1
|
Lu S, Zhou Y, Liu M, Gong L, Liu L, Duan Z, Chen K, Gonzalez FJ, Wei F, Xiang R, Li G. Superoxide is an Intrinsic Signaling Molecule Triggering Muscle Hypertrophy. Antioxid Redox Signal 2024. [PMID: 38877802 DOI: 10.1089/ars.2024.0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Aims: Redox signaling plays a key role in skeletal muscle remodeling induced by exercise and prolonged inactivity, but it is unclear which oxidant triggers myofiber hypertrophy due to the lack of strategies to precisely regulate individual oxidants in vivo. In this study, we used tetrathiomolybdate (TM) to dissociate the link between superoxide (O2•-) and hydrogen peroxide and thereby to specifically explore the role of O2•- in muscle hypertrophy in C2C12 cells and mice. Results: TM can linearly regulate intracellular O2•- levels by inhibition of superoxide dismutase 1 (SOD1). A 70% increase in O2•- levels in C2C12 myoblast cells and mice is necessary and sufficient for triggering hypertrophy of differentiated myotubes and can enhance exercise performance by more than 50% in mice. SOD1 knockout blocks TM-induced O2•- increments and thereby prevents hypertrophy, whereas SOD1 restoration rescues all these effects. Scavenging O2•- with antioxidants abolishes TM-induced hypertrophy and the enhancement of exercise performance, whereas the restoration of O2•- levels with a O2•- generator promotes muscle hypertrophy independent of SOD1 activity. Innovation and Conclusion: These findings suggest that O2•- is an endogenous initiator of myofiber hypertrophy and that TM may be used to treat muscle wasting diseases. Our work not only suggests a novel druggable mechanism to increase muscle mass but also provides a tool for precisely regulating O2•- levels in vivo.
Collapse
Affiliation(s)
- Siyu Lu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiming Zhou
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mincong Liu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Gong
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Liu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Keke Chen
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fang Wei
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, China
- FuRong Laboratory, Changsha, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Guolin Li
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, China
- FuRong Laboratory, Changsha, China
| |
Collapse
|
2
|
Tokuda N, Watanabe D, Naito A, Yamauchi N, Ashida Y, Cheng AJ, Yamada T. Intrinsic contractile dysfunction due to impaired sarcoplasmic reticulum Ca 2+ release in compensatory hypertrophied muscle fibers following synergist ablation. Am J Physiol Cell Physiol 2023; 325:C599-C612. [PMID: 37486068 DOI: 10.1152/ajpcell.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Synergist ablation (SA) is an experimental procedure for the induction of hypertrophy. However, SA causes a decrease in specific force (i.e., force per cross-sectional area), likely due to excessive muscle use. Here, we investigated the mechanisms behind the SA-induced intrinsic contractile dysfunction, especially focusing on the excitation-contraction (EC) coupling. Male Wistar rats had unilateral surgical ablation of gastrocnemius and soleus muscles to induce compensatory hypertrophy in the plantaris muscles. Two weeks after SA, plantaris muscle was dissected from each animal and used for later analyses. SA significantly increased the mean fiber cross-sectional area (+18%). On the other hand, the ratio of depolarization-induced force to the maximum Ca2+-activated specific force, an indicator of sarcoplasmic reticulum (SR) Ca2+ release, was markedly reduced in mechanically skinned fibers from the SA group (-51%). These functional defects were accompanied by an extensive fragmentation of the SR Ca2+ release channel, the ryanodine receptor 1 (RyR1), and a decrease in the amount of other triad proteins (i.e., DHPR, STAC3, and junctophilin1). SA treatment also caused activation of calpain-1 and increased the amount of NADPH oxidase 2, endoplasmic reticulum (ER) stress proteins (i.e., Grp78, Grp94, PDI, and Ero1), and lipid peroxidation [i.e., 4-hydroxynonenal (4-HNE)] in SA-treated muscles. Our findings show that SA causes skeletal muscle weakness due to impaired EC coupling. This is likely to be induced by Ca2+-dependent degradation of triad proteins, which may result from Ca2+ leak from fragmented RyR1 triggered by increased oxidative stress.NEW & NOTEWORTHY Synergist ablation (SA) has widely been used to understand the mechanisms behind skeletal muscle hypertrophy. However, compensatory hypertrophied muscles display intrinsic contractile dysfunction, i.e., a hallmark of overuse. Here, we demonstrate that SA-induced compensatory hypertrophy is accompanied by muscle weakness due to impaired sarcoplasmic reticulum Ca2+ release. This dysfunction may be caused by the degradation of triad proteins due to the reciprocal amplification of reactive oxygen species and Ca2+ signaling at the junctional space microdomain.
Collapse
Affiliation(s)
- Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Arthur J Cheng
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
3
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
4
|
Kent E, Coleman S, Bruemmer J, Casagrande RR, Levihn C, Romo G, Herkelman K, Hess T. Comparison of an Antioxidant Source and Antioxidant Plus BCAA on Athletic Performance and Post Exercise Recovery of Horses. J Equine Vet Sci 2023; 121:104200. [PMID: 36577471 DOI: 10.1016/j.jevs.2022.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Antioxidant supplementation decreases postexercise oxidative stress but could also decrease muscle protein synthesis. This study compared the effects of three diets: low antioxidant (control, CON), high antioxidant (AO), and branched-chain amino acid high antioxidant (BCAO) supplementation on postexercise protein synthesis and oxidative stress. We hypothesized that supplementing antioxidants with branched-chain amino acids(BCAA) would reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed-breed polo horses (11 mares and 7 geldings, with age range between 5 and 18 years, were on CON diet for 30 days (from day -45 until day 0) and then were assigned to one of the treatments after the first lactate threshold test (day 0, LT). LT were also conducted on days 15 and 30 of supplemenation. Oxidative stress was assessed by measuring blood glutathione peroxidase, superoxide dismutase, and malondialdehyde concentrations before 2 and 4 hours after each LT. Muscle biopsies were taken before and 4 hours after each LT and analyzed for gene expression of protein synthesis by RTqPCR. Data were analyzed by ANOVA and compared by least-square means. A reduction in oxidative stress occurred over time (P < .05), from day 0 to day 30. An up-regulation in the abundance of muscle protein mRNA transcripts was found for CD36, CPT1, PDK4, MYF5, and MYOG (P < .05) after all lactate threshold tests, without a treatment effect. A treatment-by-exercise effect was observed for MYOD1 (P = .0041). Transcript abundance was upregulated in AO samples post exercise compared to other treatments. MYF6 exhibited a time-by-treatment effect (P = .045), where abundance increased more in AO samples from day 0 to day 15 and 30 compared to other treatments. Transcript abundance for metabolic and myogenic genes was upregulated in post exercise muscle samples with no advantage from supplementation of antioxidants with branched-chain amino acids compared to antioxidants alone.
