1
|
Liao W, Tran QTN, Peh HY, Chan CCMY, Fred Wong WS. Natural Products for the Management of Asthma and COPD. Handb Exp Pharmacol 2025; 287:175-205. [PMID: 38418669 DOI: 10.1007/164_2024_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.
Collapse
Affiliation(s)
- Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
| | - Quy T N Tran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christabel Clare M Y Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore.
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
3
|
Poniewierska-Baran A, Bochniak O, Warias P, Pawlik A. Role of Sirtuins in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24021532. [PMID: 36675041 PMCID: PMC9864987 DOI: 10.3390/ijms24021532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease leading to joint destruction. The causes of RA are not fully known. Most likely, the development of the disease depends on the coexistence of many factors, such as hereditary factors, immune system defects, gender, infectious agents, nicotine, and stress. Various epigenetic changes have been identified and correlated with the aggressive phenotype of RA, including the involvement of sirtuins, which are enzymes found in all living organisms. Their high content in the human body can slow down the aging processes, reduce cell death, counteract the appearance of inflammation, and regulate metabolic processes. Sirtuins can participate in several steps of RA pathogenesis. This narrative review presents, collects, and discusses the role of all sirtuins (1-7) in the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Oliwia Bochniak
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paulina Warias
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
4
|
Wang R, Kumar V, Sikron-Persi N, Dynkin I, Weiss D, Perl A, Fait A, Oren-Shamir M. Over 1000-Fold Synergistic Boost in Viniferin Levels by Elicitation of Vitis vinifera cv. Gamay Red Cell Cultures over Accumulating Phenylalanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5049-5056. [PMID: 35412322 DOI: 10.1021/acs.jafc.2c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elicitation treatments of grape cell cultures with methyl jasmonate (MeJA), ultraviolet-C (UV-C) irradiation, and sucrose induce mild production of stilbenes and flavonoids due to limited substrate availability. However, these treatments cause a synergistic boost of stilbenes production when applied to two phenylalanine (Phe)-enriched transgenic grape cell lines, AroG* + STS and AroG* + FLS. The combined treatment of UV-C elicitation on the Phe-fed AroG* + STS line resulted in the highest content of stilbenes (37.8-fold increase, 17.39 mg/g dry weight (DW)) mainly due to resveratrol (64-fold, 3.23 mg/g DW) and viniferin (1343-fold, 13.43 mg/g DW). The synergistic increase following either UV-C or MeJA elicitation was due to the induction of stilbene-related genes, while sucrose treatment had no effect on gene expression levels and served as an additional carbon source for phenylpropanoids. The combined strategy presented may enable future usage of grape cell cultures for the production of stilbenes and in particular viniferin.
Collapse
Affiliation(s)
- Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Noga Sikron-Persi
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Irena Dynkin
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
6
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Skrajnowska D, Brumer M, Kankowska S, Matysek M, Miazio N, Bobrowska-Korczak B. Covid 19: Diet Composition and Health. Nutrients 2021; 13:2980. [PMID: 34578858 PMCID: PMC8472186 DOI: 10.3390/nu13092980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease coronavirus disease 2019 (COVID-19). The cumulative number of cases reported globally is now nearly 197 million and the number of cumulative deaths is 4.2 million (26 July to 1 August 2021). Currently we are focusing primarily on keeping a safe distance from others, washing our hands, and wearing masks, and the question of the effects of diet and diet-dependent risk factors remains outside the center of attention. Nevertheless, numerous studies indicate that diet can play an important role in the course of COVID-19. In this paper, based on select scientific reports, we discuss the structure and replication cycle of SARS-CoV-2, risk factors, dietary standards for sick patients, and the roles of the microbiome and dietary components supporting the immune system in preventing COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Bobrowska-Korczak
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.); (M.B.); (S.K.); (M.M.); (N.M.)
| |
Collapse
|
8
|
Wang R, Lenka SK, Kumar V, Sikron-Persi N, Dynkin I, Weiss D, Perl A, Fait A, Oren-Shamir M. A Synchronized Increase of Stilbenes and Flavonoids in Metabolically Engineered Vitis vinifera cv. Gamay Red Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7922-7931. [PMID: 34236173 DOI: 10.1021/acs.jafc.1c02119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stilbenes and flavonoids are two major health-promoting phenylpropanoid groups in grapes. Attempts to promote the accumulation of one group usually resulted in a decrease in the other. This study presents a unique strategy for simultaneously increasing metabolites in both groups in V. vinifera cv. Gamay Red grape cell culture, by overexpression of flavonol synthase (FLS) and increasing Phe availability. Increased Phe availability was achieved by transforming the cell culture with a second gene, the feedback-insensitive E. coli DAHP synthase (AroG*), and feeding them with Phe. A combined metabolomic and transcriptomic analysis reveals that the increase in both phenylpropanoid groups is accompanied by an induction of many of the flavonoid biosynthetic genes and no change in the expression levels of stilbene synthase. Furthermore, FLS overexpression with increased Phe availability resulted in higher anthocyanin levels, mainly those derived from delphinidin, due to the induction of F3'5'H. These insights may contribute to the development of grape berries with increased health benefits.
Collapse
Affiliation(s)
- Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sangram Keshari Lenka
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Noga Sikron-Persi
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Irena Dynkin
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| |
Collapse
|
9
|
Pan K, Lu J, Song Y. Artesunate ameliorates cigarette smoke-induced airway remodelling via PPAR-γ/TGF-β1/Smad2/3 signalling pathway. Respir Res 2021; 22:91. [PMID: 33757521 PMCID: PMC7989207 DOI: 10.1186/s12931-021-01687-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Airway remodelling is the major pathological feature of chronic obstructive pulmonary disease (COPD), and leads to poorly reversible airway obstruction. Current pharmacological interventions are ineffective in controlling airway remodelling. In the present study, we investigated the potential role of artesunate in preventing and treating airway remodelling and the underlying molecular mechanisms in vitro and in vivo. METHODS A COPD rat model was established by cigarette smoke (CS) exposure. After 12 weeks of artesunate treatment, pathological changes in the lung tissues of COPD rats were examined by ELISA and histochemical and immunohistochemical staining. A lung functional experiment was also carried out to elucidate the effects of artesunate. Human bronchial smooth muscle (HBSM) cells were used to clarify the underlying molecular mechanisms. RESULTS Artesunate treatment inhibited CS-induced airway inflammation and oxidative stress in a dose-dependent manner and significantly reduced airway remodelling by inhibiting α-smooth muscle actin (α-SMA) and cyclin D1 expression. PPAR-γ was upregulated and TGF-β1/Smad2/3 signalling was inactivated by artesunate treatment in vivo and in vitro. Furthermore, PPAR-γ knockdown by siRNA transfection abolished artesunate-mediated inhibition of HBSM cell proliferation by activiting the TGF-β1/Smad2/3 signalling pathway and downregulating the expression of α-SMA and cyclin D1 in HBSM cells. CONCLUSIONS These findings suggest that artesunate could be used to treat airway remodelling by regulating PPAR-γ/TGF-β1/Smad signalling in the context of COPD.
