1
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
2
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
4
|
Ouyang X, Reihill JA, Douglas LEJ, Dunne OM, Sergeant GP, Martin SL. House dust mite allergens induce Ca 2+ signalling and alarmin responses in asthma airway epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167079. [PMID: 38367901 DOI: 10.1016/j.bbadis.2024.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | | | | | - Orla M Dunne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland
| | | |
Collapse
|
5
|
Lai YS, Chan TW, Nguyen TMH, Lin TC, Chao YY, Wang CY, Hung LY, Tsai SJ, Chiu WT. Store-operated calcium entry inhibits primary ciliogenesis via the activation of Aurora A. FEBS J 2024; 291:1027-1042. [PMID: 38050648 DOI: 10.1111/febs.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Wei Chan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chien Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Babaniamansour P, Jacho D, Niedzielski S, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Modulating TRPV4 Channel Activity in Pro-Inflammatory Macrophages within the 3D Tissue Analog. Biomedicines 2024; 12:230. [PMID: 38275401 PMCID: PMC10813551 DOI: 10.3390/biomedicines12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(-)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson's trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(-) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Skyler Niedzielski
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| |
Collapse
|
7
|
Kanithi M, Kumari L, Yalakaturi K, Munjal K, Jimitreddy S, Kandamuri M, Veeramachineni P, Chopra H, Junapudi S. Nanoparticle Polymers Influence on Cardiac Health: Good or Bad for Cardiac Physiology? Curr Probl Cardiol 2024; 49:102145. [PMID: 37852559 DOI: 10.1016/j.cpcardiol.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death and morbidity worldwide. Lifestyle modifications, medications, and addressing epidemiological factors have long been at the forefront of targeting therapeutics for CVD. Treatments can be further complicated given the intersection of gender, age, unique comorbidities, and healthcare access, among many other factors. Therefore, expanding treatment and diagnostic modalities for CVD is absolutely necessary. Nanoparticles and nanomaterials are increasingly being used as therapeutic and diagnostic modalities in various disciplines of biomedicine. Nanoparticles have multiple ways of interacting with the cardiovascular system. Some of them alter cardiac physiology by impacting ion channels, whereas others influence ions directly or indirectly, improving cellular death via decreasing oxidative stress. While embedding nanoparticles into therapeutics can help enhance healthy cardiovascular function in other scenarios, they can also impair physiology by increasing reactive oxidative species and leading to cardiotoxicity. This review explores different types of nanoparticles, their effects, and the applicable dosages to create a better foundation for understanding the current research findings.
Collapse
Affiliation(s)
- Manasa Kanithi
- Michigan State University College of Osteopathic Medicine, East Lansing, MI
| | - Lata Kumari
- People University of Medical and Health Sciences, Nawab Shah, Sindh, Pakistan
| | | | - Kavita Munjal
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sunil Junapudi
- Geethanjali College of Pharmacy, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Van den Bossche S, Ostyn L, Vandendriessche V, Rigauts C, De Keersmaecker H, Nickerson CA, Crabbé A. The development and characterization of in vivo-like three-dimensional models of bronchial epithelial cell lines. Eur J Pharm Sci 2023; 190:106567. [PMID: 37633341 DOI: 10.1016/j.ejps.2023.106567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
In vitro models of differentiated respiratory epithelium that allow high-throughput screening are an important tool to explore new therapeutics for chronic respiratory diseases. In the present study, we developed in vivo-like three-dimensional (3-D) models of bronchial epithelial cell lines that are commonly used to study chronic lung disease (16HBE14o-, CFBE41o- and CFBE41o- 6.2 WT-CFTR). To this end, cells were cultured on porous microcarrier beads in the rotating wall vessel (RWV) bioreactor, an optimized suspension culture method that allows higher throughput experimentation than other physiologically relevant models. Cell differentiation was compared to conventional two-dimensional (2-D) monolayer cultures and to the current gold standard in the respiratory field, i.e. air-liquid interface (ALI) cultures. Cellular differentiation was assessed in the three model systems by evaluating the expression and localization of markers that reflect the formation of tight junctions (zonula occludens 1), cell polarity (intercellular adhesion molecule 1 at the apical side and collagen IV expression at the basal cell side), multicellular complexity (acetylated α-tubulin for ciliated cells, CC10 for club cells, keratin-5 for basal cells) and mucus production (MUC5AC) through immunostaining and confocal laser scanning microscopy. Results were validated using Western Blot analysis. We found that tight junctions were expressed in 2-D monolayers, ALI cultures and 3-D models for all three cell lines. All tested bronchial epithelial cell lines showed polarization in ALI and 3-D cultures, but not in 2-D monolayers. Mucus secreting goblet-like cells were present in ALI and 3-D cultures of CFBE41o- and CFBE41o- 6.2 WT-CFTR cells, but not in 16HBE14o- cells. For all cell lines, there were no ciliated cells, basal cells, or club cells found in any of the model systems. In conclusion, we developed RWV-derived 3-D models of commonly used bronchial epithelial cell lines and showed that these models are a valuable alternative to ALI cultures, as they recapitulate similar key aspects of the in vivo parental tissue.
