1
|
Lian Z, Luo Y, Li Y, Gao Y, Xiong X, Gu L. CD4 + T cells in ischemic stroke: effects and therapeutic targets. Front Immunol 2025; 16:1512634. [PMID: 40352928 PMCID: PMC12061934 DOI: 10.3389/fimmu.2025.1512634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
Ischemic stroke (IS) is a significant contributor to disability and death worldwide, with limited treatments beyond early intervention. The importance of CD4+ T cells in the advancement of IS has been highlighted by recent studies, providing new insights into immunomodulatory strategies. This review describes the spatiotemporal dynamics of CD4+ T cells and their subsets at different stages of IS. The signaling pathways activated by IS regulate the distribution of CD4+ T cells and their subsets, which further influences the inflammatory response and disease progression. In the acute and subacute stages, CD4+ T cells exacerbate neuronal damage. In contrast, CD4+ T cells, which are predominantly composed of Treg cells (Tregs), promote tissue repair and neurological recovery in the chronic stage. In light of recent findings that challenge traditional views, we analyze the underlying mechanisms and potential explanations for these discrepancies. In addition, we summarize the potential of targeting CD4+ T cells as a therapeutic strategy for IS. Although no drugs specifically targeting CD4+ T cells have been developed, certain drugs that modulate CD4+ T cells show potential for IS treatment. Moreover, multitarget drugs integrated with nanomaterials are currently undergoing preclinical investigation. We further explore the challenges in the clinical translation of CD4+ T-cell-targeted therapies and discuss potential strategies to address these challenges. In conclusion, a deeper comprehension of the complex effects of CD4+ T cells and their subsets on IS will contribute to disease management and drug development, thereby improving the quality of life for IS patients.
Collapse
Affiliation(s)
- Zhengqi Lian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Ruggiero M, Motti ML, Meccariello R, Mazzeo F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients 2025; 17:837. [PMID: 40077707 PMCID: PMC11902109 DOI: 10.3390/nu17050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Physical exercise is an essential component of human health. In recent years, scientific research has focused on identifying natural compounds and formulating new supplements aimed at enhancing athletic performance, accelerating muscle recovery, and minimizing the damage caused by physical exertion. The use of antioxidants to counteract the formation of reactive oxygen species (ROS) following physical activity (PA) is already a widely adopted practice. Resveratrol (RES), a polyphenol belonging to the stilbene class, is well known for its potent antioxidant activity and anti-inflammatory effects primarily attributed to the activation of sirtuins. RES possesses multiple nutraceutical properties used for the prevention and treatment of inflammatory, cardiovascular, neoplastic, and infectious diseases, thus attracting attention to study its use in combination with physical exercise to promote well-being. Animal trials combining RES and PA have mainly reported improvements in muscle, energy, and cardiovascular functions. The data presented and discussed in this narrative review are from Pubmed, Scopus, and the Human Gene Database (search limited to 2011 to 2025 with the keywords RES, sirtuins, and physical activity altogether or in combination with each other). This review gathers several studies on RES focusing on its nutraceutical properties, epigenetic activities via sirtuins, and the potential benefits of combining RES with PA in maintaining health and well-being based on trials performed first in animals and later in humans. Human studies have been conducted on various populations, including active adults, sedentary individuals, patients with diseases, and elderly individuals. Some studies have confirmed the benefits of RES observed in animal experiments. However, in some cases, no substantial differences were found between RES supplementation and the control group. In conclusion, the benefits of RES on PA reported in the literature are still not fully evident, given the contrasting studies and the still limited number of trials, but both RES and PA are successful tools for the maintenance of health and wellbeing.
Collapse
Affiliation(s)
- Mario Ruggiero
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Maria Letizia Motti
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| |
Collapse
|
3
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Owjfard M, Rahimian Z, Ghaderpanah R, Rafiei E, Sadrian S, Sabaghan M, Karimi F. Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia. Heliyon 2024; 10:e32592. [PMID: 38952360 PMCID: PMC11215267 DOI: 10.1016/j.heliyon.2024.e32592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Ghaderpanah
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedhassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
5
|
Pinoșanu EA, Pîrșcoveanu D, Albu CV, Burada E, Pîrvu A, Surugiu R, Sandu RE, Serb AF. Rhoa/ROCK, mTOR and Secretome-Based Treatments for Ischemic Stroke: New Perspectives. Curr Issues Mol Biol 2024; 46:3484-3501. [PMID: 38666949 PMCID: PMC11049286 DOI: 10.3390/cimb46040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.