Collapse
Affiliation(s)
- Kunming Pan
- Department of Pharmacy, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Juanjuan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital Fudan University, Shanghai, 200040, China.
| |
Collapse
|
10
|
Wang R, Lenka SK, Kumar V, Gashu K, Sikron-Persi N, Dynkin I, Weiss D, Perl A, Fait A, Oren-Shamir M. Metabolic Engineering Strategy Enables a Hundred-Fold Increase in Viniferin Levels in Vitis vinifera cv. Gamay Red Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3124-3133. [PMID: 33683879 DOI: 10.1021/acs.jafc.0c08086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stilbenes are phytoalexins with health-promoting benefits for humans. Here, we boost stilbenes' production, and in particular the resveratrol dehydrodimer viniferin, with significant pharmacological properties, by overexpressing stilbene synthase (STS) under unlimited phenylalanine (Phe) supply. Vitis vinifera cell cultures were co-transformed with a feedback-insensitive E. coli DAHP synthase (AroG*) and STS genes, under constitutive promoters. All transgenic lines had increased levels of Phe and stilbenes (74-fold higher viniferin reaching 0.74 mg/g DW). External Phe feeding of AroG* + STS lines caused a synergistic effect on resveratrol and viniferin accumulation, achieving a 26-fold (1.33 mg/g DW) increase in resveratrol and a 620-fold increase (6.2 mg/g DW) in viniferin, which to date is the highest viniferin accumulation reported in plant cultures. We suggest that this strategy of combining higher Phe availability and STS expression generates grape cell cultures as potential factories for sustainable production of stilbenes with a minor effect on the levels of flavonoids.
Collapse
Affiliation(s)
- Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sangram Keshari Lenka
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Kelem Gashu
- Ben-Gurion University of the Negev, Jacob Blaustein Insts. for Desert Research, French Associates Institute for Agriculture & Biotechnology of Drylands, Midreshet Ben-Gurion 849900, Israel
| | - Noga Sikron-Persi
- Ben-Gurion University of the Negev, Jacob Blaustein Insts. for Desert Research, French Associates Institute for Agriculture & Biotechnology of Drylands, Midreshet Ben-Gurion 849900, Israel
| | - Irena Dynkin
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Insts. for Desert Research, French Associates Institute for Agriculture & Biotechnology of Drylands, Midreshet Ben-Gurion 849900, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
11
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
12
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
13
|
Virus-Induced Asthma Exacerbations: SIRT1 Targeted Approach. J Clin Med 2020; 9:jcm9082623. [PMID: 32823491 PMCID: PMC7464235 DOI: 10.3390/jcm9082623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma has increased worldwide. Asthma exacerbations triggered by upper respiratory tract viral infections remain a major clinical problem and account for hospital admissions and time lost from work. Virus-induced asthma exacerbations cause airway inflammation, resulting in worsening asthma and deterioration in the patients’ quality of life, which may require systemic corticosteroid therapy. Despite recent advances in understanding the cellular and molecular mechanisms underlying asthma exacerbations, current therapeutic modalities are inadequate for complete prevention and treatment of these episodes. The pathological role of cellular senescence, especially that involving the silent information regulator 2 homolog sirtuin (SIRT) protein family, has recently been demonstrated in stable and exacerbated chronic respiratory disease states. This review discusses the role of SIRT1 in the pathogenesis of bronchial asthma. It also discusses the role of SIRT1 in inflammatory cells that play an important role in virus-induced asthma exacerbations. Recent studies have hypothesized that SIRT1 is one of major contributors to cellular senescence. SIRT1 levels decrease in Th2 and non-Th2-related airway inflammation, indicating the role of SIRT1 in several endotypes and phenotypes of asthma. Moreover, several models have demonstrated relationships between viral infection and SIRT1. Therefore, targeting SIRT1 is a novel strategy that may be effective for treating virus-induced asthma exacerbations in the future.
