1
|
Varma MVS, Vourvahis M. Navigating the Challenges of Cyclosporine as an Alternative to Rifampicin as an OATP1B Index Inhibitor. Clin Pharmacol Ther 2025; 117:1175-1178. [PMID: 39807775 DOI: 10.1002/cpt.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Rifampicin is a widely employed index inhibitor to assess the impact of organic anion transporting polypeptide 1B (OATP1B) inhibition on investigational drugs. The observation of nitrosamines in certain drug products, including rifampicin, has impacted the conduct of clinical drug-drug interaction (DDI) studies with rifampicin drug products. Cyclosporine is a recommended alternative to assess in vivo OATP1B activity; however, challenges exist in its use due to pharmacokinetic (PK) variability and non-selective inhibition of other drug disposition mechanisms.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Pfizer R&D, Pfizer Inc, New York, New York, USA
| |
Collapse
|
2
|
West MA, Lazzaro S, Morrow R, Costales C, Yee SW, Varma MVS. Significance of gut breast cancer resistance protein versus organic anion transporting polypeptide 2B1 inhibition on rosuvastatin clinical drug-drug interactions. Drug Metab Dispos 2025; 53:100056. [PMID: 40220705 DOI: 10.1016/j.dmd.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/14/2025] Open
Abstract
Organic anion transporting polypeptide (OATP)2B1 facilitates oral absorption of many drugs including celiprolol, fexofenadine, and rosuvastatin. The present study aimed to examine the relevance of gut OATP2B1 and breast cancer resistance protein (BCRP) inhibition in rosuvastatin drug-drug interactions (DDIs). We first characterized OATP2B1-mediated transport of rosuvastatin in transfected cells as a function of extracellular pH 6.0 and 7.4. Rosuvastatin transporter-specific uptake was found to be pH sensitive with 2-fold higher Vmax at acidic pH; however, OATP2B1 affinity (Km = 8-10 μM) was similar at both conditions. We next studied the effect of 26 inhibitor drugs on rosuvastatin OATP2B1-specific transport at 2 pH conditions. Measured IC50s were generally consistent between the 2 pHs (∼88% with 2-fold). For an additional 23 drugs, OATP2B1 IC50 was obtained only at pH 7.4 due to observed limited pH dependency. Inhibition of BCRP-mediated rosuvastatin transport was also acquired at pH 7.4 for 40 compounds using membrane vesicles assay. Finally, the static model for gut interactions (G-value, I2/IC50) was employed to project in vivo DDI potential. A significant relationship was observed between the BCRP G-value and rosuvastatin area under the curve (AUC) ratio; however, no correlation was apparent with the OATP2B1 G-value. The majority of inhibitors with BCRP G-values >100 perpetrated a "positive" DDI (AUC ratio >1.25). Ronacaleret and elagolix reduced rosuvastatin AUC by 40%-50%, likely due to stronger OATP2B1 inhibition compared with BCRP inhibition. The present study indicates that the "net-effect" of BCRP and OATP2B1 lead to a "positive" DDI, whereas a "negative" DDI (AUC ratio <0.8) is possible for "OATP2B1-alone" inhibitors. SIGNIFICANCE STATEMENT: Gut organic anion transporting polypeptide (OATP)2B1 and breast cancer resistance protein (BCRP) play key roles in rosuvastatin oral absorption and may determine its drug-drug interactions (DDIs). Based on a comprehensive dataset, it was found that rosuvastatin area under the curve ratios correlate significantly with BCRP inhibition, but not with OATP2B1 inhibition. Strong BCRP inhibition, with a G-value >100, translated to "positive" DDIs, whereas "OATP2B1-alone" inhibitors may lead to "negative" DDIs. For example, ronacaleret and elagolix significantly reduced rosuvastatin area under the curve due to strong OATP2B1 inhibition but weak BCRP inhibition.
Collapse
Affiliation(s)
- Mark A West
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sarah Lazzaro
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut
| | - Riley Morrow
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sook Wah Yee
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Research and Development, Pfizer Inc., Groton, Connecticut.
| |
Collapse
|
3
|
Schaller S, Michon I, Baier V, Martins FS, Nolain P, Taneja A. Evaluation of BCRP-Related DDIs Between Methotrexate and Cyclosporin A Using Physiologically Based Pharmacokinetic Modelling. Drugs R D 2025; 25:1-17. [PMID: 39715910 PMCID: PMC12011704 DOI: 10.1007/s40268-024-00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate. METHODS PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs. A qualification of an introduced empirical uniform in vitro scaling factor of Ki values for transporter inhibition by CsA was conducted by using a previously developed model of rosuvastatin (sensitive index BCRP substrate), and assessing if corresponding DDI ratios were well captured. RESULTS Within the simulated DDI scenarios for MTX in the presence of CsA, the developed models could capture the observed changes in PK parameters as changes in the area under the curve ratios (area under the curve during DDI/area under the curve control) of 1.30 versus 1.31 observed and the DDI peak plasma concentration ratios (peak plasma concentration during DDI/peak plasma concentration control) of 1.07 versus 1.28 observed. The originally reported in vitro Ki values of CsA were scaled with the uniform qualified scaling factor for their use in the in vivo DDI simulations to correct for the low intracellular unbound fraction of the CsA effector concentration. The resulting predicted versus observed ratios of peak plasma concentration and area under the curve DDI ratios with MTX were 0.82 and 0.99, respectively, indicating adequate model accuracy and choice of a scaling factor to capture the observed DDI. CONCLUSIONS All models have been comprehensively documented and made publicly available as tools to support the drug development and clinical research community and further community-driven model development.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Taneja
- Galapagos SASU, Romainville, France
- Simulations Plus, Inc., Lancaster, California, USA
| |
Collapse
|
4
|
Reddy MB, Cabalu TD, de Zwart L, Ramsden D, Dowty ME, Taskar KS, Badée J, Bolleddula J, Boulu L, Fu Q, Kotsuma M, Leblanc AF, Lewis G, Liang G, Parrott N, Pilla Reddy V, Prakash C, Shah K, Umehara K, Mukherjee D, Rehmel J, Hariparsad N. Building Confidence in Physiologically Based Pharmacokinetic Modeling of CYP3A Induction Mediated by Rifampin: An Industry Perspective. Clin Pharmacol Ther 2025; 117:403-420. [PMID: 39422118 PMCID: PMC11739743 DOI: 10.1002/cpt.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, fm,CYP3A4, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of fm,CYP3A4 (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.
Collapse
Affiliation(s)
| | - Tamara D. Cabalu
- DMPK, Pharmacokinetics, Dynamics, Metabolism, and BioanalyticsMerck & Co., Inc.RahwayNew JerseyUSA
| | - Loeckie de Zwart
- DMPK, Janssen Pharmaceutica NVA Johnson & Johnson CompanyBeerseBelgium
| | - Diane Ramsden
- DMPK, Research and Early Development, Oncology R&DAstraZenecaBostonMassachusettsUSA
| | - Martin E. Dowty
- Pharmacokinetics Dynamics and MetabolismPfizer IncCambridgeMassachusettsUSA
| | - Kunal S. Taskar
- DMPK, Pre‐Clinical Sciences, Research TechnologiesGSKStevenageUK
| | - Justine Badée
- PK Sciences, Biomedical ResearchNovartisBaselSwitzerland
| | - Jayaprakasam Bolleddula
- Quantitative PharmacologyEMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Laurent Boulu
- Modeling and Simulation, Translational Medicine and Early DevelopmentSanofiMontpellierFrance
| | - Qiang Fu
- Modeling and SimulationVertex PharmaceuticalsBostonMassachusettsUSA
| | - Masakatsu Kotsuma
- Quantitative Clinical PharmacologyDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Alix F. Leblanc
- Quantitative, Translational & ADME Sciences, Development ScienceAbbVieNorth ChicagoIllinoisUSA
| | - Gareth Lewis
- DMPK, Pre‐Clinical Sciences, Research TechnologiesGSKStevenageUK
| | | | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research & Early DevelopmentRoche Innovation Center BaselBaselSwitzerland
| | - Venkatesh Pilla Reddy
- Global PKPD/PharmacometricsEli Lilly and CompanyBracknell, UK and Indianapolis, IndianaUSA
| | - Chandra Prakash
- DMPK and Clinical PharmacologyAgiosCambridgeMassachusettsUSA
| | - Kushal Shah
- Quantitative Clinical PharmacologyTakeda Pharmaceuticals International Inc.CambridgeMassachusettsUSA
| | - Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation CenterF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Dwaipayan Mukherjee
- Quantitative Clinical PharmacologyDaiichi‐Sankyo Inc.Basking RidgeNew JerseyUSA
| | - Jessica Rehmel
- Global PKPD/PharmacometricsEli Lilly and CompanyBracknell, UK and Indianapolis, IndianaUSA
| | - Niresh Hariparsad
- DMPK, Research and Early Development, Oncology R&DAstraZenecaBostonMassachusettsUSA
| |
Collapse
|
5
|
Koishikawa T, Kazuki K, Ohnishi R, Okita K, Mizuno T, Abe S, Nanchi I, Masago Y, Yamazaki K, Ohzeki JI, Kusuhara H, Kazuki Y. Development of an OATP1-humanized transchromosomic mouse model for prediction of hepatic drug uptake in humans. Drug Metab Dispos 2025; 53:100028. [PMID: 40023577 DOI: 10.1016/j.dmd.2024.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025] Open
Abstract
Transchromosomic technology using mouse artificial chromosomes (MACs) offers a promising approach for transferring gene clusters into host organisms. This study focused on the multispecific organic anion-transporting polypeptides (OATPs) in the liver, which exhibit significant species differences between mice (Oatp1a1/Slco1a1, Oatp1a4/Slco1a4, Oatp1b2/Slco1b2) and humans (OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3). We generated an OATP1-humanized transchromosomic mouse model using a MAC vector (hOATP1-MAC mice) by transferring the human OATP1 gene cluster (SLCO1C1-SLCO1B3-SLCO1B7-SLCO1B1-SLCO1A2, 700 kbp) via an MAC into Slco1a/1b cluster knockout (KO) mice (Oatp1-KO). The human OATP1 genes were expressed in a tissue-specific manner. Plasma concentrations of the OATP1B biomarkers, coproporphyrin I and III, which were 7.2- and 23.3-fold higher in Oatp1-KO mice than in wild-type mice, were decreased by 68% and 96% in hOATP1-MAC mice, respectively. A pharmacokinetics study using pitavastatin revealed greater total body clearance (168 mL/min/kg) in hOATP1-MAC mice than in Oatp1-KO mice (100 mL/min/kg) but lower clearance than in wild-type mice (484 mL/min/kg), with bioavailability ranging from 0.66 to 0.77. In addition, drug-drug interactions were investigated using rifampicin, an OATP1B inhibitor. Rifampicin (60 mg/kg orally) increased the area under the plasma concentration-time curves of orally administered pitavastatin and grazoprevir in hOATP1-MAC mice, but not of asunaprevir. These findings demonstrated the functional expression of OATP1B1 and OATP1B3 in the mouse liver and their significant role in the systemic elimination of substrates. This is the first study to introduce multiple solute carrier drug transporter genes using artificial chromosome technology, highlighting its potential to overcome species differences in drug transport. SIGNIFICANCE STATEMENT: Transchromosomic technology holds promise for addressing species differences by introducing multiple solute carrier drug transporter genes such as OATP1. Mice OATP1-humanized using a mouse artificial chromosome vector demonstrated enhanced clearance of endogenous OATP1B biomarkers and probe drugs.