Collapse
Affiliation(s)
- Elena Anca Pinoșanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| | - Denisa Pîrșcoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Andrei Pîrvu
- Dolj County Regional Centre of Medical Genetics, Clinical Emergency County Hospital Craiova, St. Tabaci, No. 1, 200642 Craiova, Romania;
| | - Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Alina Florina Serb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Brown K, Theofanous D, Britton RG, Aburido G, Pepper C, Sri Undru S, Howells L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int J Mol Sci 2024; 25:747. [PMID: 38255828 PMCID: PMC10815776 DOI: 10.3390/ijms25020747] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol has long been proposed as being beneficial to human health across multiple morbidities, yet there is currently no conclusive clinical evidence to advocate its recommendation in any healthcare setting. A large cohort with high-quality clinical data and clearly defined biomarkers or endpoints are required to draw meaningful conclusions. This systematic review compiles every clinical trial conducted using a defined dose of resveratrol in a purified form across multiple morbidities to highlight the current 'state-of-play' and knowledge gaps, informing future trial designs to facilitate the realisation of resveratrol's potential benefits to human health. Over the last 20 years, there have been almost 200 studies evaluating resveratrol across at least 24 indications, including cancer, menopause symptoms, diabetes, metabolic syndrome, and cardiovascular disease. There are currently no consensus treatment regimens for any given condition or endpoint, beyond the fact that resveratrol is generally well-tolerated at a dose of up to 1 g/day. Additionally, resveratrol consistently reduces inflammatory markers and improves aspects of a dysregulated metabolism. In conclusion, over the last 20 years, the increasing weight of clinical evidence suggests resveratrol can benefit human health, but more large, high-quality clinical trials are required to transition this intriguing compound from health food shops to the clinic.
Collapse
Affiliation(s)
- Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Despoina Theofanous
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Robert G. Britton
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Grandezza Aburido
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Coral Pepper
- Odames Library, Victoria Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Shanthi Sri Undru
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| |
Collapse
|
7
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
9
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
10
|
Hasan S, Khatri N, Rahman ZN, Menezes AA, Martini J, Shehjar F, Mujeeb N, Shah ZA. Neuroprotective Potential of Flavonoids in Brain Disorders. Brain Sci 2023; 13:1258. [PMID: 37759859 PMCID: PMC10526484 DOI: 10.3390/brainsci13091258] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids are a large subgroup of polyphenols known to be sourced from over 6000 natural products, including fruits, vegetables, bark, and herbs. Due to their antioxidant properties, flavonoids have been implicated as a therapy source for many diseases and conditions, including inflammation, vasculitis, venous insufficiency, and hemorrhoids. Currently, some flavonoids are being researched for their antioxidant ability concerning neuroprotection. These flavonoids can penetrate the blood-brain barrier and, depending on the specific flavonoid, retain adequate bioavailability in certain brain regions. Further data suggest that flavonoids could have a strong anti-inflammatory effect in the brain, which not only could be a robust therapeutic source for known neuroinflammatory diseases such as Alzheimer's Disease or Parkinson's Disease but also could be a therapeutic source for ischemic or hemorrhagic conditions such as a stroke. While flavonoid toxicity exists, they are relatively safe and non-invasive drugs from natural origins. As such, exploring the known mechanisms and therapies may highlight and establish flavonoid therapy as a viable source of therapy for stroke patients. As stated, many flavonoids are already being isolated, purified, and implemented in both in vitro and in vivo experiments. As these flavonoids proceed to clinical trials, it will be important to understand how they function as a therapy, primarily as antioxidants, and by other secondary mechanisms. This review aims to elucidate those mechanisms and explore the neuroprotective role of flavonoids.