Collapse
|
14
|
Pasquereau S, Totoson P, Nehme Z, Abbas W, Kumar A, Verhoeven F, Prati C, Wendling D, Demougeot C, Herbein G. Impact of glucocorticoids on systemic sirtuin 1 expression and activity in rats with adjuvant-induced arthritis. Epigenetics 2020; 16:132-143. [PMID: 32615849 DOI: 10.1080/15592294.2020.1790789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The class III histone deacetylase sirtuin 1 (SIRT1) plays a pivotal role in numerous biological and physiological functions, including inflammation. An association between SIRT1 and proinflammatory cytokines might exist. In addition to their important role in inflammation associated with rheumatoid arthritis (RA), proinflammatory cytokines mediate the development of systemic effects. Here, we evaluated systemic SIRT1 expression and enzymatic activity, in peripheral blood mononuclear cells (PBMCs) and in liver isolated from rats with adjuvant-induced arthritis (AIA), treated or not with low or high doses of glucocorticoids (GCs). We also measured the production of tumour necrosis factor alpha (TNF) and interleukin-1 beta (IL-1 beta) in PBMCs and liver. We found that SIRT1 expression and activity increased in PBMCs of AIA rats compared to healthy controls and decreased under GC treatment. Similarly, we observed an increased SIRT1 activity in the liver of AIA rats compared to healthy controls which decreased under high doses of GCs. We also found an increase in IL-1 beta and TNF levels in the liver of AIA rats compared to healthy controls, which decreased under high doses of GC. We did not observe a significant correlation between SIRT1 activity and proinflammatory cytokine production in PBMC or liver. In contrast, a strong positive correlation was found between the liver levels of TNF and IL-1 beta (rho=0.9503, p=7.5x10-21). Our results indicate that increased inflammation in AIA rats compared to healthy control is accompanied by an increased SIRT1 activity in both PBMCs and liver, which could be decreased under GC treatment.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Perle Totoson
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Frank Verhoeven
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Clément Prati
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Daniel Wendling
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Rheumatology, CHRU Besançon , Besançon, France
| | - Céline Demougeot
- Pepite EA4267, Université Bourgogne Franche-Comté (UBFC) , Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, UPRES EA 4266, SFR FED 4234, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC) , Besançon, France.,Department of Virology, CHRU Besançon , Besançon, France
| |
Collapse
|
15
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
16
|
Akhondzadeh F, Astani A, Najjari R, Samadi M, Rezvani ME, Zare F, Ranjbar AM, Safari F. Resveratrol suppresses interleukin-6 expression through activation of sirtuin 1 in hypertrophied H9c2 cardiomyoblasts. J Cell Physiol 2020; 235:6969-6977. [PMID: 32026477 DOI: 10.1002/jcp.29592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Inflammatory cytokine, interleukin-6 (IL-6), plays an important role in the pathogenesis of cardiac hypertrophy. Recent studies have documented that resveratrol exhibits cardioprotective effects. The present study attempts to explore whether resveratrol suppreses IL-6 in hypertrophied H9c2 cardiomyoblasts through histone deacetylase, sirtuin 1 (SIRT1). To induce hypertrophy, the cells were incubated with angiotensin II (Ang II). Treatment groups were treated with different doses (1, 10, 25, 50, 75, and 100 μM) of resveratrol (R). Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell size was determined using crystal violet staining. Gene expression was assessed by real-time polymerase chain reaction technique. Enzyme-linked immunosorbent assay was used to measure IL-6 concentration. The results showed that cell area and ANP messenger RNA (mRNA) levels decreased significantly in R25+Ang, R50+Ang, and R100+Ang groups, as compared with Ang group. Therefore, 10, 20, 30, 40, and 50 μM of resveratrol were used to to evaluate its anti-inflammatory effects. The results revealed that Ang II upregulated IL-6 at both mRNA and protein levels (p < .001 vs. normal) and resveratrol (50 μM) decreased IL-6 mRNA (p < .01) and protein (p < .05) significantly in comparison to Ang group. However, in groups in which the cells were pretreated with SIRT1 inhibitor, EX-527, the response of resveratrol was partially reversed. Transcription levels of IL-6 receptor components (gp130 and gp80) did not change significantly among the experimental groups. The current data suggests that resveratrol protects H9c2 cells against Ang II-induced hypertrophy by suppression of IL-6 through SIRT1 activation.
Collapse
Affiliation(s)
- Fariba Akhondzadeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Najjari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Samadi
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Mohammad Ranjbar
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Puggioni F, Alves-Correia M, Mohamed MF, Stomeo N, Mager R, Marinoni M, Racca F, Paoletti G, Varricchi G, Giorgis V, Melioli G, Canonica GW, Heffler E. Immunostimulants in respiratory diseases: focus on Pidotimod. Multidiscip Respir Med 2019; 14:31. [PMID: 31700623 PMCID: PMC6827234 DOI: 10.1186/s40248-019-0195-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Usefulness of Pidotimod and its role as immunostimulant, has been discussed, we know, for several decades. Nevertheless, there is still much to know. Understanding its mechanisms and its potential usefulness in airway infections and its prevention, asthma both Th2 and non Th2 type, bronchiectasis, as adjuvant in vaccination and in allergen immunotherapy still remains to clearly unveil. The aim of this paper was to provide a useful updated review of the role of the main available immunostimulants, giving particular focus on Pidotimod use and its potentials utility in respiratory diseases. Pidotimod showed its usefulness in reducing need for antibiotics in airway infections, increasing the level of immunoglobulins (IgA, IgM, IgG) and T-lymphocyte subsets (CD3+, CD4+) endowed with immunomodulatory activity that affect both innate and adaptive immune responses. Higher expression of TLR2 and of HLA-DR molecules, induction of dendritic cell maturation and release of pro-inflammatory molecules, stimulation of T lymphocyte proliferation and differentiation toward a Th1 phenotype, as well as an increase of the phagocytosis have been demonstrated to be associated with Pidotimod in in vitro studies. All these activities are potentially useful for several respiratory conditions such as asthma, COPD, and recurrent respiratory tract infections.
Collapse
Affiliation(s)
- Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Magna Alves-Correia
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
- Central Hospital of Funchal, SESARAM, EPE, Madeira, Portugal
| | - Manar-Farouk Mohamed
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
- Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Niccolò Stomeo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
| | - Riccardo Mager
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
| | | | - Francesca Racca
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Veronica Giorgis
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giovanni Melioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| |
Collapse
|
18
|
Fan Y, Zhang Z, Yao C, Bai J, Yang H, Ma P, Fan Y, Li S, Yuan J, Lin M, Hou Q. Amurensin H, a Derivative From Resveratrol, Ameliorates Lipopolysaccharide/Cigarette Smoke-Induced Airway Inflammation by Blocking the Syk/NF-κB Pathway. Front Pharmacol 2019; 10:1157. [PMID: 31636566 PMCID: PMC6787933 DOI: 10.3389/fphar.2019.01157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Amurensin H, a resveratrol dimer derived from Vitis amurensis Rupr, has several biological effects, including anti-inflammatory and antioxidant activities. Studies have found that amurensin H attenuated asthma-like allergic airway inflammation. However, its protective activity on chronic obstructive pulmonary disease (COPD) airway inflammation is not fully explored. The present study used a lipopolysaccharide (LPS)/cigarette smoke-induced mice model and an LPS-stimulated THP-1-derived macrophages model to measure the lung tissue's morphology changes. The results showed that amurensin H ameliorated the histological inflammatory alterations in the lung tissues, leading to a decrease in the expression of interleukin 6 (IL-6), IL-17A, tumor necrosis factor α (TNF-α), and interferon γ in bronchoalveolar lavage fluid. Amurensin H also significantly inhibited the release of IL-1β, IL-6, IL-8, and TNF-α in LPS-stimulated THP-1-derived macrophages. Furthermore, amurensin H markedly inhibited the expressions of p-Syk, nuclear factor κB (NF-κB), and p-NF-κB both in vivo and in vitro. Results from cotreatment with Syk inhibitor BAY61-3606 and NF-κB inhibitor BAY11-7082 in vitro revealed that amurensin H's protective effect against airway inflammation could be due partly to the inhibition of the Syk/NF-κB pathway. These findings suggest that amurensin H shows therapeutic effects on COPD airway inflammation, and inhibiting the Syk/NF-κB pathway might be part of its underlying mechanisms.
