1
|
Ramírez V, Gálvez-Ontiveros Y, de Bobadilla VAF, González-Palacios P, Salcedo-Bellido I, Samaniego-Sánchez C, Álvarez-Cubero MJ, Martínez-González LJ, Zafra-Gómez A, Rivas A. Exploring the role of genetic variability and exposure to bisphenols and parabens on excess body weight in Spanish children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117206. [PMID: 39427540 DOI: 10.1016/j.ecoenv.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Gene-environment interaction studies are emerging as a promising tool to shed light on the reasons for the rapid increase in excess body weight (overweight and obesity). We aimed to investigate the influence of several polymorphisms on excess weight in Spanish children according to a short- and long-term exposure to bisphenols and parabens, combining individual approach with the joint effect of them. This case-control study included 144 controls and 98 cases children aged 3-12 years. Thirty SNPs in genes involved in obesity-related pathways, xenobiotic metabolism and hormone systems were genotyped using the GSA microchip technology and qPCRs with Taqman® probes. Levels of bisphenols and parabens in urine and hair were used to assess short- and long-term exposure, respectively, via UHPLC-MS/MS system. LEPR rs9436303 was identified as a relevant risk variant for excess weight (ORDom:AAvsAG+GG=2.65, p<0.001), and this effect persisted across exposure-stratified models. For long-term exposure, GPX1 rs1050450 was associated with increased excess weight at low single paraben exposure (ORGvsA=2.00, p=0.028, p-interaction=0.016), whereas LEPR rs1137101 exhibited a protective function at high co-exposure (ORDom:AAvsAG+GG=0.17, p=0.007, p-interaction=0.043). ESR2 rs3020450 (ORDom:GGvsAG+AA=5.17, p=0.020, p-interaction=0.028) and CYP2C19 rs4244285 (ORDom:GGvsAG+AA=3.54, p=0.039, p-interaction=0.285) were identified as predisposing variants at low and high co-exposure, respectively. In short-term exposure, higher odds were observed for INSIG2 rs7566605 at high bisphenol exposure (ORCvsG=2.97, p=0.035, p-interaction=0.017) and for GSTP1 rs1695 at low levels (ORDom:AAvsAG+GG=5.38, p=0.016, p-interaction=0.016). At low and medium co-exposure, SH2B1 rs7498665 (ORAvsG=0.17, p=0.015, p-interaction=0.085) and MC4R rs17782313 (ORAvsG=0.10, p=0.023, p-interaction=0.045) displayed a protective effect, whereas ESR2 rs3020450 maintained its contributing role (ORGvsA=3.12, p=0.030, p-interaction=0.010). Our findings demonstrate for the first time that understanding the genetic variation in excess weight and how the level of exposure to bisphenols and parabens might interact with it, is crucial for a more in-depth comprehension of the complex polygenic and multifactorial aetiology of overweight and obesity.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | | | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Stevens DR, Blaauwendraad SM, Bommarito PA, van den Dries M, Trasande L, Spaan S, Pronk A, Tiemeier H, Gaillard R, Jaddoe VWV, Ferguson KK. Gestational organophosphate pesticide exposure and childhood cardiovascular outcomes. ENVIRONMENT INTERNATIONAL 2024; 193:109082. [PMID: 39447473 DOI: 10.1016/j.envint.2024.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION The general population is chronically exposed to organophosphate pesticides through various routes including ingestion, hand-to-mouth contact, inhalation, and dermal contact. Exposure to organophosphate pesticides during pregnancy impairs fetal development, but the potential long-term effects of gestational organophosphate pesticide exposure are less well understood. METHODS We investigated associations between gestational organophosphate pesticide exposure and cardiovascular outcomes in 643 children in the Generation R Study, a prospective pregnancy cohort based in Rotterdam, The Netherlands. Urinary organophosphate pesticide metabolites (dimethyl [∑DMAP], diethyl [∑DEAP], and total dialkyl phosphate [∑DAP] metabolites) were quantified in three urine samples collected from pregnant participants, and their children were followed until age 10 years at which time cardiac magnetic resonance imaging, ultrasonography, blood pressure, and serum biomarkers assessed cardiovascular health. Linear regression models estimated associations (β and 95 % confidence interval [CI]) between a one-interquartile range (IQR) increase in averaged gestational exposure biomarker concentrations and z-scored pediatric cardiovascular outcomes. We investigated effect modification of associations by PON1 genotype. RESULTS Carotid intima-media thickness z-score was lower (β: -0.14 [95 % CI: -0.25, -0.02]) and HDL cholesterol z-score was higher (β: 0.14 [95 % CI: 0.02, 0.25]) for increases in ∑DEAP concentrations. Carotid intima-media distensibility z-score was lower (β: -0.08 [95 % CI: -0.19, 0.03]) for increases in ∑DMAP concentrations, and systolic blood pressure z-score was higher (β: 0.10 [95 % CI: -0.01, 0.21]) for increases in ∑DMAP and ∑DAP. Among those with PON1-161CC and PON1-L55MTT genotypes, higher organophosphate pesticide concentrations conferred an excess risk of adverse vascular and glycemic outcomes, respectively. CONCLUSIONS We observed heterogenous associations between gestational organophosphate pesticide exposure and pediatric cardiovascular health: an anti-atherogenic profile was observed for increases in ∑DEAP concentrations, and impairments in multiple aspects of cardiovascular health was observed for increases in ∑DMAP concentrations. PON1-161 and PON1-L55M single nucleotide polymorphisms modified associations for vascular and glycemic outcomes, respectively.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Michiel van den Dries