Collapse
Affiliation(s)
- Syed Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Nabeel Khatri
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Zainab N. Rahman
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Amanda A. Menezes
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Joud Martini
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Faheem Shehjar
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Numa Mujeeb
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| |
Collapse
|
11
|
Tang H, Wen J, Qin T, Chen Y, Huang J, Yang Q, Jiang P, Wang L, Zhao Y, Yang Q. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front Cell Neurosci 2023; 17:1228761. [PMID: 37622049 PMCID: PMC10445043 DOI: 10.3389/fncel.2023.1228761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, the majority of patients are currently unable to benefit from intravenous thrombolysis or intravascular mechanical thrombectomy due to the limited treatment windows and serious complications. Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide-dependent enzyme, has emerged as a potential therapeutic target for ischemic stroke due to its ability to maintain brain homeostasis and possess neuroprotective properties in a variety of pathological conditions for the central nervous system. Animal and clinical studies have shown that activation of Sirt1 can lessen neurological deficits and reduce the infarcted volume, offering promise for the treatment of ischemic stroke. In this review, we summarized the direct evidence and related mechanisms of Sirt1 providing neuroprotection against cerebral ischemic stroke. Firstly, we introduced the protein structure, catalytic mechanism and specific location of Sirt1 in the central nervous system. Secondly, we list the activators and inhibitors of Sirt1, which are primarily divided into three categories: natural, synthetic and physiological. Finally, we reviewed the neuroprotective effects of Sirt1 in ischemic stroke and discussed the specific mechanisms, including reducing neurological deficits by inhibiting various programmed cell death such as pyroptosis, necroptosis, ferroptosis, and cuproptosis in the acute phase, as well as enhancing neurological repair by promoting angiogenesis and neurogenesis in the later stage. Our review aims to contribute to a deeper understanding of the critical role of Sirt1 in cerebral ischemic stroke and to offer novel therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Qin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Bayes J, Bedaso A, Peng W, Adams J, Sibbritt D. The effect of polyphenols in post stroke adults: A systematic review of randomised controlled trials. Clin Nutr ESPEN 2023; 54:113-121. [PMID: 36963851 DOI: 10.1016/j.clnesp.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND After a stroke, survivors are often left with significant disabilities and are at a greater risk of recurrent strokes. It is vital stroke survivors receive effective treatments to assist with rehabilitation and reduce risk factors for secondary stroke. Observational and preclinical studies have highlighted the promising role of polyphenols in these regards. METHODS A systematic review of original research which assessed the role of polyphenols on health outcomes in post stroke adults was conducted. PROQUEST, SCOPUS (Elsevier), MEDLINE (EBSCO), Embase and Cochrane Library databases were searched up to the 29th of October 2021. RESULTS A total of 9 studies met the full inclusion criteria and were included in this review. Several classes of polyphenols were assessed including hydroxybenzoic acids, stilbenes and flavonoids. Numerous health outcomes were assessed including vascular function, stroke disability, blood pressure, blood glucose and c-reactive protein. The majority of the studies included in this review (n = 8) note improvements in the polyphenol groups for at least one outcome measure. However, small sample sizes, short trial length and reporting bias prevent firm conclusions from being drawn. CONCLUSION This review provides promising preliminary evidence that polyphenols may be beneficial for post stroke adults, however, more research is required. To ensure reliable methodology and replication of results, future studies should include outcome statistics and effect sizes. Trials with a longer duration and large sample size should also be considered.