Collapse
Affiliation(s)
- Yannan Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinye Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyao Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Ma X, Liu A, Liu W, Wang Z, Chang N, Li S, Li J, Hou Y, Bai G. Analyze and Identify Peiminine Target EGFR Improve Lung Function and Alleviate Pulmonary Fibrosis to Prevent Exacerbation of Chronic Obstructive Pulmonary Disease by Phosphoproteomics Analysis. Front Pharmacol 2019; 10:737. [PMID: 31333459 PMCID: PMC6620478 DOI: 10.3389/fphar.2019.00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been a major public health problem and is still a formidable challenge for clinicians. It is urgent to find new compounds for minimizing the risk of disease progression and exacerbation especially in the early phase of COPD. A traditional Chinese medicine (TCM) formula, Chuan Bei Pi Pa dropping pills (CBPP), was tested in this study to investigate its potential mechanisms in preventing the exacerbation of COPD. Phosphoproteomics analysis for a smog stimulated early stage COPD mice model was employed to detect the underlying molecular mechanisms of CBPP. In addition, protein–protein interaction (PPI) and bioinformatics analyses were included to analyze the key proteins and predict the key bioactive compounds. The results indicated that peiminine (PEI) target epidermal growth factor receptor (EGFR) prevented the exacerbation of COPD by inhibiting the EGFR signaling pathway, and ursolic acid (UA) can alleviate inflammation disorders via inhibition of CASP3 on mitogen-activated protein kinase (MAPK) signaling pathway. After in vivo and in vitro evaluations, we revealed that PEI from CBPP, as a lead compound, can improve lung function and alleviate pulmonary fibrosis by acting on the EGFR and MLC2 signaling pathways. Furthermore, the approach described here is an effective way to analyze and identify the bioactive ingredients from a mixture by functional proteomics analysis.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Aina Liu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhihua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suyun Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Fang S, Chen Y, Yao P, Li Y, Yang Y, Xu G. [Dexmedetomidine alleviates postoperative cognitive dysfunction in aged rats probably via silent information regulator 1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1071-1075. [PMID: 30377100 DOI: 10.12122/j.issn.1673-4254.2018.09.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore the role of silent information regulator 1 (SIRT1) signaling pathway in mediating the effect of dexmedetomidine (DEX) to alleviate postoperative cognitive dysfunction (POCD) in aged rats. METHODS Seventy-two healthy male Sprague-Dawley rats aged 18-20 months (weighing 500-700 g) were randomized equally into normal control group, POCD model group, DEX pretreatment group, and DEX and SIRT1 inhibitor (EX527) pretreatment group. In the latter 2 groups, DEX (25 μg/kg) was injected intraperitoneally in the rats 30 min before the operation, and normal saline was injected instead in the other 2 groups; in EX527 group, EX527 (1 μg/kg) was injected intravenously 5 min before the operation. In all but the control group, the rats were subjected to laparotomy lasting 30 min, and on days 1, 3, and 5 following the operation, 6 rats were randomly selected from each group for Morris water maze test to evaluate their cognitive functions. Immediately after the test, the rats were sacrificed and the hippocampus was collected for determination of the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) using ELISA; Western blotting was used to detect the expression of SIRT1 and nuclear factor- κB (NF-κB) in the hippocampal neurons. RESULTS Compared with the control rats, the rats in POCD group and EX527 group showed significantly prolonged escape latency, decreased frequency of crossing the original platform, increased TNF-α and IL-6 levels, lowered SIRT1 expression in the hippocampal neurons, and increased NF-κB expression (P < 0.05), and these parameters were comparable between POCD group and EX527 group (P > 0.05). DEX pretreatment significantly alleviated cognitive dysfunction and attenuated the changes in TNF-α, IL-6, SIRT1, and NF-κB expressions induced by the operation (P < 0.05), and EX527 pretreatment of the rats obviously blocked the effects of DEX (P < 0.05). CONCLUSIONS DEX alleviates POCD in aged rats probably via SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Sitong Fang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| | - Yong Chen
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| | - Peng Yao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| | - Yiling Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| | - Yujun Yang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| | - Guohai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University; Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
21
|
Dyck GJB, Raj P, Zieroth S, Dyck JRB, Ezekowitz JA. The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review. Int J Mol Sci 2019; 20:ijms20040904. [PMID: 30791450 PMCID: PMC6413130 DOI: 10.3390/ijms20040904] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death globally and responsible for the second highest number of deaths in Canada. Medical advancements in the treatment of CVD have led to patients living longer with CVD but often progressing to another condition called heart failure (HF). As a result, HF has emerged in the last decade as a major medical concern. Fortunately, various “traditional” pharmacotherapies for HF exist and have shown success in reducing HF-associated mortality. However, to augment the treatment of patients with CVD and/or HF, alternative pharmacotherapies using nutraceuticals have also shown promise in the prevention and treatment of these two conditions. One of these natural compounds considered to potentially help treat HF and CVD and prevent their development is resveratrol. Herein, we review the clinical findings of resveratrol’s ability to be used as an effective treatment to potentially help treat HF and CVD. This will allow us to gain a more fulsome appreciation for the effects of resveratrol in the health outcomes of specific patient populations who have various disorders that constitute CVD.