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, United States; Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States; NYU Wagner School of Public Service, New York, NY, United States
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States.
| |
Collapse
|
3
|
Blaauwendraad SM, Stevens DR, van den Dries MA, Gaillard R, Pronk A, Spaan S, Ferguson KK, Jaddoe VW. Fetal Organophosphate Pesticide Exposure and Child Adiposity Measures at 10 Years of Age in the General Dutch Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87014. [PMID: 37606291 PMCID: PMC10443200 DOI: 10.1289/ehp12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Fetal exposure to organophosphate (OP) pesticides might lead to fetal metabolic adaptations, predisposing individuals to adverse metabolic profiles in later life. OBJECTIVE We examined the association of maternal urinary OP pesticide metabolite concentrations in pregnancy with offspring body mass index (BMI) and fat measures at 10 years of age. METHODS Between 2002 and 2006, we included 642 mother-child pairs from the Generation R Study, a population-based prospective cohort study in Rotterdam, the Netherlands. We measured maternal urinary concentrations of OP pesticide metabolites, namely, dialkyl phosphates, including three dimethyl and three diethyl phosphates in early-, mid- and late-pregnancy. At 10 years of age, child total and regional body fat and lean mass were measured through dual energy X-ray absorptiometry, and abdominal and organ fat through magnetic resonance imaging. RESULTS Higher maternal urinary pregnancy-average or trimester-specific dialkyl, dimethyl, or diethyl phosphate concentrations were not associated with childhood BMI and the risk of overweight. In addition, we did not observe any association of dialkyl, dimethyl, or diethyl phosphate concentrations with total and regional body fat, abdominal visceral fat, liver fat, or pericardial fat at child age of 10 y. CONCLUSION We observed no associations of maternal urinary dialkyl concentrations during pregnancy with childhood adiposity measures at 10 years of age. Whether these associations develop at older ages should be further studied. https://doi.org/10.1289/EHP12267.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Michiel A. van den Dries
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anjoeka Pronk
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands
| | - Suzanne Spaan
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Vincent W.V. Jaddoe
- Generation R Study Group, Erasmus Medical Center (Erasmus MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
5
|
Decrausaz SL, Cameron ME. A growth area: A review of the value of clinical studies of child growth for palaeopathology. Evol Med Public Health 2022; 10:108-122. [PMID: 35273803 PMCID: PMC8903130 DOI: 10.1093/emph/eoac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Studies of living children demonstrate that early life stress impacts linear growth outcomes. Stresses affecting linear growth may also impact later life health outcomes, including increased cardiometabolic disease risk. Palaeopathologists also assess the growth of children recovered from bioarchaeological contexts. Early life stresses are inferred to affect linear growth outcomes, and measurements of skeletal linear dimensions alongside other bioarchaeological information may indicate the types of challenges faced by past groups. In clinical settings, the impacts of stress on growing children are typically measured by examining height. Palaeopathologists are limited to examining bone dimensions directly and must grapple with incomplete pictures of childhood experiences that may affect growth. Palaeopathologists may use clinical growth studies to inform observations among past children; however, there may be issues with this approach. Here, we review the relationship between contemporary and palaeopathological studies of child and adolescent growth. We identify approaches to help bridge the gap between palaeopathological and biomedical growth studies. We advocate for: the creation of bone-specific growth reference information using medical imaging and greater examination of limb proportions; the inclusion of children from different global regions and life circumstances in contemporary bone growth studies; and greater collaboration and dialogue between palaeopathologists and clinicians as new studies are designed to assess linear growth past and present. We advocate for building stronger bridges between these fields to improve interpretations of growth patterns across human history and to potentially improve interventions for children living and growing today.