Collapse
Affiliation(s)
- J Bayes
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
| | - A Bedaso
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - W Peng
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - J Adams
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - D Sibbritt
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
13
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
14
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Fan D, Liu C, Zhang Z, Huang K, Wang T, Chen S, Li Z. Progress in the Preclinical and Clinical Study of Resveratrol for Vascular Metabolic Disease. Molecules 2022; 27:7524. [PMID: 36364370 PMCID: PMC9658204 DOI: 10.3390/molecules27217524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular metabolic dysfunction presents in various diseases, such as atherosclerosis, hypertension, and diabetes mellitus. Due to the high prevalence of these diseases, it is important to explore treatment strategies to protect vascular function. Resveratrol (RSV), a natural polyphenolic phytochemical, is regarded as an agent to regulate metabolic pathways. Many studies have proven that RSV has beneficial effects on improving metabolism in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), which provide new directions to treat vascular metabolic diseases. Herein, we overviewed that RSV could regulate cell metabolism activity by inhibiting glucose uptake, suppressing glycolysis, preventing cells from fatty acid-related damages, reducing lipogenesis, increasing fatty acid oxidation, enhancing lipolysis, elevating uptake and synthesis of glutamine, and increasing NO release. Furthermore, in clinical trials, although the results from different studies remain controversial, we proposed that RSV had better therapeutic effects at high concentrations and for patients with metabolic disorders.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
17
|
Zhang Z, Zhang A, Liu Y, Hu X, Fang Y, Wang X, Luo Y, Lenahan C, Chen S. New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Curr Neuropharmacol 2022; 20:1278-1296. [PMID: 34720082 PMCID: PMC9881073 DOI: 10.2174/1570159x19666211101103646] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,These authors contributed equally to this work.
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Taizhou, Zhejiang Province, China;
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China;
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ,Address correspondence to this author at the Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Tel: +86-571-87784815; Fax: +86-571-87784755; E-mail:
| |
Collapse
|
18
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
19
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
20
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Mohammadi H, Sariaslani P, Asgharzadeh S, Ghanbari A, Hezarkhani L, Shahbazi F, Mirzaeei S. Does resveratrol enhance recovery from acute ischemic stroke? A randomized, double-blinded, placebo-controlled trial. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
23
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
25
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Pacifici F, Rovella V, Pastore D, Bellia A, Abete P, Donadel G, Santini S, Beck H, Ricordi C, Daniele ND, Lauro D, Della-Morte D. Polyphenols and Ischemic Stroke: Insight into One of the Best Strategies for Prevention and Treatment. Nutrients 2021; 13:1967. [PMID: 34201106 PMCID: PMC8229516 DOI: 10.3390/nu13061967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke (IS) is still among the leading causes of death and disability worldwide. The pathogenic mechanisms beyond its development are several and are complex and this is the main reason why a functional therapy is still missed. The beneficial effects of natural compounds against cardiovascular diseases and IS have been investigated for a long time. In this article, we reviewed the association between the most studied polyphenols and stroke protection in terms of prevention, effect on acute phase, and rehabilitation. We described experimental and epidemiological studies reporting the role of flavonols, phenolic acid, and stilbens on ischemic mechanisms leading to stroke. We analyzed the principal animal models used to evaluate the impact of these micronutrients to cerebral blood flow and to molecular pathways involved in oxidative stress and inflammation modulation, such as sirtuins. We reported the most significant clinical trials demonstrated as the persistent use of polyphenols is clinically relevant in terms of the reduction of vascular risk factors for IS, such as Atrial Fibrillation. Interestingly, different kinds of polyphenols provide brain protection by activating different pathways and mechanisms, like inducing antithrombotic effect, such as Honokiol. For this reason, we discussed an appropriate integrative use of them as a possible therapeutic alternative against stroke.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Giulia Donadel
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Silvia Santini
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Heinz Beck
- Campus Principe di Napoli, Università Unipegaso, 80132 Napoli, Italy;
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| |
Collapse
|
27
|
Hsieh CP, Chang WT, Chen L, Chen HH, Chan MH. Differential inhibitory effects of resveratrol on excitotoxicity and synaptic plasticity: involvement of NMDA receptor subtypes. Nutr Neurosci 2021; 24:443-458. [PMID: 31331257 DOI: 10.1080/1028415x.2019.1641995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: The neuroprotective effects of resveratrol against excitatory neurotoxicity have been associated with N-methyl-D-aspartate receptor (NMDAR) inhibition. This study examined the differential inhibitory effects of resveratrol on NMDAR-mediated responses in neuronal cells with different NMDAR subtype composition.Methods: The effects of resveratrol on NMDA-induced cell death and calcium influx in immature and mature rat primary cortical neurons were determined and compared. Moreover, the potencies and efficacies of resveratrol to inhibit NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D NMDAR expressed in HEK 293 cells were evaluated.Results: Resveratrol significantly attenuated NMDA-induced cell death in mature neurons, but not in immature neurons. Resveratrol also concentration-dependently reduced NMDA-induced calcium influx among all NMDAR subtypes, but displayed NR2 subunit selectivity, with a potency rank order of NR2B = NR2D > NR2A = NR2C and an efficacy rank order of NR2B = NR2C > NR2A = NR2D. Data show the stronger inhibitory effects of resveratrol on NR1/NR2B than other subtypes. Moreover, resveratrol did not affect hippocampal long-term potentiation (LTP), but impaired long-term depression (LTD).Discussion: These findings reveal the specific NMDAR modulating profile of resveratrol, providing further insight into potential mechanisms underlying the protective effects of resveratrol on neurological disorders.
