1
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kocyigit E, Abdurakhmanov R, Kocyigit BF. Potential role of camel, mare milk, and their products in inflammatory rheumatic diseases. Rheumatol Int 2024; 44:425-434. [PMID: 38183445 PMCID: PMC10867071 DOI: 10.1007/s00296-023-05516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Milk and dairy products serve as a significant dietary component for people all over the world. Milk is a source of essential nutrients such as carbohydrates, protein, fats, and water that support newborns' growth, development, and physiological processes. Milk contains various essential biological compounds that contribute to overall health and well-being. These compounds are crucial in immune system regulation, bone health, and gut microbiota. Milk and dairy products are primarily from cows, buffalos, goats, and sheep. Recently, there has been a notable increase in camel and mare milk consumption and its associated products due to an increasing attraction to ethnic cuisines and a greater awareness of food biodiversity. Camel and mare milk possess diverse nutritional and therapeutic properties, displaying potential functional foods. Camel milk has been linked to various health advantages, encompassing antihypertensive, antidiabetic, antiallergic, anticarcinogenic, antioxidant, and immunomodulatory properties. Camel milk has exhibited notable efficacy in mitigating inflammation and oxidative stress, potentially offering therapeutic benefits for inflammatory disorders. Nevertheless, although extensively recorded, the potential health benefits of mare's milk have yet to be investigated, including its impact on inflammatory conditions. This article highlights the therapeutic potential of camel and mare milk and its derived products in treating inflammatory rheumatic disorders, specifically focusing on their anti-inflammatory and immune-regulatory capabilities. These alternative types of milk, which do not come from cows, offer potential avenues for investigating innovative strategies to regulate and reduce inflammatory conditions.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey.
| | - Ruslan Abdurakhmanov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Burhan Fatih Kocyigit
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
3
|
Arain MA, Khaskheli GB, Shah AH, Marghazani IB, Barham GS, Shah QA, Khand FM, Buzdar JA, Soomro F, Fazlani SA. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: a comprehensive review. Anim Biotechnol 2023; 34:1988-2005. [PMID: 35389299 DOI: 10.1080/10495398.2022.2059490] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Camel milk (CM) is the key component of human diet specially for the population belongs to the arid and semi-arid regions of the world. CM possess unique composition as compare to the cow milk with abundant amount of medium chain fatty acids in fat low lactose and higher concentration of whey protein and vitamin C. Besides the nutritional significance of CM, it also contains higher concentration of bioactive compounds including bioactive peptides, lactic acid bacteria (LAB), lactoferrin (LF), lactoperoxidase, lysozyme casein and immunoglobulin. Recently, CM and their bioactive compounds gaining more attention toward scientific community owing to their multiple health benefits, especially in the current era of emerging drug resistance and untold side effects of synthetic medicines. Consumption of fresh or fermented CM and its products presumed exceptional nutraceutical and medicinal properties, including antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, hepatoprotective, nephroprotective, anticancer and immunomodulatory activities. Moreover, CM isolated LAB exhibit antioxidant and probiotic effects leading to enhance the innate and adaptive immune response against both gram-negative and gram-positive pathogenic bacteria. The main objective of this review is to highlight the nutritional significance, pharmaceutical potential, medicinal value and salient beneficial health aspect of CM for human and animals.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Atta Hussain Shah
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Faiz Muhammad Khand
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Feroza Soomro
- Faculty of Animal Husbandry and Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Sarfraz Ali Fazlani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| |