Collapse
Affiliation(s)
- Sarah-Louise Decrausaz
- Department of Anthropology, University of Victoria, Cornett Building, Victoria, BC V8P 5C2, Canada
| | - Michelle E Cameron
- Department of Anthropology, University of Toronto, 19 Ursula Franklin Street, Toronto, ON M5S 2S2, Canada
| |
Collapse
|
6
|
Fucic A, Duca RC, Galea KS, Maric T, Garcia K, Bloom MS, Andersen HR, Vena JE. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126576. [PMID: 34207279 PMCID: PMC8296378 DOI: 10.3390/ijerph18126576] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-15682500; Fax: +3814673303
| | - Radu C. Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, L-3555 Dudelange, Luxembourg;
- Centre for Environment and Health, KU Leuven, 3001 Leuven, Belgium
| | - Karen S. Galea
- Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Tihana Maric
- Medical School, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Helle R. Andersen
- Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Etzel TM, Engel SM, Quirós-Alcalá L, Chen J, Barr DB, Wolff MS, Buckley JP. Prenatal maternal organophosphorus pesticide exposures, paraoxonase 1, and childhood adiposity in the Mount Sinai Children's Environmental Health Study. ENVIRONMENT INTERNATIONAL 2020; 142:105858. [PMID: 32599353 PMCID: PMC7340581 DOI: 10.1016/j.envint.2020.105858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Animal studies suggest that organophosphorus pesticides (OPs) may be environmental obesogens. While prenatal OP exposures have been associated with altered infant glucose metabolism, associations with pediatric adiposity remain unknown. METHODS We summed concentrations of three dimethylphosphate (∑DMP) and three diethylphosphate (∑DEP) metabolites of OPs measured in third trimester spot urine samples collected from pregnant women enrolled in New York City, 1998-2002. We measured percent fat mass using bio-electrical impedance analysis and calculated age- and sex-standardized body mass index (BMI) z-scores from anthropometric measurements collected at approximately 4, 6, and 7-9 years of age (166 children, 333 observations). We assessed covariate-adjusted associations of OPs with repeated adiposity measures using linear mixed models and evaluated effect measure modification (EMM) by sex and paroxonase (PON) 1 -108C/T and Q192R polymorphisms measured in maternal peripheral blood samples. RESULTS The geometric mean urinary concentration of ∑DMP metabolites (29.9 nmol/L, IQR: 105.2 nmol/L) was higher than ∑DEP metabolites (8.8 nmol/L, IQR: 31.2 nmol/L). Adjusted associations were null, with differences in fat mass per 10-fold increase in prenatal ∑DMP and ∑DEP concentrations of 0.7% (95% CI: -0.6, 2.0) and 0.8% (95% CI: -0.4, 2.0), respectively. Maternal PON1-108C/T polymorphisms modified relationships of prenatal ∑DMP with percent fat mass (EMM p-value = 0.18) and ∑DEP with BMI z-scores (EMM p-value = 0.12). For example, ∑DMP was modestly associated with increased percent fat mass among children of mothers with the at-risk CT or TT genotype (β = 1.2%, 95% CI: -0.6, 3.0) but not among those whose mothers had the CC genotype (β = -0.4%, 95% CI: -2.4, 1.5). Associations were not modified by sex or maternal PON1 Q192R polymorphisms. CONCLUSIONS We observed little evidence of a relationship between prenatal OP exposures and child adiposity, although there was some suggestion of increased risk among offspring of mothers who were slow OP metabolizers. Larger studies are warranted to further evaluate possible associations of prenatal OP exposures with child adiposity and differences by maternal PON1 genotype, which regulates OP metabolism and may increase susceptibility to exposure.