Collapse
Affiliation(s)
- Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Tang Chang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
28
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
29
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
30
|
Samaei A, Moradi K, Bagheri S, Ashraf-Ganjouei A, Alikhani R, Mousavi SB, Rezaei F, Akhondzadeh S. Resveratrol Adjunct Therapy for Negative Symptoms in Patients With Stable Schizophrenia: A Double-Blind, Randomized Placebo-Controlled Trial. Int J Neuropsychopharmacol 2020; 23:775-782. [PMID: 33372679 PMCID: PMC7770519 DOI: 10.1093/ijnp/pyaa006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/23/2019] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Patients with schizophrenia can generally manifest a broad variety of primary negative symptoms. The current study aimed to assess the efficacy and tolerability of resveratrol add-on therapy in the treatment of negative symptoms in patients with stable schizophrenia. METHODS In a randomized, double-blind, and placebo-controlled setting, schizophrenia patients were assigned to receive either 200 mg/d resveratrol or matched placebo in addition to a stable dose of risperidone for 8 weeks. Patients were assessed using the positive and negative syndrome scale, the extrapyramidal symptom rating scale, and Hamilton Depression Rating Scale over the trial period. The primary outcome was considered as the change in positive and negative subscale score from baseline to week 8 between the treatment arms. RESULTS A total 52 patients completed the trial (26 in each arm). Baseline characteristics of both groups were statistically similar (P > .05). Despite the statistically similar behavior of positive symptoms between the groups across time (Greenhouse-Geisser corrected: F = 1.76, df = 1.88, P = .180), the resveratrol group demonstrated greater improvement in negative, general psychopathology, and total scores (Greenhouse-Geisser corrected: F = 12.25, df = 2.04, P < .001; F = 5.42, df = 1.56, P = .011; F = 7.64, df = 1.48, P = .003). HDRS scores and its changes, ESRS score, and frequency of other complications were not significantly different between resveratrol and placebo groups. CONCLUSION Adding resveratrol to risperidone can exhibit remarkable efficacy and safety in terms of management of schizophrenia-related negative symptoms.
Collapse
Affiliation(s)
- Areoo Samaei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Alikhani
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Farzin Rezaei
- Qods Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
33
|
Dong Y, Hong W, Tang Z, Gao Y, Wu X, Liu H. Sevoflurane leads to learning and memory dysfunction via breaking the balance of tPA/PAI-1. Neurochem Int 2020; 139:104789. [PMID: 32650025 DOI: 10.1016/j.neuint.2020.104789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Exposure to general anesthesia in early childhood may lead to adverse effects on adolescent neurocognition. This study investigated the effects of multiple inhalations of sevoflurane on long-term learning and memory in developing rats, and explored the mechanistic role of the tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) fibrinolysis system and its regulatory relationship with the brain derived neurotrophic factor (BDNF) by activation of tropomysin related kinase B (TrkB). After rats were inhaled with sevoflurane for 2 h/d for three days, the expression levels of tPA, PAI-1, BDNF, its precursor(proBDNF), TrkB and phosphorylation of TrkB (p-TrkB) were detected at different time points. After 28 d, Morris water maze was used to examine learning and memory function; Golgi staining was used to investigate synaptic plasticity and synaptic-related proteins, such as Synapsin I(SYN1), growth associated protein 43(GAP-43), and postsynaptic density protein 95(PSD-95). Rats were given exogenous tPA and an inhibitor of PAI-1, TM5275. The results showed multiple inhalation of sevoflurane led to learning and memory dysfunction, downregulated the expression of the synaptic-related proteins, decreased dendritic spine density in the hippocampus, increased the expression level of proBDNF and PAI-1, and reduced expression of BDNF, tPA, and p-TrkB. Interestingly, tPA or TM5275 partially reversed the learning and memory dysfunction and the reduction of synaptic plasticity induced by sevoflurane exposure. Furthermore, they blocked the upregulation of proBDNF and PAI-1 protein expression and increased the expression of BDNF, tPA, and p-TrkB. The protective effect of tPA or TM5275 on rats following multiple sevoflurane inhalation was blocked by a TrkB inhibitor. Multiple inhalation of sevoflurane in rats inhibited the cleavage of proBDNF by disrupting the balance of the tPA/PAI-1 fibrinolysis system. This blocked the activation of the downstream TrkB signaling pathway and reduced hippocampal synaptic plasticity, leading to long-term learning and memory dysfunction. Therefore, Sevoflurane exposure could lead to learning and memory dysfunction by inhibiting BDNF cleavage via breaking the balance of tPA/PAI-1.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Hong
