1
|
Li W, Li X, Chen Y, Li Y, Chen R, Kang Z, Huang Z, Zhao Y. Effects of acute normovolemic hemodilution and allogeneic blood transfusion on postoperative complications of oral and maxillofacial flap reconstruction: a retrospective study. BMC Oral Health 2024; 24:606. [PMID: 38789959 PMCID: PMC11127284 DOI: 10.1186/s12903-024-04302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Patients undergoing oral and maxillofacial flap reconstruction often need blood transfusions due to massive blood loss. With the increasing limitations of allogeneic blood transfusion (ABT), doctors are considering acute normovolemic hemodilution (ANH) because of its advantages. By comparing the differences in the (Δ) blood indices and postoperative complications of patients receiving ABT or ANH during the reconstruction and repair of oral and maxillofacial tumor flaps, this study's purpose was to provide a reference for the clinical application of ANH. METHODS The clinical data of 276 patients who underwent oral and maxillofacial flap reconstruction from September 25, 2017, to October 11, 2021, in the Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, were retrospectively analyzed. According to the intraoperative blood transfusion mode, the patients were divided into two groups: ABT and ANH. The differences in the (Δ) blood indices and the incidence of postoperative complications between the groups were analyzed. RESULTS Among the 276 patients who had ANH (124/276) and ABT (152/276), there were no differences in (Δ) Hb, (Δ) PT, or (Δ) FIB (P > 0.05), while (Δ) WBC, (Δ) PLT, (Δ) APTT and (Δ) D-dimer were significantly different (P < 0.05). The blood transfusion method was not an independent factor for flap crisis (P > 0.05). The wound infection probability in patients with high post-PTs was 1.953 times greater than that in patients with low post-PTs (OR = 1.953, 95% CI: 1.232 ∼ 3.095, P = 0.004). A normal or overweight BMI was a protective factor for pulmonary infection, and the incidence of pulmonary infection in these patients was only 0.089 times that of patients with a low BMI (OR = 0.089, 95% CI: 0.017 ∼ 0.462). Moreover, a high ASA grade promoted the occurrence of pulmonary infection (OR = 6.373, 95% CI: 1.681 ∼ 24.163). The blood transfusion mode (B = 0.310, β = 0.360, P < 0.001; ANH: ln hospital stay = 2.20 ± 0.37; ABT: ln hospital stay = 2.54 ± 0.42) improved the length of hospital stay. CONCLUSION Preoperative and postoperative blood transfusion (Δ) Hb, (Δ) PT, and (Δ) FIB did not differ; (Δ) WBC, (Δ) PLT, (Δ) APTT, and (Δ) D-dimer did differ. There was no difference in the effects of the two blood transfusion methods on flap crisis, incision infection or lung infection after flap reconstruction, but ANH resulted in a 3.65 day shorter average hospital stay than did ABT.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Xueer Li
- Department of Maxillofacial Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19th Nonglinxia Road, Guangzhou, Guangdong, 510080, China
| | - Yanhong Chen
- Department of Transfusion Medicine, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Yanling Li
- Department of Transfusion Medicine, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Rui Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Ziqin Kang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Zhiquan Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| | - Yili Zhao
- Department of Transfusion Medicine, Sun Yat-sen Memorial Hospital, 107th Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
2
|
Muller CR, Courelli V, Govender K, Omert L, Yoshida T, Cabrales P. Hypoxically stored RBC resuscitation in a rat model of traumatic brain injury and severe hemorrhagic shock. Life Sci 2024; 340:122423. [PMID: 38278347 DOI: 10.1016/j.lfs.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
This study aims to investigate the effects of hypoxically stored Red Blood Cells (RBCs) in a rat model of traumatic brain injury followed by severe hemorrhagic shock (HS) and resuscitation. RBCs were made hypoxic using an O2 depletion system (Hemanext Inc. Lexington, MA) and stored for 3 weeks. Experimental animals underwent craniotomy and blunt brain injury followed by severe HS. Rats were resuscitated with either fresh RBCs (FRBCs), 3-week-old hypoxically stored RBCs (HRBCs), or 3-week-old conventionally stored RBCs (CRBCs). Resuscitation was provided via RBCs transfusion equivalent to 70 % of the shed blood and animals were followed for 2 h. The control group was comprised of healthy animals that were not instrumented or injured. Post-resuscitation hemodynamics and lactate levels were improved with FRBCs and HRBCs, and markers of organ injury in the liver (Aspartate aminotransferase [AST]), lung (chemokine ligand 1 [CXCL-1] and Leukocytes count), and heart (cardiac troponin, Interleukin- 6 [IL-6] and Tumor Necrosis Factor Alpha[TNF-α]) were lower with FRBCs and HRBCs resuscitation compared to CRBCs. Following reperfusion, biomarkers for oxidative stress, lipid peroxidation, and RNA/DNA injury were assessed. Superoxide dismutase [SOD] levels in the HRBCs group were similar to the FRBCs group and levels in both groups were significantly higher than CRBCs. Catalase levels were not different than control values in the FRBCs and HRBCs groups but significantly lower with CRBCs. Thiobarbituric acid reactive substances [Tbars] levels were higher for both CRBCs and HRBCs. Hypoxically stored RBCs show few differences from fresh RBCs in resuscitation from TBI + HS and decreased organ injury and oxidative stress compared to conventionally stored RBCs.
Collapse
Affiliation(s)
- Cynthia R Muller
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Vasiliki Courelli
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Krianthan Govender
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Laurel Omert
- Hemanext, Lexington, MA, United States of America
| | | | - Pedro Cabrales
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
3
|
Jiang JH, Ren RT, Cheng YJ, Li XX, Zhang GR. Immune cells and RBCs derived from human induced pluripotent stem cells: method, progress, prospective challenges. Front Cell Dev Biol 2024; 11:1327466. [PMID: 38250324 PMCID: PMC10796611 DOI: 10.3389/fcell.2023.1327466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.
Collapse
Affiliation(s)
- Jin-he Jiang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Ru-tong Ren
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Yan-jie Cheng
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xin-xin Li
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Gui-rong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
4
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
5
|
Han L, Li L, Linghu H, Zheng L, Gou D. Cardiopulmonary bypass in a rat model may shorten the lifespan of stored red blood cells by activating caspase-3. PLoS One 2023; 18:e0290295. [PMID: 37729139 PMCID: PMC10511131 DOI: 10.1371/journal.pone.0290295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Red blood cell transfusion is required for many types of surgery against cardiovascular disease, and the function of transfused cells appears to decline over time. The present study examined whether transfusion also reduces red blood cell lifespan in a rat model. MATERIAL AND METHODS Bypass in rats were established by connecting a roll pump to the femoral artery and vein. Then FITC-labeled stored red blood cells from rats were transfused in the animals, and the cells in circulation were counted after transfusion. In separate experiments, stored red blood cells were incubated with bypass plasma in vitro, and the effects of incubation were assessed on cell morphology, redox activity, ATP level, caspase-3 activity, and phosphatidylserine exposure on the cell surface. These in vivo and in vitro experiments were also performed after pretreating the stored red blood cells with the caspase-3 inhibitor Z-DEVD-FMK. RESULTS Bypass significantly decreased the number of circulating FITC-labeled stored red blood cells and increased the proportions of monocytes, neutrophils and splenic macrophages that had phagocytosed the red blood cells. In vitro, bypass plasma altered the morphology of red blood cells and increased oxidative stress, caspase-3 activity and phosphatidylserine exposure, while decreasing ATP level. Pretreating stored red blood cells with Z-DEVD-FMK attenuated the effects of bypass on caspase-3 activity, but not oxidative stress, in stored red blood cells. DISCUSSION Bypass appears to shorten the lifespan of stored red blood cells, at least in part by activating caspase-3 in the cells.
Collapse
Affiliation(s)
- Lu Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
| | - Lianlian Li
- Department of Anesthesiology, Hospital of Banan District, Chongqing, China
| | - Hangya Linghu
- Department of Anesthesiology, Bishan Maternity and Child Hospital of Chongqing, Chongqing, China
| | - Lei Zheng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Daming Gou
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
6
|
Ghodsi M, Cloos AS, Mozaheb N, Van Der Smissen P, Henriet P, Pierreux CE, Cellier N, Mingeot-Leclercq MP, Najdovski T, Tyteca D. Variability of extracellular vesicle release during storage of red blood cell concentrates is associated with differential membrane alterations, including loss of cholesterol-enriched domains. Front Physiol 2023; 14:1205493. [PMID: 37408586 PMCID: PMC10318158 DOI: 10.3389/fphys.2023.1205493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations.
Collapse
Affiliation(s)
- Marine Ghodsi
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Negar Mozaheb
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe E. Pierreux
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Tomé Najdovski
- Service du Sang, Croix-Rouge de Belgique, Suarlée, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
7
|
Camargo Castillo MA, de Almeida BA, Wissmann D, Moreira RF, Okano FY, Gonzalez FHD, Soares JF, de Faria Valle S. Viability of erythrocytes in canine packed red blood cells stored in CPDA-1 is related to the presence of Mycoplasma haemocanis. Comp Immunol Microbiol Infect Dis 2023; 97:101982. [PMID: 37120937 DOI: 10.1016/j.cimid.2023.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Hemotropic mycoplasmas are associated with subclinical disease in dogs and should be identified in blood donors. The objective was to investigate the presence and effect of M. haemocanis in units of packed red blood cells (pRBC) during storage. Canine donors (n = 10) were screened for M. haemocanis by quantitative real-time PCR. pRBCs were obtained from 5 hemoplasma negative dogs and 5 hemoplasma positive dogs. Each pRBC was aliquoted into two 100 mL transfer bags and stored at 4 °C. M. haemocanis loads and biochemical variables (pH, bicarbonate, potassium, sodium, chlorite, glucose, lactate, ammonia, PCV, and % hemolysis) were evaluated on days 1, 7, 18, and 29. M. haemocanis loads increased in pRBC from day 1-29 of storage. Glucose decreased and lactate increase faster in pRBC with M. haemocanis. This study contributes to understand hemoplasma metabolism and reinforces that dog donors should be tested for hemoplasmas.