Collapse
Affiliation(s)
- Garrison J B Dyck
- Canadian VIGOUR Centre, Mazankowski Alberta Heart Institute, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Pema Raj
- St Boniface Hospital, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Shelley Zieroth
- St Boniface Hospital, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Justin A Ezekowitz
- Canadian VIGOUR Centre, Mazankowski Alberta Heart Institute, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
22
|
Multi-target natural products as alternatives against oxidative stress in Chronic Obstructive Pulmonary Disease (COPD). Eur J Med Chem 2019; 163:911-931. [DOI: 10.1016/j.ejmech.2018.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
|
23
|
Yu Y, Li X, Mi J, Qu L, Yang D, Guo J, Qiu L. Resveratrol Suppresses Matrix Metalloproteinase-2 Activation Induced by Lipopolysaccharide in Mouse Osteoblasts via Interactions with AMP-Activated Protein Kinase and Suppressor of Cytokine Signaling 1. Molecules 2018; 23:molecules23092327. [PMID: 30213073 PMCID: PMC6225262 DOI: 10.3390/molecules23092327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/18/2022] Open
Abstract
Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L−1P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| | - Xiaolin Li
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jing Mi
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| |
Collapse
|
24
|
Ma H, Qiao Z. Analysis of the efficacy of resveratrol treatment in patients with scarred uterus. Exp Ther Med 2018; 15:5410-5414. [PMID: 29904420 DOI: 10.3892/etm.2018.6126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
Scarred uterus is caused by cesarean section surgery, and this condition affects further gestation and delivery in patients. Previous evidence suggested that resveratrol, a polyphenol compound, presents beneficial outcomes for patients with scarred uterus. Therefore, the aim of the present study was to analyze the efficacy of resveratrol in the treatment of patients with scarred uterus. The efficacy of resveratrol in the formation of new vessels and re-epithelialization of the endometrium was analyzed. The present results demonstrated that resveratrol treatment reduced uterus scarring in the majority of patients (87.36%) compared with the control. It was also observed that the plasma levels of β-human chorionic gonadotropin were downregulated by resveratrol treatment in patients with scarred uterus. Furthermore, resveratrol treatment promoted the remodeling of the scarred uterus, the regeneration of the endometrium and improved pregnancy outcomes. In conclusion, the findings of the current study indicate that resveratrol treatment may be a potential strategy for the treatment of scarred uterus patients, which contributes to the improvement of pregnancy outcomes.
Collapse
Affiliation(s)
- Huashu Ma
- Department of Gynecology, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital Obstetric, Xingtai, Hebei 054001, P.R. China
| | - Zongxu Qiao
- Department of Gynecology, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital Obstetric, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
25
|
Beijers RJHCG, Gosker HR, Schols AMWJ. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care 2018; 21:138-144. [PMID: 29200030 PMCID: PMC5811233 DOI: 10.1097/mco.0000000000000444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with a high prevalence of extrapulmonary manifestations and, frequently, cardiovascular comorbidity. Resveratrol is a food-derived compound with anti-inflammatory, antioxidant, metabolic and cardioprotective potential. Therefore, resveratrol might improve the pulmonary as well as extrapulmonary pathology in COPD. In this review, we will evaluate knowledge on the effects of resveratrol on lung injury, muscle metabolism and cardiovascular risk profile and discuss if resveratrol is a hype or hope for patients with COPD. RECENT FINDINGS Experimental models of COPD consistently show decreased inflammation and oxidative stress in the lungs after resveratrol treatment. These beneficial anti-inflammatory and antioxidant properties of resveratrol can indirectly also improve both skeletal and respiratory muscle impairment in COPD. Recent clinical studies in non-COPD populations show improved mitochondrial oxidative metabolism after resveratrol treatment, which could be beneficial for both lung and muscle impairment in COPD. Moreover, preclinical studies suggest cardioprotective effects of resveratrol but results of clinical studies are inconclusive. SUMMARY Resveratrol might be an interesting therapeutic candidate to counteract lung and muscle impairments characteristic to COPD. However, there is no convincing evidence that resveratrol will significantly decrease the cardiovascular risk in patients with COPD.
Collapse
Affiliation(s)
- Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | |
Collapse
|
26
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
27
|
Euba B, López-López N, Rodríguez-Arce I, Fernández-Calvet A, Barberán M, Caturla N, Martí S, Díez-Martínez R, Garmendia J. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep 2017; 7:12860. [PMID: 29038519 PMCID: PMC5643544 DOI: 10.1038/s41598-017-13034-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens β defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.
Collapse
Affiliation(s)
- Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Irene Rodríguez-Arce
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | | | - Nuria Caturla
- Monteloeder, Elche Parque Empresarial, Elche, Alicante, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noáin, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. .,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain.
| |
Collapse
|
28
|
The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules 2017; 22:molecules22091529. [PMID: 28895883 PMCID: PMC6151812 DOI: 10.3390/molecules22091529] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4′-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.
Collapse
|
29
|
Du J, Chi Y, Song Z, Di Q, Mai Z, Shi J, Li M. Crocin reduces Aspergillus fumigatus-induced airway inflammation and NF-κB signal activation. J Cell Biochem 2017; 119:1746-1754. [PMID: 28786504 DOI: 10.1002/jcb.26335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammation and its exacerbation is often accompanied by Aspergillus fumigatus (A. fumigatus) infection. Increasing evidences demonstrated the potent antioxidant and -inflammatory effects of crocin. However, the role of crocin in A. fumigatus-induced inflammation is still unknown. We aimed to evaluate the role of crocin in inflammation response induced by A. fumigatus in human bronchial epithelial cells and the possible mechanisms. BEAS-2B and NHBE cells were pretreated with crocin for 24 h, and then A. fumigatus conidia were added for 24 h. A. fumigatus treatment exhibited a significant higher TNF-α, IL-8, IL-6, and IL-1β level (P < 0.05), whereas crocin pretreatment significantly inhibited A. fumigatus induced the pro-inflammatory cytokines (P < 0.05). NF-κB inhibitor PDTC inhibited pro-inflammatory cytokines release triggered by A. fumigatus (P < 0.05). Furthermore, crocin suppressed A. fumigatus induced NF-κB p65 nuclear translocation, the phosphorylation of IKKα and IκBα, the degradation of IκBα and NF-κB reporter activity. Crocin pretreatment also resulted in an inhibition of A.fumigatus-induced ROS production (P < 0.05). Taken together, these results indicate that crocin may prevent A. fumigatus-induced inflammation through suppressing NF-κB signal pathway.