- Department of Ultrasound, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhiyin Tang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
34
|
do Prado AF, Bannwart CM, Shinkai VMT, de Souza Lima IM, Meschiari CA. Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases. Curr Hypertens Rev 2020; 17:47-58. [PMID: 32386496 DOI: 10.2174/1573402116666200510011356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Alejandro F do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy M Bannwart
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Victoria M T Shinkai
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | | | - César A Meschiari
- Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| |
Collapse
|
35
|
Mishra R, Das A, Rana S. Resveratrol binding to human complement fragment 5a (hC5a) may modulate the C5aR signaling axes. J Biomol Struct Dyn 2020; 39:1766-1780. [DOI: 10.1080/07391102.2020.1738958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Richa Mishra
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Aurosikha Das
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| |
Collapse
|
36
|
Cheng CK, Luo J, Lau CW, Chen Z, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 2020; 177:1258-1277. [PMID: 31347157 PMCID: PMC7056472 DOI: 10.1111/bph.14801] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) belongs to the family of natural phytoalexins. Resveratrol first came to our attention in 1992, following reports of the cardioprotective effects of red wine. Thereafter, resveratrol was shown to exert antioxidant, anti-inflammatory, anti-proliferative, and angio-regulatory effects against atherosclerosis, ischaemia, and cardiomyopathy. This article critically reviews the current findings on the molecular basis of resveratrol-mediated cardiovascular benefits, summarizing the broad effects of resveratrol on longevity regulation, energy metabolism, stress resistance, exercise mimetics, circadian clock, and microbiota composition. In addition, this article also provides an update, both preclinically and clinically, on resveratrol-induced cardiovascular protection and discusses the adverse and inconsistent effects of resveratrol reported in both preclinical and clinical studies. Although resveratrol has been claimed as a master anti-aging agent against several age-associated diseases, further detailed mechanistic investigation is still required to thoroughly unravel the therapeutic value of resveratrol against cardiovascular diseases at different stages of disease development. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Jiang‐Yun Luo
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Zhen‐Yu Chen
- Food and Nutritional Sciences Programme, School of Life SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Xiao Yu Tian
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Yu Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
37
|
Fei F, Su N, Li X, Fei Z. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen Res 2020; 15:2008-2015. [PMID: 32394948 PMCID: PMC7716029 DOI: 10.4103/1673-5374.282240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal injuries can lead to various diseases such as neurodegenerative diseases, stroke, trauma, ischemia and, more specifically, glaucoma and optic neuritis. The cellular mechanisms that regulate neuronal death include calcium influx and calcium overload, excitatory amino acid release, oxidative stress, inflammation and microglial activation. Much attention has been paid to the effective prevention and treatment of neuroprotective drugs by natural products. This review summarizes the neuroprotective aspects of natural products, extracted from Panax ginseng, Camellia sinensis, soy and some other plants, and some of their chemical derivatives. Their antioxidative and anti-inflammatory action and their inhibition of apoptosis and microglial activation are assessed. This will provide new directions for the development of novel drugs and strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
38
|
