1
|
Huang CY, Su SB, Chen KT. Surveillance strategies for SARS-CoV-2 infections through one health approach. Heliyon 2024; 10:e37128. [PMID: 39286214 PMCID: PMC11403048 DOI: 10.1016/j.heliyon.2024.e37128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is an emergent disease that threatens global health. Public health structures and economic activities have been disrupted globally by the COVID-19 pandemic. Over 556.3 million confirmed cases and 6.3 million deaths have been reported. However, the exact mechanism of its emergence in humans remains unclear. SARS-CoV-2 is believed to have a zoonotic origin, suggesting a spillover route from animals to humans, which is potentially facilitated by wildlife farming and trade. The COVID-19 pandemic highlighted the importance of the One Health approach in managing threats of zoonosis in the human-animal-environment interaction. Implementing vigilant surveillance programs by adopting the One Health concept at the interfaces between wildlife, livestock, and humans is the most pertinent, practical, and actionable strategy for preventing and preparing for future pandemics of zoonosis, such as COVID-19 infection. This review summarizes the updated evidence of CoV infections in humans and animals and provides an appropriate strategy for preventive measures focused on surveillance systems through an On Health approach.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Milich KM, Morse SS. The reverse zoonotic potential of SARS-CoV-2. Heliyon 2024; 10:e33040. [PMID: 38988520 PMCID: PMC11234007 DOI: 10.1016/j.heliyon.2024.e33040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
There has been considerable emphasis recently on the zoonotic origins of emerging infectious diseases in humans, including the SARS-CoV-2 pandemic; however, reverse zoonoses (infections transmitted from humans to other animals) have received less attention despite their potential importance. The effects can be devastating for the infected species and can also result in transmission of the pathogen back to human populations or other animals either in the original form or as a variant. Humans have transmitted SARS-CoV-2 to other animals, and the virus is able to circulate and evolve in those species. As global travel resumes, the potential of SARS-CoV-2 as a reverse zoonosis threatens humans and endangered species. Nonhuman primates are of particular concern given their susceptibility to human respiratory infections. Enforcing safety measures for all people working in and visiting wildlife areas, especially those with nonhuman primates, and increasing access to safety measures for people living near protected areas that are home to nonhuman primates will help mitigate reverse zoonotic transmission.
Collapse
Affiliation(s)
- Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, United States
| | - Stephen S. Morse
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St., NY, NY, 10032, United States
| |
Collapse
|
3
|
Silva PV, Nobre CN. Computational methods in the analysis of SARS-CoV-2 in mammals: A systematic review of the literature. Comput Biol Med 2024; 173:108264. [PMID: 38564853 DOI: 10.1016/j.compbiomed.2024.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
SARS-CoV-2 is an enveloped RNA virus that causes severe respiratory illness in humans and animals. It infects cells by binding the Spike protein to the host's angiotensin-converting enzyme 2 (ACE2). The bat is considered the natural host of the virus, and zoonotic transmission is a significant risk and can happen when humans come into close contact with infected animals. Therefore, understanding the interconnection between human, animal, and environmental health is important to prevent and control future coronavirus outbreaks. This work aimed to systematically review the literature to identify characteristics that make mammals suitable virus transmitters and raise the main computational methods used to evaluate SARS-CoV-2 in mammals. Based on this review, it was possible to identify the main factors related to transmissions mentioned in the literature, such as the expression of ACE2 and proximity to humans, in addition to identifying the computational methods used for its study, such as Machine Learning, Molecular Modeling, Computational Simulation, between others. The findings of the work contribute to the prevention and control of future outbreaks, provide information on transmission factors, and highlight the importance of advanced computational methods in the study of infectious diseases that allow a deeper understanding of transmission patterns and can help in the development of more effective control and intervention strategies.