Collapse
|
4
|
Rilwan HB, Adebisi SS, Timbuak JA, Oladele SB, Muhammad A, Sadeeq AA, Makena W. Camel milk ameliorates diabetes in pigs by preventing oxidative stress, inflammation and enhancing beta cell function. J Diabetes Metab Disord 2022; 21:1625-1634. [PMID: 36404858 PMCID: PMC9672245 DOI: 10.1007/s40200-022-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Purpose The purpose of the study was to determine how camel milk affects hyperglycemia, beta-cell function, oxidative stress, and inflammatory markers in type 2 diabetic pigs. Methods Twenty-five (25) pigs were separated into five (5) groups of five pigs each, with five (5) non-diabetic and twenty (20) diabetic pigs in each group. Groups 1 and 2 received distilled water as the standard control and diabetic control groups, respectively, while Groups 3 and 4 received camel milk at 250 mL/day and 500 mL/day, respectively, and Group 5 received metformin at 500 mg/day. The experiment lasted ten weeks. At the end of the ten weeks, all the pigs were euthanized. Results Treatments with camel milk substantially enhance glucose fasting levels by reducing hyperglycemia in diabetic pigs, significant level at (p < 0.05). When pigs given camel milk were compared with untreated diabetic pigs, there was a substantial rise (p < 0.05) in superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) levels. Also, camel milk substantially lowered the levels of interleukin (IL-1β) and tumour necrosis factor-alpha (TNF-α) in diabetic pig serum. Similarly, immunohistochemical analysis of islet cells revealed an increase in insulin production, implying improved glycemic control and the eventual commitment of glucose to glycolysis. Conclusion The bioactive-mediated anti-hyperglycemic and insulin release potential of camel milk treatments contributed to improving type 2 diabetes mellitus. Camel milk improved beta-cell function while reducing oxidative stress and inflammation in type 2 diabetic pigs.
Collapse
Affiliation(s)
- Hadiza Bello Rilwan
- Department of Human Anatomy, Kaduna State University, Kaduna, Kaduna State Nigeria
| | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State Nigeria
| | | | - Aliyu Muhammad
- Department of Human Physiology, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Wusa Makena
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
5
|
Shakeel K, Rabail R, Iahtisham-Ul-Haq, Sehar S, Nawaz A, Manzoor MF, Walayat N, Socol CT, Maerescu CM, Aadil RM. Camel milk protectiveness toward multiple liver disorders: A review. Front Nutr 2022; 9:944842. [PMID: 36185679 PMCID: PMC9520982 DOI: 10.3389/fnut.2022.944842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Camel milk is known as the white gold of the desert because it contains within it a variety of nutrients which play a key role in the human diet. The health benefits of camel milk have been described for a variety of diseases such as diabetes, kidney disease, hepatitis, etc. including improved overall survival. A major health burden worldwide is liver diseases, and the ninth leading cause of death in Western countries is due to liver cirrhosis. Treatment is mostly ineffective for cirrhosis, fatty liver, and chronic hepatitis which are the most common diseases of the liver; furthermore current treatments carry the risk of side effects, and are often extremely expensive, particularly in the developing world. A systematic review of studies was performed to determine the association of consumption of camel milk on multiple diseases of the liver. The impact of camel milk on the laboratory tests related to the liver disorders, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC) were evaluated. The consumption of camel milk was accompanied by modulation of the values of serum gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase in persons who are at risk of liver disease. In the patients with chronic liver disease, it was observed that they have low rates of mortality and low chances of progression to cirrhosis when they consume camel milk. Therefore, in patients with liver diseases, the addition of camel milk to their normal daily diet plan should be encouraged. In this review, camel milk's impact on the different kinds of liver diseases or any disorder associated with liver functioning was evaluated. Camel milk has a therapeutic as well as a preventive role in the maintenance and improving the metabolic regulations of the body.