Collapse
Affiliation(s)
- Monica A Camargo Castillo
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | | | - Daiani Wissmann
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | - Renata Fagundes Moreira
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | - Felipe Yuki Okano
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | - Felix H D Gonzalez
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | - João Fábio Soares
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil
| | - Stella de Faria Valle
- Department of Veterinary Clinical Pathology, School of Veterinary Medicine, UFRGS, Porto Alegre RS, Brazil.
| |
Collapse
|
8
|
Wang Y, Gao S, Zhu K, Ren L, Yuan X. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs. ACS Biomater Sci Eng 2023; 9:498-507. [PMID: 36577138 DOI: 10.1021/acsbiomaterials.2c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryopreservation of red blood cells (RBCs) is imperative for transfusion therapy, while cryoprotectants are essential to protect RBCs from cryoinjury under freezing temperatures. Trehalose has been considered as a biocompatible cryoprotectant that naturally accumulates in organisms to tolerate anhydrobiosis and cryobiosis. Herein, we report a feasible protocol that enables glycerol-free cryopreservation of human RBCs by integration of the synthesized trehalose lipids and dissociative trehalose through ice tuning and membrane stabilization. Typically, in comparison with sucrose monolaurate or trehalose only, trehalose monolaurate was able to protect cell membranes against freeze stress, achieving 96.9 ± 2.0% cryosurvival after incubation and cryopreservation of human RBCs with 0.8 M trehalose. Moreover, there were slight changes in cell morphology and cell functions. It was further confirmed by isothermal titration calorimetry and osmotic fragility tests that the moderate membrane-binding activity of trehalose lipids exerted cell stabilization for high cryosurvival. The aforementioned study is likely to provide an alternative way for glycerol-free cryopreservation of human RBCs and other types of cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| |
Collapse
|
9
|
Piwkham D, Pattanapanyasat K, Noulsri E, Klaihmon P, Bhoophong P, Prachongsai I. The in vitro red blood cell microvesiculation exerts procoagulant activity of blood cell storage in Southeast Asian ovalocytosis. Heliyon 2022; 9:e12714. [PMID: 36632113 PMCID: PMC9826842 DOI: 10.1016/j.heliyon.2022.e12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Southeast Asian ovalocytosis (SAO) is characterized by the misfolding of band 3 protein in red blood cells (RBC). The abnormal structure of the band 3 protein results in dysmorphic RBC and related functions. Previous data showed that in vitro storage under hypothermic conditions alters band 3 protein structure and function. Microvesiculation includes shedding of RBC membranes, called RBC-derived microparticles/extracellular vesicles (RMP/EVs), and storage lesions. Unfortunately, there is no evidence of RBC microvesiculation under in vitro storage conditions in heterozygous SAO individuals. This study determined the generation of REVs and procoagulant activity during the storage of SAO blood samples in southern Thailand. Venous blood was collected from eight SAO and seven healthy individuals, preserved in citrate phosphate dextrose-adenine 1 (CPDA-1) at 4 °C for 35 days. The absolute numbers of REVs and PS-expressing RBCs were analyzed using flow cytometry. The procoagulant activity of the produced extracellular vesicles was determined by a clotting time assay. The results showed a significant increase in the number of REVs and PS-expressing RBCs in the SAO blood samples. Significantly correlated PS externalization and procoagulant activity were observed in the SAO blood samples. These lines of evidence indicate that the abnormality of the Band 3 protein is possibly involved in aberrant microvesiculation, exerting procoagulant activity in vitro. Increased pools of REV production and abnormal storage lesions in SAO blood samples should be a concern. Notably, the mechanisms underlying membrane vesiculation depend on the extent of blood cell storage under hypothermic conditions.
Collapse
Affiliation(s)
- D. Piwkham
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - K. Pattanapanyasat
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Siriraj Center of Research Excellence in Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - E. Noulsri
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P. Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P. Bhoophong
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - I. Prachongsai
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand,Corresponding author. Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
10
|
Dybas J, Wajda A, Alcicek FC, Kaczmarska M, Bulat K, Szczesny-Malysiak E, Martyna A, Perez-Guaita D, Sacha T, Marzec KM. Label-free testing strategy to evaluate packed red blood cell quality before transfusion to leukemia patients. Sci Rep 2022; 12:21849. [PMID: 36528645 PMCID: PMC9759565 DOI: 10.1038/s41598-022-26309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
- Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland
| | - Agnieszka Martyna
- Forensic Chemistry Research Group, University of Silesia in Katowice, 9 Szkolna St., 40-006, Katowice, Poland
| | - David Perez-Guaita
- Department of Analytical Chemistry, University of Valancia, Dr. Moliner 50, Burjassot, Spain
| | - Tomasz Sacha
- Chair of Haematology, Faculty of Medicine, Jagiellonian University Medical College, 12 Sw. Anny St., 30-008, Krakow, Poland
- Department of Haematology, Jagiellonian University Hospital, 2 Jakubowskiego St., 30-688, Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzyskiego St., 30-348, Krakow, Poland.
- Lukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopiaska St., 30-418, Krakow, Poland.
| |
Collapse
|
11
|
Pandey S, Mahato M, Srinath P, Bhutani U, Goap TJ, Ravipati P, Vemula PK. Intermittent scavenging of storage lesion from stored red blood cells by electrospun nanofibrous sheets enhances their quality and shelf-life. Nat Commun 2022; 13:7394. [PMID: 36450757 PMCID: PMC9712616 DOI: 10.1038/s41467-022-35269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Transfusion of healthy red blood cells (RBCs) is a lifesaving process. However, upon storing RBCs, a wide range of damage-associate molecular patterns (DAMPs), such as cell-free DNA, nucleosomes, free-hemoglobin, and poly-unsaturated-fatty-acids are generated. DAMPs can further damage RBCs; thus, the quality of stored RBCs declines during the storage and limits their shelf-life. Since these DAMPs consist of either positive or negative charged species, we developed taurine and acridine containing electrospun-nanofibrous-sheets (Tau-AcrNFS), featuring anionic, cationic charges and an DNA intercalating group on their surfaces. We show that Tau-AcrNFS are efficient in scavenging DAMPs from stored human and mice RBCs ex vivo. We find that intermittent scavenging of DAMPs by Tau-AcrNFS during the storage reduces the loss of RBC membrane integrity and reduces discocytes-to-spheroechinocytes transformation in stored-old-RBCs. We perform RBC-transfusion studies in mice to reveal that intermittent removal of DAMPs enhances the quality of stored-old-RBCs equivalent to freshly collected RBCs, and increases their shelf-life by ~22%. Such prophylactic technology may lead to the development of novel blood bags or medical device, and may therefore impact healthcare by reducing transfusion-related adverse effects.
Collapse
Affiliation(s)
- Subhashini Pandey
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Manohar Mahato
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Preethem Srinath
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Utkarsh Bhutani
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Tanu Jain Goap
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Priusha Ravipati
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Praveen Kumar Vemula
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| |
Collapse
|
12
|
Vardaki MZ, Georg Schulze H, Serrano K, Blades MW, Devine DV, F B Turner R. Assessing the quality of stored red blood cells using handheld Spatially Offset Raman spectroscopy with multisource correlation analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121220. [PMID: 35395462 DOI: 10.1016/j.saa.2022.121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
In this work we employ Spatially Offset Raman Spectroscopy (SORS) to non-invasively identify storage-related changes in red blood cell concentrate (RCC) in-situ within standard plastic transfusion bags. To validate the measurements, we set up a parallel study comparing both bioanalytical data (obtained by blood-gas analysis, hematology analysis and spectrophotometric assays), and Raman spectrometry data from the same blood samples. We then employ Multisource Correlation Analysis (MuSCA) to correlate the different types of data in RCC. Our analysis confirmed a strong correlation of glucose, methemoglobin and oxyhemoglobin with their respective bioassay values in RCC units. Finally, by combining MuSCA with k-means clustering, we assessed changes in all Raman wavenumbers during cold storage in both RCC Raman data from the current study and parallel RCC supernatant Raman data previously acquired from the same units. Direct RCC quality monitoring during storage, would help to establish a basis for improved inventory management of blood products in blood banks and hospitals based on analytical data.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - H Georg Schulze
- Monte do Tojal, Caixa Postal 128, Hortinhas, Terena 7250-069, Portugal
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, The University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6 T 2B5, Canada; Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6 T 1Z3, Canada; Centre for Innovation, Canadian Blood Services
| | - Michael W Blades
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6 T 1Z1, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, The University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6 T 2B5, Canada; Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6 T 1Z3, Canada; Centre for Innovation, Canadian Blood Services
| | - Robin F B Turner
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6 T 1Z4, Canada; Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6 T 1Z1, Canada; Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
13
|
Vourc’h M, Roquilly A, Foucher A, Retiere C, Feuillet F, Devi S, McWilliam HE, Braudeau C, Bourreille G, Hachani A, O’Kane D, Mueller SN, Ischia J, Roussel JC, Rigal JC, Josien R, Rozec B, Villadangos JA, Asehnoune K. Transfusion-Related Renal Dysfunction After Cardiac Surgery. JACC Basic Transl Sci 2022; 7:627-638. [PMID: 35958696 PMCID: PMC9357562 DOI: 10.1016/j.jacbts.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
Following cardiac surgery, 20% of patients will present with AKI, which is associated with increased mortality, and transfusion increases the risk of AKI. The main objective was to determine whether the composition of transfusion was associated with AKI. In this study, AKI patients received higher amount of MRP_14 through transfusion vs non-AKI. MRP_14 has been reported to activate and enhance neutrophil transmigration into damaged tissues. In a murine model of ischemia-reperfusion, MRP_14 increased renal damage and enhanced neutrophil influx into the kidney. MRP_14 also increased neutrophilic-trogocytosis toward tubular cells. The sex of the donor and the method of preparation of the blood determined the concentration of MRP_14 in packed red blood cells.