Collapse
Affiliation(s)
- Tomoki Koishikawa
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Rina Ohnishi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Koki Okita
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Yusaku Masago
- Laboratory for Innovative Therapy Research, Shionogi & Co, Ltd, Osaka, Japan
| | - Kyotaro Yamazaki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Jun-Ichiro Ohzeki
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Department of Pharmacy, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan; Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Yonago, Tottori, Japan.
| |
Collapse
|
6
|
Bhardwaj R, Malatesta JA, Madonia J, Anderson MS, Morris B, Matschke KT, Croop R, Bertz R, Liu J. Deconvoluting zavegepant drug-drug interactions: A phase I study to evaluate the effects of rifampin and itraconazole on zavegepant pharmacokinetics. Clin Transl Sci 2024; 17:e70048. [PMID: 39602316 PMCID: PMC11601169 DOI: 10.1111/cts.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024] Open
Abstract
Zavegepant is a calcitonin gene-related peptide receptor antagonist for acute migraine treatment. This Phase I, open-label, fixed-sequence study evaluated the effects of itraconazole (a strong cytochrome P450 3A4 [CYP3A4] and P-glycoprotein [P-gp] inhibitor) on the pharmacokinetics of intranasal/oral zavegepant and the effects of rifampin (a strong inducer of CYP3A4 and P-gp; and an inhibitor of organic anion transporting polypeptide 1B3 [OATP1B3]) on oral zavegepant in healthy participants. In the intranasal/oral zavegepant-itraconazole cohort, participants received a single 10-mg dose of zavegepant nasal spray on Day 1, followed by oral zavegepant (50 mg) on Day 3. Itraconazole 200 mg once daily was administered from Days 4 to 12. On Day 7 zavegepant nasal spray and on Day 11 oral zavegepant were coadministered with itraconazole. In the oral zavegepant-rifampin cohort, participants received oral zavegepant (100 mg) on Day 1, rifampin 600 mg once daily on Days 2-10, and rifampin with zavegepant on Day 11. No significant change in zavegepant exposure was observed following coadministration of itraconazole with zavegepant nasal spray. For oral zavegepant coadministered with itraconazole, the area under the curve from 0 to infinity (AUC0-inf) and the maximum observed concentration (Cmax) of oral zavegepant increased by 59% and 77%, respectively. For oral zavegepant coadministered with rifampin, the AUC0-inf and Cmax of oral zavegepant increased by approximately 2.3- and 2.2-fold, respectively. These results suggest that OATP1B3 and intestinal P-gp are the more prominent pathways, as opposed to CYP3A4, for a zavegepant drug-drug interaction. Coadministration of OATP1B3 inhibitors with zavegepant nasal spray should be avoided.
Collapse
Affiliation(s)
| | | | | | | | - Beth Morris
- Biohaven Pharmaceuticals Inc.New HavenConnecticutUSA
| | | | - Robert Croop
- Biohaven Pharmaceuticals Inc.New HavenConnecticutUSA
| | - Richard Bertz
- Biohaven Pharmaceuticals Inc.New HavenConnecticutUSA
| | | |
Collapse
|
7
|
Kikuchi R, Qian Y, Badawi M, Savaryn JP, Gannu S, Eldred A, Hao S, Salem AH, Liu W, Klein CE, Mohamed MEF. Coproporphyrin-I as a Selective OATP1B Biomarker Can Be Used to Delineate the Mechanisms of Complex Drug-Drug Interactions: Cedirogant Case Study. Clin Pharmacol Ther 2024; 116:1334-1342. [PMID: 39102854 DOI: 10.1002/cpt.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Cedirogant is an inverse agonist of retinoic acid-related orphan receptor gamma thymus developed for the treatment of chronic plaque psoriasis. Cedirogant induces cytochrome P450 (CYP) 3A4 while inhibiting P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, and OATP1B3 in vitro. Static drug-drug interactions (DDIs) predictions suggested possible clinical induction of CYP3A4, and inhibition of P-gp, BCRP, and OATP1B1, leading to challenges in interpreting DDI studies between cedirogant and substrates of CYP3A, P-gp, BCRP, and OATP1B1/3. Here the effects of cedirogant on the pharmacokinetics of two statin drugs were investigated in healthy participants. Coproporphyrin-I (CP-I), a selective endogenous OATP1B biomarker, was used to assess the impact of cedirogant on OATP1B. Cedirogant (375 mg once daily) increased rosuvastatin maximum plasma concentration (Cmax) and area under the plasma concentration curve (AUCtau) by 141% and 55%, respectively when co-administered, whereas atorvastatin Cmax increased by 40% with no effect on its AUCtau compared with administration of rosuvastatin/atorvastatin alone. Cedirogant did not increase CP-I exposures, indicating no clinical OATP1B inhibition. The increased rosuvastatin exposure and minimal change in atorvastatin exposure with co-administration of cedirogant is attributed to BCRP inhibition and interplay between P-gp/BCRP inhibition and CYP3A induction, respectively. Correlation analysis with data from two investigational drugs (glecaprevir and flubentylosin) demonstrated that OATP1B1 R-value of > 1.5 and [Cmax,u]/[OATP1B1 IC50] of > 0.1 are associated with > 1.25-fold increase in CP-I Cmax ratio. This demonstrates the utility of CP-I in disentangling mechanisms underlying a complex DDI involving multiple transporters and enzymes and proposes refined criteria for static OATP1B inhibition predictions.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Yuli Qian
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| | - Mohamed Badawi
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| | - John P Savaryn
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Shashikanth Gannu
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Ann Eldred
- Immunology Development, AbbVie Inc., North Chicago, Illinois, USA
| | - Shuai Hao
- Discovery and Exploratory Statistics, AbbVie Inc., North Chicago, Illinois, USA
| | - Ahmed Hamed Salem
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
- Clinical Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wei Liu
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| | - Cheri E Klein
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, USA
| | | |
Collapse
|
8
|
Chothe PP, Argikar UA, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - highlights from the year 2023. Drug Metab Rev 2024; 56:318-348. [PMID: 39221672 DOI: 10.1080/03602532.2024.2399523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Drug transporter field is rapidly evolving with significant progress in in vitro and in vivo tools and, computational models to assess transporter-mediated drug disposition and drug-drug interactions (DDIs) in humans. On behalf of all coauthors, I am pleased to share the fourth annual review highlighting articles published and deemed influential in the field of drug transporters in the year 2023. Each coauthor independently selected peer-reviewed articles published or available online in the year 2023 and summarized them as shown previously (Chothe et al. 2021; Chothe et al. 2022, 2023) with unbiased perspectives. Based on selected articles, this review was categorized into four sections: (1) transporter structure and in vitro evaluation, (2) novel in vitro/ex vivo models, (3) endogenous biomarkers, and (4) PBPK modeling for evaluating transporter DDIs (Table 1). As the scope of this review is not to comprehensively review each article, readers are encouraged to consult original paper for specific details. Finally, I appreciate all the authors for their time and continued support in writing this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda irinote Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Preclinical Development, Korro Bio, Inc. One Kendall Square, Cambridge, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda irinote Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
9
|
Feng B, Liang G, Zetterberg C, Li S, Huang H, Williams J, Gao H, Morikawa Y, Kumar S. Utility of Chimeric Mice with Humanized Livers for Predicting Hepatic Organic Anion-Transporting Polypeptide 1B-Mediated Clinical Drug-Drug Interactions. Drug Metab Dispos 2024; 52:1073-1082. [PMID: 39103225 DOI: 10.1124/dmd.124.001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters. PXB-mice are chimeric mice with humanized livers that are highly repopulated with human hepatocytes and have been widely used for drug metabolism and pharmacokinetics studies in drug discovery. In the present study, we measured the exposure increases [blood AUC (area under the blood/plasma concentration-time curve) and Cmax] of 10 OATP1B substrates in PXB-mice upon coadministration with rifampin, a potent OATP1B specific inhibitor. These data in PXB-mice were then compared with the observed DDIs between OATP1B substrates and single-dose rifampin in humans. Our findings suggest that the DDIs between OATP1B substrates and rifampin in PXB-mouse are comparable with the observed DDIs in the clinic. Since most OATP1B substrates are metabolized by cytochromes P450 (CYPs) and/or are substrates of P-glycoprotein (P-gp), we further validated the utility of PXB-mice to predict complex DDIs involving inhibition of OATP1B, CYPs, and P-gp using cyclosporin A (CsA) and gemfibrozil as perpetrators. Overall, the data support that the chimeric mice with humanized livers could be a useful tool for the prediction of hepatic OATP1B-mediated DDIs in humans. SIGNIFICANCE STATEMENT: The ability of PXB-mouse with humanized liver to predict organic anion-transporting polypeptide 1B (OATP1B)-mediated drug-drug interactions (DDIs) in humans was evaluated. The blood exposure increases of 10 OATP1B substrates with rifampin, an OATP1B inhibitor, in PXB-mice have a good correlation with those observed in humans. More importantly, PXB-mice can predict complex DDIs, including inhibition of OATP1B, cytochromes P450 (CYPs), and P-glycoprotein (P-gp) in humans. PXB-mice are a promising useful tool to assess OATP1B-mediated clinical DDIs.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Guiqing Liang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Shaolan Li
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hui Huang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - John Williams
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hong Gao
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| |
Collapse
|
10
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Hartauer M, Murphy WA, Brouwer KLR, Southall R, Neuhoff S. Hepatic OATP1B zonal distribution: Implications for rifampicin-mediated drug-drug interactions explored within a PBPK framework. CPT Pharmacometrics Syst Pharmacol 2024; 13:1513-1527. [PMID: 38898552 PMCID: PMC11533104 DOI: 10.1002/psp4.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
OATP1B facilitates the uptake of xenobiotics into hepatocytes and is a prominent target for drug-drug interactions (DDIs). Reduced systemic exposure of OATP1B substrates has been reported following multiple-dose rifampicin; one explanation for this observation is OATP1B induction. Non-uniform hepatic distribution of OATP1B may impact local rifampicin tissue concentrations and rifampicin-mediated protein induction, which may affect the accuracy of transporter- and/or metabolizing enzyme-mediated DDI predictions. We incorporated quantitative zonal OATP1B distribution data from immunofluorescence imaging into a PBPK modeling framework to explore rifampicin interactions with OATP1B and CYP substrates. PBPK models were developed for rifampicin, two OATP1B substrates, pravastatin and repaglinide (also metabolized by CYP2C8/CYP3A4), and the CYP3A probe, midazolam. Simulated hepatic uptake of pravastatin and repaglinide increased from the periportal to the pericentral region (approximately 2.1-fold), consistent with OATP1B distribution data. Simulated rifampicin unbound intracellular concentrations increased in the pericentral region (1.64-fold) compared to simulations with uniformly distributed OATP1B. The absolute average fold error of the rifampicin PBPK model for predicting substrate maximal concentration (Cmax) and area under the plasma concentration-time curve (AUC) ratios was 1.41 and 1.54, respectively (nine studies). In conclusion, hepatic OATP1B distribution has a considerable impact on simulated zonal substrate uptake clearance values and simulated intracellular perpetrator concentrations, which regulate transporter and metabolic DDIs. Additionally, accounting for rifampicin-mediated OATP1B induction in parallel with inhibition improved model predictions. This study provides novel insight into the effect of hepatic OATP1B distribution on site-specific DDI predictions and the impact of accounting for zonal transporter distributions within PBPK models.