Collapse
Affiliation(s)
- Junfeng Du
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Yumin Chi
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Zhan Song
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Qingguo Di
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Zhitao Mai
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Jian Shi
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| | - Min Li
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P. R. China
| |
Collapse
|
30
|
Sadeghi A, Seyyed Ebrahimi SS, Golestani A, Meshkani R. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism. J Cell Biochem 2017; 118:2654-2663. [PMID: 28059488 DOI: 10.1002/jcb.25868] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Asie Sadeghi
- Faculty of Medicine, Department of Biochemistry, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | | | - Abolfazl Golestani
- Faculty of Medicine, Department of Biochemistry, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Reza Meshkani
- Faculty of Medicine, Department of Biochemistry, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
31
|
McMasters J, Panitch A. Collagen-binding nanoparticles for extracellular anti-inflammatory peptide delivery decrease platelet activation, promote endothelial migration, and suppress inflammation. Acta Biomater 2017; 49:78-88. [PMID: 27840254 PMCID: PMC5253112 DOI: 10.1016/j.actbio.2016.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
Abstract
Peripheral artery disease is an atherosclerotic stenosis in the peripheral vasculature that is typically treated via percutaneous transluminal angioplasty. Deployment of the angioplasty balloon damages the endothelial layer, exposing the underlying collagen and allowing for the binding and activation of circulating platelets which initiate an inflammatory cascade leading to eventual restenosis. Here, we report on collagen-binding sulfated poly(N-isopropylacrylamide) nanoparticles that are able to target to the denuded endothelium. Once bound, these nanoparticles present a barrier that reduces cellular and platelet adhesion to the collagenous surface by 67% in whole blood and 59% in platelet-rich plasma under biologically relevant shear rates. In vitro studies indicate that the collagen-binding nanoparticles are able to load and release therapeutic quantities of anti-inflammatory peptides, with the particles reducing inflammation in endothelial and smooth muscle cells by 30% and 40% respectively. Once bound to collagen, the nanoparticles increased endothelial migration while avoiding uptake by smooth muscle cells, indicating that they may promote regeneration of the damaged endothelium while remaining anchored to the collagenous matrix and locally releasing anti-inflammatory peptides into the injured area. Combined, these collagen-binding nanoparticles have the potential to reduce inflammation, and the subsequent restenosis, while simultaneously promoting endothelial regeneration following balloon angioplasty. STATEMENT OF SIGNIFICANCE In this manuscript, we present our work on the development and characterization of a novel temperature sensitive collagen-binding nanoparticle system. We demonstrate that when bound to a collagenous matrix, the nanoparticles are able to promote endothelial migration while avoiding cellular uptake. We also show that the nanoparticles are able to reduce inflammation via the release of anti-inflammatory peptides which, when combined with its ability to inhibit platelet binding, could lead to reduced intimal hyperplasia following balloon angioplasty. The drug delivery platform presented represents a unique dual therapy biomaterial wherein the nanoparticle itself plays a crucial role in the system's overall therapeutic potential while simultaneously releasing anti-inflammatory peptides.
Collapse
Affiliation(s)
- James McMasters
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47906, United States
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47906, United States.
| |
Collapse
|
32
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, Wiegman CH, Adcock IM, Knight DA, Hirota JA, Hansbro PM. Animal models of COPD: What do they tell us? Respirology 2016; 22:21-32. [DOI: 10.1111/resp.12908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Bernadette Jones
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Celeste L. Harrison
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Cornelis H. Wiegman
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Ian M. Adcock
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Darryl A. Knight
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Jeremy A. Hirota
- James Hogg Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| |
Collapse
|
34
|
Andrews CS, Matsuyama S, Lee BC, Li JD. Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short. Sci Rep 2016; 6:34445. [PMID: 27677845 PMCID: PMC5039644 DOI: 10.1038/srep34445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Upper respiratory tract inflammatory diseases such as asthma and chronic obstructive pulmonary diseases (COPD) affect more than one-half billion people globally and are characterized by chronic inflammation that is often exacerbated by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi). The increasing numbers of antibiotic-resistant bacterial strains and the limited success of currently available pharmaceuticals used to manage the symptoms of these diseases present an urgent need for the development of novel anti-inflammatory therapeutic agents. Resveratrol has long been thought as an interesting therapeutic agent for various diseases including inflammatory diseases. However, the molecular mechanisms underlying its anti-inflammatory properties remain largely unknown. Here we show for the first time that resveratrol decreases expression of pro-inflammatory mediators in airway epithelial cells and in the lung of mice by enhancing NTHi-induced MyD88 short, a negative regulator of inflammation, via inhibition of ERK1/2 activation. Furthermore, resveratrol inhibits NTHi-induced ERK1/2 phosphorylation by increasing MKP-1 expression via a cAMP-PKA-dependent signaling pathway. Finally, we show that resveratrol has anti-inflammatory effects post NTHi infection, thereby demonstrating its therapeutic potential. Together these data reveal a novel mechanism by which resveratrol alleviates NTHi-induced inflammation in airway disease by up-regulating the negative regulator of inflammation MyD88s.