Collapse
Affiliation(s)
- Sara Van den Bossche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Valerie Vandendriessche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Herlinde De Keersmaecker
- Centre of Advanced Light Microscopy, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Cheryl A Nickerson
- School of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, 727 E. Tyler Street, Tempe, Arizona 85281, USA
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
9
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
10
|
Chen Y, Petrova RS, Qiu C, Donaldson PJ. -Intracellular hydrostatic pressure regulation in the bovine lens: a role in the regulation of lens optics? Am J Physiol Regul Integr Comp Physiol 2022; 322:R263-R279. [PMID: 35107027 DOI: 10.1152/ajpregu.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The optical properties of the bovine lens have been shown to be actively maintained by an internal microcirculation system. In the mouse lens, this water transport through gap junction channels generates an intracellular hydrostatic pressure gradient, which is subjected to a dual feedback regulation that is mediated by the reciprocal modulation of the transient receptor potential vanilloid channels, TRPV1 and TRPV4. Here we test whether a similar feedback regulation of pressure exists in the bovine lens, and whether it regulates overall lens optics. Lens pressure was measured using a microelectrode/pico-injector-based pressure measurement system, and lens optics were monitored in organ cultured lenses using a laser ray tracing system. Like the mouse, the bovine lenses exhibited a similar pressure gradient (0 to 340 mmHg). Activation of TRPV1 with capsaicin caused a biphasic increase in surface pressure, while activation of TRPV4 with GSK1016790A caused a biphasic decrease in pressure. These biphasic responses were abolished if lenses were pre-incubated with either the TRPV1 inhibitor A-889425, or the TRPV4 inhibitor HC-067047. While modulation of lens pressure by TRPV1 and TRPV4 had minimal effects on lens power and overall vision quality, the changes in lens pressure did induce opposing changes to lens geometry and GRIN that effectively kept lens power constant. Hence, our results suggest that the TRPV1/4 mediated feedback control of lens hydrostatic pressure operates to ensure that any fluctuations in lens water transport, and consequently water content, do not result in changes in lens power and therefore overall vision quality.
Collapse
Affiliation(s)
- Yadi Chen
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Chen Qiu
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
11
|
Echinocandins Accelerate Particle Transport Velocity in the Murine Tracheal Epithelium: Dependency on Intracellular Ca 2+ Stores. Antimicrob Agents Chemother 2021; 65:e0066921. [PMID: 34491804 PMCID: PMC8522769 DOI: 10.1128/aac.00669-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mucociliary clearance of lower airways is modulated by different physiologic stimuli and also by pathophysiologic agents like polluting substances or pharmaceutical molecules. In the present investigation, we measured the particle transport velocity (PTV) of mouse tracheae as a surrogate for mucociliary clearance. In mouse tracheal preparations, we detected a sustained increase in the PTV under the application of the echinocandins caspofungin, anidulafungin, and micafungin. In further experiments, we observed the effects of echinocandins on the PTV were dependent on intracellular Ca2+ homeostasis. In Ca2+-free buffer solutions, the amplitude of the echinocandin-evoked rise in the PTV was significantly reduced relative to that in the experiments in Ca2+-containing solutions. Depletion of intracellular Ca2+ stores of the endoplasmic reticulum (ER) by caffeine completely prevented an increase in the PTV with subsequent caspofungin applications. Mitochondrial Ca2+ stores seemed to be unaffected by echinocandin treatment. We also observed no altered generation of reactive oxygen species under the application of echinocandins as probable mediators of the PTV. Consequently, the observed echinocandin effects on the PTV depend upon the Ca2+ influx and Ca2+ contents of the ER. We assume that all three echinocandins act intracellularly on ER Ca2+ stores to activate Ca2+-dependent signal transduction cascades, enhancing the PTV.