Collapse
Affiliation(s)
- Emily Kent
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Stephen Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Jason Bruemmer
- USDA APHIS WS, National Wildlife Research Center, Fort Collins, CO
| | - Regan R Casagrande
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Christine Levihn
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | - Grace Romo
- Department of Animal Sciences, Colorado State University, Fort Collins CO
| | | | - Tanja Hess
- Department of Animal Sciences, Colorado State University, Fort Collins CO.
| |
Collapse
|
5
|
Martínez-Ferrán M, Berlanga LA, Barcelo-Guido O, Matos-Duarte M, Vicente-Campos D, Sánchez-Jorge S, Romero-Morales C, Munguía-Izquierdo D, Pareja-Galeano H. Antioxidant vitamin supplementation on muscle adaptations to resistance training: A double-blind, randomized controlled trial. Nutrition 2023; 105:111848. [PMID: 36283241 DOI: 10.1016/j.nut.2022.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to examine whether antioxidant vitamin supplementation with vitamin C (VitC) and vitamin E (VitE) affects the hypertrophic and functional adaptations to resistance training in trained men. METHODS This was a double-blind, randomized controlled trial in which participants were supplemented daily with VitC and VitE ( n = 12) or placebo ( n = 11) while completing a 10-wk resistance training program accompanied by a dietary intervention (300 kcal surplus and adequate protein intake) designed to optimize hypertrophy. Body composition (dual-energy x-ray absorptiometry), handgrip strength, and one-repetition maximum (1-RM), maximal force (F0), velocity (V0), and power (Pmax) were measured in bench press (BP) and squat (SQ) tests conducted before and after the intervention. To detect between-group differences, multiple-mixed analysis of variance, standardized differences, and qualitative differences were estimated. Relative changes within each group were assessed using a paired Student's t test. RESULTS In both groups, similar improvements were produced in BP 1-RM , SQ 1-RM SQ, and BP F0 (P < 0.05) after the resistance training program. A small effect size was observed for BP 1-RM (d = 0.53), BP F0 (d = 0.48), and SQ 1-RM (d = -0.39), but not for SQ F0 (d = 0.03). Dominant handgrip strength was significantly increased only in the placebo group (P < 0.05). According to body composition data, a significant increase was produced in upper body fat-free mass soft tissue (FFMST; P < 0.05) in the placebo group, whereas neither total nor segmental FFMST was increased in the vitamin group. Small intervention effect sizes were observed for upper body FFSMT (d = 0.32), non-dominant and dominant leg FFMST (d = -0.39; d = -0.42). Although a significant increase in total body fat was observed in both groups (P < 0.05) only the placebo group showed an increase in visceral adipose tissue (P < 0.05), showing a substantial intervention effect (d = 0.85). CONCLUSIONS The data indicated that, although VitC/VitE supplementation seemed to blunt upper body strength and hypertrophy adaptations to resistance training, it could also mitigate gains in visceral adipose tissue elicited by an energy surplus.
Collapse
Affiliation(s)
- María Martínez-Ferrán
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
| | - Luis A Berlanga
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Olga Barcelo-Guido
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | - Diego Munguía-Izquierdo
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, Sevilla, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
6
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
7
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
8
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
9
|
An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101528. [PMID: 34679663 PMCID: PMC8532825 DOI: 10.3390/antiox10101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage. We examined the response of SM to ROS generation during exercise using an antioxidant supplement treatment strategy in this study. The findings of this review research are paradoxical due to variances in antioxidant supplements dose and duration, intensity, length, frequency, types of exercise activities, and, in general, the lack of a regular exercise and nutrition strategy. As such, further research in this area is still being felt.
Collapse
|
10
|
Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22158310. [PMID: 34361076 PMCID: PMC8348757 DOI: 10.3390/ijms22158310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.
Collapse
|
11
|
Gombos Z, Koltai E, Torma F, Bakonyi P, Kolonics A, Aczel D, Ditroi T, Nagy P, Kawamura T, Radak Z. Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels. Int J Mol Sci 2021; 22:ijms22147588. [PMID: 34299206 PMCID: PMC8305659 DOI: 10.3390/ijms22147588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.
Collapse
Affiliation(s)
- Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Erika Koltai
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Peter Bakonyi
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Attila Kolonics
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Dora Aczel
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, H-1122 Budapest, Hungary; (T.D.); (P.N.)
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, H-1122 Budapest, Hungary; (T.D.); (P.N.)
- Department of Anatomy and Histology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Takuji Kawamura
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan;
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan;
- Correspondence: ; Tel.: +36-1-3565764; Fax: +36-1-3566337
| |
Collapse
|
12
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
13
|
Gomez-Cabrera MC, Carretero A, Millan-Domingo F, Garcia-Dominguez E, Correas AG, Olaso-Gonzalez G, Viña J. Redox-related biomarkers in physical exercise. Redox Biol 2021; 42:101956. [PMID: 33811000 PMCID: PMC8113051 DOI: 10.1016/j.redox.2021.101956] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Research in redox biology of exercise has made considerable advances in the last 70 years. Since the seminal study of George Pake's group calculating the content of free radicals in skeletal muscle in resting conditions in 1954, many discoveries have been made in the field. The first section of this review is devoted to highlight the main research findings and fundamental changes in the exercise redox biology discipline. It includes: i) the first steps in free radical research, ii) the relation between exercise and oxidative damage, iii) the redox regulation of muscle fatigue, iv) the sources of free radicals during muscle contractions, and v) the role of reactive oxygen species as regulators of gene transcription and adaptations in skeletal muscle. In the second section of the manuscript, we review the available biomarkers for assessing health, performance, recovery during exercise training and overtraining in the sport population. Among the set of biomarkers that could be determined in exercise studies we deepen on the four categories of redox biomarkers: i) oxidants, ii) antioxidants, iii) oxidation products (markers of oxidative damage), and iv) measurements of the redox balance (markers of oxidative stress). The main drawbacks, strengths, weaknesses, and methodological considerations of every biomarker are also discussed.