Collapse
Affiliation(s)
- Mattie Hartauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | |
Collapse
|
12
|
Hegde PV, Morse BL. Mechanistic Account of Distinct Change in Organic Anion Transporting Polypeptide 1B (OATP1B) Substrate Pharmacokinetics during OATP1B-Mediated Drug-Drug Interactions Using Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos 2024; 52:886-898. [PMID: 38740464 DOI: 10.1124/dmd.124.001708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
The role of transporters in drug clearance is widely acknowledged, directly and indirectly by facilitating tissue/enzyme exposure. Through the latter, transporters also affect volume of distribution. Drug-drug interactions (DDIs) involving organic anion transporting polypeptides (OATPs) 1B1/1B3 and SLCO1B1 pharmacogenetics lead to altered pharmacokinetics of OATP1B substrates; however, several factors may confound direct interpretation of pharmacokinetic parameters from these clinical studies using noncompartmental analysis (NCA). A review of clinical data herein indicates a single dose of OATP1B inhibitor rifampin almost never leads to increased substrate half-life but often a decrease and that most clinical OATP1B substrates are CYP3A4 substrates and/or undergo enterohepatic cycling (EHC). Using hypothetically simple OATP1B substrate physiologically based pharmacokinetic (PBPK) models, simulated effect of rifampin differed from specific OATP1B inhibition due to short rifampin half-life causing dissipation of OATP1B inhibition over time combined with CYP3A4 induction. Calculated using simulated tissue data, volume of distribution indeed decreased with OATP1B inhibition and was expectedly limited to the contribution of liver volume. However, an apparent and counterintuitive effect of rifampin on volume greater than that on clearance resulted for CYP3A4 substrates using NCA. The effect of OATP1B inhibition and rifampin on OATP1B substrate models incorporating EHC plus or minus renal clearance was distinct compared with simpler models. Using PBPK models incorporating reversible lactone metabolism for clinical OATP1B substrates atorvastatin and pitavastatin, DDIs reporting decreased half-life with rifampin were reproduced. These simulations provide an explanation for the distinct change in OATP1B substrate pharmacokinetics observed in clinical studies, including changes in volume of distribution and additional mechanisms. SIGNIFICANCE STATEMENT: Transporters are involved in drug clearance and volume of distribution, and distinct changes in OATP1B substrate pharmacokinetics are observed with OATP1B inhibitor rifampin. Using hypothetical and validated PBPK models and simulations, this study addresses the limitations of single-dose rifampin and complicated clinical OATP1B substrate disposition in evaluating the pharmacokinetic parameters of OATP1B substrates during rifampin drug-drug interactions (DDIs). These models account for change in volume of distribution and identify additional mechanisms underlying apparent pharmacokinetic changes in OATP1B DDIs.
Collapse
Affiliation(s)
- Pooja V Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Bridget L Morse
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
13
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
14
|
Bechtold BJ, Lynch KD, Oyanna VO, Call MR, Graf TN, Oberlies NH, Clarke JD. Rifampin- and Silymarin-Mediated Pharmacokinetic Interactions of Exogenous and Endogenous Substrates in a Transgenic OATP1B Mouse Model. Mol Pharm 2024; 21:2284-2297. [PMID: 38529622 PMCID: PMC11073900 DOI: 10.1021/acs.molpharmaceut.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.
Collapse
Affiliation(s)
- Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - M. Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| |
Collapse
|
15
|
Izat N, Kaplan O, Çelebier M, Sahin S. An Isolated Perfused Rat Liver Model: Simultaneous LC-MS Quantification of Pitavastatin, Coproporphyrin I, and Coproporphyrin III Levels in the Rat Liver and Bile. ACS OMEGA 2024; 9:19250-19260. [PMID: 38708282 PMCID: PMC11064166 DOI: 10.1021/acsomega.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The isolated perfused rat liver (IPRL) model provides a mechanistic understanding of the organic-anion-transporting polypeptide (OATP/Oatp)-mediated pharmacokinetics in the preclinical evaluation, which often requires the use of control substrates (i.e., pitavastatin) and monitoring endogenous biomarkers (coproporphyrin I and III). This study aimed to develop and validate an LC-MS method allowing the simultaneous quantification of pitavastatin, coproporphyrin I (CPI), and coproporphyrin III (CPIII) in rat liver perfusion matrices (perfusate, liver homogenate, bile). The analysis was performed on a C18 column at 60 °C with 20 μL of sample injection. The mobile phases consisted of water with 0.1% formic acid and acetonitrile with 0.1% formic acid with a gradient flow of 0.5 mL/min. The assay was validated according to the ICH M10 Bioanalytical Method Validation Guideline (2022) for selectivity, calibration curve and range, matrix effect, carryover, accuracy, precision, and reinjection reproducibility. The method allowing the simultaneous quantification of pitavastatin, CPI, and CPIII was selective without having carryover and matrix effects. The linear calibration curves were obtained within various calibration ranges for three analytes in different matrices. Accuracy and precision values fulfilled the required limits. After 60 min perfusion with pitavastatin (1 μM), the cumulative amounts of pitavastatin in the liver and bile were 5.770 ± 1.504 and 0.852 ± 0.430 nmol/g liver, respectively. CPIII was a more dominant marker than CPI in both liver (0.028 ± 0.017 vs 0.013 ± 0.008 nmol/g liver) and bile (0.016 ± 0.011 vs 0.009 ± 0.007 nmol/g liver). The novel and validated bioanalytical method can be applied in further IPRL preparations investigating Oatp-mediated pharmacokinetics and DDIs.
Collapse
Affiliation(s)
- Nihan Izat
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| | - Ozan Kaplan
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Mustafa Çelebier
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Selma Sahin
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| |
Collapse
|
16
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
17
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
18
|
Chan GH, Houle R, Zhang J, Katwaru R, Li Y, Chu X. Evaluation of the Selectivity of Several Organic Anion Transporting Polypeptide 1B Biomarkers Using Relative Activity Factor Method. Drug Metab Dispos 2023; 51:1089-1104. [PMID: 37137718 DOI: 10.1124/dmd.122.000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-β-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.
Collapse
Affiliation(s)
- Grace Hoyee Chan
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Houle
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Jinghui Zhang
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Ravi Katwaru
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Yang Li
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Xiaoyan Chu
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
19
|
Lehtisalo M, Kiander W, Filppula AM, Deng F, Kidron H, Korhonen M, Sinkko J, Koivula K, Niemi M. Rhabdomyolysis during concomitant ticagrelor and rosuvastatin: A breast cancer resistance protein-mediated drug interaction? Br J Clin Pharmacol 2023; 89:2309-2315. [PMID: 36740817 DOI: 10.1111/bcp.15684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023] Open
Abstract
We present 3 patients diagnosed with rhabdomyolysis 1-6 months after the initiation of concomitant rosuvastatin and ticagrelor medication. A literature review and Food and Drug Administration adverse event reporting system revealed >40 reports of rhabdomyolysis during concomitant ticagrelor and rosuvastatin, including 3 with a fatal outcome. We show that ticagrelor inhibits breast cancer resistance protein-, organic anion transporting polypeptide (OATP) 1B1-, 1B3- and 2B1-mediated transport of rosuvastatin in vitro with half-maximal unbound inhibitory concentrations of 0.36, 4.13, 7.5 and 3.26 μM, respectively. A static drug interaction model predicted that ticagrelor may inhibit intestinal breast cancer resistance protein and thus increase rosuvastatin plasma exposure 2.1-fold, whereas the OATP-mediated hepatic uptake of rosuvastatin should not be inhibited due to relatively low portal ticagrelor concentrations. Taken together, concomitant use of ticagrelor with rosuvastatin may increase the systemic exposure to rosuvastatin and the risk of rosuvastatin-induced rhabdomyolysis. Further studies are warranted to investigate the potential pharmacokinetic interaction between ticagrelor and rosuvastatin in humans.