Collapse
Affiliation(s)
- Paula Vitória Silva
- Pontifical Catholic University of Minas Gerais - PUC Minas, 500 Dom José Gaspar Street, Building 41, Coração Eucarístico, Belo Horizonte, MG 30535-901, Brazil.
| | - Cristiane N Nobre
- Pontifical Catholic University of Minas Gerais - PUC Minas, 500 Dom José Gaspar Street, Building 41, Coração Eucarístico, Belo Horizonte, MG 30535-901, Brazil.
| |
Collapse
|
4
|
Hsu CJ, Chen CH, Chen WT, Liu PC, Chang TY, Lin MH, Chen CC, Chen HY, Huang CH, Cheng YH, Sun JR. Development of an EBOV MiniG plus system as an advanced tool for anti-Ebola virus drug screening. Heliyon 2023; 9:e22138. [PMID: 38045158 PMCID: PMC10692823 DOI: 10.1016/j.heliyon.2023.e22138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.
Collapse
Affiliation(s)
- Chi-Ju Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsiu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Ting Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Meng-He Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| |
Collapse
|
5
|
Agache I, Laculiceanu A, Spanu D, Grigorescu D. The Concept of One Health for Allergic Diseases and Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:290-302. [PMID: 37188486 DOI: 10.4168/aair.2023.15.3.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
The worldwide prevalence of allergic disease is rising as a result of complex gene-environment interactions that shape the immune system and host response. Climate change and loss of biodiversity are existential threats to humans, animals, plants, and ecosystems. While there is significant progress in the development of targeted therapeutic options to treat allergies and asthma, these approaches are inadequate to meet the challenges faced by climate change. The exposomic approach is needed with the recognition of the bidirectional effect between human beings and the environment. All stakeholders need to work together toward mitigating the effects of climate change and promoting a One Health concept in order to decrease the burden of asthma and allergy and to improve immune health. Healthcare professionals should strive to incorporate One Health counseling, environmental health precepts, and advocacy into their practice.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Daniela Spanu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Dan Grigorescu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| |
Collapse
|
6
|
Gómez-Hernández EA, Moreno-Gómez FN, Bravo-Gaete M, Córdova-Lepe F. Concurrent dilution and amplification effects in an intraguild predation eco-epidemiological model. Sci Rep 2023; 13:6425. [PMID: 37081120 PMCID: PMC10119278 DOI: 10.1038/s41598-023-33345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
The dilution and amplification effects are important concepts in the field of zoonotic diseases. While the dilution effect predicts that pathogen prevalence is negatively correlated with increased species diversity, the opposite trend is observed when the amplification effect occurs. Understanding how interspecific interactions such as predation and competition within a community influence disease transmission is highly relevant. We explore the conditions under which the dilution and amplification effects arise, using compartmental models that integrate ecological and epidemiological interactions. We formulate an intraguild predation model where each species is divided into two compartments: susceptible and infected individuals. We obtained that increasing predation increases the disease transmission potential of the predator and the density of infected individuals, but decreases the disease transmission potential of the prey, as well as their density. Also, we found that interspecific competition always helps to decrease the number of infected individuals in the population of the two species. Therefore, dilution and amplification effects can be observed simultaneously but depending on different types of cological interactions.
Collapse
Affiliation(s)
- Enith A Gómez-Hernández
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Talca, Chile.
| | - Felipe N Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Moisés Bravo-Gaete
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Fernando Córdova-Lepe
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
7
|
Cabanillas B, Murdaca G, Guemari A, Torres MJ, Azkur AK, Aksoy E, Vitte J, de Las Vecillas L, Giovannini M, Fernández-Santamaria R, Castagnoli R, Orsi A, Amato R, Giberti I, Català A, Ambrozej D, Schaub B, Tramper-Stranders GA, Novak N, Nadeau KC, Agache I, Akdis M, Akdis CA. A compilation answering 50 questions on monkeypox virus and the current monkeypox outbreak. Allergy 2023; 78:639-662. [PMID: 36587287 DOI: 10.1111/all.15633] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/02/2023]
Abstract
The current monkeypox disease (MPX) outbreak constitutes a new threat and challenge for our society. With more than 55,000 confirmed cases in 103 countries, World Health Organization declared the ongoing MPX outbreak a Public Health Emergency of International Concern (PHEIC) on July 23, 2022. The current MPX outbreak is the largest, most widespread, and most serious since the diagnosis of the first case of MPX in 1970 in the Democratic Republic of the Congo (DRC), a country where MPX is an endemic disease. Throughout history, there have only been sporadic and self-limiting outbreaks of MPX outside Africa, with a total of 58 cases described from 2003 to 2021. This figure contrasts with the current outbreak of 2022, in which more than 55,000 cases have been confirmed in just 4 months. MPX is, in most cases, self-limiting; however, severe clinical manifestations and complications have been reported. Complications are usually related to the extent of virus exposure and patient health status, generally affecting children, pregnant women, and immunocompromised patients. The expansive nature of the current outbreak leaves many questions that the scientific community should investigate and answer in order to understand this phenomenon better and prevent new threats in the future. In this review, 50 questions regarding monkeypox virus (MPXV) and the current MPX outbreak were answered in order to provide the most updated scientific information and to explore the potential causes and consequences of this new health threat.