Transfusion is a specific cause of acute kidney injury (AKI) after cardiac surgery. Whether there is an association between the composition of blood products and the onset of AKI is unknown. The present study suggests that the transfusion of packed red blood cells containing a high amount of myeloid-related protein 14 (MRP_14) could increase the incidence of AKI after cardiac surgery. In a mouse model, MRP_14 increased the influx of neutrophils in the kidney after ischemia-reperfusion and their ability to damage tubular cells. Higher concentrations of MRP_14 were found in packed red blood cells from female donors or prepared by whole blood filtration.
Collapse
|
14
|
Pulliam KE, Joseph B, Makley AT, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Improving packed red blood cell storage with a high-viscosity buffered storage solution. Surgery 2022; 171:833-842. [PMID: 34974917 PMCID: PMC8887606 DOI: 10.1016/j.surg.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Massive transfusion with older packed red blood cells is associated with increased morbidity and mortality. As packed red blood cells age, they undergo biochemical and structural changes known as the storage lesion. We developed a novel solution to increase viscosity in stored packed red blood cells. We hypothesized that packed red blood cell storage in this solution would blunt storage lesion formation and mitigate the inflammatory response after resuscitation. METHODS Blood was obtained from 8- to 10-week-old C57BL/6 male donor mice or human volunteers and stored as packed red blood cell units for 14 days for mice or 42 days for humans in either standard AS-3 storage solution or EAS-1587, the novel packed red blood cell storage solution. Packed red blood cells were analyzed for microvesicles, cell-free hemoglobin, phosphatidylserine, band-3 protein, glucose utilization, and osmotic fragility. Additional mice underwent hemorrhage and resuscitation with packed red blood cells stored in either AS-3 or EAS-1587. Serum was analyzed for inflammatory markers. RESULTS Murine packed red blood cells stored in EAS-1587 demonstrated reductions in microvesicle and cell-free hemoglobin accumulation as well as preserved band-3 expression, increase glucose utilization, reductions in phosphatidylserine expression, and susceptibility to osmotic stress. Serum from mice resuscitated with packed red blood cells stored in EAS-1587 demonstrated reduced proinflammatory cytokines. Human packed red blood cells demonstrated a reduction in microvesicle and cell-free hemoglobin as well as an increase in glucose utilization. CONCLUSION Storage of packed red blood cells in a novel storage solution mitigated many aspects of the red blood cell storage lesion as well as the inflammatory response to resuscitation after hemorrhage. This modified storage solution may lead to improvement of packed red blood cell storage and reduce harm after massive transfusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A Pritts
- From the Section of General Surgery, Department of Surgery, University of Cincinnati, OH.
| |
Collapse
|
15
|
Narrative Review of Russian, Ukrainian and English-Language Publications Investigating the Effects of Photobiomodulation on Red Blood Cell Physiology. Photobiomodul Photomed Laser Surg 2022; 40:98-111. [DOI: 10.1089/photob.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
16
|
Yoshida T, McMahon E, Croxon H, Dunham A, Gaccione P, Abbasi B, Beckman N, Omert L, Field S, Waters A. The oxygen saturation of red blood cell concentrates: The basis for a novel index of red cell oxidative stress. Transfusion 2021; 62:183-193. [PMID: 34761414 DOI: 10.1111/trf.16715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is a major driving force in the development of storage lesions in red cell concentrates (RCCs). Unlike manufactured pharmaceuticals, differences in component preparation methods and genetic/physiological status of donors result in nonuniform biochemical characteristics of RCCs. Various characteristics of donated blood on oxygen saturation (SO2 ) distribution were investigated, and a model to estimate potential oxidative stress burden of stored RCC at transfusion is proposed. STUDY DESIGN AND METHODS The oxygen content of freshly prepared RCCs (770) was quantified noninvasively as fractional hemoglobin saturation (SO2 ) with visible reflectance spectrometry. Using separate RCCs and mimicking typical handling of RCCs during routine storage, evolution of SO2 was followed for construction of an empirical model. Based on this model, the oxygen exposure index (OEI) was formulated to estimate the accumulated oxygen exposure burden of RCC at the time of transfusion. RESULTS The SO2 of RCCs varied widely at donation (mean 43% ± 1.3%; range 20%-93%). Multivariate regression model showed that sex and processing method had small effects on SO2 (R2 = 0.12), indicating that variability was mainly attributed to other individual donor characteristics. Storage simulation model indicated that median SO2 increased gradually over 6 weeks (approx. 1.3 fold), while OEI increased at a faster rate (approx. eight-fold). CONCLUSION In addition to storage age, the OEI provides a potential new metric to assess the quality of RCCs at the time of transfusion in terms of their oxidative stress. In future studies, a single noninvasive measurement during storage could link OEI to clinical outcomes in transfusion recipients.
Collapse
Affiliation(s)
| | - Emma McMahon
- Irish Blood Transfusion Service, Dublin, Ireland
| | - Harry Croxon
- Irish Blood Transfusion Service, Dublin, Ireland
| | | | | | - Babak Abbasi
- Information Systems and Supply Chain, RMIT University, Melbourne, Victoria, Australia
| | | | | | - Stephen Field
- Irish Blood Transfusion Service, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
17
|
Comparison of Two Alternative Procedures to Obtain Packed Red Blood Cells for β-Thalassemia Major Transfusion Therapy. Biomolecules 2021; 11:biom11111638. [PMID: 34827635 PMCID: PMC8615631 DOI: 10.3390/biom11111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia major (βTM) patients require frequent blood transfusions, with consequences that span from allogenic reactions to iron overload. To minimize these effects, βTM patients periodically receive leucodepleted packed red blood cells (P-RBCs) stored for maximum 14 days. The aim of this study was to compare two alternative routine procedures to prepare the optimal P-RBCs product, in order to identify differences in their content that may somehow affect patients’ health and quality of life (QoL). In method 1, blood was leucodepleted and then separated to obtain P-RBCs, while in method 2 blood was separated and leucodepleted after removal of plasma and buffycoat. Forty blood donors were enrolled in two independent centers; couples of phenotypically matched whole blood units were pooled, divided in two identical bags and processed in parallel following the two methods. Biochemical properties, electrolytes and metabolic composition were tested after 2, 7 and 14 days of storage. Units prepared with both methods were confirmed to have all the requirements necessary for βTM transfusion therapy. Nevertheless, RBCs count and Hb content were found to be higher in method-1, while P-RBCs obtained with method 2 contained less K+, iron and storage lesions markers. Based on these results, both methods should be tested in a clinical perspective study to determine a possible reduction of transfusion-related complications, improving the QoL of βTM patients, which often need transfusions for the entire lifespan.
Collapse
|
18
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
19
|
Klaschik S, Ellerkmann RK, Gehlen J, Frede S, Hilbert T. From bench to bar side: Evaluating the red wine storage lesion. Open Life Sci 2021; 16:872-883. [PMID: 34522781 PMCID: PMC8402936 DOI: 10.1515/biol-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Vitally essential red fluids like packed cells and red wine are seriously influenced in quality when stored over prolonged periods. In the case of red cell concentrates, the resulting storage lesion has particular significance in perioperative medicine. We hypothesized that, in contrast, aging rather improves the properties of red wine in several ways. A translational approach, including (I) in vitro experiments, (II) a randomized, blinded crossover trial of acute clinical effects, and (III) a standardized red wine blind tasting was used. Three monovarietal wines (Cabernet Sauvignon, Chianti, Shiraz) in three different vintages (range 2004-2016), each 5 years different, were assessed. Assessments were performed at a German university hospital (I, II) and on a garden terrace during a mild summer evening (III). Young wines induced cell stress and damage while significantly reducing cytoprotective proteins in HepG2 hepatoma cells. Sympathetic activity and multitasking skills were altered depending on wines' ages. Hangovers tended to be aggravated by young red wine. Aged variants performed better in terms of aroma and overall quality but worse in optical appearance. We found no evidence for a red wine storage lesion. However, we plead for consensus-based guidelines for proper storage, as it is common in clinical medicine.
Collapse
Affiliation(s)
- Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard K. Ellerkmann
- Department of Anesthesiology and Intensive Care Medicine, Dortmund Hospital, Beurhausstrasse 40, 44137 Dortmund, Germany
| | - Jennifer Gehlen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
20
|
Vardaki MZ, Schulze HG, Serrano K, Blades MW, Devine DV, Turner RFB. Non-invasive monitoring of red blood cells during cold storage using handheld Raman spectroscopy. Transfusion 2021; 61:2159-2168. [PMID: 33969894 DOI: 10.1111/trf.16417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The current best practices allow for the red blood cells (RBCs) to be stored for prolonged periods in blood banks worldwide. However, due to the individual-related variability in donated blood and RBCs continual degradation within transfusion bags, the quality of stored blood varies considerably. There is currently no method for assessing the blood product quality without compromising the sterility of the unit. This study demonstrates the feasibility of monitoring storage lesion of RBCs in situ while maintaining sterility using an optical approach. STUDY DESIGN AND METHODS A handheld spatially offset Raman spectroscopy (RS) device was employed to non-invasively monitor hemolysis and metabolic changes in 12 red cell concentrate (RCC) units within standard sealed transfusion bags over 7 weeks of cold storage. The donated blood was analyzed in parallel by biochemical (chemical analysis, spectrophotometry, hematology analysis) and RS measurements, which were then correlated through multisource correlation analysis. RESULTS Raman bands of lactate (857 cm-1 ), glucose (787 cm-1 ), and hemolysis (1003 cm-1 ) were found to correlate strongly with bioanalytical data over the length of storage, with correlation values 0.98 (95% confidence interval [CI]: 0.86-1.00; p = .0001), 0.95 (95% CI: 0.71-0.99; p = .0008) and 0.97 (95% CI: 0.79-1.00; p = .0004) respectively. DISCUSSION This study demonstrates the potential of collecting information on the clinical quality of blood units without breaching the sterility using Raman technology. This could significantly benefit quality control of RCC units, patient safety and inventory management in blood banks and hospitals.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hans Georg Schulze
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Michael W Blades
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robin F B Turner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Marabi PM, Musyoki SK, Amayo A. Evaluation of cellular changes in blood stored for transfusion at Bungoma County Referral Hospital, Kenya. Pan Afr Med J 2021; 38:280. [PMID: 34122707 PMCID: PMC8179984 DOI: 10.11604/pamj.2021.38.280.22327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction during the storage of transfusion blood, it may undergo a series of cellular changes that in speculation could be the reason behind the risk of using prolonged stored blood. It's important therefore to monitor the cellular changes that may reduce its survival and function. The objective was to assess the cellular changes in whole blood stored for transfusion at Bungoma county referral hospital. Methods a single center, prospective and observational study design involving 20 randomly selected donor blood units in citrate phosphate dextrose adenine (CPDA-1) anticoagulant was employed, cellular changes were evaluated for 35 days. The changes were tested using the Celtac F Haematology analyzer. Statistical Analysis of variance was employed in the descriptive statistics. All the investigation was executed using statistical package for social sciences (SPSS V.23). Results were regarded as significant at P<0.05. Results were presented in tables and charts. Results at the end of the 35 days blood storage at blood bank conditions, WBC, RBC, platelets counts and MCHC decreased significantly (P<0.0001, =0.0182, <0.0001, =0.0035). The MCV, HCT and MCH increased significantly (P <0.0001, =0.0003, =0.0115) while HGB had insignificant variance (P =0.4185). Conclusion platelets, WBC, RBC counts, and indices are significantly altered in stored blood especially when stored over two weeks based on most of the cellular components analyzed in this study. The study, therefore, recommends the utilization of fresh blood to avoid the adverse outcome of cellular changes of reserved blood.