Collapse
Affiliation(s)
- Minna Lehtisalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Feng Deng
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mari Korhonen
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Kimmo Koivula
- South Karelia Central Hospital, Lappeenranta, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
21
|
Pitavastatin and Ivermectin Enhance the Efficacy of Paclitaxel in Chemoresistant High-Grade Serous Carcinoma. Cancers (Basel) 2022; 14:cancers14184357. [PMID: 36139522 PMCID: PMC9496819 DOI: 10.3390/cancers14184357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The main challenge in high-grade serous carcinoma management is to unveil therapeutic approaches to overcome chemoresistance. Drug combinations and repurposing of non-oncological agents are attractive strategies that allow for higher efficacy, decreased toxicity, and the overcoming of chemoresistance. Several non-oncological drugs display an effective anti-cancer activity and have been studied to be repurposed in multi-drug resistant neoplasms. The purpose of our study was to explore whether combining Paclitaxel with repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) led to a therapeutic benefit. Our results showed that the combination of Paclitaxel with Pitavastatin or Ivermectin demonstrates the highest cytotoxic effect and the strongest synergism among all combinations for two chemoresistant cell lines. Thus, the combination of these repurposed drugs with Paclitaxel could be a particularly valuable strategy to treat ovarian cancer patients with intrinsic or acquired chemoresistance. Abstract Chemotherapy is a hallmark in high-grade serous carcinoma management; however, chemoresistance and side effects lead to therapeutic interruption. Combining repurposed drugs with chemotherapy has the potential to improve antineoplastic efficacy, since drugs can have independent mechanisms of action and suppress different pathways simultaneously. This study aimed to explore whether the combination of Paclitaxel with repurposed drugs led to a therapeutic benefit. Thus, we evaluated the cytotoxic effects of Paclitaxel alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumor chemoresistant (OVCAR8 and OVCAR8 PTX R P) and a non-tumoral (HOSE6.3) cell lines. Cellular viability was assessed using Presto Blue assay, and the synergistic interactions were evaluated using Chou–Talalay, Bliss Independence and Highest Single Agent reference models. The combination of Paclitaxel with Pitavastatin or Ivermectin showed the highest cytotoxic effect and the strongest synergism among all combinations for both chemoresistant cell lines, resulting in a chemotherapeutic effect superior to both drugs alone. Almost all the repurposed drugs in combination with Paclitaxel presented a safe pharmacological profile in non-tumoral cells. Overall, we suggest that Pitavastatin and Ivermectin could act synergistically in combination with Paclitaxel, being promising two-drug combinations for high-grade serous carcinoma management.
Collapse
|
22
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Takubo H, Bessho K, Watari R, Shigemi R. Quantitative prediction of OATP1B-mediated drug-drug interactions using endogenous biomarker coproporphyrin I. Xenobiotica 2022; 52:397-404. [PMID: 35638858 DOI: 10.1080/00498254.2022.2085210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
1. Evaluation of the organic anion transporting polypeptide (OATP) 1B-mediated drug-drug interaction (DDI) potential is important for drug development. The focus of this study was coproporphyrin I (CP-I), an endogenous OATP1B biomarker.2. We investigated a new approach to OATP1B-mediated DDI prediction based on the mechanistic static pharmacokinetics (MSPK) model.3. The ratio of the area under the plasma concentration-time curve (AUCR) with and without co-administration of rifampicin (a typical OATP1B inhibitor) was found for CP-I and OATP1B substrate, respectively, and was then used to derive the correlation curve equation. The AUCR with and without co-administration of another OATP1B inhibitor than rifampicin was then predicted for the OATP1B substrates by substituting the AUCR of CP-I in the correlation curve equation to verify the predictability of the AUCR of the OATP1B substrates.4. The derived correlation curve equation between CP-I and the OATP1B substrates of the AUCRs with and without co-administration of rifampicin matched the observed AUCRs well. Regarding pitavastatin, rosuvastatin and pravastatin, 92.9% of the predicted AUCR values were within a two-fold range of the observed values, indicating that this approach may be a good way to quantitatively predict DDI potential.
Collapse
Affiliation(s)
- Hiroaki Takubo
- Japan Pharmaceutical Manufacturers Association.,Torii Pharmaceutical Co., Ltd., Osaka, Japan
| | - Koji Bessho
- Japan Pharmaceutical Manufacturers Association.,Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryosuke Watari
- Japan Pharmaceutical Manufacturers Association.,Shionogi & Co., Ltd., Osaka, Japan
| | - Ryota Shigemi
- Japan Pharmaceutical Manufacturers Association.,Bayer Yakuhin, Ltd., Osaka, Japan
| |
Collapse
|
24
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
25
|
Huttunen KM, Terasaki T, Urtti A, Montaser AB, Uchida Y. Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharm Res 2022; 39:1363-1392. [PMID: 35257288 PMCID: PMC9246989 DOI: 10.1007/s11095-022-03193-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
One of the major reasons why central nervous system (CNS)-drug development has been challenging in the past, is the barriers that prevent substances entering from the blood circulation into the brain. These barriers include the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), blood-cerebrospinal fluid barrier (BCSFB), and blood-arachnoid barrier (BAB), and they differ from each other in their transporter protein expression and function as well as among the species. The quantitative expression profiles of the transporters in the CNS-barriers have been recently revealed, and in this review, it is described how they affect the pharmacokinetics of compounds and how these expression differences can be taken into account in the prediction of brain drug disposition in humans, an approach called pharmacoproteomics. In recent years, also structural biology and computational resources have progressed remarkably, enabling a detailed understanding of the dynamic processes of transporters. Molecular dynamics simulations (MDS) are currently used commonly to reveal the conformational changes of the transporters and to find the interactions between the substrates and the protein during the binding, translocation in the transporter cavity, and release of the substrate on the other side of the membrane. The computational advancements have also aided in the rational design of transporter-utilizing compounds, including prodrugs that can be actively transported without losing potency towards the pharmacological target. In this review, the state-of-art of these approaches will be also discussed to give insights into the transporter-mediated drug delivery to the CNS.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
26
|
Shen H, Yang Z, Rodrigues AD. Cynomolgus Monkey as an Emerging Animal Model to Study Drug Transporters: In Vitro, In Vivo, In Vitro-to-In Vivo Translation. Drug Metab Dispos 2022; 50:299-319. [PMID: 34893475 DOI: 10.1124/dmd.121.000695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Membrane transporters have been recognized as one of the key determinants of pharmacokinetics and are also known to affect the efficacy and toxicity of drugs. Both qualitatively and quantitatively, however, transporter studies conducted using human in vitro systems have not always been predictive. Consequently, researchers have used cynomolgus monkeys as a model to study drug transporters and anticipate their effects in humans. Burgeoning reports of data in the last few years necessitates a comprehensive review on the topic of drug transporters in cynomolgus monkeys that includes cell-based tools, sequence homology, tissue expression, in vitro studies, in vivo studies, and in vitro-to-in vivo extrapolation. This review highlights the state-of-the-art applications of monkey transporter models to support the evaluation of transporter-mediated drug-drug interactions, clearance predictions, and endogenous transporter biomarker identification and validation. The data demonstrate that cynomolgus monkey transporter models, when used appropriately, can be an invaluable tool to support drug discovery and development processes. Most importantly, they enable an early in vitro-to-in vivo extrapolation assessment, which provides additional context to human in vitro data. Additionally, comprehending species similarities and differences in transporter tissue expression and activity is crucial when translating monkey data to humans. The challenges and limitations when applying such models to inform decision-making must also be considered. SIGNIFICANCE STATEMENT: This paper presents a comprehensive review of currently available published reports describing cynomolgus monkey transporter models. The data indicate that Cynomolgus monkeys provide mechanistic insight regarding the role of intestinal, hepatic, and renal transporters in drug and biomarker disposition and drug interactions. The data generated with cynomolgus monkey models provide mechanistic insight into transporter-mediated drug absorption and disposition. They are valuable to human clearance prediction, drug drug interaction assessment, and endogenous biomarker development related to drug transporters.
Collapse
Affiliation(s)
- Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S., Z.Y.) and ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (A.D.R.)
| | - Zheng Yang
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S., Z.Y.) and ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (A.D.R.)
| | - A David Rodrigues
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey (H.S., Z.Y.) and ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (A.D.R.)
| |
Collapse
|
27
|
Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metab Pharmacokinet 2022; 44:100449. [DOI: 10.1016/j.dmpk.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
28
|
Robbins JA, Menzel K, Lassman M, Zhao T, Fancourt C, Chu X, Mostoller K, Witter R, Marceau West R, Stoch SA, McCrea JB, Iwamoto M. Acute and Chronic Effects of Rifampin on Letermovir Suggest Transporter Inhibition and Induction Contribute to Letermovir Pharmacokinetics. Clin Pharmacol Ther 2021; 111:664-675. [PMID: 34888851 DOI: 10.1002/cpt.2510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Rifampin has acute inhibitory and chronic inductive effects that can cause complex drug-drug interactions. Rifampin inhibits transporters including organic-anion-transporting polypeptide (OATP)1B and P-glycoprotein (P-gp), and induces enzymes and transporters including cytochrome P450 3A, UDP-glucuronosyltransferase (UGT)1A, and P-gp. This study aimed at separating inhibitory and inductive effects of rifampin on letermovir disposition and elimination (indicated for cytomegalovirus prophylaxis in hematopoietic stem cell transplant recipients). Letermovir is a substrate of UGT1A1/3, P-gp, and OATP1B, with its clearance primarily mediated by OATP1B. Letermovir (single-dose) administered with rifampin (single-dose) resulted in increased letermovir exposure through transporter inhibition. Chronic coadministration with rifampin (inhibition plus potential OATP1B induction) resulted in modestly decreased letermovir exposure versus letermovir alone. Letermovir administered 24 hours after last rifampin dose (potential OATP1B induction) resulted in markedly decreased letermovir exposure. These data suggest rifampin may induce transporters that clear letermovir; the modestly reduced letermovir exposure with chronic rifampin coadministration likely reflects the net effect of inhibition and induction. OATP1B endogenous biomarkers coproporphyrin (CP) I and glycochenodeoxycholic acid-sulfate (GCDCA-S) were also analyzed; their exposures increased after single-dose rifampin plus letermovir, consistent with OATP1B inhibition and prior reports of inhibition by rifampin alone. CP I and GCDCA-S exposures were substantially reduced with letermovir administered 24 hours after the last dose of rifampin versus letermovir plus chronic rifampin coadministration, This study suggests that OATP1B induction may contribute to reduced letermovir exposure after chronic rifampin administration, although given the complexity of letermovir disposition, alternative mechanisms are not fully excluded.