Collapse
Affiliation(s)
- Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Aitor Carretero
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Fernando Millan-Domingo
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Angela G Correas
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Jose Viña
- Freshage Research Group, Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
14
|
Siriguleng S, Koike T, Natsume Y, Jiang H, Mu L, Oshida Y. Eicosapentaenoic acid enhances skeletal muscle hypertrophy without altering the protein anabolic signaling pathway. Physiol Res 2021; 70:55-65. [PMID: 33453714 DOI: 10.33549/physiolres.934534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to examine the effect of eicosapentaenoic acid (EPA) on skeletal muscle hypertrophy induced by muscle overload and the associated intracellular signaling pathways. Male C57BL/6J mice were randomly assigned to oral treatment with either EPA or corn oil for 6 weeks. After 4 weeks of treatment, the gastrocnemius muscle of the right hindlimb was surgically removed to overload the plantaris and soleus muscles for 1 or 2 weeks. We examined the effect of EPA on the signaling pathway associated with protein synthesis using the soleus muscles. According to our analysis of the compensatory muscle growth, EPA administration enhanced hypertrophy of the soleus muscle but not hypertrophy of the plantaris muscle. Nevertheless, EPA administration did not enhance the expression or phosphorylation of Akt, mechanistic target of rapamycin (mTOR), or S6 kinase (S6K) in the soleus muscle. In conclusion, EPA enhances skeletal muscle hypertrophy, which can be independent of changes in the AKT-mTOR-S6K pathway.
Collapse
Affiliation(s)
- S Siriguleng
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients 2020; 12:nu12123908. [PMID: 33371359 PMCID: PMC7767325 DOI: 10.3390/nu12123908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
This paper is a literature overview of the complex relationship between vitamin C and two opposing physiological states, physical activity and sleep. The evidence suggests a clinically important bidirectional association between these two phenomena mediated by different physiological mechanisms. With this in mind, and knowing that both states share a connection with oxidative stress, we discuss the existing body of evidence to answer the question of whether vitamin C supplementation can be beneficial in the context of sleep health and key aspects of physical activity, such as performance, metabolic changes, and antioxidant function. We analyze the effect of ascorbic acid on the main sleep components, sleep duration and quality, focusing on the most common disorders: insomnia, obstructive sleep apnea, and restless legs syndrome. Deeper understanding of those interactions has implications for both public health and clinical practice.
Collapse
|
16
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
17
|
Santos HO, Genario R, Gomes GK, Schoenfeld BJ. Cherry intake as a dietary strategy in sport and diseases: a review of clinical applicability and mechanisms of action. Crit Rev Food Sci Nutr 2020; 61:417-430. [PMID: 32126807 DOI: 10.1080/10408398.2020.1734912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cherries are fruits rich in phytochemical compounds, particularly anthocyanins. Thus, consumption of cherries has gained attention in both clinical and sport-related fields for their antioxidant and anti-inflammatory properties. Mechanistically, anthocyanins from the intake of cherries may help to attenuate pain and decrease blood concentrations of biomarkers linked to skeletal muscle degradation, which in turn may provide ergogenic effects. In addition, the ability of anthocyanins to balance the redox state represents a conceivable target for rheumatic disorders (e.g. gout and arthritis). Moreover, cherry anthocyanins are emerging as a potential non-pharmacological remedy for cardiometabolic diseases (hypertension and dyslipidemia). Herein, we summarize the effects of cherry intake in sport and diseases, and discuss their purported mechanisms of action to provide insights into practical application.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Rafael Genario
- School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gederson K Gomes
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
18
|
Arc-Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano AF, Delobel P, Blanc S, Jasmin BJ, Blottner D, Salanova M, Gomez-Cabrera MC, Viña J, Brioche T, Chopard A. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol 2020; 11:71. [PMID: 32116779 PMCID: PMC7028694 DOI: 10.3389/fphys.2020.00071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/22/2020] [Indexed: 01/16/2023] Open
Abstract
Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivity using the head-down bed rest (HDBR) model. Twenty healthy men were recruited; half of them received a daily antioxidant/anti-inflammatory supplementation, whereas the other half received a placebo. Muscle biopsies were collected from the vastus lateralis muscles before and after bedrest and 10 days after remobilization. After 2 months of HDBR, all subjects presented muscle deconditioning characterized by a loss of muscle strength and an atrophy of muscle fibers, which was not prevented by cocktail supplementation. Our results regarding muscle oxidative damage, mitochondrial content, and protein balance actors refuted the potential protection of the cocktail during long-term inactivity and showed a disturbance of essential signaling pathways (protein balance and mitochondriogenesis) during the remobilization period. This study demonstrated the ineffectiveness of our cocktail supplementation and underlines the complexity of redox balance mechanisms. It raises interrogations regarding the appropriate nutritional intervention to fight against muscle deconditioning.
Collapse
Affiliation(s)
- Coralie Arc-Chagnaud
- DMEM, Université Montpellier, INRAE, Montpellier, France.,Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Guillaume Py
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Théo Fovet
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | | | - Rémi Demangel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Allan F Pagano
- Faculté des Sciences du Sport, Mitochondries, Stress Oxydant et Protection Musculaire, Université de Strasbourg, Strasbourg, France.,Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Delobel
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Stéphane Blanc
- IPHC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dieter Blottner
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michele Salanova
- Berlin Center for Space Medicine, Integrative Neuroanatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mari-Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Thomas Brioche
- DMEM, Université Montpellier, INRAE, Montpellier, France
| | - Angèle Chopard
- DMEM, Université Montpellier, INRAE, Montpellier, France
| |
Collapse
|
19
|
Targeting Age-Dependent Functional and Metabolic Decline of Human Skeletal Muscle: The Geroprotective Role of Exercise, Myokine IL-6, and Vitamin D. Int J Mol Sci 2020; 21:ijms21031010. [PMID: 32033000 PMCID: PMC7037081 DOI: 10.3390/ijms21031010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the elderly, whole-body health largely relies on healthy skeletal muscle, which controls body stability, locomotion, and metabolic homeostasis. Age-related skeletal muscle structural/functional deterioration is associated with a higher risk of severe comorbid conditions and poorer outcomes, demanding major socioeconomic costs. Thus, the need for efficient so-called geroprotective strategies to improve resilience and ensure a good quality of life in older subjects is urgent. Skeletal muscle senescence and metabolic dysregulation share common cellular/intracellular mechanisms, potentially representing targets for intervention to preserve muscle integrity. Many factors converge in aging, and multifaceted approaches have been proposed as interventions, although they have often been inconclusive. Physical exercise can counteract aging and metabolic deficits, not only in maintaining tissue mass, but also by preserving tissue secretory function. Indeed, skeletal muscle is currently considered a proper secretory organ controlling distant organ functions through immunoactive regulatory small peptides called myokines. This review provides a current perspective on the main biomolecular mechanisms underlying age-dependent and metabolic deterioration of skeletal muscle, herein discussed as a secretory organ, the functional integrity of which largely depends on exercise and myokine release. In particular, muscle-derived interleukin (IL)-6 is discussed as a nutrient-level biosensor. Overall, exercise and vitamin D are addressed as optimal geroprotective strategies in view of their multi-target effects.