Collapse
|
6
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
7
|
Khan FB, Ansari MA, Uddin S, Palakott AR, Anwar I, Almatroudi A, Alomary MN, Alrumaihi F, Aba Alkhayl FF, Alghamdi S, Muhammad K, Huang CY, Daddam JR, Khan H, Maqsood S, Ayoub MA. Prospective Role of Bioactive Molecules and Exosomes in the Therapeutic Potential of Camel Milk against Human Diseases: An Updated Perspective. Life (Basel) 2022; 12:life12070990. [PMID: 35888080 PMCID: PMC9318805 DOI: 10.3390/life12070990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023] Open
Abstract
Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Abdul Rasheed Palakott
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 52571, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Khalid Muhammad
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
8
|
Behrouz S, Saadat S, Memarzia A, Sarir H, Folkerts G, Boskabady MH. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front Immunol 2022; 13:855342. [PMID: 35493477 PMCID: PMC9039309 DOI: 10.3389/fimmu.2022.855342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
Camel milk (CM) has been found to have several health benefits, including antiviral, antibacterial, anti-tumor, anti-fungal, antioxidant, hypoglycaemic and anti-cancer activities. In addition, CM can counter signs of aging and may be a useful naturopathic treatment for autoimmune diseases. The composition of CM varies with geographic origin, feeding conditions, seasonal and physiological changes, genetics and camel health status. In the present review, we collate the diverse scientific literature studying antioxidant, anti-inflammatory and immunomodulatory effects of CM and its bioactive compounds. The databases Scopus, PubMed, and Web of Science were searched until the end of September 2021 using the keywords: camel milk, antioxidant, anti-inflammatory, immunomodulatory. The anti-inflammatory mechanism of CM in various inflammatory disorders was consistently reported to be through modulating inflammatory cells and mediators. The common anti-inflammatory bioactive components of CM seem to be lactoferrin. The antioxidant effects of α-lactalbumin, β-caseins and vitamin C of CM work by reducing or inhibiting the production of reactive oxygen species (ROS), hydroxyl radicals, nitric oxide (NO), superoxide anions and peroxyl radicals, likely alleviating oxidative stress. Higher levels of protective proteins such as lysozyme, IgG and secretory IgA compared to cow's milk, and insulin-like protein activity of CM on ß cells appear to be responsible for the immunomodulatory properties of CM. The evidence indicates that CM and its bioactive components has the potential to be a therapeutic value for diseases that are caused by inflammation, oxidative stress and/or immune-dysregulation.
Collapse
Affiliation(s)
- Sepide Behrouz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Dikhanbayeva F, Zhaxybayeva E, Smailova Z, Issimov A, Dimitrov Z, Kapysheva U, Bansal N. The effect of camel milk curd masses on rats blood serum biochemical parameters: Preliminary study. PLoS One 2021; 16:e0256661. [PMID: 34587186 PMCID: PMC8510453 DOI: 10.1371/journal.pone.0256661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to assess potential feeding effect of camel milk curd mass and its mixes to experimental rat's blood serum biochemical parameters, enzymatic activity and the peptide toxicity. Fifty healthy male Sprague-Dawley rats were divided into five groups (n = 10 each). Each group was fed with camel milk pure curd mass and its mixes for 16 days. At the end of the experiment, rats were sacrificed to collect the samples from the blood serum. Blood serum biochemical parameters total protein, cholesterol, glucose, albumin, triglycerides; the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase were determined on the A25 automatic analyser, and peptide toxicity analysed by the reference method. The statistical data have shown no significant differences in body weight gain in all groups. Total protein decreased in group II, IV, and V; however, it increased in group III compared to the control group. Cholesterol grew up in group II and it slightly increased in group V, dropped in groups III and IV compared to group I result. Glucose increased in groups II, III, IV compared to group I; still, group V results show a slight decrease. Albumin decreased in group IV, yet in group V it increased than the group I result. Simultaneously, groups II and III results were changed with less percentage. Triglyceride grew up in groups II, V, and it dropped significantly in groups III, IV compared to the control group. De Ritis ratio of enzymes in groups II, III, and IV fluctuated between 1.31 and 0.98 IU/L; however, group V demonstrated significant data versus group I. Diets peptide toxicity in all groups was lower than control group data. The experimental results indicated that curd mass from camel milk could be used as a pure or with additives and it did not discover the observed side effects.