Collapse
Affiliation(s)
- Phidelis Maruti Marabi
- Bungoma County Referral Hospital, Bungoma, Kenya.,School of Health Sciences, Kisii University, Kisii, Kenya
| | | | - Angela Amayo
- Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
22
|
Li ZZ, Jia DL, Wang H, Zhou XF, Cheng Y, Duan LS, Yin L, Wei HW, Guo W, Guo JR. To Research the Effects of Storage Time on Autotransfusion based on Erythrocyte Oxygen-Carrying Capacity and Oxidative Damage Characteristics. Cell Transplant 2021; 30:9636897211005683. [PMID: 34000850 PMCID: PMC8135200 DOI: 10.1177/09636897211005683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/15/2022] Open
Abstract
Autotransfusion refers to a blood transfusion method in which the blood or blood components of the patient are collected under certain conditions, returned to himself when the patient needs surgery or emergency after a series of storing and processing. Although autotransfusion can avoid blood-borne diseases and adverse reactions related to allogeneic blood transfusion, a series of structural and functional changes of erythrocytes will occur during extension of storage time, thus affecting the efficacy of clinical blood transfusion. Our research was aimed to explore the change of erythrocyte oxygen-carrying capacity in different storage time, such as effective oxygen uptake (Q), P50, 2,3-DPG, Na+-K+-ATPase, to detect membrane potential, the change of Ca2+, and reactive oxygen species (ROS) change of erythrocytes. At the same time, Western blot was used to detect the expression of Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2) proteins on the cytomembrane, from the perspective of oxidative stress to explore the function change of erythrocytes after different storage time. This study is expected to provide experimental data for further clarifying the functional status of erythrocytes with different preservation time in patients with autotransfusion, achieving accurate infusion of erythrocytes and improving the therapeutic effect of autologous blood transfusion, which has important clinical application value.
Collapse
Affiliation(s)
- Zhen-Zhou Li
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P.R. China
| | - Dong-Lin Jia
- Department of Pain Medicine, Peking University Third Hospital, Beijing, China
| | - Huan Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Xiao-Fang Zhou
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Yong Cheng
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Li-Shuang Duan
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Lei Yin
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Han-Wei Wei
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Wei Guo
- Department of Intensive Care Unit, Anhui Provincial Lujiang County People’s Hospital, Hefei, P.R. China
| | - Jian-Rong Guo
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P.R. China
| |
Collapse
|
23
|
Li ZZ, Wang H, Jia DL, Wang JH, Xu JM, Ma L, Guo JR. Exploration on the effect of predeposit autotransfusion on bone marrow hematopoiesis after femoral shaft fracture. Transfus Clin Biol 2020; 28:25-29. [PMID: 33227454 DOI: 10.1016/j.tracli.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE By observing the changes in the number and activity of CD34+ cells in bone marrow after predeposit autotransfusion (PAT) to patients with femoral shaft fracture (FSF), to evaluate the effects of PAT on hematopoietic function and hematopoietic stem cells in bone marrow. METHODS Selected FSF patients were randomly divided into 2 groups: the control group (patients did not receive blood transfusion after surgery) and PAT group (patients received PAT after surgery). The content of RBC and Plt in blood samples were counted by blood routine. The cell cycle and proportion of CD34+ myelinated cells in blood samples was analyzed by flow cytometry. The telomere DNA length of hematopoietic stem cells (HSCs) in the control groups and PAT group at postoperation 24 was analyzed by southern blot. RESULTS The content of RBC and Plt in postoperation 6h and 24h in the control group was evidently higher compared to that in PAT group, while Hb content in control group was significantly lower compared to that in PAT group. The proportion of CD34+ myelinated cells in post-transfusion 6h and postoperation 24h in PAT group was evidently higher compared to that in the control group. In PAT group, S phase at postoperation 24h was significantly larger compared to that at post-transfusion 6h. The telomere DNA length of HSCs in PAT group was longer than that in the control group. CONCLUSION PAT can increase the number of HSC, while does not cause the abnormal aging of HSCs. PAT is suitable for postoperative blood transfusion of patients with FSF.
Collapse
Affiliation(s)
- Zhen-Zhou Li
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Huan Wang
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China
| | - Dong-Lin Jia
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, PR China
| | - Jin-Huo Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jia-Ming Xu
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Li Ma
- Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China
| | - Jian-Rong Guo
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai 200135, PR China; Department of Anesthesiology, Shanghai Gongli Hospital, the Naval Military Medical University, Shanghai 200135, PR China.
| |
Collapse
|
24
|
Reilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, Ramadan M, Luban NLC, Posnack NG. Potential Consequences of the Red Blood Cell Storage Lesion on Cardiac Electrophysiology. J Am Heart Assoc 2020; 9:e017748. [PMID: 33086931 PMCID: PMC7763412 DOI: 10.1161/jaha.120.017748] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.
Collapse
Affiliation(s)
- Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Chantal D. Bruno
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Division of Critical Care MedicineChildren’s National HospitalWashingtonDC
| | - Tomas M. Prudencio
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Raj Nair
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
| | - Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Naomi L. C. Luban
- Division of Hematology and Laboratory MedicineChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of PathologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of Pharmacology & PhysiologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| |
Collapse
|
25
|
Sex-related aspects of the red blood cell storage lesion. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:224-236. [PMID: 33085592 DOI: 10.2450/2020.0141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several factors contribute to the manifestation of red blood cell (RBC) storage lesions, with one of the most interesting being the "donor variation effect". Since many haematological characteristics of blood donors are sex-dependent, sex hormones and their age-dependent variation may affect the storage profile of RBCs. MATERIALS AND METHODS Fresh blood from 200 healthy male and female donors underwent haematological, biochemical and physiological analysis. Three selected groups of donors (men, n=8; pre-menopausal women, n=8; and post-menopausal women, n=4) exhibiting as similar as possible baseline values were recruited for blood donation in leukoreduced CPD/SAGM units. RBC indices, haemolysis and propensity for haemolysis, reactive oxygen species (ROS) and plasma antioxidant capacity were measured bi-weekly. RESULTS Female blood was characterised by lower plasma antioxidant capacity and free haemoglobin (Hb) levels in vivo, in spite of the higher RBC osmotic fragility, compared to male blood. Comparatively low Hb concentration was also measured in stored RBCs from female donors, as in vivo. Mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and plasma antioxidant capacity were also lower in female donors throughout storage, even though baseline levels were equal to those of the male group. There was no difference in propensity of stored RBCs for haemolysis between male and female units but intracellular ROS levels were significantly lower in female RBCs. Increased end-of-storage extracellular potassium and recruitment of protein stress markers (clusterin, Hb) to the RBC membrane were observed in the units of post- vs pre-menopausal female donors at mid-storage onwards. DISCUSSION Donor's sex has an impact on Hb concentration and redox parameters of stored RBCs. In addition, menopause seems to promote RBC membrane remodelling, at least during prolonged storage. Our pilot study provides new insights on the different effects on RBC storage lesion according to sex.
Collapse
|
26
|
Pulliam KE, Joseph B, Makley AT, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Washing packed red blood cells decreases red blood cell storage lesion formation. Surgery 2020; 169:666-670. [PMID: 32847673 DOI: 10.1016/j.surg.2020.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transfusion of blood products is the ideal resuscitative strategy after hemorrhage. Unfortunately, older packed red blood cells have been associated with increased morbidity and mortality after massive transfusion. These packed red blood cells accumulate biochemical and structural changes known as the red blood cell storage lesions. The effect of washing on the formation of red blood cell storage lesions is unknown. We hypothesized that washing packed red blood cells during storage would decrease the development of the red blood cell storage lesions. METHODS Blood from 8- to 10-week-old male mice donors was stored as packed red blood cells for 14 days. A subset of packed red blood cells were washed with phosphate-buffered saline on storage day 7 and resuspended in AS-1 solution for an additional 7 days as washed packed red blood cells. Subsequently, the packed red blood cells were analyzed for microvesicle release, band-3 erythrocyte membrane integrity protein (Band-3), expression of phosphatidylserine, cell viability (calcein), accumulation of cell-free hemoglobin, and osmotic fragility. RESULTS In the washed packed red blood cells group, there was less microvesicle accumulation, greater Band-3 expression, less phosphatidylserine expression, a decrease in cell-free hemoglobin accumulation, and a decrease in osmotic fragility, but no differences in red blood cells viability. CONCLUSION Washing packed red blood cells during storage decreases the accumulation of red blood cell storage lesions. This strategy may lessen the sequelae associated with transfusion of older packed red blood cells.