Collapse
|
20
|
Dutra MT, Martins WR, Ribeiro ALA, Bottaro M. The Effects of Strength Training Combined with Vitamin C and E Supplementation on Skeletal Muscle Mass and Strength: A Systematic Review and Meta-Analysis. JOURNAL OF SPORTS MEDICINE (HINDAWI PUBLISHING CORPORATION) 2020; 2020:3505209. [PMID: 31970196 PMCID: PMC6973181 DOI: 10.1155/2020/3505209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023]
Abstract
Intense muscle contractile activity can result in reactive oxygen species production in humans. Thus, supplementation of antioxidant vitamins has been used to prevent oxidative stress, enhance performance, and improve muscle mass. In this sense, randomized controlled studies on the effect of vitamin C and E supplementation combined with strength training (ST) on skeletal muscle mass and strength have been conducted. As these studies have come to ambiguous findings, a better understanding of this topic has yet to emerge. The purpose of the present review is to discuss the current knowledge about the effect of vitamin C and E supplementation on muscle mass and strength gains induced by ST. Search for articles was conducted in the following databases: PubMed/Medline, Web of Science, Scopus, Cochrane Central Register of Controlled Trials, and Google Scholar. This work is in line with the recommendations of the PRISMA statement. Eligible studies were placebo-controlled trials with a minimum of four weeks of ST combined with vitamin C and E supplementation. The quality of each included study was evaluated using the Physiotherapy Evidence Database Scale (PEDro). 134 studies were found to be potentially eligible, but only seven were selected to be included in the qualitative synthesis. A meta-analysis of muscle strength was conducted with 3 studies. Findings from these studies indicate that vitamins C and E has no effect on muscle force production after chronic ST. Most of the evidence suggests that this kind of supplementation does not potentiate muscle growth and could possibly attenuate hypertrophy over time.
Collapse
Affiliation(s)
- Maurilio T. Dutra
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- Federal Institute of Education, Science and Technology, IFB, Campus Recanto das Emas, 72620-100 Brasilia, DF, Brazil
| | | | | | - Martim Bottaro
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
21
|
Resistance Training, Antioxidant Status, and Antioxidant Supplementation. Int J Sport Nutr Exerc Metab 2019; 29:539-547. [PMID: 30859847 DOI: 10.1123/ijsnem.2018-0339] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022]
Abstract
Resistance training is known to promote the generation of reactive oxygen species. Although this can likely upregulate the natural, endogenous antioxidant defense systems, high amounts of reactive oxygen species can cause skeletal muscle damage, fatigue, and impair recovery. To prevent these, antioxidant supplements are commonly consumed along with exercise. Recently, it has been shown that these reactive oxygen species are important for the cellular adaptation process, acting as redox signaling molecules. However, most of the research regarding antioxidant status and antioxidant supplementation with exercise has focused on endurance training. In this review, the authors discuss the evidence for resistance training modulating the antioxidant status. They also highlight the effects of combining antioxidant supplementation with resistance training on training-induced skeletal muscle adaptations.
Collapse
|
22
|
Response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids: A systematic review. Biochem Pharmacol 2019; 173:113649. [PMID: 31586588 DOI: 10.1016/j.bcp.2019.113649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nutrition is a key factor in determining exercise response. The aim of this review is to assess the response to exercise in older adults who take supplements of antioxidants and/or omega-3 polyunsaturated fatty acids. METHODS A systematic literature search was performed (June 2009- September 2019) in MEDLINE via Pubmed. The following search strategy was used with Boolean markers: ("omega-3 fatty acids" [Major] OR "antioxidants" [Major]) AND "exercise" AND "aged" [MesH]. Fourteen articles were finally included. RESULTS Exercise-induced free radical and inflammatory marker blood levels, but not changed the plasma total antioxidant capacity (TAC), after administration of antioxidant supplement. The oral administration of antioxidants produced null or negative effect on endothelial function, but the infusion into the brachial artery during rhythmic handgrip exercise produced a significant improvement in muscle blood flow, due to an on increase in the availability of nitric acid derived from the nitric oxide synthase. Aerobic exercise and antioxidant supplementation improved submaximal and maximal aerobic parameters, as well as mitochondrial density and mitochondria-regulated apoptotic signaling. Antioxidant supplementation, but not omega-3 PUFA, decreased pro-inflammatory marker levels and fat oxidation induced by exercise. Strength training decreased serum B12 concentration but combined with omega-3 PUFA or antioxidant supplementation, B12 levels were maintained. Antioxidant supplementation has protective effect after fatigue in isometric exercise but improved appendicular fat-free mass just combined with resistance exercise. Omega-3 fatty acid supplement combined with exercise increased lean mass in women, but not in men. Muscle damage induced by exercise is protected by antioxidant supplementation. CONCLUSIONS Older people who take antioxidant and/or omega-3 PUFA supplements showed improved exercise response, as well as lower muscle damage.