Collapse
Affiliation(s)
- Fatima Dikhanbayeva
- Faculty of Food Production, Almaty Technological University, Almaty, the
Republic of Kazakhstan
| | - Elmira Zhaxybayeva
- Faculty of Food Production, Almaty Technological University, Almaty, the
Republic of Kazakhstan
- Research and Development Centre LB-Bulgaricum PLC, Sofia, the Republic of
Bulgaria
- School of Agriculture and Food Sciences, the University of Queensland,
Brisbane, Queensland, Australia
- * E-mail:
| | - Zhuldyz Smailova
- Institute of Engineering and Technology, Kyzylorda State University named
after Korkyt ata, Kyzylorda, the Republic of Kazakhstan
| | - Arman Issimov
- Sydney School of Veterinary Science, Faculty of Science, the University
of Sydney, Sydney, New South Wales, Australia
| | - Zhechko Dimitrov
- Research and Development Centre LB-Bulgaricum PLC, Sofia, the Republic of
Bulgaria
| | - Unzira Kapysheva
- Laboratory of Ecological Physiology, Institute of humans and Animal
Physiology, Almaty, the Republic of Kazakhstan
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, the University of Queensland,
Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Activation of the Peroxisome Proliferator-Activated Receptors (PPAR- α/ γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. PPAR Res 2021; 2021:5558731. [PMID: 34306045 PMCID: PMC8285205 DOI: 10.1155/2021/5558731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Camel milk (CM) has a unique composition rich in antioxidants, trace elements, immunoglobulins, insulin, and insulin-like proteins. Treatment by CM demonstrated protective effects against nonalcoholic fatty liver disease (NAFLD) induced by a high-fat cholesterol-rich diet (HFD-C) in rats. CM dampened the steatosis, inflammation, and ballooning degeneration of the hepatocytes. It also counteracted hyperlipidemia, insulin resistance (IR), glucose intolerance, and oxidative stress. The commencement of NAFLD triggered the peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyl-transferase-1 (CPT1A), and fatty acid-binding protein-1 (FABP1) and decreased the PPAR-γ expression in the tissues of the animals on HFD-C. This was associated with increased levels of the inflammatory cytokines IL-6 and TNF-α and leptin and declined levels of the anti-inflammatory adiponectin. Camel milk treatment to the NAFLD animals remarkably upregulated PPARs (α, γ) and the downstream enzyme CPT1A in the metabolically active tissues involved in cellular uptake and beta-oxidation of fatty acids. The enhanced lipid metabolism in the CM-treated animals was linked with decreased expression of FABP1 and suppression of IL-6, TNF-α, and leptin release with augmented adiponectin production. The protective effects of CM against the histological and biochemical features of NAFLD are at least in part related to the activation of the hepatic and extrahepatic PPARs (α, γ) with consequent activation of the downstream enzymes involved in fat metabolism. Camel milk treatment carries a promising therapeutic potential to NAFLD through stimulating PPARs actions on fat metabolism and glucose homeostasis. This can protect against hepatic steatosis, IR, and diabetes mellitus in high-risk obese patients.