Collapse
Affiliation(s)
| | | | | | - Tian Zhao
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McCrea JB, Hussain A, Ma B, Garrett GC, Evers R, Laabs JE, Stoch SA, Iwamoto M. Assessment of Pharmacokinetic Interaction Between Gefapixant (MK-7264), a P2X3 Receptor Antagonist, and the OATP1B1 Drug Transporter Substrate Pitavastatin. Clin Pharmacol Drug Dev 2021; 11:406-412. [PMID: 34821075 PMCID: PMC9298894 DOI: 10.1002/cpdd.1047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022]
Abstract
Gefapixant (MK‐7264, AF‐219), a first‐in‐class P2X3 antagonist, is being developed as oral treatment for refractory or unexplained chronic cough. Based on in vitro data, gefapixant exerts inhibitory activity on the organic anion transporter (OAT) P1B1 transporter. Therefore, a drug‐drug interaction study evaluating the potential effects of gefapixant on the OATP1B1 drug transporter, using pitavastatin as a sensitive probe substrate, was conducted. An open‐label, 2‐period, fixed‐sequence study in 20 healthy adults 18 to 55 years old was conducted. In period 1, a 1‐mg oral dose of pitavastatin was administered to each participant. After a ≥4‐day washout, in period 2 participants received a 45‐mg oral dose of gefapixant twice daily on days 1 through 4. On day 2 of period 2, pitavastatin was coadministered with the morning dose of gefapixant. Pitavastatin exposures following single‐dose administration with and without multiple doses of gefapixant were similar: geometric mean ratio (90% confidence interval) of pitavastatin area under the plasma concentration–time curve from time 0 to infinity (AUC0‐∞) (pitavastatin + gefapixant/pitavastatin alone) was 0.97 (0.93‐1.02). The ratio of pitavastatin lactone AUC0‐∞ to pitavastatin AUC0‐∞ was also comparable between treatments. Administration of gefapixant and pitavastatin was generally well tolerated, with no safety findings of concern. These results support that gefapixant has a low potential to inhibit the OATP1B1 transporter.
Collapse
Affiliation(s)
| | | | - Bennett Ma
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Raymond Evers
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Johnson & Johnson, Janssen Pharmaceuticals, Springhouse, Pennsylvania, USA
| | - John E Laabs
- Celerion, 2420 W. Baseline Road, Tempe, Arizona, USA
| | | | | |
Collapse
|
30
|
Hanke N, Gómez-Mantilla JD, Ishiguro N, Stopfer P, Nock V. Physiologically Based Pharmacokinetic Modeling of Rosuvastatin to Predict Transporter-Mediated Drug-Drug Interactions. Pharm Res 2021; 38:1645-1661. [PMID: 34664206 PMCID: PMC8602162 DOI: 10.1007/s11095-021-03109-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Purpose To build a physiologically based pharmacokinetic (PBPK) model of the clinical OATP1B1/OATP1B3/BCRP victim drug rosuvastatin for the investigation and prediction of its transporter-mediated drug-drug interactions (DDIs). Methods The Rosuvastatin model was developed using the open-source PBPK software PK-Sim®, following a middle-out approach. 42 clinical studies (dosing range 0.002–80.0 mg), providing rosuvastatin plasma, urine and feces data, positron emission tomography (PET) measurements of tissue concentrations and 7 different rosuvastatin DDI studies with rifampicin, gemfibrozil and probenecid as the perpetrator drugs, were included to build and qualify the model. Results The carefully developed and thoroughly evaluated model adequately describes the analyzed clinical data, including blood, liver, feces and urine measurements. The processes implemented to describe the rosuvastatin pharmacokinetics and DDIs are active uptake by OATP2B1, OATP1B1/OATP1B3 and OAT3, active efflux by BCRP and Pgp, metabolism by CYP2C9 and passive glomerular filtration. The available clinical rifampicin, gemfibrozil and probenecid DDI studies were modeled using in vitro inhibition constants without adjustments. The good prediction of DDIs was demonstrated by simulated rosuvastatin plasma profiles, DDI AUClast ratios (AUClast during DDI/AUClast without co-administration) and DDI Cmax ratios (Cmax during DDI/Cmax without co-administration), with all simulated DDI ratios within 1.6-fold of the observed values. Conclusions A whole-body PBPK model of rosuvastatin was built and qualified for the prediction of rosuvastatin pharmacokinetics and transporter-mediated DDIs. The model is freely available in the Open Systems Pharmacology model repository, to support future investigations of rosuvastatin pharmacokinetics, rosuvastatin therapy and DDI studies during model-informed drug discovery and development (MID3). Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03109-6.
Collapse
Affiliation(s)
- Nina Hanke
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany.
| | - José David Gómez-Mantilla
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd, Kobe, Japan
| | - Peter Stopfer
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Valerie Nock
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| |
Collapse
|
31
|
Rattanacheeworn P, Kerr SJ, Kittanamongkolchai W, Townamchai N, Udomkarnjananun S, Praditpornsilpa K, Thanusuwannasak T, Udomnilobol U, Jianmongkol S, Ongpipattanakul B, Prueksaritanont T, Avihingsanon Y, Chariyavilaskul P. Quantification of CYP3A and Drug Transporters Activity in Healthy Young, Healthy Elderly and Chronic Kidney Disease Elderly Patients by a Microdose Cocktail Approach. Front Pharmacol 2021; 12:726669. [PMID: 34603040 PMCID: PMC8486002 DOI: 10.3389/fphar.2021.726669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ageing and chronic kidney disease (CKD) affect pharmacokinetic (PK) parameters. Since mechanisms are related and remain unclear, cytochrome P450 (CYP) 3A and drug transporter activities were investigated in the elderly with or without CKD and compared to healthy adults using a microdose cocktail. Methods: Healthy young participants (n = 20), healthy elderly participants (n = 16) and elderly patients with CKD (n = 17) received, in study period 1, a single dose of microdose cocktail probe containing 30 µg midazolam, 750 µg dabigatran etexilate, 100 µg atorvastatin, 10 µg pitavastatin, and 50 µg rosuvastatin. After a 14-day wash-out period, healthy young participants continued to study period 2 with the microdose cocktail plus rifampicin. PK parameters including area under the plasma concentration-time curve (AUC), maximum plasma drug concentration (Cmax), and half-life were estimated before making pairwise comparisons of geometric mean ratios (GMR) between groups. Results: AUC and Cmax GMR (95% confidence interval; CI) of midazolam, a CYP3A probe substrate, were increased 2.30 (1.70-3.09) and 2.90 (2.16-3.88) fold in healthy elderly and elderly patients with CKD, respectively, together with a prolonged half-life. AUC and Cmax GMR (95%CI) of atorvastatin, another CYP3A substrate, was increased 2.14 (1.52-3.02) fold in healthy elderly and 4.15 (2.98-5.79) fold in elderly patients with CKD, indicating decreased CYP3A activity related to ageing. Associated AUC changes in the probe drug whose activity could be modified by intestinal P-glycoprotein (P-gp) activity, dabigatran etexilate, were observed in patients with CKD. However, whether the activity of pitavastatin and rosuvastatin is modified by organic anion transporting polypeptide 1B (OATP1B) and of breast cancer resistance protein (BCRP), respectively, in elderly participants with or without CKD was inconclusive. Conclusions: CYP3A activity is reduced in ageing. Intestinal P-gp function might be affected by CKD, but further confirmation appears warranted. Clinical Trial Registration:http://www.thaiclinicaltrials.org/ (TCTR 20180312002 registered on March 07, 2018).
Collapse
Affiliation(s)
- Punyabhorn Rattanacheeworn
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wonngarm Kittanamongkolchai
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellent Center of Geriatrics, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thanundorn Thanusuwannasak
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Suree Jianmongkol
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Kimoto E, Costales C, West MA, Bi YA, Vourvahis M, David Rodrigues A, Varma MVS. Biomarker-Informed Model-Based Risk Assessment of Organic Anion Transporting Polypeptide 1B Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2021; 111:404-415. [PMID: 34605015 DOI: 10.1002/cpt.2434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Quantitative prediction of drug-drug interactions (DDIs) involving organic anion transporting polypeptide (OATP)1B1/1B3 inhibition is limited by uncertainty in the translatability of experimentally determined in vitro inhibition potency (half-maximal inhibitory concentration (IC50 )). This study used an OATP1B endogenous biomarker-informed physiologically-based pharmacokinetic (PBPK) modeling approach to predict the effect of inhibitor drugs on the pharmacokinetics (PKs) of OATP1B substrates. Initial static analysis with about 42 inhibitor drugs, using in vitro IC50 values and unbound liver inlet concentrations (Iin,max,u ), suggested in vivo OATP1B inhibition risk for drugs with R-value (1+ Iin,max,u /IC50 ) above 1.5. A full-PBPK model accounting for transporter-mediated hepatic disposition was developed for coproporphyrin I (CP-I), an endogenous OATP1B biomarker. For several inhibitors (cyclosporine, diltiazem, fenebrutinib, GDC-0810, itraconazole, probenecid, and rifampicin at 3 different doses), PBPK models were developed and verified against available CP-I plasma exposure data to obtain in vivo OATP1B inhibition potency-which tend to be lower than the experimentally measured in vitro IC50 by about 2-fold (probenecid and rifampicin) to 37-fold (GDC-0810). Models verified with CP-I data are subsequently used to predict DDIs with OATP1B probe drugs, rosuvastatin and pitavastatin. The predicted and observed area under the plasma concentration-time curve ratios are within 20% error in 55% cases, and within 30% error in 89% cases. Collectively, this comprehensive study illustrates the adequacy and utility of endogenous biomarker-informed PBPK modeling in mechanistic understanding and quantitative predictions of OATP1B-mediated DDIs in drug development.