Collapse
|
23
|
Kawamura A, Aoi W, Abe R, Kobayashi Y, Wada S, Kuwahata M, Higashi A. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice. Nutrition 2019; 69:110561. [PMID: 31539816 DOI: 10.1016/j.nut.2019.110561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The antioxidant factors, astaxanthin, β-carotene, and resveratrol, have a potential effect on protein synthesis in skeletal muscle and a combined intake may have a greater cumulative effect than individual intake. The aim of this study was to investigate the combined effects on skeletal muscle mass and protein metabolic signaling during the hypertrophic process from atrophy in mice. METHODS Male ICR mice were divided into five dietary groups consisting of seven animals each: normal, astaxanthin, β-carotene, resveratrol, and all three antioxidants. Equal concentrations (0.06% [w/w]) of the respective antioxidants were included in the diet of each group. In the mixed group, three antioxidants were added in equal proportion. One leg of each mouse was casted for 3 wk to induce muscle atrophy. After removal of the cast, the mice were fed each diet for 2 wk. The muscle tissues were collected, weighed, and examined for protein metabolism signaling and oxidative damage. RESULTS The weight of the soleus muscle was increased in the astaxanthin, β-carotene, and resveratrol groups to a greater extent than in the normal group; this was accelerated by intake of the mixed antioxidants (P = 0.007). Phosphorylation levels of mammalian target of rapamycin and p70 S6 K in the muscle were higher in the mixed antioxidant group than in the normal group (P = 0.025; P = 0.020). The carbonylated protein concentration was lower in the mixed antioxidant group than in the normal group (P = 0.021). CONCLUSIONS These results suggested that a combination of astaxanthin, β-carotene, and resveratrol, even in small amounts, promoted protein synthesis during the muscle hypertrophic process following atrophy.
Collapse
Affiliation(s)
- Aki Kawamura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Sports Science Research Promotion Center, Nippon Sport Science University, Tokyo, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Wakayama Medical University Hospital, Wakayama, Japan
| | - Yukiko Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
24
|
Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. Supplements with purported effects on muscle mass and strength. Eur J Nutr 2019; 58:2983-3008. [PMID: 30604177 DOI: 10.1007/s00394-018-1882-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear. METHODS This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength. RESULTS Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid). CONCLUSION In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.,Physiology Unit. Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain. .,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain.,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain
| |
Collapse
|
25
|
SIRIGULENG, KOIKE T, NATSUME Y, IWAMA S, OSHIDA Y. Effect of Prior Chronic Aerobic Exercise on Overload-Induced Skeletal Muscle Hypertrophy in Mice. Physiol Res 2018; 67:765-775. [DOI: 10.33549/physiolres.933786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to examine how regular aerobic training can affect the muscle hypertrophy induced by overloading. Male C57BL/6J mice were randomly divided into three groups: rest group, low-intensity aerobic exercise group, and high-intensity aerobic exercise group. Mice in the exercise groups were assigned to run at a speed of 10 m/min (low-intensity) or 25 m/min (high-intensity) for 30 min/day, five days/week, for four weeks. Then, the right hind leg gastrocnemius muscles were surgically removed to overload the plantaris and soleus muscles, while the left hind leg was subjected to a sham-operation. Both the plantaris and soleus muscles grew larger in the overloaded legs than those in the sham-operated legs. Muscle growth increased in the plantaris muscles in the low-intensity exercise group compared to that in the rest or high-intensity exercise groups at one and two weeks after overloading. This enhancement was not observed in the soleus muscles. Consistently, we observed changes in the expression of proteins involved in anabolic intracellular signaling, including Akt, mechanistic target of rapamycin (mTOR), and p70S6K, in the plantaris muscles. Our data showed for the first time that chronic low-intensity aerobic exercise precipitates overload-induced muscle growth.
Collapse
Affiliation(s)
| | - T. KOIKE
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
26
|
Pileggi CA, Hedges CP, D'Souza RF, Durainayagam BR, Markworth JF, Hickey AJR, Mitchell CJ, Cameron-Smith D. Exercise recovery increases skeletal muscle H 2O 2 emission and mitochondrial respiratory capacity following two-weeks of limb immobilization. Free Radic Biol Med 2018; 124:241-248. [PMID: 29909291 DOI: 10.1016/j.freeradbiomed.2018.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023]
Abstract
Extended periods of skeletal muscle disuse result in muscle atrophy. Following limb immobilization, increased mitochondrial reactive oxygen species (ROS) production may contribute to atrophy through increases in skeletal muscle protein degradation. However, the effect of skeletal muscle disuse on mitochondrial ROS production remains unclear. This study investigated the effect of immobilization, followed by two subsequent periods of restored physical activity, on mitochondrial H2O2 emissions in adult male skeletal muscle. Middle-aged men (n = 30, 49.7 ± 3.84 y) completed two weeks of unilateral lower-limb immobilization, followed by two weeks of baseline-matched activity, consisting of 10,000 steps a day, then completed two weeks of three times weekly supervised resistance training. Vastus lateralis biopsies were taken at baseline, post-immobilization, post-ambulatory recovery, and post-resistance-training. High-resolution respirometry was used simultaneously with fluorometry to determine mitochondrial respiration and hydrogen peroxide (H2O2) production in permeabilized muscle fibres. Mitochondrial H2O2 emission with complex I and II substrates, in the absence of ADP, was greater following immobilization, however, there was no effect on mitochondrial respiration. Both ambulatory recovery and resistance training, following the period of immobilization, increased in mitochondrial H2O2 emissions. These data demonstrated that 2 weeks of immobilization increases mitochondrial H2O2 emissions, but subsequent retraining periods of ambulatory recovery and resistance training also led to in robust increases in mitochondrial H2O2 emissions in skeletal muscle.
Collapse
Affiliation(s)
- Chantal A Pileggi
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- College of Sport and Exercise Science, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - James F Markworth
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anthony J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand; Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
27
|
Dutra MT, Alex S, Mota MR, Sales NB, Brown LE, Bottaro M. Effect of strength training combined with antioxidant supplementation on muscular performance. Appl Physiol Nutr Metab 2018; 43:775-781. [DOI: 10.1139/apnm-2017-0866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This was a placebo-controlled randomized study that aimed to investigate the effects of strength training (ST) combined with antioxidant supplementation on muscle performance and thickness. Forty-two women (age, 23.8 ± 2.7 years; body mass, 58.7 ± 11.0 kg; height, 1.63 ± 0.1 m) were allocated into 3 groups: vitamins (n = 15), placebo (n = 12), or control (n = 15). The vitamins and placebo groups underwent an ST program, twice a week, for 10 weeks. The vitamins group was supplemented with vitamins C (1 g/day) and E (400 IU/day) during the ST period. Before and after training, peak torque (PT) and total work (TW) were measured on an isokinetic dynamometer, and quadriceps muscle thickness (MT) was assessed by ultrasound. Mixed-factor ANOVA was used to analyze data and showed a significant group × time interaction for PT and TW. Both the vitamins (37.2 ± 5.4 to 40.3 ± 5.6 mm) and placebo (39.7 ± 5.2 to 42.5 ± 5.6 mm) groups increased MT after the intervention (P < 0.05) with no difference between them. The vitamins (146.0 ± 29.1 to 170.1 ± 30.3 N·m) and placebo (158.9 ± 22.4 to 182.7 ± 23.2 N·m) groups increased PT after training (P < 0.05) and PT was higher in the placebo compared with the control group (P = 0.01). The vitamins (2068.3 ± 401.2 to 2295.5 ± 426.8 J) and placebo (2165.1 ± 369.5 to 2480.8 ± 241.3 J) groups increased TW after training (P < 0.05) and TW was higher in the placebo compared with the control group (P = 0.01). Thus, chronic antioxidant supplementation may attenuate peak torque and total work improvement in young women after 10 weeks of ST.