Collapse
Affiliation(s)
- Kasiemobi E Pulliam
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Bernadin Joseph
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Amy T Makley
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Charles C Caldwell
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Alex B Lentsch
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Michael D Goodman
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH
| | - Timothy A Pritts
- Department of Surgery, Section of General Surgery, University of Cincinnati, OH.
| |
Collapse
|
27
|
Lu M, Shevkoplyas SS. Dynamics of shape recovery by stored red blood cells during washing at the single cell level. Transfusion 2020; 60:2370-2378. [PMID: 32748970 DOI: 10.1111/trf.15979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hypothermic storage transforms red blood cells (RBC) from smooth biconcave discocytes into increasingly spherical spiculated echinocytes and, ultimately, fragile spherocytes (S). Individual cells undergo this transformation at different rates, producing a heterogeneous mixture of RBCs at all stages of echinocytosis in each unit of stored blood. Here we investigated how washing (known to positively affect RBC properties) changes morphology of individual RBCs at the single-cell level. STUDY DESIGN AND METHODS We tracked the change in shape of individual RBCs (n = 2870; drawn from six 4- to 6-week-old RBC units) that were confined in an array of microfluidic wells during washing in saline (n = 1095), 1% human serum albumin (1% HSA) solution (n = 999), and the autologous storage supernatant (control, n = 776). RESULTS Shape recovery proceeded through the disappearance of spicules followed by the progressive smoothening of the RBC contour, with the majority of changes occurring within the initial 10 minutes of being exposed to the washing solution. Approximately 57% of all echinocytes recovered by at least one morphologic class when washed in 1% HSA (36% for normal saline), with 3% of cells in late-stage echinocytosis restoring their discoid shape completely. Approximately one-third of all spherocytic cells were lysed in either washing solution. Cells washed in their autologous storage supernatant continued to deteriorate during washing. CONCLUSION Our findings suggest that the replacement of storage supernatant with a washing solution during washing induces actual shape recovery for RBCs in all stages of echinocytosis, except for S that undergo lysis instead.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | | |
Collapse
|
28
|
Pulliam KE, Joseph B, Morris MC, Veile RA, Schuster RM, Makley AT, Pritts TA, Goodman MD. Innate coagulability changes with age in stored packed red blood cells. Thromb Res 2020; 195:35-42. [PMID: 32652351 DOI: 10.1016/j.thromres.2020.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Packed red blood cell (pRBC) units administered during resuscitation from hemorrhagic shock are of varied storage ages. We have previously shown that RBC-derived microparticles' impact on thrombogenesis. However, the impact of storage age on pRBC coagulability is unknown. Therefore, we sought to investigate the effect of storage age on innate coagulability and aggregability of stored pRBCs. METHODS pRBCs prepared from male C57BL/6J mice were stored in Additive Solution-3 according to our standardized murine blood banking protocols for 14 days. Rotational thromboelastometry (ROTEM) was used to assess the innate coagulation status of fresh and 14-day old pRBCs. Viscoelastic coagulation parameters of clotting time (CT), clot formation time (CFT), alpha angle, and maximum clot firmness (MCF) were analyzed to determine coagulability. Plasma was added to the fresh pRBCs and 15-day old pRBCs to determine if the storage-associated coagulopathy was reversible with plasma. Statistical analyses were conducted with a Student's t-test. RESULTS Fifteen-day old pRBCs demonstrated a significant reduction in MCF (10.3 vs. 24.4 mm, P-value <0.001) and alpha angle (6.0 vs. 27.2 degrees, P-value <0.001) as well as significant prolongation of CFT and CT (1126.5 vs. 571.4 s, P-value <0.001) compared to fresh pRBCs. FFP addition to 15-day old and fresh pRBCs, demonstrated a significant reduction in MCF and persistent prolongation of CFT. This suggests that pRBCs lost coagulability as they aged and this deficit was not completely corrected by plasma administration. CONCLUSIONS Storage duration may be an important factor in coagulation potential of pRBCs. Transfusion with older pRBCs may contribute to coagulopathy in massively transfused patients.
Collapse
Affiliation(s)
- Kasiemobi E Pulliam
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Bernadin Joseph
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Mackenzie C Morris
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Rosalie A Veile
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Rebecca M Schuster
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Amy T Makley
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Timothy A Pritts
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| | - Michael D Goodman
- Section of General Surgery, Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, OH 45267-0558, United States of America.
| |
Collapse
|
29
|
Neutrophils acquire antigen-presenting cell features after phagocytosis of IgG-opsonized erythrocytes. Blood Adv 2020; 3:1761-1773. [PMID: 31182561 DOI: 10.1182/bloodadvances.2018028753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are particularly well known for their antimicrobial function. Although historically they are regarded as strictly a phagocyte of the innate immune system, over time it has become clear that neutrophils are versatile cells with numerous functions including innate and adaptive immune regulation. We have previously described a role for human neutrophils in antibody-mediated red blood cell (RBC) clearance. Under homeostatic conditions, neutrophils do not take up RBCs. Yet, when RBCs are immunoglobulin G (IgG) opsonized, which can occur in alloimmunization or autoimmunization reactions, neutrophils can effectively phagocytose RBCs. In the present study, we show that human neutrophils acquire an antigen-presenting cell (APC) phenotype following RBC phagocytosis. Subsequent to RBC phagocytosis, neutrophils expressed major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40 and CD80. Moreover, in classical APCs, the respiratory burst is known to regulate antigen presentation. We found that the respiratory burst in neutrophils is reduced after IgG-mediated RBC phagocytosis. Additionally, following RBC phagocytosis, neutrophils were demonstrated to elicit an antigen-specific T-cell response, using tetanus toxoid (TT) as an antigen to elicit an autologous TT-specific CD4+ T-cell response. Lastly, although the "don't eat me" signal CD47 is known to have a powerful restrictive role in the activation of immunity against RBCs in dendritic cells, CD47 does not seem to have a significant effect on the antigen-presenting function of neutrophils in this context. Overall, these findings reveal that besides their classical antimicrobial role, neutrophils show plasticity in their phenotype.
Collapse
|
30
|
Kaczmarska M, Grosicki M, Bulat K, Mardyla M, Szczesny-Malysiak E, Blat A, Dybas J, Sacha T, Marzec KM. Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102221. [PMID: 32438105 DOI: 10.1016/j.nano.2020.102221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/27/2020] [Accepted: 04/26/2020] [Indexed: 12/22/2022]
Abstract
Based on the multimodal characterization of human red blood cells (RBCs), the link between the storage-related sequence of the nanoscale changes in RBC membranes in the relation to their biochemical profile as well as mechanical and functional properties was presented. On the background of the accumulation of RBCs waste products, programmed cell death and impaired rheological properties, progressive alterations in the RBC membranes including changes in their height and diameter as well as the in situ characterization of RBC-derived microparticles (RMPs) on the RBCs surface were presented. The advantage of atomic force microscopy (AFM) in RMPs visualization, even at the very early stage of vesiculation, was shown based on the results revealed by other reference techniques. The nanoscale characterization of RMPs was correlated with a decrease in cholesterol and triglycerides levels in the RBC membranes, proving the link between the lipids leakage from RBCs and the process of vesiculation.
Collapse
Affiliation(s)
- Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Mateusz Mardyla
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland; Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Aneta Blat
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Tomasz Sacha
- Chair and Department of Hematology, Jagiellonian University Hospital, Krakow, Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
31
|
Nnamdi OH, Ijeoma UR, Gilbert NL, Toochukwu EH, Ositadinma US. In vitro assessment of time-dependent changes in red cell cytoplasmic antioxidants of donkey blood preserved in citrate phosphate dextrose adenine 1 anticoagulant. Vet World 2020; 13:726-730. [PMID: 32546917 PMCID: PMC7245712 DOI: 10.14202/vetworld.2020.726-730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Aim: Stored blood is continuously exposed to oxidative stress, which affects its antioxidant protective system. Erythrocytes are naturally armed with antioxidant protective capacity. Blood antioxidant system functions to protect the blood cells against oxidative damage by free radicals. However, during storage, blood is continuously exposed to oxidative stress, which affects its antioxidant system. The aim of this work was to investigate alteration in malondialdehyde (MDA) levels, reduced glutathione (glutathione reductase [GSH-Rd]), catalase (CAT), and superoxide dismutase (SOD) activities in stored donkey blood. Materials and Methods: Blood (250 ml) was drawn from four clinically healthy donkeys into citrate phosphate dextrose adenine 1 blood bags and preserved at 4°C. MDA, GSH-Rd, CAT, and SOD activities were assayed by colorimetric methods, over a period of 42 days. Results: The result showed that SOD enzyme activities significantly (p<0.05) increased by day 7 post-storage (PS) while MDA levels significantly (p<0.05) increased by day 21 PS. However, activities of GSH-Rd and CAT enzymes decreased (p<0.05) by day 21 PS. Pearson’s product-moment correlation showed a negative correlation between the levels of MDA and enzymatic antioxidant markers (CAT and GSH-Rd). Conclusion: The findings revealed that GSH-Rd and CAT are the primary antioxidant defense markers in donkey red blood cells. The observed alterations in these principal antioxidants suggest a 14days optimum keeping time of donkey blood for blood banking purposes.