Collapse
Affiliation(s)
- Beatriz Cabanillas
- Department of Allergy, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Giuseppe Murdaca
- Departments of Internal Medicine, University of Genova, Genova, Italy
| | - Amir Guemari
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Málaga-ARADyAL, Málaga, Spain
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Joana Vitte
- Aix-Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,Montpellier University, IDESP INSERM UMR UA 11, Montpellier, France
| | | | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Genova, Italy
| | - Rosa Amato
- Department of Health Sciences, University of Genova, Genova, Italy
| | - Irene Giberti
- Department of Health Sciences, University of Genova, Genova, Italy
| | - Alba Català
- Dermatology Department, Sexually Transmitted Diseases Clinic, Hospital Clinic, Barcelona, Spain
| | - Dominika Ambrozej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.,Member of German Center for Lung Research - DZL, LMU, Munich, Germany
| | | | - Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Ioana Agache
- Transylvania University, Brasov, Romania.,Theramed Medical Center, Brasov, Romania
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
8
|
Saxena K, Balani S, Srivastava P. The role of pharmaceutical industry in building resilient health system. Front Public Health 2022; 10:964899. [PMID: 36530653 PMCID: PMC9751196 DOI: 10.3389/fpubh.2022.964899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives This study explores the interrelationship among the current sustainability agenda of the pharmaceutical industry, based on the United Nation sustainable development goals (SDGs), the elements of the Joint External Evaluation (JEE) tool, and the triad components of the One Health approach. Methods A cross-walk exercise was conducted to identify commonalities among SDGs, JEE assessment tool, and One Health approach. An in-depth study of 10 global pharmaceutical firms' corporate sustainability reports and COVID-19 response plan for 2019-2020 was also conducted. Results The result of the exercise showed the existence of a direct and indirect relationship among the SDGs, elements of JEE assessment tool, and One Health approach. For example, both no poverty (SDG 1) and zero hunger (SDG 2) are linked with food safety targets under the JEE and with human and animal health under the One Health approach. Conclusion This study adds a new dimension emphasizing the possibility of tailoring the pharmaceutical industry's activities under the sustainability agenda to strengthen global health security while remaining consistent with the One Health approach.