Collapse
Affiliation(s)
- Maurilio T. Dutra
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
- State Department of Education of the Federal District, Entre Avenidas Contorno e Independência, Setor de Saúde, Planaltina, Brasília, DF 73300-000, Brazil
| | - Sávio Alex
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| | - Marcio Rabelo Mota
- College of Education and Health Sciences, SEPN 707/907, Campus Universitário, University Center of Brasília, Asa Norte, Brasília, DF 70790075, Brazil
| | - Nathalia B. Sales
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| | - Lee E. Brown
- Department of Kinesiology, California State University, Fullerton, 800 North State College Blvd., Fullerton, CA 92834, USA
| | - Martim Bottaro
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| |
Collapse
|
28
|
The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males. Antioxidants (Basel) 2017; 6:antiox6040079. [PMID: 29039798 PMCID: PMC5745489 DOI: 10.3390/antiox6040079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023] Open
Abstract
Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg−1 body weight∙day−1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p < 0.001) for both taurine and placebo, indicating the attainment of muscle damage. Significant treatment effects were observed only for peak eccentric torque (p < 0.05). No significant time × treatment effects were observed (all p > 0.05). Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05). These findings suggest that taurine supplementation taken twice daily for 72 h following eccentric exercise-induced muscle damage may help improve eccentric performance recovery of the biceps brachii.
Collapse
|
29
|
Kohara A, Machida M, Setoguchi Y, Ito R, Sugitani M, Maruki-Uchida H, Inagaki H, Ito T, Omi N, Takemasa T. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice. J Int Soc Sports Nutr 2017; 14:32. [PMID: 28878590 PMCID: PMC5581924 DOI: 10.1186/s12970-017-0190-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/25/2017] [Indexed: 02/02/2023] Open
Abstract
Background Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. Methods In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. Results In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. Conclusion EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.
Collapse
Affiliation(s)
- Akiko Kohara
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | - Masanao Machida
- Organization of General Education, Saga University, Saga, Japan
| | - Yuko Setoguchi
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | - Ryouichi Ito
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | - Masanori Sugitani
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | | | - Hiroyuki Inagaki
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | - Tatsuhiko Ito
- Healthcare division, Morinaga & Co., Ltd., Yokohama, Kanagawa 230-8504 Japan
| | - Naomi Omi
- Health and Sport Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Health and Sport Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. "Nutraceuticals" in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 2017; 312:E282-E299. [PMID: 28143855 PMCID: PMC5406990 DOI: 10.1152/ajpendo.00230.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Collapse
Affiliation(s)
- Colleen S Deane
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Faculty of Health and Social Science, Bournemouth University, Bournemouth, United Kingdom; and
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel J Wilkinson
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom;
| |
Collapse
|
31
|
Panaxatriol derived from ginseng augments resistance exercised-induced protein synthesis via mTORC1 signaling in rat skeletal muscle. Nutr Res 2016; 36:1193-1201. [PMID: 27865617 DOI: 10.1016/j.nutres.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
Abstract
Resistance exercise activates muscle protein synthesis via the mammalian target of rapamycin complex 1 (mTORC1) pathway and subsequent muscle hypertrophy. Upstream components of the mTORC1 pathway are widely known to be involved in Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Previous studies have shown that ginseng stimulated Akt and ERK1/2 signaling. Therefore, we hypothesized that panaxatriol (PT) derived from ginseng triggers mTORC1 signaling and muscle protein synthesis by activating both the Akt and ERK1/2 signaling pathways, and that PT additively stimulates muscle protein synthesis when combined with resistance exercise. The study included male Sprague-Dawley rats. The legs of the rats were divided into control, PT-only, exercise-only, and exercise + PT groups. The right legs were subjected to isometric resistance exercise using percutaneous electrical stimulation, whereas the left legs were used as controls. PT (0.2 g/kg) was administered immediately after exercise. The Akt and ERK1/2 phosphorylation levels were significantly higher in the exercise + PT group than in the exercise-only group 0.5 hour after exercise. The phosphorylation of p70S6K was significantly increased at both 0.5 and 3 hours after exercise, and it was higher in the exercise + PT group than in the exercise-only group at both 0.5 and 3 hours after exercise. Muscle protein synthesis was significantly increased 3 hours after exercise, and it was higher in the exercise + PT group than in the exercise-only group 3 hours after exercise. Our results suggest that PT derived from ginseng enhances resistance exercise-induced protein synthesis via mTORC1 signaling in rat skeletal muscle.
Collapse
|
32
|
Lewis NA, Towey C, Bruinvels G, Howatson G, Pedlar CR. Effects of exercise on alterations in redox homeostasis in elite male and female endurance athletes using a clinical point-of-care test. Appl Physiol Nutr Metab 2016; 41:1026-1032. [DOI: 10.1139/apnm-2016-0208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise causes alterations in redox homeostasis (ARH). Measuring ARH in elite athletes may aid in the identification of training tolerance, fatigued states, and underperformance. To the best of our knowledge, no studies have examined ARH in elite male and female distance runners at sea level. The monitoring of ARH in athletes is hindered by a lack of reliable and repeatable in-the-field testing tools and by the rapid turnaround of results. We examined the effects of various exercise intensities on ARH in healthy (non-over-reached) elite male and female endurance athletes using clinical point-of-care (POC) redox tests, referred to as the free oxygen radical test (FORT) (pro-oxidant) and the free oxygen radical defence (FORD) (antioxidant). Elite male and female endurance athletes (n = 22) completed a discontinuous incremental treadmill protocol at submaximal running speeds and a test to exhaustion. Redox measures were analyzed via blood sampling at rest, warm-up, submaximal exercise, exhaustion, and recovery. FORD was elevated above rest after submaximal and maximal exercise, and recovery (p < 0.05, d = 0.87–1.55), with only maximal exercise and recovery increasing FORT (p < 0.05, d = 0.23–0.32). Overall, a decrease in oxidative stress in response to submaximal and maximal exercise was evident (p < 0.05, d = 0.46). There were no gender differences for ARH (p > 0.05). The velocity at lactate threshold (vLT) correlated with the FORD response at rest, maximal exercise, and recovery (p < 0.05). Using the clinical POC redox test, an absence of oxidative stress after exhaustive exercise is evident in the nonfatigued elite endurance athlete. The blood antioxidant response (FORD) to exercise appears to be related to a key marker of aerobic fitness: vLT.