Fogacci F, Fogacci S, Cicero A. Resveratrol for High Blood Pressure: A Total Failure or the Need to Identify the Right Patient? High Blood Press Cardiovasc Prev 2019; 26:421-423. [PMID: 31352662 DOI: 10.1007/s40292-019-00333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Federica Fogacci
- Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Dyslipidemia and Atherosclerosis Research Group, U.O. Medicina Interna Borghi, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Silvia Fogacci
- Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Dyslipidemia and Atherosclerosis Research Group, U.O. Medicina Interna Borghi, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
| | - Arrigo Cicero
- Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Dyslipidemia and Atherosclerosis Research Group, U.O. Medicina Interna Borghi, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy
- Italian Nutraceutical Society (SINut), Bologna, Italy
| |
Collapse
|
39
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
40
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
41
|
Ouk T, Potey C, Maestrini I, Petrault M, Mendyk AM, Leys D, Bordet R, Gautier S. Neutrophils in tPA-induced hemorrhagic transformations: Main culprit, accomplice or innocent bystander? Pharmacol Ther 2019; 194:73-83. [DOI: 10.1016/j.pharmthera.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
43
|
Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2018; 109:2237-2251. [PMID: 30551481 DOI: 10.1016/j.biopha.2018.11.075] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol, a phytoalexin with a wide range of pharmacological properties is synthesised by plants in response to stress, injury, infection or UV radiations. As it is a secondary metabolite with many health promoting properties, various methods employing microorganisms and genetic manipulation of different synthetic enzymes, have been comprehensively studied to increase its production. Its rapid metabolism and low bioavailability have been addressed by the use of bio enhancers and nano-formulations. This flavonoid is extensively researched due to its pharmacological properties such as anti-oxidative, anti-inflammatory and immuno-modulating effects. Knowledge of these properties of resveratrol has led to elaborate studies on its effect on diabetes, neurodegenerative diseases, cancer, ageing, obesity and cardiovascular diseases. At molecular level it targets sirtuin, adenosine monophosphate kinase, nuclear Factor-κB, inflammatory cytokines, anti-oxidant enzymes along with cellular processes such as angiogenesis, apoptosis, mitochondrial biogenesis, gluconeogenesis and lipid metabolism. This review discusses the properties of resveratrol and the different approaches of addressing the unfavourable synthesis and pharmacokinetics of this stilbene. Pre-clinical evaluations of resveratrol on diabetes mellitus, cardiovascular and neurological diseases are elaborately discussed and the underlying pathways involved in its therapeutic activity have been given paramount importance. Following the pre-clinical studies, clinical trials on the same reveal the efficacy of resveratrol in the effective management of these diseases. This review provides an intricate insight on resveratrol's significance from a dietary component to a therapeutic agent.
Collapse
|
44
|
Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Health-Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Compr Rev Food Sci Food Saf 2018; 17:808-826. [PMID: 33350112 DOI: 10.1111/1541-4337.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
This paper reviews the potential of stilbenoids as nutraceuticals. Stilbenoid compounds in wine are considered key factors in health-promoting benefits. Resveratrol and resveratrol-related compounds are found in a large diversity of vegetal products. The stilbene composition varies from wine to wine and from one season to another. Therefore, the article also reviews how food science and technology and wine industry may help in providing wines and/or food supplements with efficacious concentrations of stilbenes. The review also presents results from clinical trials and those derived from genomic/transcriptomic studies. The most studied stilbenoid, resveratrol, is a very safe compound. On the other hand, the potential benefits of stilbene intake are multiple and are apparently due to downregulation more than upregulation of gene expression. The field may take advantage from identifying the mechanism of action(s) and from providing useful data to show evidence for specific health benefits in a given tissue or for combating a given disease.