Collapse
Affiliation(s)
- Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Yi-An Bi
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, New York, USA
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
33
|
Wiebe ST, Giessmann T, Hohl K, Schmidt-Gerets S, Hauel E, Jambrecina A, Bader K, Ishiguro N, Taub ME, Sharma A, Ebner T, Mikus G, Fromm MF, Müller F, Stopfer P. Validation of a Drug Transporter Probe Cocktail Using the Prototypical Inhibitors Rifampin, Probenecid, Verapamil, and Cimetidine. Clin Pharmacokinet 2021; 59:1627-1639. [PMID: 32504272 PMCID: PMC7716890 DOI: 10.1007/s40262-020-00907-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Objective A novel cocktail containing four substrates of key drug transporters was previously optimized to eliminate mutual drug–drug interactions between the probes digoxin (P-glycoprotein substrate), furosemide (organic anion transporter 1/3), metformin (organic cation transporter 2, multidrug and toxin extrusion protein 1/2-K), and rosuvastatin (organic anion transporting polypeptide 1B1/3, breast cancer resistance protein). This clinical trial investigated the effects of four commonly employed drug transporter inhibitors on cocktail drug pharmacokinetics. Methods In a randomized open-label crossover trial in 45 healthy male subjects, treatment groups received the cocktail with or without single oral doses of rifampin, verapamil, cimetidine or probenecid. Concentrations of the probe drugs in serial plasma samples and urine fractions were measured by validated liquid chromatography-tandem mass spectrometry assays to assess systemic exposure. Results The results were generally in accordance with known in vitro and/or clinical drug–drug interaction data. Single-dose rifampin increased rosuvastatin area under the plasma concentration–time curve up to the last quantifiable concentration (AUC0–tz) by 248% and maximum plasma concentration (Cmax) by 1025%. Probenecid increased furosemide AUC0–tz by 172% and Cmax by 23%. Cimetidine reduced metformin renal clearance by 26%. The effect of single-dose verapamil on digoxin systemic exposure was less than expected from multiple-dose studies (AUC0–tz unaltered, Cmax + 22%). Conclusions Taking all the interaction results together, the transporter cocktail is considered to be validated as a sensitive and specific tool for evaluating transporter-mediated drug–drug interactions in drug development. Clinical Trial Registration EudraCT number 2017-001549-29. Electronic supplementary material The online version of this article (10.1007/s40262-020-00907-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina T Wiebe
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.,UniversitätsKlinikum Heidelberg-Medizinische Klinik, Abteilung Klinische Pharmakologie and Pharmakoepidemiologie, Heidelberg, Germany
| | - Thomas Giessmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Kathrin Hohl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Sven Schmidt-Gerets
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Edith Hauel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Alen Jambrecina
- CTC North GmbH & Co KG, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Kerstin Bader
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Chuo-ku, Kobe, Japan
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Ashish Sharma
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Thomas Ebner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Gerd Mikus
- UniversitätsKlinikum Heidelberg-Medizinische Klinik, Abteilung Klinische Pharmakologie and Pharmakoepidemiologie, Heidelberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
34
|
Izat N, Kaplan O, Celebier M, Sahin S. Bioanalytical Method Validation of an RP-HPLC Method for Determination of Rifampicin in Liver Perfusion Studies. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The number of validated quantification methods for rifampicin, a prototypical Oatp inhibitor, in biological rat samples was limited.
Objective:
This study was conducted to validate a modified reversed-phase liquid chromatographic method for the determination of rifampicin in rat liver tissue according to the current ICH M10 Bioanalytical Method Validation Draft Guideline (2019) for application to samples of in situ rat liver perfusion studies.
Methods:
Liver tissue samples were obtained from recirculatory in situ rat liver perfusion studies. The
analysis was performed on a C18 column with a mobile phase composed of 0.05 M phosphate buffer
(pH 4.58): acetonitrile (55:45, v/v). The assay was validated for selectivity, calibration curve and
range, matrix effect, carry-over, accuracy and precision, reinjection reproducibility, and stability.
Results:
he method was considered selective and stable, without having carry-over and matrix effects.
The calibration curve was linear (R2: 0.9983) within the calibration range (0.5-60 ppm). Accuracy and
precision values fulfilled the required limits. Liver concentrations of rifampicin in liver tissue, obtained
after 60 min perfusion with 10 μM and 50 μM of rifampicin, were 45.1 ± 11.2 and 313.4 ± 84.4 μM,
respectively.
Conclusion:
The bioanalytical method validation was completed and the method was successfully applied for the determination of rifampicin in rat liver tissue.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Ozan Kaplan
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Mustafa Celebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara,Turkey
| |
Collapse
|
35
|
Lynch KD, Montonye ML, Tian DD, Arman T, Oyanna VO, Bechtold BJ, Graf TN, Oberlies NH, Paine MF, Clarke JD. Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin-drug interactions. Phytother Res 2021; 35:3286-3297. [PMID: 33587330 PMCID: PMC8217340 DOI: 10.1002/ptr.7049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.
Collapse
Affiliation(s)
- Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Michelle L. Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
36
|
Cheng Y, Liang X, Hao J, Niu C, Lai Y. Application of a PBPK model to elucidate the changes of systemic and liver exposures for rosuvastatin, carotegrast, and bromfenac followed by OATP inhibition in monkeys. Clin Transl Sci 2021; 14:1924-1934. [PMID: 34058067 PMCID: PMC8504809 DOI: 10.1111/cts.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of organic anion‐transporting polypeptide (OATP) inhibition on systemic and liver exposures of three OATP substrates was investigated in cynomolgus monkeys. A monkey physiologically‐based pharmacokinetic (PBPK) model was constructed to describe the exposure changes followed by OATP functional attenuation. Rosuvastatin, bromfenac, and carotegrast were administered as a single intravenous cassette dose (0.5 mg/kg each) in monkeys with and without predosing with rifampin (RIF; 20 mg/kg) orally. The plasma exposure of rosuvastatin, bromfenac, carotegrast, and OATP biomarkers, coproporphyrin I (CP‐I) and CP‐III were increased 2.3, 2.1, 9.1, 5.4, and 8.8‐fold, respectively, when compared to the vehicle group. The liver to plasma ratios of rosuvastatin and bromfenac were reduced but the liver concentration of the drugs remained unchanged by RIF treatment. The liver concentrations of carotegrast, CP‐I, and CP‐III were unchanged at 1 h but increased at 6 h in the RIF‐treated group. The passive permeability, active uptake, and biliary excretion were characterized in suspended and sandwich‐cultured monkey hepatocytes and then incorporated into the monkey PBPK model. As demonstrated by the PBPK model, the plasma exposure is increased through OATP inhibition while liver exposure is maintained by passive permeability driven from an elevated plasma level. Liver exposure is sensitive to the changes of metabolism and biliary clearances. The model further suggested the involvement of additional mechanisms for hepatic uptakes of rosuvastatin and bromfenac, and of the inhibition of biliary excretion for carotegrast, CP‐I, and CP‐III by RIF. Collectively, impaired OATP function would not reduce the liver exposure of its substrates in monkeys.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Jia Hao
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
37
|
Feng S, Bo Q, Coleman HA, Charoin JE, Zhu M, Xiao J, Jin Y. Further Evaluation of Coproporphyrins as Clinical Endogenous Markers for OATP1B. J Clin Pharmacol 2021; 61:1027-1034. [PMID: 33460165 DOI: 10.1002/jcph.1817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Coproporphyrins (CP-I and CP-III) in plasma are considered potential markers for assessing liver organic anion-transporting polypeptide transporter OATP1B activity and monitoring OATP1B-mediated drug-drug interactions (DDIs) in clinical settings. However, the effect of altered renal clearance (CLrenal ) on CP-I and CP-III plasma exposure has rarely been examined. Therefore, the purpose of this study is to further evaluate CP-I and CP-III as clinical endogenous markers for OATP1B activity and to investigate the impact of CLrenal on DDI assessments for the first time. In this study, 18 healthy participants were recruited to receive RO7049389 (a potential inhibitor of OATP1B) 800 mg twice daily for 6 days and a single dose of pitavastatin (a probe drug of OATP1B) before and after RO7049389 treatment. Plasma concentrations of pitavastatin, CP I, CP III, and the amounts of CP-I and CP-III excreted in urine were measured. Seventeen healthy participants completed the study. After multiple doses of RO7049389, the area under the plasma concentration-time curve from time 0 to 12 hours of pitavastatin increased 1.95-fold (90% confidence interval [CI], 1.58-2.41), while for CP-I and CP-III it increased 3.00-fold (90%CI, 2.35-3.82) and 2.84-fold (90%CI, 2.22-3.65), respectively. Concurrently, the CLrenal of CP-I decreased by 31% (90%CI, 23%-39%), and that of CP-III decreased by 70% (90%CI, 61%-77%). In conclusion, CP-I and CP-III in plasma display the potential to be applied as endogenous markers for the evaluation of OATP1B inhibition in clinical trials. While renal transporters contribute significantly to the CLrenal of CP-III, it would be better to investigate the impact of the CLrenal on plasma exposure of CP-III during clinical DDI assessments.