Collapse
Affiliation(s)
- Taylor M Etzel
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Stephanie M Engel
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, NC, USA.
| | | | - Jia Chen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Dana B Barr
- Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Mary S Wolff
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jessie P Buckley
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
9
|
Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients 2018; 10:nu10111746. [PMID: 30428550 PMCID: PMC6266002 DOI: 10.3390/nu10111746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gluten seems a potentially important determinant in type 1 diabetes (T1D) and type 2 diabetes (T2D). Intake of gluten, a major component of wheat, rye, and barley, affects the microbiota and increases the intestinal permeability. Moreover, studies have demonstrated that gluten peptides, after crossing the intestinal barrier, lead to a more inflammatory milieu. Gluten peptides enter the pancreas where they affect the morphology and might induce beta-cell stress by enhancing glucose- and palmitate-stimulated insulin secretion. Interestingly, animal studies and a human study have demonstrated that a gluten-free (GF) diet during pregnancy reduces the risk of T1D. Evidence regarding the role of a GF diet in T2D is less clear. Some studies have linked intake of a GF diet to reduced obesity and T2D and suggested a role in reducing leptin- and insulin-resistance and increasing beta-cell volume. The current knowledge indicates that gluten, among many environmental factors, may be an aetiopathogenic factors for development of T1D and T2D. However, human intervention trials are needed to confirm this and the proposed mechanisms.
Collapse
|
10
|
Andersen HR, Tinggaard J, Grandjean P, Jensen TK, Dalgård C, Main KM. Prenatal pesticide exposure associated with glycated haemoglobin and markers of metabolic dysfunction in adolescents. ENVIRONMENTAL RESEARCH 2018; 166:71-77. [PMID: 29879566 DOI: 10.1016/j.envres.2018.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pesticide exposure has been associated with increased risk of diabetes mellitus in adults, but potential effects of prenatal exposure on glucose regulation have not been investigated. The aim of this study was to investigate if maternal occupational pesticide exposure in pregnancy was associated with glycated haemoglobin A1c (HbA1c) in adolescents and whether an association was modified by sex and paraoxonase-1 (PON1) Q192R polymorphism. METHODS A prospective cohort study of children whose mothers were either occupationally exposed or unexposed to pesticides in early pregnancy. At age 10-to-16 years, the children (n = 168) underwent clinical examinations including pubertal stage assessment (accepted by 141 children) and blood sampling. PON1 Q192R genotype was available for 139 children and 103 mothers. The main outcome measure was HbA1c but other relevant biomarkers were also included. RESULTS Prenatal pesticide exposure was associated with a 5.0% (95% confidence interval: 1.8; 8.2) higher HbA1c compared to unexposed children after adjustment for confounders. After stratification, the association remained significant for girls (6.2% (1.6; 11.1)) and if the child or the mother had the PON1 192R-allele (6.1% (1.6; 10.8) and 7.1% (2.0; 12.6), respectively). Besides, an exposure-related increase was seen for the leptin-to-adiponectin ratio, for plasminogen activator inhibitor type-1 in girls, and for interleukin-6 in children whose mothers had the R-allele. CONCLUSION Prenatal pesticide exposure was associated with higher HbA1c and changes in related biomarkers in adolescents. Our results suggest an adverse effect on glucose homeostasis and support previous findings from this cohort of an exposure-associated metabolic risk profile with higher susceptibility related to female sex and the PON1 192R-allele.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Jeanette Tinggaard
- Department of Growth and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tina K Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Christine Dalgård
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|