Collapse
Affiliation(s)
- Nathan A. Lewis
- School of Sport, Health and Applied Science, St. Mary’s University, Twickenham, London TW1 4SX, UK
- ORRECO, National University of Ireland Galway Business Innovation Centre, Unit 103, Upper Newcastle, Galway H91 RW53, Ireland
- English Institute of Sport, Bath University, Claverton Down, Bath BA2 7AY, UK
| | - Colin Towey
- School of Sport, Health and Applied Science, St. Mary’s University, Twickenham, London TW1 4SX, UK
| | - Georgie Bruinvels
- School of Sport, Health and Applied Science, St. Mary’s University, Twickenham, London TW1 4SX, UK
- ORRECO, National University of Ireland Galway Business Innovation Centre, Unit 103, Upper Newcastle, Galway H91 RW53, Ireland
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE7 7XA, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2531, South Africa
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary’s University, Twickenham, London TW1 4SX, UK
- ORRECO, National University of Ireland Galway Business Innovation Centre, Unit 103, Upper Newcastle, Galway H91 RW53, Ireland
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston MA 02114, USA
| |
Collapse
|
33
|
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 2016; 594:5135-47. [PMID: 26638792 PMCID: PMC5023714 DOI: 10.1113/jp270654] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training-induced and ROS/RNS-mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high-intensity training, suggesting that remodelling of skeletal muscle following resistance and high-intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions. Overall, ROS/RNS are likely to exhibit a non-linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland
| |
Collapse
|
34
|
Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 2016; 98:131-143. [PMID: 26876650 DOI: 10.1016/j.freeradbiomed.2016.02.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly malleable tissue capable of altering its phenotype in response to external stimuli including exercise. This response is determined by the mode, (endurance- versus resistance-based), volume, intensity and frequency of exercise performed with the magnitude of this response-adaptation the basis for enhanced physical work capacity. However, training-induced adaptations in skeletal muscle are variable and unpredictable between individuals. With the recent application of molecular techniques to exercise biology, there has been a greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses. This review summarizes the molecular and cellular events mediating adaptation processes in skeletal muscle in response to exercise. We discuss established and novel cell signaling proteins mediating key physiological responses associated with enhanced exercise performance and the capacity for reactive oxygen and nitrogen species to modulate training adaptation responses. We also examine the molecular bases underpinning heterogeneous responses to resistance and endurance exercise and the dissociation between molecular 'markers' of training adaptation and subsequent exercise performance.
Collapse
Affiliation(s)
- Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
35
|
Mason SA, Morrison D, McConell GK, Wadley GD. Muscle redox signalling pathways in exercise. Role of antioxidants. Free Radic Biol Med 2016; 98:29-45. [PMID: 26912034 DOI: 10.1016/j.freeradbiomed.2016.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023]
Abstract
Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E (≥260 IU/day) supplementation in impairments to some skeletal muscle cellular adaptations to chronic exercise training. Thus, determining the utility of antioxidant supplementation in athletes likely requires a consideration of training and competition periodization cycles of athletes in addition to type, dose and duration of antioxidant supplementation.
Collapse
Affiliation(s)
- Shaun A Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dale Morrison
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Glenn K McConell
- Clinical Exercise Science Research Program, Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
36
|
Abstract
Hormesis is a process whereby exposure to a low dose of a potentially harmful stressor promotes adaptive changes to the cell that enables it to better tolerate subsequent stress. In recent years this concept has been applied specifically to the mitochondria (mitohormesis), suggesting that in response to a perturbation the mitochondria can initiate and transduce a signal to the nucleus that coordinates a transcriptional response resulting in both mitochondrial and non-mitochondrial adaptations that return and maintain cellular homeostasis. In this review we summarize the evidence that mitohormesis is a significant adaptive-response signaling pathway, and suggest that it plays a role in mediating exercise-induced adaptations. We discuss potential mitochondrial emitters of retrograde signals that may activate known exercise-sensitive transcription factors to modulate transcription responses to exercise, and draw on evidence from mitochondrial dysfunction animal models to support a role for mitohormesis in mitochondrial biogenesis. Studies directly linking mitohormesis to the exercise training response are lacking, however mounting evidence suggests numerous signals are emitted from the mitochondria during exercise and have the potential to induce a nuclear transcription response, with reactive oxygen species (ROS) being the primary candidate.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603 Zurich, Switzerland.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603 Zurich, Switzerland
| |
Collapse
|
37
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. Cell Signal 2016; 28:256-71. [DOI: 10.1016/j.cellsig.2015.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022]
|
38
|
Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23:1130-43. [PMID: 26154592 PMCID: PMC4657516 DOI: 10.1089/ars.2015.6393] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- 1 Department of Pharmacology, CARIM, FHML, MIAS, Maastricht University , Maastricht, The Netherlands
| | - Roland Stocker
- 2 Victor Chang Cardiac Research Institute , Sydney, Australia .,3 University of New South Wales , Sydney, Australia
| | - Claudia Vollbracht
- 4 Hochschule Fresenius, University of Applied Sciences , Idstein, Germany
| | | | - Dennis Riley
- 6 Galera Therapeutics Inc., Malvern, Pennsylvania
| | - Andreas Daiber
- 7 Labor für Molekulare Kardiologie, II. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität , Mainz, Germany
| | - Antonio Cuadrado
- 8 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,9 Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,10 Instituto de Investigación Sanitaria La Paz (IdiPaz) , Madrid, Spain .,11 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| |
Collapse
|
39
|
Bjørnsen T, Salvesen S, Berntsen S, Hetlelid KJ, Stea TH, Lohne-Seiler H, Rohde G, Haraldstad K, Raastad T, Køpp U, Haugeberg G, Mansoor MA, Bastani NE, Blomhoff R, Stølevik SB, Seynnes OR, Paulsen G. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports 2015; 26:755-63. [PMID: 26129928 DOI: 10.1111/sms.12506] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the effects of vitamin C and E supplementation on changes in muscle mass (lean mass and muscle thickness) and strength during 12 weeks of strength training in elderly men. Thirty-four elderly males (60-81 years) were randomized to either an antioxidant group (500 mg of vitamin C and 117.5 mg vitamin E before and after training) or a placebo group following the same strength training program (three sessions per week). Body composition was assessed with dual-energy X-ray absorptiometry and muscle thickness by ultrasound imaging. Muscle strength was measured as one-repetition maximum (1RM). Total lean mass increased by 3.9% (95% confidence intervals: 3.0, 5.2) and 1.4% (0, 5.4) in the placebo and antioxidant groups, respectively, revealing larger gains in the placebo group (P = 0.04). Similarly, the thickness of m. rectus femoris increased more in the placebo group [16.2% (12.8, 24.1)] than in the antioxidant group [10.9% (9.8, 13.5); P = 0.01]. Increases of lean mass in trunk and arms, and muscle thickness of elbow flexors, did not differ significantly between groups. With no group differences, 1RM improved in the range of 15-21% (P < 0.001). In conclusion, high-dosage vitamin C and E supplementation blunted certain muscular adaptations to strength training in elderly men.