Collapse
Affiliation(s)
- Kanika Saxena
- Amity Business School, Amity University, Lucknow, Uttar Pradesh, India,*Correspondence: Kanika Saxena
| | - Sunita Balani
- Amity Business School, Amity University, Lucknow, Uttar Pradesh, India
| | - Pallavi Srivastava
- Human Research Management and Organizational Behaviour, Jaipuria Institute of Management, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Ardicli O, Carli KT, Satitsuksanoa P, Dreher A, Cusini A, Hutter S, Mirer D, Rückert B, Jonsdottir H, Weber B, Cervia C, Akdis M, Boyman O, Eggel A, Brüggen M, Akdis C, van de Veen W. Exposure to avian coronavirus vaccines is associated with increased levels of SARS-CoV-2-cross-reactive antibodies. Allergy 2022; 77:3648-3662. [PMID: 35869837 PMCID: PMC9467642 DOI: 10.1111/all.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | - K. Tayfun Carli
- Department of Microbiology, Faculty of Veterinary MedicineBursa Uludag UniversityBursaTurkey
| | | | - Anita Dreher
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Alexia Cusini
- Division of Infectious DiseasesCantonal Hospital of GrisonsChurSwitzerland
| | - Sandra Hutter
- Central LaboratoryCantonal Hospital of GrisonsChurSwitzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil ProtectionSpiezSwitzerland
| | - Carlo Cervia
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Onur Boyman
- Department of ImmunologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
| | - Alexander Eggel
- Department of Rheumatology, Immunology, and AllergologyInselspital University HospitalBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Marie‐Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
10
|
Friedman Y. Who is the biological patient? A new gradational and dynamic model for one health medicine. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:61. [PMID: 36357618 PMCID: PMC9649009 DOI: 10.1007/s40656-022-00540-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
One Health medicine aims to improve health by focusing on the relations between the health of humans, animals, and the environment. However, One Health does not provide a clear idea of these relations, which are still represented as conceptually separated and not as one health, as the name implies. Inspired by holobiont research, I suggest a new model and conceptual framework for One Health that expands the notion of the biological patient by providing a gradational and dynamic understanding of environments, patients, and their relations. This new model conceptualizes humans and non-humans, individual organisms, and collectives, as belonging to one system that allows for more or less inclusive understandings of patients. As such, it resolves the conceptual tensions of different One Health approaches and supports the implementation of One Health as an interdisciplinary research field.
Collapse
Affiliation(s)
- Yael Friedman
- Centre for Philosophy and the Sciences (CPS), Department of Philosophy, Classics, History of Art and Ideas, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
12
|
Powell L, Lavender TM, Reinhard CL, Watson B. Pet Owners' Perceptions of COVID-19, Zoonotic Disease, and Veterinary Medicine: The Impact of Demographic Characteristics. Vet Sci 2022; 9:195. [PMID: 35622723 PMCID: PMC9143664 DOI: 10.3390/vetsci9050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of sociodemographic characteristics on pet owners' concern about the transmission of zoonotic disease and SARS-CoV-2, and to describe owners' perceptions of veterinarians and physicians as resources for zoonoses information. Between September and October 2020, 1154 individuals completed an online survey via Qualtrics. Binary logistic regression models were used to examine the associations between owner demographics and perceptions of zoonoses and SARS-CoV-2. Most participants were minimally concerned about their pets contracting or transmitting zoonotic diseases or SARS-CoV-2, although perceptions of risk differed based on age, race, and education. Older participants were typically less concerned about the transmission of zoonotic diseases and SARS-CoV-2. Considering where participants obtained information about zoonoses, pet owners were more likely to contact their veterinarian for advice (43%) than their physician (17%). However, 17% of pet owners struggled to access veterinary care, and 51% said their access to veterinary care had become more difficult during the COVID-19 pandemic. Our findings highlight a need for further education about zoonoses and SARS-CoV-2, and suggest veterinarians may play a key role in these communications. The results also emphasize the need to address access to care issues in veterinary medicine.
Collapse
Affiliation(s)
- Lauren Powell
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.M.L.); (C.L.R.); (B.W.)
| | | | | | | |
Collapse
|
13
|
Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022; 4:33-37. [PMID: 35005525 PMCID: PMC8718870 DOI: 10.1016/j.jobb.2021.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly into new variants throughout the pandemic. The Omicron variant has more than 50 mutations when compared with the original wild-type strain and has been identified globally in numerous countries. In this report, we analyzed the mutational profiles of several variants, including the per-site mutation rate, to determine evolutionary relationships. The Omicron variant was found to have a unique mutation profile when compared with that of other SARS-CoV-2 variants, containing mutations that are rare in clinical samples. Moreover, the presence of five mouse-adapted mutation sites suggests that Omicron may have evolved in a mouse host. Mutations in the Omicron receptor-binding domain (RBD) region, in particular, have potential implications for the ongoing pandemic.