Collapse
Affiliation(s)
- Okereke Henry Nnamdi
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria
| | - Udegbunam Rita Ijeoma
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria
| | - Nwobi Lotanna Gilbert
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria
| | - Ezeobialu Henry Toochukwu
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria
| | - Udegbunam Sunday Ositadinma
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria.,Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Nigeria, Enugu State, Nigeria
| |
Collapse
|
32
|
Applefeld WN, Wang J, Solomon SB, Sun J, Klein HG, Natanson C. RBC Storage Lesion Studies in Humans and Experimental Models of Shock. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:1838. [PMID: 38362479 PMCID: PMC10868675 DOI: 10.3390/app10051838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The finding of toxicity in a meta-analysis of observational clinical studies of transfused longer stored red blood cells (RBC) and ethical issues surrounding aging blood for human studies prompted us to develop an experimental model of RBC transfusion. Transfusing older RBCs during canine pneumonia increased mortality rates. Toxicity was associated with in vivo hemolysis with release of cell-free hemoglobin (CFH) and iron. CFH can scavenge nitric oxide, causing vasoconstriction and endothelial injury. Iron, an essential bacterial nutrient, can worsen infections. This toxicity was seen at commonly transfused blood volumes (2 units) and was altered by the severity of pneumonia. Washing longer-stored RBCs mitigated these detrimental effects, but washing fresh RBCs actually increased them. In contrast to septic shock, transfused longer stored RBCs proved beneficial in hemorrhagic shock by decreasing reperfusion injury. Intravenous iron was equivalent in toxicity to transfusion of longer stored RBCs and both should be avoided during infection. Storage of longer-stored RBCs at 2 °C instead of higher standard temperatures (4-6 °C) minimized the release of CFH and iron. Haptoglobin, a plasma protein that binds CFH and increases its clearance, minimizes the toxic effects of longer-stored RBCs during infection and is a biologically plausible novel approach to treat septic shock.
Collapse
Affiliation(s)
- Willard N. Applefeld
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Jeffrey Wang
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Steven B. Solomon
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| | - Harvey G. Klein
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | - Charles Natanson
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892-1662, USA
| |
Collapse
|
33
|
Yi X, Liu M, Wang J, Luo Q, Zhuo H, Yan S, Wang D, Han Y. Effect of phase-change material blood containers on the quality of red blood cells during transportation in environmentally-challenging conditions. PLoS One 2020; 15:e0227862. [PMID: 31995595 PMCID: PMC6988926 DOI: 10.1371/journal.pone.0227862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/01/2020] [Indexed: 11/29/2022] Open
Abstract
Background The effect of phase-change material blood containers on the quality of stored red blood cells (RBCs) transported in the Qinghai-Tibet Plateau remains to be studied. Study design and methods RBCs stored in a phase-change material blood container were transported from Chengdu to Tibet and then back to Chengdu. The detection time points were the 1st day of fresh-collected RBCs (group 1), the 14th day of resting refrigerated storage (group 2), and the 14th day of plateau transportation under refrigerated storage in the container (group 3). RBC counts, hemoglobin (HGB) content, free hemoglobin (FHb) content, blood biochemical indexes, hemorheologic indexes and 2,3-DPG content were detected. Results Compared with group 2, RBC counts and HGB were decreased, and the mean corpuscular volume (MCV), FHb and K+ content were increased in group 3. The glucose consumption and lactic acid production were significantly increased in groups 2 and 3. Compared with group 2, the 2,3-DPG content and whole blood viscosity were decreased in group 3. After resting refrigerated storage and plateau transportation, the RBC quality still met the national standard (GB18469-2012 whole blood and component blood quality requirements). Conclusion The phase-change material blood container can be maintained at a constant temperature under plateau environmental conditions, ensuring that the quality of the stored RBCs is compliant with GB18469-2012 whole blood and component blood quality requirements.
Collapse
Affiliation(s)
- Xiaoyang Yi
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Minxia Liu
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Jiexi Wang
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Qun Luo
- Transfusion Department, Beijing, China
| | | | - Shaoduo Yan
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
| | - Donggen Wang
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
- * E-mail: (DW); (YH)
| | - Ying Han
- Beijing Key Laboratory of Blood Safety Supply Technologies, Key Laboratory of Blood Safety Supply Technologies of PLA, Institute of Transfusion Medicine, Academy of Military Medical Science, Beijing, China
- * E-mail: (DW); (YH)
| |
Collapse
|
34
|
Early Oxidative Stress Response in Patients with Severe Aortic Stenosis Undergoing Transcatheter and Surgical Aortic Valve Replacement: A Transatlantic Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6217837. [PMID: 31827686 PMCID: PMC6881568 DOI: 10.1155/2019/6217837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Myocardial ischemia/reperfusion-related oxidative stress as a result of cardiopulmonary bypass is thought to contribute to the adverse clinical outcomes following surgical aortic valve replacement (SAVR). Although the acute response following this procedure has been well characterized, much less is known about the nature and extent of oxidative stress induced by the transcatheter aortic valve replacement (TAVR) procedure. We therefore sought to examine and directly compare the oxidative stress response in patients undergoing TAVR and SAVR. A total of 60 patients were prospectively enrolled in this exploratory study, 38 patients undergoing TAVR and 22 patients SAVR. Reduced and oxidized glutathione (GSH, GSSG) in red blood cells as well as the ferric-reducing ability of plasma (FRAP) and plasma concentrations of 8-isoprostanes were measured at baseline (S1), during early reperfusion (S2), and 6-8 hours (S3) following aortic valve replacement (AVR). TAVR and SAVR were successful in all patients. Patients undergoing TAVR were older (79.3 ± 9.5 vs. 74.2 ± 4.1 years; P < 0.01) and had a higher mean STS risk score (6.6 ± 4.8 vs. 3.2 ± 3.0; P < 0.001) than patients undergoing SAVR. At baseline, FRAP and 8-isoprostane plasma concentrations were similar between the two groups, but erythrocytic GSH concentrations were significantly lower in the TAVR group. After AVR, FRAP was markedly higher in the TAVR group, whereas 8-isoprostane concentrations were significantly elevated in the SAVR group. In conclusion, TAVR appears not to cause acute oxidative stress and may even improve the antioxidant capacity in the extracellular compartment.
Collapse
|
35
|
Gómez Bardón R, Passos A, Piergiovanni M, Balabani S, Pennati G, Dubini G. Haematocrit heterogeneity in blood flows past microfluidic models of oxygenating fibre bundles. Med Eng Phys 2019; 73:30-38. [DOI: 10.1016/j.medengphy.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
|
36
|
Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech 2019; 9:279. [PMID: 31245243 DOI: 10.1007/s13205-019-1807-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.
Collapse
|
37
|
Zhang J, Chen S, Yan Y, Zhu X, Qi Q, Zhang Y, Zhang Q, Xia R. Extracellular Ubiquitin is the Causal Link between Stored Blood Transfusion Therapy and Tumor Progression in a Melanoma Mouse Model. J Cancer 2019; 10:2822-2835. [PMID: 31258790 PMCID: PMC6584930 DOI: 10.7150/jca.31360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/28/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The transfusion of blood that has been stored for some time was found to be associated with transfusion-related immune modulation (TRIM) responses in cancer patients, which could result in poor clinical outcomes, such as tumor recurrence, metastasis and reduced survival rate. Given the prior observation of the positive correlation between ubiquitin content in whole blood and storage duration by the investigators of the present study, it was hypothesized that this could be the causal link behind the association between the transfusion of stored blood and poor cancer prognosis. Methods: In the present study, a melanoma mouse model was used to study the potential clinical impact of ubiquitin present in stored blood on cancer prognosis through a variety of cell biology methods, such as flow cytometry and immunohistochemistry. Results: Both extracellular ubiquitin and the infusion of stored mice blood that comprised of ubiquitin reduced the apoptotic rate of melanoma cells, promoted lung tumor metastasis and tumor progression, and reduced the long-term survival rate of melanoma mice. In addition, the upregulation of tumor markers and tumorigenic TH2 cytokine generation, as well as reduced immune cell numbers, were observed in the presence of ubiquitin. Conclusions: The present findings provide novel insights into the role of ubiquitin in immune regulation in a melanoma mouse model, and suggest ubiquitin as the causal link between allogeneic blood transfusion therapy and poor cancer prognosis.
Collapse
Affiliation(s)
- Jingjun Zhang
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhong Yan
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinfang Zhu
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Qi
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Oncology, People's Hospital of Pudong District, Shanghai, China
| | - Qi Zhang
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Nnamdi OH, Ijeoma UR, Okaforx NT. Stability of hematological parameters of canine blood samples stored with citrate phosphate dextrose adenine-1 anticoagulated plastic vacutainers. Vet World 2019; 12:449-453. [PMID: 31089316 PMCID: PMC6487247 DOI: 10.14202/vetworld.2019.449-453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: The effect of citrate phosphate dextrose adenine-1 on the hematological parameters of stored Nigerian indigenous dog’s blood with plastic vacutainer was investigated. This was done in view of determining the viability and stability of the studied parameters for blood banking purpose. Till date, there is no literature on the stability of whole blood of Nigerian indigenous dogs for blood banking purposes. Materials and Methods: A total of six apparently adult healthy dogs were sampled, and their blood was stored at 4°C and analyzed for their packed cell volume (PCV), hemoglobin (Hgb) concentration, red blood cell (RBC) count, total and differential white blood cell (WBC) count, platelet count (PC), mean corpuscular values (mean corpuscular Hgb [MCH], MCH concentration, and mean corpuscular volume [MCV]), blood potency of hydrogen (pH), and erythrocyte sedimentation rate (ESR) over a period of 14 days. Results: Significant changes were observed in some of the studied parameters. Of the 14 days’ study period, PCV, Hgb concentration, total WBC count, PC, and neutrophil count showed no significant (p≥0.05) difference until day 2 post-storage (PS), while RBC count, ESR, MCV, and lymphocyte count showed no significant (p≥0.05) variation up until day 3 PS. Blood pH showed no significant (p≥0.05) variation within 24-h PS but was significantly (p≤0.05) higher than obtained values on days 1, 3, 7, 10, and 14 PS. Conclusion: Based on our finding, we could suggest that hematological laboratories and hemotherapists could use canine blood stored in a plastic vacutainer for 2-3 days.
