concentration but not on the length of the DNA molecules. Of note, we detected significant higher amounts of cell-free self-DNA in skin rinses taken from lesional AD skin compared to skin rinses from non-lesional skin and from normal skin of healthy donors. Consequently, rinse solution from AD lesional skin prevented antibacterial activity of LL-37. CONCLUSION Our study indicates that extracellular self-DNA is released in considerable amounts in AD skin lesions and AMP-self-DNA-complex formation leads to a significant loss of antibacterial and antiviral activity in atopic dermatitis. Studies on strategies to reduce the amount of extracellular DNA in AD are needed to identify possible methods relevant in clinical settings.
Collapse
Affiliation(s)
- Verena Kopfnagel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Sylvia Dreyer
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
| | - Jana Zeitvogel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group Helmholtz Centre for Infection Research Braunschweig Germany
| | - Anna Buch
- Institute of Virology Hannover Medical School Hannover Germany
- DZIF – German Centre for Infection Research Partner site Hannover‐Braunschweig Germany
| | - Beate Sodeik
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
- Institute of Virology Hannover Medical School Hannover Germany
- DZIF – German Centre for Infection Research Partner site Hannover‐Braunschweig Germany
| | | | - Jürgen Harder
- Department of Dermatology University Hospital Schleswig‐Holstein Kiel Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| |
Collapse
|
31
|
Mitamura Y, Ogulur I, Pat Y, Rinaldi AO, Ardicli O, Cevhertas L, Brüggen MC, Traidl-Hoffmann C, Akdis M, Akdis CA. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis 2021; 85:615-626. [PMID: 34420214 PMCID: PMC9293165 DOI: 10.1111/cod.13959] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The “epithelial barrier hypothesis” proposes that the exposure to various epithelial barrier–damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point‐of‐care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Aydin, Turkey
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Christine Kühne-Center for Allergy Research and Education, Davos
| |
Collapse
|
32
|
Blicharz L, Rudnicka L, Czuwara J, Waśkiel-Burnat A, Goldust M, Olszewska M, Samochocki Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis-An Update. Int J Mol Sci 2021; 22:ijms22168403. [PMID: 34445108 PMCID: PMC8395079 DOI: 10.3390/ijms22168403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
- Correspondence:
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Zbigniew Samochocki
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| |
Collapse
|
33
|
Glycan-Dependent Corneocyte Adherence of Staphylococcus epidermidis Mediated by the Lectin Subdomain of Aap. mBio 2021; 12:e0290820. [PMID: 34253065 PMCID: PMC8406310 DOI: 10.1128/mbio.02908-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus epidermidis and other coagulase-negative staphylococci (CoNS) that colonize skin are known to promote skin immunity and inhibit colonization of pathogens that cause skin and soft tissue infections, including Staphylococcus aureus. However, S. epidermidis adherence to corneocytes, the cells that constitute the uppermost layer of the skin epidermis, remains poorly understood. Our study documents that S. epidermidis corneocyte adherence is dependent upon the accumulation-associated protein (Aap). Aap is composed of two distinct A and B domains. The A domain is comprised of a repeat region and a conserved L-type lectin domain, whereas the fibrillar B domain, which is comprised of G5 and E repeats, is linked to the cell wall in a sortase-dependent manner. Our studies revealed that adherence to corneocytes is dependent upon the lectin subdomain within the A domain. However, significant adherence was only observed when the lectin domain was expressed with both the A repeat and the B domain, suggesting further interactions between these three domains. Our data also suggest that the A repeat domain is important for stability or expression of Aap. Deglycosylation treatment suggested that glycans expressed in the host stratum corneum serve as potential binding partners for Aap-mediated corneocyte adherence. Last, bioinformatic analyses of the predominant commensal species of CoNS identified open reading frames (ORFs) homologous to aap, thus suggesting that Aap orthologues containing lectin-like domains may provide the basis for staphylococcal colonization of skin. Corroborating these observations, adherence to corneocytes in an S. aureus mgrA mutant was dependent upon SasG, the Aap orthologue in S. aureus. IMPORTANCE Staphylococcus aureus is the most significant cause of skin and soft tissue infections yet it rarely colonizes the skin of healthy individuals. This is believed to be due, in part, to inhibition of colonization via toxic substances produced by normal skin flora, including by S. epidermidis. Furthermore, we surmise that S. aureus colonization inhibition may also be due to competition for binding sites on host corneocytes. To understand these potential interactions between S. aureus and S. epidermidis and, potentially, other coagulase-negative staphylococci, we must first understand how staphylococci adhere to corneocytes. This work documents that S. epidermidis adherence to corneocytes is dependent upon the fibrillar cell wall-associated protein Aap. Our work further documents that Aap binds to glycans exposed on the corneocyte surface, which are commonly exploited by bacteria to facilitate adherence to host cells. Furthermore, we find that Aap orthologues may be responsible for corneocyte adherence in other staphylococci, including in S. aureus.
Collapse
|
34
|
Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, Chen X, Peng C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front Microbiol 2020; 11:589726. [PMID: 33384669 PMCID: PMC7769758 DOI: 10.3389/fmicb.2020.589726] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Tao Liu
- Central Laboratory, Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
| |
Collapse
|