Collapse
Affiliation(s)
- Carla S Andrews
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Shingo Matsuyama
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Byung-Cheol Lee
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity &Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
35
|
Kalbe B, Knobloch J, Schulz VM, Wecker C, Schlimm M, Scholz P, Jansen F, Stoelben E, Philippou S, Hecker E, Lübbert H, Koch A, Hatt H, Osterloh S. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front Physiol 2016; 7:339. [PMID: 27540365 PMCID: PMC4972829 DOI: 10.3389/fphys.2016.00339] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Jürgen Knobloch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Viola M Schulz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Christine Wecker
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Marian Schlimm
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Erich Stoelben
- Department of Thoracic Surgery, Lungenklinik Merheim, Kliniken der Stadt Köln Cologne, Germany
| | - Stathis Philippou
- Department of Pathology and Cytology, Augusta-Kranken-Anstalt Bochum, Germany
| | - Erich Hecker
- Thoraxzentrum Ruhrgebiet, Department of Thoracic Surgery, Evangelisches Krankenhaus Herne Herne, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University Bochum Bochum, Germany
| | - Andrea Koch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
36
|
LIU XIAOJU, BAO HAIRONG, ZENG XIAOLI, WEI JUNMING. Effects of resveratrol and genistein on nuclear factor‑κB, tumor necrosis factor‑α and matrix metalloproteinase‑9 in patients with chronic obstructive pulmonary disease. Mol Med Rep 2016; 13:4266-72. [PMID: 27035424 PMCID: PMC4838123 DOI: 10.3892/mmr.2016.5057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic airway inflammation and airway remodeling are the major pathophysiological characteristics of chronic obstructive pulmonary disease (COPD). Resveratrol and genistein have been previously demonstrated to have anti‑inflammatory and antioxidative properties. The present study aimed to measure the inhibitory effects of resveratrol and genistein on tumor necrosis factor (TNF)‑α and matrix metalloproteinase (MMP)‑9 concentration in patients with COPD. Lymphocytes were isolated from the blood of 34 patients with COPD and 30 healthy subjects, then randomly divided into the following four treatment groups: Control, dexamethasone (0.5 µmol/l), resveratrol (12.5 µmol/l) and genistein (25 µmol/l) groups. After 1 h of treatment, 100 µl lymphocytes were collected for nuclear factor (NF)‑κB immunocytochemical staining. After 48 h treatment, the supernatant of the lymphocytes was collected for analysis of TNF‑α and MMP‑9 concentration levels. The percentage of lymphocytes with positive nuclear NF‑κB expression was analyzed by immunocytochemical staining. The concentration levels of TNF‑α and MMP‑9 were measured using radioimmunoassay and enzyme‑linked immunosorbent assay, respectively. The present study demonstrated that the percentage of NF‑κB‑positive cells, and the levels of TNF‑α and MMP‑9 in lymphocytes from patients with COPD patients were significantly higher compared with healthy subjects. Additionally, there were positive correlations between the percentage of NF‑κB‑positive cells, and the concentration levels of TNF‑α and MMP‑9 in patients with COPD. All three factors were significantly reduced in lymphocytes treated with resveratrol and genistein, and the inhibitory effects of resveratrol on NF‑κB, TNF‑α and MMP‑9 were more potent than the effects of genistein. In conclusion, resveratrol and genistein may inhibit the NF‑κB, TNF‑α and MMP‑9‑associated pathways in patients with COPD. It is suggested that resveratrol and genistein may be potential drugs candidates for use in the treatment of COPD.
Collapse
Affiliation(s)
- XIAO-JU LIU
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - HAI-RONG BAO
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - XIAO-LI ZENG
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - JUN-MING WEI
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
37
|
Jiang Z, Zhu L. Update on molecular mechanisms of corticosteroid resistance in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2016; 37:1-8. [PMID: 26805715 DOI: 10.1016/j.pupt.2016.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory and irreversible pulmonary disorder that is characterized by inflammation and airway destruction. In recent years, COPD has become a global epidemic due to increased air pollution and exposure to cigarette smoke. Current therapeutics using bronchiodialator and anti-inflammatory corticosteroids are most widely used for all patients with persistent COPD, but these approaches are disappointing due to limited improvement in symptom control and survival rate. More importantly, a certain number of COPD patients are resistant to the corticosteroid treatment and their symptoms worsen. Therefore, more effective anti-inflammatory drugs and combinational treatment are required. Understanding of the underlying molecular and immunological mechanisms is critical to developing new therapeutics. Lung inflammation and the released pro-inflammatory cytokines affect glucocorticoid receptor (GR), histone deacetylase 2 (HDAC2) and surfactant protein D (SP-D) activities in many cell types. Macrophages, neutrophils, airway epithelial cells and lymphocytes are involved in the induction of corticosteroid resistance. This review updated the recent advances in molecular and immunological mechanisms of steroid resistance among patients and animal models with COPD. Meanwhile we discussed novel therapeutic approaches in controlling lung inflammation and improving corticosteroid sensitivity among the steroid resistant patients with COPD.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China.
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China.
| |
Collapse
|
38
|
Zhao H, Li N, Wang Q, Cheng X, Li X, Liu T. Resveratrol decreases the insoluble Aβ1–42 level in hippocampus and protects the integrity of the blood–brain barrier in AD rats. Neuroscience 2015; 310:641-9. [DOI: 10.1016/j.neuroscience.2015.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/08/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
|
39
|
Zang N, Li S, Li W, Xie X, Ren L, Long X, Xie J, Deng Y, Fu Z, Xu F, Liu E. Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice. Int Immunopharmacol 2015; 28:121-8. [DOI: 10.1016/j.intimp.2015.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
40
|
Trotta V, Lee WH, Loo CY, Haghi M, Young PM, Scalia S, Traini D. In vitro biological activity of resveratrol using a novel inhalable resveratrol spray-dried formulation. Int J Pharm 2015; 491:190-7. [DOI: 10.1016/j.ijpharm.2015.06.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/23/2015] [Accepted: 06/19/2015] [Indexed: 01/21/2023]
|
41
|
Poulsen MM, Fjeldborg K, Ornstrup MJ, Kjær TN, Nøhr MK, Pedersen SB. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1124-36. [DOI: 10.1016/j.bbadis.2014.12.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 12/14/2022]
|
42
|
Bai X, Fan L, He T, Jia W, Yang L, Zhang J, Liu Y, Shi J, Su L, Hu D. SIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling. Sci Rep 2015; 5:10277. [PMID: 25992481 PMCID: PMC4445725 DOI: 10.1038/srep10277] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
Silent information regulator type-1 (SIRT1) has been reported to be involved in the
cardiopulmonary protection. However, its role in the pathogenesis of burn-induced
remote acute lung injury (ALI) is currently unknown. The present study aims to
investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling
pathway. We observed that SIRT1 expression in rat lung tissue after burn injury
appeared an increasing trend after a short period of suppression. The upregulation
of SIRT1 stimulated by resveratrol exhibited remission of histopathologic changes,
reduction of cell apoptosis, and downregulation of pro-inflammatory cytokines in rat
pulmonary tissues suffering from severe burn. We next used primary pulmonary
microvascular endothelial cells (PMVECs) challenged by burn serum (BS) to simulate
in vivo rat lung tissue after burn injury, and found that BS
significantly suppressed SIRT1 expression, increased cell apoptosis, and activated
p38 MAPK signaling. The use of resveratrol reversed these effects, while knockdown
of SIRT1 by shRNA further augmented BS-induced increase of cell apoptosis and
activation of p38 MAPK. Taken together, these results indicate that SIRT1 might
protect lung tissue against burn-induced remote ALI by attenuating PMVEC apoptosis
via p38 MAPK signaling, suggesting its potential therapeutic effects on the
treatment of ALI.