Collapse
Affiliation(s)
- Okereke Henry Nnamdi
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Udegbunam Rita Ijeoma
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Nnaji Theophilus Okaforx
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
39
|
Rydén J, Clements M, Hellström-Lindberg E, Höglund P, Edgren G. A longer duration of red blood cell storage is associated with a lower hemoglobin increase after blood transfusion: a cohort study. Transfusion 2019; 59:1945-1952. [PMID: 30793325 DOI: 10.1111/trf.15215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND RBC concentrates are commonly stored for up to 42 days but there has been conflicting evidence on the effect of storage duration and clinical outcomes. Most clinical studies have focused on possible associations between duration of storage time and risk for adverse outcomes, including mortality. Recent clinical trials did not find any such associations, but fewer studies have addressed whether storage time affects component efficacy. The main aim of this study was to determine the effect of RBC storage time on hemoglobin increment in transfused patients. STUDY DESIGN AND METHODS Transfusion data on a cohort of patients with myelodysplastic syndromes were linked to hemoglobin measurements taken between 2 days before and 28 days after a transfusion episode. We applied a mixed-effect linear regression model, accounting for patient characteristics and time from transfusion to next hemoglobin measurement, to study the effect of RBC storage on the hemoglobin increment. RESULTS The study population consisted of 225 patients who received 6437 RBC units. Compared to units stored less than 5 days, transfusion of blood units stored 5 to 9, 10 to 19, 20 to 29, or 30 or more days resulted in hemoglobin increases that were 0.83 (95% confidence interval [CI], 0.24-1.41), 0.92 (95% CI, 0.34-1.51), 1.33 (95% CI, 0.65-2.02) and 1.51 (95% CI, 0.58-2.43) g/L lower, respectively, per RBC unit. Results were consistent in sensitivity analyses. CONCLUSIONS Longer RBC storage was associated with a smaller increase in hemoglobin concentration after transfusion. Although statistically significant, the effect was modest, and its clinical relevance in subgroups of patients should be investigated in prospective clinical trials.
Collapse
Affiliation(s)
- Jenny Rydén
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Edgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
40
|
Jones AR, Patel RP, Marques MB, Donnelly JP, Griffin RL, Pittet JF, Kerby JD, Stephens SW, DeSantis SM, Hess JR, Wang HE. Older Blood Is Associated With Increased Mortality and Adverse Events in Massively Transfused Trauma Patients: Secondary Analysis of the PROPPR Trial. Ann Emerg Med 2018; 73:650-661. [PMID: 30447946 DOI: 10.1016/j.annemergmed.2018.09.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
STUDY OBJECTIVE The transfusion of older packed RBCs may be harmful in critically ill patients. We seek to determine the association between packed RBC age and mortality among trauma patients requiring massive packed RBC transfusion. METHODS We analyzed data from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios trial. Subjects in the parent trial included critically injured adult patients admitted to 1 of 12 North American Level I trauma centers who received at least 1 unit of packed RBCs and were predicted to require massive blood transfusion. The primary exposure was volume of packed RBC units transfused during the first 24 hours of hospitalization, stratified by packed RBC age category: 0 to 7 days, 8 to 14 days, 15 to 21 days, and greater than or equal to 22 days. The primary outcome was 24-hour mortality. We evaluated the association between transfused volume of each packed RBC age category and 24-hour survival, using random-effects logistic regression, adjusting for total packed RBC volume, patient age, sex, race, mechanism of injury, Injury Severity Score, Revised Trauma Score, clinical site, and trial treatment group. RESULTS The 678 patients included in the analysis received a total of 8,830 packed RBC units. One hundred patients (14.8%) died within the first 24 hours. On multivariable analysis, the number of packed RBCs greater than or equal to 22 days old was independently associated with increased 24-hour mortality (adjusted odds ratio [OR] 1.05 per packed RBC unit; 95% confidence interval [CI] 1.01 to 1.08): OR 0.97 for 0 to 7 days old (95% CI 0.88 to 1.08), OR 1.04 for 8 to 14 days old (95% CI 0.99 to 1.09), and OR 1.02 for 15 to 21 days old (95% CI 0.98 to 1.06). Results of sensitivity analyses were similar only among patients who received greater than or equal to 10 packed RBC units. CONCLUSION Increasing quantities of older packed RBCs are associated with increased likelihood of 24-hour mortality in trauma patients receiving massive packed RBC transfusion (≥10 units), but not in those who receive fewer than 10 units.
Collapse
Affiliation(s)
- Allison R Jones
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL.
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Marisa B Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John P Donnelly
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI
| | - Russell L Griffin
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI
| | | | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shannon W Stephens
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Stacia M DeSantis
- Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX
| | - John R Hess
- Department of Laboratory Medicine, Harborview Medical Center, Seattle, WA
| | - Henry E Wang
- Department of Emergency Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | | |
Collapse
|
41
|
Hwang S, Mruk K, Rahighi S, Raub AG, Chen CH, Dorn LE, Horikoshi N, Wakatsuki S, Chen JK, Mochly-Rosen D. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat Commun 2018; 9:4045. [PMID: 30279493 PMCID: PMC6168459 DOI: 10.1038/s41467-018-06447-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human genetic enzymopathies, is caused by over 160 different point mutations and contributes to the severity of many acute and chronic diseases associated with oxidative stress, including hemolytic anemia and bilirubin-induced neurological damage particularly in newborns. As no medications are available to treat G6PD deficiency, here we seek to identify a small molecule that corrects it. Crystallographic study and mutagenesis analysis identify the structural and functional defect of one common mutant (Canton, R459L). Using high-throughput screening, we subsequently identify AG1, a small molecule that increases the activity of the wild-type, the Canton mutant and several other common G6PD mutants. AG1 reduces oxidative stress in cells and zebrafish. Furthermore, AG1 decreases chloroquine- or diamide-induced oxidative stress in human erythrocytes. Our study suggests that a pharmacological agent, of which AG1 may be a lead, will likely alleviate the challenges associated with G6PD deficiency. Glucose-6-phosphate dehydrogenase (G6PD) deficiency provides insufficient protection from oxidative stress, contributing to diverse human pathologies. Here, the authors identify a small molecule that increases the activity and/or stability of mutant G6PD and show that it reduces oxidative stress in zebrafish and hemolysis in isolated human erythrocytes.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen Mruk
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,University of Wyoming School of Pharmacy, 1000 E. University Ave., HS 596, Laramie, WY, 82071, USA
| | - Simin Rahighi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618, USA
| | - Andrew G Raub
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa E Dorn
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,The Ohio State University College of Medicine, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Naoki Horikoshi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025-7015, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
42
|
Guo WJ, Wang JQ, Zhang WJ, Wang WK, Xu D, Luo P. Hidden blood loss and its risk factors after hip hemiarthroplasty for displaced femoral neck fractures: a cross-sectional study. Clin Interv Aging 2018; 13:1639-1645. [PMID: 30237699 PMCID: PMC6136912 DOI: 10.2147/cia.s174196] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Several authors have reported the degree of total blood loss (TBL) following hemiarthroplasty for displaced femoral neck fracture; however, the research specifically investigating on hidden blood loss (HBL) after hip hemiarthroplasty is still lacking. The purpose of this study is to evaluate the HBL in patients who underwent hip hemiarthroplasty for displaced femoral neck fractures and to analyze its risk factors. Patients and methods From January 2015 to December 2016, 212 patients (57 males and 155 females) with displaced femoral neck fracture undergoing hip hemiarthroplasty were included in this study. The demographic and relevant clinical information of the patients were collected. According to the Gross’s formula, each patient’s height, weight, and preoperative and postoperative hematocrit were recorded and used for calculating the total perioperative blood loss and HBL. Risk factors were further analyzed by multivariate linear regression. Results The HBL was 525±217 mL, with 61.0%±13.6% in the total perioperative blood loss (859±289 mL), and the perioperative hemoglobin (Hb) loss was 23.8±7.4 g/L. Multivariate linear regression analysis revealed that HBL was positively associated with higher American Society of Anesthesiologists (ASA) classification (regression coefficient=62.169, 95% CI=15.616–108.722; P=0.009), perioperative gastrointestinal bleeding/ulcer (regression coefficient=155.589, 95% CI=38.095–273.083; P=0.010), and transfusion (regression coefficient=192.118, 95% CI=135.578–248.659; P<0.001). Compared with females, males had a risk of increased HBL (regression coefficient=87.414, 95% CI=28.547–146.280; P=0.004), and general anesthesia had an increased HBL compared with spinal anesthesia (regression coefficient=68.920, 95% CI=11.707–126.134; P=0.018). Conclusion HBL should not be ignored in patients who underwent hip hemiarthroplasty for displaced femoral neck fractures in the perioperative period, because it is a significant portion of TBL. Female patients, patients with higher ASA classification and perioperative gastrointestinal bleeding/ulcer, patients who were administered general anesthesia, or patients who underwent transfusion had a greater amount of HBL after hip hemiarthroplasty was performed. Having a correct understanding of HBL may help surgeons improve clinical assessment capabilities and ensure patients’ safety.
Collapse
Affiliation(s)
- Wei-Jun Guo
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Ji-Qi Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Wei-Jiang Zhang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China,
| | - Wei-Kang Wang
- Department of Orthopedics Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Ding Xu
- Department of Orthopedics Trauma Surgery, RWTH Aachen University, Aachen, Germany
| | - Peng Luo
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China,
| |
Collapse
|
43
|
Abstract
We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.