Collapse
|
11
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
12
|
Lanna MF, Resende LA, Aguiar-Soares RDDO, de Miranda MB, de Mendonça LZ, Melo Júnior OADO, Mariano RMDS, Leite JC, Silveira P, Corrêa-Oliveira R, Dutra WO, Reis AB, Martins-Filho OA, de Moura SAL, Silveira-Lemos D, Giunchetti RC. Kinetics of Phenotypic and Functional Changes in Mouse Models of Sponge Implants: Rational Selection to Optimize Protocols for Specific Biomolecules Screening Purposes. Front Bioeng Biotechnol 2020; 8:538203. [PMID: 33344427 PMCID: PMC7738572 DOI: 10.3389/fbioe.2020.538203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Marina Barcelos de Miranda
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ludmila Zanandreis de Mendonça
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Aparecida Lima de Moura
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Zhang BY, Xu S, Villalobos-Santeli JA, Huang JY. Fouling characterization of camel milk with comparison to bovine milk. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Cui C, Lu Y, Yue Y, Wu S, Wang S, Yu M, Sun Z. Camel milk regulates T‐cell proliferation to alleviate dextran sodium sulphate‐induced colitis in mice. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Changwan Cui
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Yiping Lu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Yuanyi Yue
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Si Wu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Shuang Wang
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Miao Yu
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| | - Zhengrong Sun
- Department of BioBank Sheng Jing Hospital of China Medical University No. 36 Sanhao Street Shenyang 110001 China
| |
Collapse
|
15
|
Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Krishnankutty R, Iskandarani A, Therachiyil L, Uddin S, Azizi F, Kulinski M, Bhat AA, Mohammad RM. Anticancer Activity of Camel Milk via Induction of Autophagic Death in Human Colorectal and Breast Cancer Cells. Asian Pac J Cancer Prev 2018; 19:3501-3509. [PMID: 30583676 PMCID: PMC6428541 DOI: 10.31557/apjcp.2018.19.12.3501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background/Objective: Camel milk is traditionally known for its human health benefits and believed to be a remedy for various human ailments including cancer. The study was aimed to evaluate the inhibitory effects of commercially available camel milk on cancer cells and its underlying mechanism(s). Materials and Methods: Two cell lines: colorectal cancer HCT 116 and breast cancer MCF-7 were cultured with different doses of camel milk. The effects of camel milk on cell death were determined by MTT assay, viability by trypan blue exclusion assay and migration by in vitro scratch assay. The mechanism was elucidated by western blotting and confocal microscopy was used to confirm autophagy. Results: Camel milk significantly reduced proliferation, viability as well as migration of both the cells. The accumulation of LC3-II protein along with reduction in expression of p62 and Atg 5-12, the autophagy proteins implied induction of autophagy. The (GFP)-LC3 puncta detected by confocal microscopy confirmed the autophagosome formation in response to camel milk treatment. Conclusion: Camel milk exerted antiproliferative effects on human colorectal HCT 116 and breast MCF-7 cancer cells by inducing autophagy.
Collapse
Affiliation(s)
- Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, State of Qatar.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi AA. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ahamad SR, Raish M, Ahmad A, Shakeel F. Potential Health Benefits and Metabolomics of Camel Milk by GC-MS and ICP-MS. Biol Trace Elem Res 2017; 175:322-330. [PMID: 27286716 DOI: 10.1007/s12011-016-0771-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023]
Abstract
None of the research reports reveals the metabolomics and elemental studies on camel milk. Recent studies showed that camel milk possesses anticancer and anti-inflammatory activity. Metabolomics and elemental studies were carried out in camel milk which showed us the pathways and composition that are responsible for the key biological role of camel milk. Camel milk was dissolved in methanol and chloroform fraction and then vortexed and centrifuged. Both the fractions were derivatized by N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) and TMCS after nitrogen purging and analyzed by GC-MS. Camel milk was also analyzed by ICP-MS after microwave digestion. We found that higher alkanes and fatty acids are present in the chloroform fraction and amino acids, sugars and fatty acid derivatives are present in aqueous fractions. All the heavy metals like As, Pb, Cd, Co, Cu, and Ni were in the safe limits in terms of maximum daily intake of these elements. Na, K, Mg, and Ca were also present in the safe limits in terms of maximum daily intake of these elements. These results suggested that the camel milk drinking is safe and there is no health hazard. The present data of GC-MS and ICP-MS correlate the activities related to camel milk.