Collapse
|
14
|
Sharun K, Tiwari R, Saied AA, Dhama K. SARS-CoV-2 vaccine for domestic and captive animals: An effort to counter COVID-19 pandemic at the human-animal interface. Vaccine 2021; 39:7119-7122. [PMID: 34782159 PMCID: PMC8570933 DOI: 10.1016/j.vaccine.2021.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has already affected millions worldwide. The emergence of multiple SARS-CoV-2 variants may pose a significant threat to our efforts in controlling the pandemic. The impact of SARS-CoV-2 variants on the efficacy of available vaccines, therapeutics, and diagnostics is currently being investigated. SARS-CoV-2 has been implicated to be originated from animals due to cross-species jumping and raises zoonotic concerns due to the potential for reintroduction into the human populations via interspecies transmission between humans and animals. Natural SARS-CoV-2 infections have been reported in domestic animals (dog, cat, and ferret), captive animals (tiger, lion, snow leopard, puma, otter, and gorilla), and wild and farmed minks. Vaccination of domestic animals can prevent the possible introduction of SARS-CoV-2 into the feral population and subsequent transmission to wildlife. Although the need to vaccinate susceptible animal species, such as cats, minks, and great apes, might seem irrational from a public health standpoint, the successful elimination of SARS-CoV-2 will only be possible by controlling the transmission in all susceptible animal species. This is necessary to prevent the re-emergence of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281 001, Uttar Pradesh, India
| | - AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan 81511, Egypt; Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan 81511, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
15
|
Krentz D, Zenger K, Alberer M, Felten S, Bergmann M, Dorsch R, Matiasek K, Kolberg L, Hofmann-Lehmann R, Meli ML, Spiri AM, Horak J, Weber S, Holicki CM, Groschup MH, Zablotski Y, Lescrinier E, Koletzko B, von Both U, Hartmann K. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 2021; 13:v13112228. [PMID: 34835034 PMCID: PMC8621566 DOI: 10.3390/v13112228] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Collapse
Affiliation(s)
- Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
- Correspondence:
| | - Katharina Zenger
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Jeannie Horak
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Eveline Lescrinier
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, 3000 Leuven, Belgium;
| | - Berthold Koletzko
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| |
Collapse
|
16
|
Suvvari TK, P C, Kuppili S, Kandi V, Kutikuppala LVS, Kandula VDK, Mishra S, Sarangi AK, Mohapatra RK, Dhama K. Consecutive Hits of COVID-19 in India: The Mystery of Plummeting Cases and Current Scenario. ARCHIVES OF RAZI INSTITUTE 2021; 76:1165-1174. [PMID: 35355747 DOI: 10.22092/ari.2021.356147.1791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19)-related pandemic has been in existence for almost 2 years now after its possible emergence from a wet market in the city of Wuhan of the Chinese mainland. Evidence of the emergence and transmission of this virus was attributed to bats and pangolins. The causative virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has rapidly spread globally, affecting humans considerably with its current death toll to be over 4.7 million out of more than 233 confirmed cases as of September 2021. The virus is constantly mutating and continuously trying to establish itself in humans by increasing its transmissibility and virulence through its numerous emerging variants. Several countries have been facing multiple waves of COVID-19 outbreaks one after the other, putting the medical and healthcare establishments under tremendous stress. Although very few drugs and vaccines have been approved for emergency use, their production capabilities need to meet the needs of a huge global population. Currently, not even a quarter of the world population is vaccinated. The situation in India has worsened during the ongoing second wave with the involvement of virus variants with a rapid and huge surge in COVID-19 cases, where the scarcity of hospital infrastructure, antiviral agents, and oxygen has led to increased deaths. Recently, increased surveillance and monitoring, strengthening of medical facilities, campaigns of awareness programs, progressive vaccination drive, and high collaborative efforts have led to limiting the surge of COVID-19 cases in India to a low level. This review outlines the global status of the pandemic with special reference to the Indian scenario.
Collapse
Affiliation(s)
- T K Suvvari
- NTR University of Health Sciences, Vijayawada, India
| | - C P
- Rungta College of Dental Sciences and Research, Bhilai, India
| | - S Kuppili
- Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, India
| | - V Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, India
| | - L V S Kutikuppala
- Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, India
| | - V D K Kandula
- GSL Medical College and General Hospital, Rajahmundry, India
| | - S Mishra
- Bioenergy Lab, School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - A K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - R K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, India
| | - K Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|