Collapse
Affiliation(s)
- Sheng Feng
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Shanghai, China
| | - Qingyan Bo
- I2O DTA, Roche Innovation Center Shanghai, Shanghai, China
| | | | - Jean Eric Charoin
- Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mingfen Zhu
- I2O DTA, Roche Innovation Center Shanghai, Shanghai, China
| | - Jim Xiao
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - Yuyan Jin
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
38
|
Liang X, Lai Y. Overcoming the shortcomings of the extended-clearance concept: a framework for developing a physiologically-based pharmacokinetic (PBPK) model to select drug candidates involving transporter-mediated clearance. Expert Opin Drug Metab Toxicol 2021; 17:869-886. [PMID: 33793347 DOI: 10.1080/17425255.2021.1912012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction:Human pharmacokinetic (PK) prediction can be a significant challenge to drug candidates undergoing transporter-mediated clearance, when only animal data and in vitro human parameters are available in the drug discovery stage.Areas covered:The extended clearance concept (ECC) that incorporates the processes of hepatic uptake, passive diffusion, metabolism and biliary secretion has been adapted to determine the rate-determining process of hepatic clearance and drug-drug interactions (DDIs). However, since the ECC is derived from the well-stirred model and does not consider the liver as a drug distribution organ to reflect the time-dependent variation of drug concentrations between the liver and plasma, it can be misused for compound selection in drug discovery.Expert opinion:The PBPK model consists of a set of differential equations of drug mass balance, and can overcome the shortcomings of the ECC in predicting human PK. The predictability, relevance and reliability of the model and the scaling factors for IVIVE must be validated using either the measured liver concentrations or DDI data with known transporter inhibitors, or both, in monkeys. A human PBPK model that incorporates in vitro human data and SFs obtained from the validated monkey PBPK model can be used for compound selection in the drug discovery phase.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
39
|
Eng H, Bi YA, West MA, Ryu S, Yamaguchi E, Kosa RE, Tess DA, Griffith DA, Litchfield J, Kalgutkar AS, Varma MVS. Organic Anion-Transporting Polypeptide 1B1/1B3-Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro-In Vivo Evaluation in Cynomolgus Monkey. J Pharmacol Exp Ther 2021; 377:169-180. [PMID: 33509903 DOI: 10.1124/jpet.120.000457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.5-8, and acid pKa <6 were obtained in cynomolgus monkey after dosing without and with a single-dose rifampicin-OATP1B1/1B3 probe inhibitor. Rifampicin (30 mg/kg oral) significantly (P < 0.05) reduced monkey clearance and/or steady-state volume of distribution (VDss) for 15 of 16 acids evaluated. Additionally, clearance of danoprevir was reduced by about 35%, although statistical significance was not reached. A significant linear relationship was noted between the clearance ratio (i.e., ratio of control to treatment groups) and VDss ratio, suggesting hepatic uptake contributes to the systemic clearance and distribution simultaneously. In vitro transport studies using primary monkey and human hepatocytes showed uptake inhibition by rifampicin (100 µM) for compounds with logP ≤6.5 but not for the very lipophilic acids (logP > 6.5), which generally showed high nonspecific binding in hepatocyte incubations. In vitro uptake clearance and fraction transported by OATP1B1/1B3 (ft,OATP1B) were found to be similar in monkey and human hepatocytes. Finally, for compounds with logP ≤6.5, good agreement was noted between in vitro ft,OATP1B and clearance ratio (as well as VDss ratio) in cynomolgus monkey. In conclusion, this study provides mechanistic evidence for the pivotal role of OATP1B-mediated hepatic uptake in the pharmacokinetics across a wide, large lipophilic acid space. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into the pharmacokinetics of a broad range of large lipophilic acids. Organic anion-transporting polypeptides 1B1/1B3-mediated hepatic uptake is of key importance in the pharmacokinetics and drug-drug interactions of almost all drugs and new molecular entities in this space. Diligent in vitro and in vivo transport characterization is needed to avoid the false negatives often noted because of general limitations in the in vitro assays while handling compounds with such physicochemical attributes.
Collapse
Affiliation(s)
- Heather Eng
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Mark A West
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Emi Yamaguchi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Rachel E Kosa
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Griffith
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - John Litchfield
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
40
|
Caro L, Prueksaritanont T, Fandozzi CM, Feng HP, Guo Z, Wolford D, Panebianco D, Fraser IP, Levine V, Swearingen D, Butterton JR, Iwamoto M, Yeh WW. Evaluation of Pharmacokinetic Drug Interactions of the Direct-Acting Antiviral Agents Elbasvir and Grazoprevir with Pitavastatin, Rosuvastatin, Pravastatin, and Atorvastatin in Healthy Adults. Clin Drug Investig 2021; 41:133-147. [PMID: 33527237 DOI: 10.1007/s40261-020-00974-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many people infected with hepatitis C virus have comorbidities, including hypercholesterolemia, that are treated with statins. In this study, we evaluated the drug-drug interaction potential of the hepatitis C virus inhibitors elbasvir (EBR) and grazoprevir (GZR) with statins. Pitavastatin, rosuvastatin, pravastatin, and atorvastatin are substrates of organic anion-transporting polypeptide 1B, whereas rosuvastatin and atorvastatin are also breast cancer resistance protein substrates. METHODS Three open-label, phase I clinical trials in healthy adults were conducted with multiple daily doses of oral GZR or EBR/GZR and single oral doses of statins. Trial 1: GZR 200 mg plus pitavastatin 10 mg. Trial 2: Part 1, GZR 200 mg plus rosuvastatin 10 mg, then EBR 50 mg/GZR 200 mg plus rosuvastatin 10 mg; Part 2, EBR 50 mg/GZR 200 mg plus pravastatin 40 mg. Trial 3: EBR 50 mg/GZR 200 mg plus atorvastatin 10 mg. RESULTS Neither GZR nor EBR pharmacokinetics were meaningfully affected by statins. Coadministration of EBR/GZR did not result in clinically relevant changes in the exposure of pitavastatin or pravastatin. However, EBR/GZR increased exposure to rosuvastatin (126%) and atorvastatin (94%). Coadministration of statins plus GZR or EBR/GZR was generally well tolerated. CONCLUSIONS Although statins do not appreciably affect EBR or GZR pharmacokinetics, EBR/GZR can impact the pharmacokinetics of certain statins, likely via inhibition of breast cancer resistance protein but not organic anion-transporting polypeptide 1B. Coadministration of EBR/GZR with pitavastatin or pravastatin does not require adjustment of either dose of statin, whereas the dose of rosuvastatin and atorvastatin should be decreased when coadministered with EBR/GZR.
Collapse
Affiliation(s)
- Luzelena Caro
- Merck & Co., Inc., Kenilworth, NJ, USA.
- Merck & Co., Inc., 770 Sumneytown Pike, WP75B-110, West Point, PA, 19486, USA.
| | - Thomayant Prueksaritanont
- Merck & Co., Inc., Kenilworth, NJ, USA
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | - Iain P Fraser
- Merck & Co., Inc., Kenilworth, NJ, USA
- Abide Therapeutics, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hayden ER, Chen M, Pasquariello KZ, Gibson AA, Petti JJ, Shen S, Qu J, Ong SS, Chen T, Jin Y, Uddin ME, Huang KM, Paz A, Sparreboom A, Hu S, Sprowl JA. Regulation of OATP1B1 Function by Tyrosine Kinase-mediated Phosphorylation. Clin Cancer Res 2021; 27:4301-4310. [PMID: 33664059 DOI: 10.1158/1078-0432.ccr-21-0023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OATP1B1 (SLCO1B1) is the most abundant and pharmacologically relevant uptake transporter in the liver and a key mediator of xenobiotic clearance. However, the regulatory mechanisms that determine OATP1B1 activity remain uncertain, and as a result, unexpected drug-drug interactions involving OATP1B1 substrates continue to be reported, including several involving tyrosine kinase inhibitors (TKI). EXPERIMENTAL DESIGN OATP1B1-mediated activity in overexpressing HEK293 cells and hepatocytes was assessed in the presence of FDA-approved TKIs, while rosuvastatin pharmacokinetics in the presence of an OATP1B1 inhibiting TKI were measured in vivo. Tyrosine phosphorylation of OATP1B1 was determined by LC/MS-MS-based proteomics and transport function was measured following exposure to siRNAs targeting 779 different kinases. RESULTS Twenty-nine of 46 FDA-approved TKIs studied significantly inhibit OATP1B1 function. Inhibition of OATP1B1 by TKIs, such as nilotinib, is predominantly noncompetitive, can increase systemic concentrations of rosuvastatin in vivo, and is associated with reduced phosphorylation of OATP1B1 at tyrosine residue 645. Using genetic screens and functional validation studies, the Src kinase LYN was identified as a potential regulator of OATP1B1 activity that is highly sensitive to inhibition by various TKIs at clinically relevant concentrations. CONCLUSIONS A novel kinase-dependent posttranslational mechanism of OATP1B1 activation was identified and interference with this process by TKIs can influence the elimination of a broad range of xenobiotic substrates.