Collapse
Affiliation(s)
- E Du
- Correspondence: ; Tel.: +1-561-297-3441
| | | | | |
Collapse
|
44
|
Green RS, Erdogan M, Lacroix J, Hébert PC, Tinmouth AT, Sabri E, Zhang T, Fergusson DA, Turgeon AF. Age of transfused blood in critically ill adult trauma patients: a prespecified nested analysis of the Age of Blood Evaluation randomized trial. Transfusion 2018; 58:1846-1854. [PMID: 29672869 DOI: 10.1111/trf.14640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Blood transfusion is common in the resuscitation of patients with traumatic injury. However, the clinical impact of the length of storage of transfused blood is unclear in this population. STUDY DESIGN AND METHODS We undertook a prespecified nested analysis of 372 trauma victims of the 2510 critically ill patients from 64 centers treated as part of the Age of Blood Evaluation (ABLE) randomized controlled trial. Patients were randomized according to their trauma status to receive either a transfusion of fresh blood stored not more than 7 days or standard-issue blood. Our primary outcome was 90-day all-cause mortality. RESULTS Overall, 186 trauma patients received fresh blood and 186 received standard-issue blood. Adherence to transfusion protocol was 94% (915/971) for all fresh blood transfused and 100% (753/753) for all standard-issue blood transfused. Mean ± SD blood storage duration was 5.6 ± 3.8 days in the fresh group and 22.7 ± 8.4 days in the standard-issue group (p < 0.001). Ninety-day mortality in the fresh group was 21% (38/185), compared to 16% (29/184) in the standard-issue group, with an unadjusted absolute risk difference of 5% (95% confidence interval [CI], -3.1 to 12.6) and an adjusted absolute risk difference of 2% (95% CI, -3.5 to 6.8). CONCLUSION In critically ill trauma patients, transfusion of fresh blood did not decrease 90-day mortality or secondary outcomes, a finding similar to the overall population of the ABLE trial.
Collapse
Affiliation(s)
- Robert S Green
- Department of Critical Care, Dalhousie University, Halifax, Nova Scotia, Canada.,Trauma Nova Scotia, NS Department of Health and Wellness, Halifax, Nova Scotia, Canada
| | - Mete Erdogan
- Trauma Nova Scotia, NS Department of Health and Wellness, Halifax, Nova Scotia, Canada
| | - Jacques Lacroix
- Department of Pediatrics, Division of Critical Care Medicine, Université de Montréal, Centre Hospitalier Universitaire (CHU) Sainte Justine
| | - Paul C Hébert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Alan T Tinmouth
- Departments of Medicine and Laboratory Medicine & Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elham Sabri
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tinghua Zhang
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexis F Turgeon
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec City, Quebec, Canada.,Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, Québec City, Quebec, Canada
| | | |
Collapse
|
45
|
Hunsicker O, Hessler K, Krannich A, Boemke W, Braicu I, Sehouli J, Meyer O, Pruß A, Spies C, Feldheiser A. Duration of storage influences the hemoglobin rising effect of red blood cells in patients undergoing major abdominal surgery. Transfusion 2018; 58:1870-1880. [DOI: 10.1111/trf.14627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Oliver Hunsicker
- Department of Anesthesiology and Operative Intensive Care Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Katarina Hessler
- Department of Anesthesiology and Operative Intensive Care Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Alexander Krannich
- Experimental and Clinical Research Center; Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Willehad Boemke
- Department of Anesthesiology and Operative Intensive Care Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Ioana Braicu
- Department of Gynecology; European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum; Berlin Germany
| | - Jalid Sehouli
- Department of Gynecology; European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum; Berlin Germany
| | - Oliver Meyer
- Institute of Transfusion Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Axel Pruß
- Institute of Transfusion Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Aarne Feldheiser
- Department of Anesthesiology and Operative Intensive Care Medicine; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
46
|
Jones AR, McGhan G, Deaver J. Packed Red Blood Cell Transfusion in Older Adults: A Systematic Review. J Gerontol Nurs 2018; 44:39-46. [PMID: 29077977 DOI: 10.3928/00989134-20171023-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
Most packed red blood cell (PRBC) transfusion research focuses on younger patient populations (younger than 65) given the complexity of care and presence of comorbidities in older adults. The purpose of the current study was to critically examine the current evidence related to PRBC transfusion among older adults (age ≥65). PubMed, CINAHL, and Embase were searched for randomized controlled trials that evaluated blood transfusion in any manner (e.g., prevention, associated outcomes). Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the search resulted in 10 studies focused on cardiac, orthopedic, and gastrointestinal surgery patients. SQUIRE (Standards for QUality Improvement Reporting Excellence) guidelines were used to evaluate studies for bias; the average bias score was 13.0 (SD = 3.4), indicating a low level of bias. Greatest sources of bias were methods to assess completeness/accuracy of data, details about missing data, and costs associated with the study. Interventions to prevent PRBC transfusion in older adults vary widely, and outcomes associated with PRBC transfusion in older adults require further evaluation. [Journal of Gerontological Nursing, 44(3), 39-46.].
Collapse
|
47
|
Preoperative Anemia in Cardiac Operation: Does Hemoglobin Tell the Whole Story? Ann Thorac Surg 2018; 105:100-107. [DOI: 10.1016/j.athoracsur.2017.06.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 01/26/2023]
|
48
|
Jones AR, Frazier SK. Consequences of Transfusing Blood Components in Patients With Trauma: A Conceptual Model. Crit Care Nurse 2017; 37:18-30. [PMID: 28365647 DOI: 10.4037/ccn2017965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transfusion of blood components is often required in resuscitation of patients with major trauma. Packed red blood cells and platelets break down and undergo chemical changes during storage (known as the storage lesion) that lead to an inflammatory response once the blood components are transfused to patients. Although some evidence supports a detrimental association between transfusion and a patient's outcome, the mechanisms connecting transfusion of stored components to outcomes remain unclear. The purpose of this review is to provide critical care nurses with a conceptual model to facilitate understanding of the relationship between the storage lesion and patients' outcomes after trauma; outcomes related to trauma, hemorrhage, and blood component transfusion are grouped according to those occurring in the short-term (≤30 days) and the long-term (>30 days). Complete understanding of these clinical implications is critical for practitioners in evaluating and treating patients given transfusions after traumatic injury.
Collapse
Affiliation(s)
- Allison R Jones
- Allison R. Jones is an assistant professor, Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama, Birmingham, Alabama. She has a clinical background in emergency and trauma nursing. In research, she focuses on the consequences of blood component storage and transfusion, with particular interest in transfusion after trauma. .,Susan K. Frazier is the director of the PhD program, a codirector of the RICH Heart Program, and an associate professor, College of Nursing, University of Kentucky, Lexington, Kentucky. Her research focuses on cardiopulmonary interactions in a variety of critically ill patients, including patients with acute heart failure, acute decompensated heart failure, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and multiple trauma.
| | - Susan K Frazier
- Allison R. Jones is an assistant professor, Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama, Birmingham, Alabama. She has a clinical background in emergency and trauma nursing. In research, she focuses on the consequences of blood component storage and transfusion, with particular interest in transfusion after trauma.,Susan K. Frazier is the director of the PhD program, a codirector of the RICH Heart Program, and an associate professor, College of Nursing, University of Kentucky, Lexington, Kentucky. Her research focuses on cardiopulmonary interactions in a variety of critically ill patients, including patients with acute heart failure, acute decompensated heart failure, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and multiple trauma
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Red blood cell transfusion is a common treatment for anaemia worldwide, but concerns continue to be raised about adverse effects of cellular blood components, which are biological products. One hypothesis for the adverse effects associated with blood transfusion is the harmful effects of storage on red cells that have been demonstrated in laboratory and animal studies. Over the past few years, a number of more significant randomized controlled trials comparing 'fresh' versus 'older' blood have been published in an attempt to address the clinical consequences of storage age, with two further large trials ongoing. RECENT FINDINGS These recent trials enrolled approximately 4000 participants across a variety of populations - cardiac surgical, critically ill, paediatric and acute hospitalized in-patients. All trials achieved statistically significant separation of red cell storage duration between both groups. The results of all these trials have found no clinical benefit to using fresher red cells when compared with older or standard-issue red cells. However, certain subgroups of patients either receiving red cells stored at more extreme ages of storage or those with additional risks for impaired microcirculations (critically ill elderly, severe sepsis and major haemorrhage) were either underrepresented or not included in these trials. SUMMARY At present, on the basis of recent trials, there is no indication for blood transfusion services to implement preferential utilization of fresher red cell units.
Collapse
|
50
|
Wilson CR, Pashmakova MB, Heinz JA, Johnson MC, Minard HM, Bishop MA, Barr JW. Biochemical evaluation of storage lesion in canine packed erythrocytes. J Small Anim Pract 2017; 58:678-684. [PMID: 28741656 DOI: 10.1111/jsap.12713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/21/2016] [Accepted: 05/26/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To describe the biochemical changes - also known as the storage lesion - that occur in canine packed red blood cells during ex vivo storage. MATERIALS AND METHODS Ten 125-mL units of non-leuco-reduced packed red blood cells in citrate phosphate dextrose adenine were obtained from a commercial blood bank within 24 hours of donation. Samples were aseptically collected on days 1, 4, 7, 14, 28, 35 and 42 for measurement of sodium, potassium, chloride, lactate, glucose, pH and ammonia concentrations. All units were cultured on day 42. Friedman's repeated measures test with Dunn's multiple comparison test was used for non-parametric data. A repeated-measures analysis of variance with Tukey's multiple comparison test was used for parametric data. Alpha was set to 0·05. RESULTS All analytes changed significantly during storage. The mean ammonia on day 1 (58·14 g/dL) was significantly lower (P<0·05) than those on days 28 (1266 g/dL), 35 (1668 g/dL) and 42 (1860 g/dL). A significant increase in median lactate concentration over time was also observed, with day 1 (4·385 mmol/L) being significantly less (P<0·05) than days 14 (19·82 mmol/L), 21 (22·81 mmol/L), 35 (20·31 mmol/L) and 42 (20·81 mmol/L). Median pH was significantly decreased after day 7. All bacterial cultures were negative. CLINICAL SIGNIFICANCE Many biochemical alterations occur in stored canine packed red blood cells, although further studies are required to determine their clinical importance.
Collapse
Affiliation(s)
- C R Wilson
- Department of Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| | - M B Pashmakova
- Department of Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| | - J A Heinz
- Department of Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| | - M C Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| | - H M Minard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| | - M A Bishop
- The Animal Specialty Hospital of Florida, Naples, Florida, 34112, USA
| | - J W Barr
- Department of Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, 77845, USA
| |
Collapse
|