Collapse
Affiliation(s)
- Syed Rizwan Ahamad
- Central Laboratory, Research Center, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Center of Excellence in Biotechnology Research Center, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
20
|
Mihic T, Rainkie D, Wilby KJ, Pawluk SA. The Therapeutic Effects of Camel Milk: A Systematic Review of Animal and Human Trials. J Evid Based Complementary Altern Med 2016; 21:NP110-26. [PMID: 27432772 DOI: 10.1177/2156587216658846] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The clinical effectiveness and value of camel milk as a therapeutic agent is currently unclear. MEDLINE (1946 to March 2016), EMBASE (1974 to March 2016), and Google Scholar were searched using the following terms: milk, bodily secretions, camels, camelus, camelini, camelidae, dromedary, bactrian camel, body fluid, and bodily secretions. Articles identified were reviewed if the study was investigating the use of camel milk for the potential treatment of diseases affecting humans. Of 430 studies, 24 were included after assessment. Identified studies highlighted treatment with camel milk of diseases, including diabetes, autism, cancer, various infections, heavy metal toxicity, colitis, and alcohol-induced toxicity. Although most studies using both the human and animal model do show a clinical benefit with an intervention and camel milk, limitations of these studies must be taken into consideration before widespread use. Based on the evidence, camel milk should not replace standard therapies for any indication in humans.
Collapse
Affiliation(s)
- Tamara Mihic
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
21
|
The unique medicinal properties of camel products: A review of the scientific evidence. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2015.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Alyahya AM, Abdel Gader AGM, Alhaider AA. Characterization of inhibitory activity of camel urine on human platelet function. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2015.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:743051. [PMID: 25821817 PMCID: PMC4363510 DOI: 10.1155/2015/743051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 01/26/2023]
Abstract
Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.
Collapse
|
24
|
Ma QY, Chen J, Wang SH, Wu N, Hao ZH, Chen XF. Interleukin 17A genetic variations and susceptibility to non-small cell lung cancer. APMIS 2014; 123:194-8. [PMID: 25469655 DOI: 10.1111/apm.12341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, in which non-small cell lung cancer (NSCLC) is the most common type. Evidence have shown that interleukin 17 (IL-17) greatly involves in human immune responses. In this study, we investigated the effect of IL-17 on NSCLC by examining the association between IL-17A genetic polymorphisms and the susceptibility to NSCLC. IL-17A -420A/G and IL-17A -73G/A polymorphisms were detected in 330 NSCLC patients and 382 healthy controls. We found that subjects carrying -73GA genotype or AA genotype had 2.09-fold or 2.52-fold increased risk of NSCLC than those with -73GG genotype [odds ratio (OR) = 2.09, 95% confidence interval (CI), 1.46 - 2.98, p < 0.001; OR = 2.52, 95% CI, 1.30-4.88, p = 0.005, respectively). However, the IL-17A -420A/G did not reveal any correlation with the cancer. Further investigation showed that prevalence of IL-17A -73GA genotype and A allele were significantly increased in adenocarcinoma patients (OR = 1.75, 95% CI, 1.08-2.86, p = 0.024, OR = 1.57, 95% CI, 1.09-2.28, p = 0.016, respectively). We also evaluated the effect of the polymorphisms on gene expression, and identified that peripheral blood mononuclear cells with IL-17A -73GA and AA genotypes produced significantly higher level of IL-17 than the cells with IL-17A -73GG genotype. Our results suggest that IL-17A -73G/A genetic variations may upregulate IL-17 expression and are associated with increased susceptibility to NSCLC.
Collapse
Affiliation(s)
- Qin-Yun Ma
- Department of Thoracic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
25
|
Korish AA, Abdel Gader AGM, Alhaider AA. Camel milk ameliorates the coagulopathy in streptozotocin diabetic rat model. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aida A Korish
- Department of Physiology (29) College of Medicine and King Khalid University Hospital King Saud University PO Box 2925 11461 Riyadh Saudi Arabia
| | - Abdel Galil M Abdel Gader
- Department of Physiology (29) College of Medicine and King Khalid University Hospital King Saud University PO Box 2925 11461 Riyadh Saudi Arabia
| | - Abdulqader A Alhaider
- Department of Physiology (29) College of Medicine and King Khalid University Hospital King Saud University PO Box 2925 11461 Riyadh Saudi Arabia
| |
Collapse
|