Collapse
Affiliation(s)
- Elizabeth R Hayden
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kyle Z Pasquariello
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - James J Petti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Aviv Paz
- Hauptman-Woodward Medical Research Institute, Buffalo, New York
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
42
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2021; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
43
|
Mamidi RNVS, Devineni D, Sun D, Yavin Y, Rosenthal N. Rosuvastatin Myotoxicity After Starting Canagliflozin Treatment. Ann Intern Med 2021; 174:431-432. [PMID: 33721528 DOI: 10.7326/l20-1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Don Sun
- Janssen Research & Development, Raritan, New Jersey
| | - Yshai Yavin
- Janssen Research & Development, Raritan, New Jersey
| | | |
Collapse
|
44
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
45
|
Pharmacokinetics of Rosuvastatin: A Systematic Review of Randomised Controlled Trials in Healthy Adults. Clin Pharmacokinet 2021; 60:165-175. [PMID: 33428168 DOI: 10.1007/s40262-020-00978-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Rosuvastatin is a lipid-lowering drug that works by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme responsible for producing cholesterol in humans. The pharmacokinetic data of rosuvastatin are considerably variable across studies. OBJECTIVE To review the pharmacokinetics of rosuvastatin from randomised controlled trials (RCTs) in healthy adults. METHODS A review of the pharmacokinetics of rosuvastatin was performed using systematic search strategies. The Sheiner method was used to summarise the pharmacokinetics of the drug. RESULTS Randomised controlled studies (n = 70) involving healthy subjects (n = 2355) that examined the pharmacokinetics of rosuvastatin following single and multiple doses were included in the review. Rosuvastatin is given once daily in the dose range of 5-80 mg, with 40 mg being the maximum approved daily dose. Rosuvastatin achieves maximum plasma concentration at a median of 5 h (range: 0.5-6 h) under fasting conditions following single and multiple doses. Following single doses, rosuvastatin has a mean absolute oral availability of 20%, an overall mean total clearance of 28.3 L/h and an average terminal elimination half-life of approximately 20 h. The overall mean total clearance of the drug in Caucasian subjects was 1.7-fold higher than that in healthy Chinese subjects. The systemic exposure of rosuvastatin is characterised by a large coefficient of variation (48%.) There is a small accumulation with repeated dosing. The interaction of rosuvastatin with darunavir/ritonavir was considered statistically and clinically relevant. Interactions of rosuvastatin single doses with erythromycin, fluconazole, itraconazole and antacid were statistically significant. DISCUSSION AND CONCLUSIONS There is considerable variation in the pharmacokinetics of rosuvastatin between races. The clinical relevance of the statistically significant drug interactions is yet to be investigated following repeated co-administration for at least 15 days, consistent with a half-life of low-density lipoprotein of 3 days.
Collapse
|
46
|
Bowman CM, Ma F, Mao J, Chen Y. Examination of Physiologically-Based Pharmacokinetic Models of Rosuvastatin. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 10:5-17. [PMID: 33220025 PMCID: PMC7825190 DOI: 10.1002/psp4.12571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Physiologically‐based pharmacokinetic (PBPK) modeling is increasingly used to predict drug disposition and drug–drug interactions (DDIs). However, accurately predicting the pharmacokinetics of transporter substrates and transporter‐mediated DDIs (tDDIs) is still challenging. Rosuvastatin is a commonly used substrate probe in DDI risk assessment for new molecular entities (NMEs) that are potential organic anion transporting polypeptide 1B or breast cancer resistance protein transporter inhibitors, and as such, several rosuvastatin PBPK models have been developed to try to predict the clinical DDI and support NME drug labeling. In this review, we examine five representative PBPK rosuvastatin models, discuss common challenges that the models have come across, and note remaining gaps. These shared learnings will help with the continuing efforts of rosuvastatin model validation, provide more information to understand transporter‐mediated drug disposition, and increase confidence in tDDI prediction.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Fang Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
47
|
Ahangari N, Doosti M, Ghayour Mobarhan M, Sahebkar A, Ferns GA, Pasdar A. Personalised medicine in hypercholesterolaemia: the role of pharmacogenetics in statin therapy. Ann Med 2020; 52:462-470. [PMID: 32735150 PMCID: PMC7877934 DOI: 10.1080/07853890.2020.1800074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Statins are the first-line choice in Lipid-lowering therapy to reduce cardiovascular risk. In a continuous attempt to optimise treatment success, there is a need for additional research on genes and related molecular pathways that can determine the efficacy and toxicity of lipid-lowering drugs. Several variations within genes associated with lipid metabolism, including those involved in uptake, distribution and metabolism of statins have been reported. The purpose of this study was to evaluate the effect of genetic variations in the key genes responsible for statins' metabolism and their role in personalised medicine and pharmacogenetic testing (PGx) in patients treated with such drugs. Genetic assessment for specific known SNPs within the most known genes such as ABCG2, SLCO1B1, CYP3A4, and HMGCR, appears likely to predict the efficacy of statin therapy and prevent their side effects but does not necessarily reduce the risk of cardiovascular events. Key Messages Hypercholesterolaemia patients show different response to statin therapy. Several variations within genes associated with statin metabolism have been investigated. Genetic assessment for specific known SNPs within the most known genes may improve the efficacy of statins treatment and prevent their side effects.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Sane R, Cheung KWK, Kovács P, Farasyn T, Li R, Bui A, Musib L, Kis E, Plise E, Gáborik Z. Calibrating the In Vitro-In Vivo Correlation for OATP-Mediated Drug-Drug Interactions with Rosuvastatin Using Static and PBPK Models. Drug Metab Dispos 2020; 48:1264-1270. [PMID: 33037044 DOI: 10.1124/dmd.120.000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 02/13/2025] Open
Abstract
Organic anion-transporting polypeptide (OATP) 1B1/3-mediated drug-drug interaction (DDI) potential is evaluated in vivo with rosuvastatin (RST) as a probe substrate in clinical studies. We calibrated our assay with RST and estradiol 17-β-D-glucuronide (E217βG)/cholecystokinin-8 (CCK8) as in vitro probes for qualitative and quantitative prediction of OATP1B-mediated DDI potential for RST. In vitro OATP1B1/1B3 inhibition using E217βG and CCK8 yielded higher area under the curve (AUC) ratio (AUCR) values numerically with the static model, but all probes performed similarly from a qualitative cutoff-based prediction, as described in regulatory guidances. However, the magnitudes of DDI were not captured satisfactorily. Considering that clearance of RST is also mediated by gut breast cancer resistance protein (BCRP), inhibition of BCRP was also incorporated in the DDI prediction if the gut inhibitor concentrations were 10 × IC50 for BCRP inhibition. This combined static model closely predicted the magnitude of RST DDI with root-mean-square error values of 0.767-0.812 and 1.24-1.31 with and without BCRP inhibition, respectively, for in vitro-in vivo correlation of DDI. Physiologically based pharmacokinetic (PBPK) modeling was also used to simulate DDI between RST and rifampicin, asunaprevir, and velpatasvir. Predicted AUCR for rifampicin and asunaprevir was within 1.5-fold of that observed, whereas that for velpatasvir showed a 2-fold underprediction. Overall, the combined static model incorporating both OATP1B and BCRP inhibition provides a quick and simple mathematical approach to quantitatively predict the magnitude of transporter-mediated DDI for RST for routine application. PBPK complements the static model and provides a framework for studying molecules when a dynamic model is needed. SIGNIFICANCE STATEMENT: Using 22 drugs, we show that a static model for organic anion-transporting polypeptide (OATP) 1B1/1B3 inhibition can qualitatively predict potential for drug-drug interaction (DDI) using a cutoff-based approach, as in regulatory guidances. However, consideration of both OATP1B1/3 and gut breast cancer resistance protein inhibition provided a better prediction of the magnitude of the transporter-mediated DDI of these inhibitors with rosuvastatin. Based on these results, we have proposed an empirical mechanistic-static approach for a more reliable prediction of transporter-mediated DDI liability with rosuvastatin that drug development teams can leverage.
Collapse
Affiliation(s)
- Rucha Sane
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Kit Wun Kathy Cheung
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Péter Kovács
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Taleah Farasyn
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Ruina Li
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Annamaria Bui
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Luna Musib
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Emese Kis
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Emile Plise
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| | - Zsuzsanna Gáborik
- Departments of Clinical Pharmacology (R.S., K.W.K.C., T.F., L.M.) and Drug Metabolism and Pharmacokinetics (T.F., R.L., E.P.), Genentech, Inc., South San Francisco, California; and SOLVO Biotechnology, Budapest, Hungary (P.K., A.B., E.K., Z.G.)
| |
Collapse
|
49
|
Ito S, Lee W, Park JE, Yasunaga M, Mori A, Ohtsuki S, Sugiyama Y. Transient, Tunable Expression of NTCP and BSEP in MDCKII Cells for Kinetic Delineation of the Rate-Determining Process and Inhibitory Effects of Rifampicin in Hepatobiliary Transport of Taurocholate. J Pharm Sci 2020; 110:365-375. [PMID: 33159914 DOI: 10.1016/j.xphs.2020.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
In predicting the hepatic elimination of compounds, the extended clearance concept has proven useful. Yet, its experimental proof was scarce partly due to the lack of models with the controlled expression of transporters. Here, the uptake and efflux transporters [NTCP (SLC10A1) and BSEP (ABCB11), respectively] were doubly and transiently expressed in MDCKII cells by electroporation-based transfection (with the BSEP plasmid amount varied and with the NTCP plasmid fixed), achieving the activity levels of NTCP and BSEP comparable to those of sandwich cultured human hepatocytes. The biliary excretion clearance for taurocholate increased proportionally to the BSEP expression level. Under the same conditions, the basal-to-apical transcellular clearance of taurocholate displayed an initial increase, and a subsequent plateau, indicating that the basolateral uptake of taurocholate became rate-limiting. The doubly transfected MDCKII cells were also used to kinetically analyze the inhibitory effects of rifampicin on BSEP and NTCP. The obtained results showed a bell-shaped profile for cell-to-medium concentration ratios over a range of rifampicin concentrations, which were quantitatively captured by kinetic modeling based on the extended clearance concept. The present study highlights the utility of the transient, tunable transporter expression system in delineating the rate-determining process and providing mechanistic insights into intracellular substrate accumulation.
Collapse
Affiliation(s)
- Sumito Ito
- GenoMembrane Co., Ltd, 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan.
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Tokyo 160-0023, Japan
| | - Masa Yasunaga
- GenoMembrane Co., Ltd, 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
50
|
Hafey MJ, Houle R, Tanis KQ, Knemeyer I, Shang J, Chen Q, Baudy A, Monroe J, Sistare FD, Evers R. A Two-Tiered In Vitro Approach to De-Risk Drug Candidates for Potential Bile Salt Export Pump Inhibition Liabilities in Drug Discovery. Drug Metab Dispos 2020; 48:1147-1160. [PMID: 32943412 DOI: 10.1124/dmd.120.000086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 μM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5μM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.
Collapse
Affiliation(s)
- Michael J Hafey
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Robert Houle
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Keith Q Tanis
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Ian Knemeyer
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Jackie Shang
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Qing Chen
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Andreas Baudy
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - James Monroe
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Frank D Sistare
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Raymond Evers
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|