Collapse
Affiliation(s)
- T Bjørnsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - S Salvesen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - S Berntsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - K J Hetlelid
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - T H Stea
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - H Lohne-Seiler
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - G Rohde
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - K Haraldstad
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - U Køpp
- Southern Norway Hospital Trust, Agder, Norway
| | - G Haugeberg
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - M A Mansoor
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - N E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - R Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - S B Stølevik
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - O R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - G Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
40
|
Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89. [PMID: 25977451 DOI: 10.1152/japplphysiol.01055.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sports Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | | | - Kazunori Nosaka
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| | | | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Center for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Vernon G Coffey
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
41
|
Persson PB. Skeletal muscle satellite cells as myogenic progenitors for muscle homoeostasis, growth, regeneration and repair. Acta Physiol (Oxf) 2015; 213:537-8. [PMID: 25565243 DOI: 10.1111/apha.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
42
|
Slattery K, Bentley D, Coutts AJ. The Role of Oxidative, Inflammatory and Neuroendocrinological Systems During Exercise Stress in Athletes: Implications of Antioxidant Supplementation on Physiological Adaptation During Intensified Physical Training. Sports Med 2014; 45:453-71. [DOI: 10.1007/s40279-014-0282-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ, Børsheim E, Wiig H, Garthe I, Raastad T. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 2014; 592:5391-408. [PMID: 25384788 DOI: 10.1113/jphysiol.2014.279950] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training.
Collapse
Affiliation(s)
- G Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Norwegian Olympic Federation, Oslo, Norway
| | - H Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - K T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - R E Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - J J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - E Børsheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway Arkansas Children's Hospital Research Institute, Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Wiig
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - I Garthe
- Norwegian Olympic Federation, Oslo, Norway
| | - T Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
44
|
Paulsen G, Cumming KT, Hamarsland H, Børsheim E, Berntsen S, Raastad T. Can supplementation with vitamin C and E alter physiological adaptations to strength training? BMC Sports Sci Med Rehabil 2014; 6:28. [PMID: 25075311 PMCID: PMC4114441 DOI: 10.1186/2052-1847-6-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/19/2014] [Indexed: 01/11/2023]
Abstract
Background Antioxidant supplementation has recently been demonstrated to be a double-edged sword, because small to moderate doses of exogenous antioxidants are essential or beneficial, while high doses may have adverse effects. The adverse effects can be manifested in attenuated effects of exercise and training, as the antioxidants may shut down some redox-sensitive signaling in the exercised muscle fibers. However, conditions such as age may potentially modulate the need for antioxidant intake. Therefore, this paper describes experiments for testing the hypothesis that high dosages of vitamin C (1000 mg/day) and E (235 mg/day) have negative effects on adaptation to resistance exercise and training in young volunteers, but positive effects in older men. Methods/design We recruited a total of 73 volunteers. The participants were randomly assigned to receiving either vitamin C and E supplementation or a placebo. The study design was double-blinded, and the participants followed an intensive training program for 10–12 weeks. Tests and measurements aimed at assessing changes in physical performance (maximal strength) and physiological characteristics (muscle mass), as well as biochemical and cellular systems and structures (e.g., cell signaling and morphology). Discussion Dietary supplements, such as vitamin C and E, are used by many people, especially athletes. The users often believe that high dosages of supplements improve health (resistance to illness and disease) and physical performance. These assumptions are, however, generally not supported in the scientific literature. On the contrary, some studies have indicated that high dosages of antioxidant supplements have negative effects on exercise-induced adaptation processes. Since this issue concerns many people and few randomized controlled trials have been conducted in humans, further studies are highly warranted. Trial registration ACTRN12614000065695
Collapse
Affiliation(s)
- Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway ; Norwegian Olympic Sport Center, Oslo, Norway
| | - Kristoffer T Cumming
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Elisabet Børsheim
- University of Arkansas for Medical Sciences, Arkansas Children's Nutrition Center, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Sveinung Berntsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
45
|
Mason S, Wadley GD. Skeletal muscle reactive oxygen species: a target of good cop/bad cop for exercise and disease. Redox Rep 2014; 19:97-106. [PMID: 24620937 PMCID: PMC6837413 DOI: 10.1179/1351000213y.0000000077] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.
Collapse
Affiliation(s)
- Shaun Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Glenn D. Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
46
|
Persson AB, Persson PB. Dealing with radicals. Acta Physiol (Oxf) 2014; 210:2-4. [PMID: 24279518 DOI: 10.1111/apha.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
47
|
Wadley GD. A role for reactive oxygen species in the regulation of skeletal muscle hypertrophy. Acta Physiol (Oxf) 2013; 208:9-10. [PMID: 23383683 DOI: 10.1111/apha.12078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- G. D. Wadley
- Centre for Physical Activity and Nutrition Research; School of Exercise and Nutrition Sciences; Deakin University; Burwood; Vic.; Australia
| |
Collapse
|