Collapse
Affiliation(s)
- Gemma Navarro
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Dept. of Morphology and Cell Biology, Faculty of Medicine, Univ. of Oviedo, Asturias, Spain.,Inst. de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Psicología, Univ. de Oviedo, Plaza Feijóo s/n, 33003 Oviedo, Asturias, Spain.,Inst. de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Raquel Ortiz
- Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Carlos J Ciudad
- Dept. of Biochemistry and Physiology, School of Pharmacy, Univ. of Barcelona, Barcelona, Spain.,Inst. of Nanotechnology of the Univ. of Barcelona (IN2UB), Barcelona, Spain
| | - Rafael Franco
- CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Inst. de Salud Carlos III, Madrid, Spain.,Inst. of Biomedicine of the Univ. of Barcelona (IBUB), Barcelona, Spain.,Dept. of Biochemistry and Molecular Biomedicine, Faculty of Biology, Univ. of Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
46
|
Ding J, Kang Y, Fan Y, Chen Q. Efficacy of resveratrol to supplement oral nifedipine treatment in pregnancy-induced preeclampsia. Endocr Connect 2017; 6:595-600. [PMID: 28993436 PMCID: PMC5633060 DOI: 10.1530/ec-17-0130] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a complication affecting pregnant women worldwide, which usually manifests as severe maternal hypertension. Resveratrol (RESV), a naturally existing polyphenol, is known to exhibit beneficial effects in cardiovascular disease including hypertension. We evaluated the outcome of treatment combining oral nifedipine (NIFE) and RESV against PE. DESIGN AND METHODS Using a randomized group assignment, 400 PE patients were enrolled and received oral treatments of either NIFE + RESV or NIFE + placebo. Primary endpoints were defined as time to control blood pressure and time before a new hypertensive crisis. Secondary endpoints were defined as the number of doses needed to control blood pressure, maternal and neonatal adverse effects. RESULTS Compared with the NIFE + placebo group, the time needed to control blood pressure was significantly reduced in NIFE + RESV group, while time before a new hypertensive crisis was greatly delayed in NIFE + RESV group. The number of treatment doses needed to control blood pressure was also categorically lower in NIFE + RESV group. No differences in maternal or neonatal adverse effects were observed between the two treatment groups. CONCLUSION Our data support the potential of RESV as a safe and effective adjuvant of oral NIFE to attenuate hypertensive symptoms among PE patients.
Collapse
Affiliation(s)
- Jian Ding
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yan Kang
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yuqin Fan
- Department of Obstetrics and GynecologyMaternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong Province, China
- Department of Obstetrics and GynecologyProvincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Qi Chen
- Department of Obstetrics and GynecologyZoucheng People's Hospital, Zoucheng, Shandong Province, China
| |
Collapse
|
47
|
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 2017; 1. [PMID: 28989978 PMCID: PMC5630227 DOI: 10.1038/s41698-017-0038-6] [Citation(s) in RCA: 503] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a nutraceutical with several therapeutic effects. It has been shown to mimic effects of caloric restriction, exert anti-inflammatory and anti-oxidative effects, and affect the initiation and progression of many diseases through several mechanisms. While there is a wealth of in vitro and in vivo evidence that resveratrol could be a promising therapeutic agent, clinical trials must confirm its potential. In this work, we reviewed the current clinical data available regarding the pharmacological action of resveratrol. Most of the clinical trials of resveratrol have focused on cancer, neurological disorders, cardiovascular diseases, diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity. We found that for neurological disorders, cardiovascular diseases, and diabetes, the current clinical trials show that resveratrol was well tolerated and beneficially influenced disease biomarkers. However resveratrol had ambiguous and sometimes even detrimental effects in certain types of cancers and in NAFLD. In most of the clinical trials, the major obstacle presented was resveratrol’s poor bioavailability. Thus, this work provides useful considerations for the planning and design of future pre-clinical and clinical research on resveratrol.
Collapse
Affiliation(s)
- Adi Y Berman
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | | | - Marina K Holz
- Department of Biology, Yeshiva University, New York, NY, USA.,Department of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
48
|
Rustagi Y, Jain A, Saxena S, Rani V. Natural Polyphenols as Prospective Inhibitors for MMPs Remodeling in Human Diseases. PROTEASES IN HUMAN DISEASES 2017:263-283. [DOI: 10.1007/978-981-10-3162-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|