Collapse
Affiliation(s)
- Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Fan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Longlong Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jun Zhang
- Department of Burn and Plastic Surgery, No.205 Hospital of Chinese People's Liberation Army, Jinzhou, Liaoning, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Schamberger AC, Mise N, Meiners S, Eickelberg O. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov 2015; 9:609-28. [PMID: 24850530 DOI: 10.1517/17460441.2014.913020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide. The growing burden of COPD is due to continuous tobacco use, which is the most important risk factor of the disease, indoor fumes, occupational exposures and also aging of the world's population. Epigenetic mechanisms significantly contribute to COPD pathophysiology. AREAS COVERED This review focuses on disease-relevant changes in DNA modification, histone modification and non-coding RNA expression in COPD, and provides insight into novel therapeutic approaches modulating epigenetic mechanisms. Recent findings revealed, among others, globally changed DNA methylation patterns, decreased levels of histone deacetylases and reduced microRNAs levels in COPD. The authors also discuss a potential role of the chromatin silencing Polycomb group of proteins in COPD. EXPERT OPINION COPD is a highly complex disease and therapy development is complicated by the fact that many smokers develop both COPD and lung cancer. Of interest, combination therapies involving DNA methyltransferase inhibitors and anti-inflammatory drugs provide a promising approach, as they might be therapeutic for both COPD and cancer. Although the field of epigenetic research has virtually exploded over the last 10 years, particular efforts are required to enhance our knowledge of the COPD epigenome in order to successfully establish epigenetic-based therapies for this widespread disease.
Collapse
Affiliation(s)
- Andrea C Schamberger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, University Hospital and Ludwig-Maximilians-University, Member of the German Center for Lung Research (DZL) , Max-Lebsche-Platz 31, 81377 Munich , Germany
| | | | | | | |
Collapse
|
44
|
Chun P. Role of sirtuins in chronic obstructive pulmonary disease. Arch Pharm Res 2014; 38:1-10. [PMID: 25304127 DOI: 10.1007/s12272-014-0494-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/05/2014] [Indexed: 01/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is associated with chronic inflammatory response to noxious particles or gases. The airflow limitation may be explained by hypersecretion of mucus, thickening and fibrosis of small airways and alveolar wall destruction in emphysema. Sirtuins, a group of class III deacetylases, have gained considerable attention for their positive effects on aging-related disease, such as cancer, cardiovascular disease, neurodegenerative diseases, osteoporosis and COPD. Among the seven mammalian sirtuins, SIRT1-SIRT7, SIRT1 and SIRT6 are considered to have protective effects against COPD. In the lungs, SIRT1 inhibits autophagy, cellular senescence, fibrosis, and inflammation by deacetylation of target proteins using NAD(+) as co-substrate and is therefore linked to the redox state. In addition to SIRT1, SIRT6 have also been shown to improve or slow down COPD. SIRT6 is associated with redox state and inhibits cellular senescence and fibrosis. Therefore, activation of SIRT1 and SIRT6 might be an attractive approach for novel therapeutic targets for COPD. The present review describes the protective effects of SIRT1 and SIRT6 against COPD and their target proteins involved in the pathophysiology of COPD.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 621-749, Korea,
| |
Collapse
|
45
|
Sirtuin gene polymorphisms are associated with chronic obstructive pulmonary disease in patients in Muğla province. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2014; 11:306-10. [PMID: 26336440 PMCID: PMC4283875 DOI: 10.5114/kitp.2014.45682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is an irreversible progressive chronic inflammatory disease that causes shortness of breath in consequence of a decrease in pulmonary functions. The pulmonary inflammatory pathogenesis is multifactorial. We have too little up-to-date information about the relation between COPD and genetics. In our study, the relation with the SIRT1 gene's mononucleotide polymorphisms (SNP) rs7895833, rs7069102 and rs2273773 was analyzed through various laboratory data. MATERIAL AND METHODS One hundred COPD patients from the archive records of the Chest Diseases Department of Muğla Sitki Kocman University Medical Faculty were included in the study. A control group was constituted from 100 healthy individuals who live in the same geographical region. The SIRT1 genotypes for these patients were determined using polymerase chain reaction (PCR) and confronting two-pair primers (CTPP) methods. The SIRT1 gene polymorphisms rs7895833, rs7069102 and rs2273773 were analyzed. GG, AG, AA genotypes and G and A alleles of rs7895833, TT, TC, CC genotypes and T and C alleles of rs2273773, and CC, CG, GG genotypes and C and G alleles of rs7069102 were examined. The data in both groups were compared. CONCLUSIONS A significant difference between GG, AG and AA genotypes of rs7895833 was found. Especially, the AG genotype was observed more in the group with COPD, with a significant difference. A significant difference between TT, TC and CC genotypes of rs2273773 was found. There was a significant difference between two groups with regards to C and G alleles of rs7069102. A significant difference was not found between the groups with regards to G and A alleles of rs7895833. A difference was not found for both groups between T and C alleles of rs2273773. It shows that these polymorphisms of the SIRT1 gene may be associated with COPD.
Collapse
|