Collapse
|
12
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
13
|
Epithelial barrier function properties of the 16HBE14o- human bronchial epithelial cell culture model. Biosci Rep 2021; 40:226530. [PMID: 32985670 PMCID: PMC7569203 DOI: 10.1042/bsr20201532] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023] Open
Abstract
The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.
Collapse
|
14
|
Backaert W, Steelant B, Hellings PW, Talavera K, Van Gerven L. A TRiP Through the Roles of Transient Receptor Potential Cation Channels in Type 2 Upper Airway Inflammation. Curr Allergy Asthma Rep 2021; 21:20. [PMID: 33738577 PMCID: PMC7973410 DOI: 10.1007/s11882-020-00981-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Despite their high prevalence, the pathophysiology of allergic rhinitis (AR) and chronic rhinosinusitis (CRS) remains unclear. Recently, transient receptor potential (TRP) cation channels emerged as important players in type 2 upper airway inflammatory disorders. In this review, we aim to discuss known and yet to be explored roles of TRP channels in the pathophysiology of AR and CRS with nasal polyps. RECENT FINDINGS TRP channels participate in a plethora of cellular functions and are expressed on T cells, mast cells, respiratory epithelial cells, and sensory neurons of the upper airways. In chronic upper airway inflammation, TRP vanilloid 1 is mostly studied in relation to nasal hyperreactivity. Several other TRP channels such as TRP vanilloid 4, TRP ankyrin 1, TRP melastatin channels, and TRP canonical channels also have important functions, rendering them potential targets for therapy. The role of TRP channels in type 2 inflammatory upper airway diseases is steadily being uncovered and increasingly recognized. Modulation of TRP channels may offer therapeutic perspectives.
Collapse
Affiliation(s)
- Wout Backaert
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Laboratory of Upper Airways Research, University of Ghent, Ghent, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Van Gerven
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
- Department of Neurosciences, Experimental Otorhinolaryngology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Lee K, Byun J, Kim B, Yeon J, Tai J, Lee SH, Kim TH. TRPV4-Mediated Epithelial Junction Disruption in Allergic Rhinitis Triggered by House Dust Mites. Am J Rhinol Allergy 2020; 35:432-440. [PMID: 33012175 DOI: 10.1177/1945892420964169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial barrier disruption is a crucial feature of allergic rhinitis (AR). Previous reports have indicated the role of transient receptor potential vanilloid (TRPV) 4 in regulating the intercellular junctions in various cells. However, the role of TRPV4 and its regulation by T helper 2 cell cytokines in the epithelial cells of patients with AR remains unclear. OBJECTIVE We aimed to elucidate the expression of TRPV4 in nasal epithelial cells and its cytokine-induced regulation, and to reveal its role in house dust mite-induced junction disruption in AR. METHODS The expression of TRPV4 in nasal epithelial cells was measured using real-time polymerase chain reaction, western blot, and immunohistochemical assays, and the expression levels were compared between the patients with AR and healthy controls. Altered expression of TRPV4 was induced in cultured nasal epithelial cells by stimulation of interleukin (IL) 4, IL-13, and tumor necrosis factor alpha. In addition, expression of E-cadherin and zonula occludens 1 was induced in Der p 1-stimulated epithelial cells by treatment with either a TRPV4 agonist (GSK1016790A) or a TRPV4 antagonist (RN1734). RESULTS TRPV4 expression was increased in epithelial cells harvested from the affected turbinates compared to those from the normal turbinates. The stimulation of cultured epithelial cells with IL-4 and IL-13 resulted in TRPV4 upregulation. Additionally, E-cadherin and zonula occludens 1 expression levels decreased in the cultured epithelial cells treated with GSK1016790A after stimulation with Der p 1, whereas Der p 1 stimulation alone showed no effect on junctional protein expression. CONCLUSIONS Increased TRPV4 expression occurred in epithelial cells harvested from patients with AR and epithelial cells stimulated by Th2 cytokines. Decreased junctional protein expression in epithelial cells after the stimulation by house dust mite allergen with TRPV4 agonist indicates a possible role of TRPV4 in the pathogenesis of allergen-induced epithelial barrier disruption in AR.
Collapse
Affiliation(s)
- Kijeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Junhyoung Byun
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea.,Neuroscience Research Institute, College of Medicine, Korea University, Seoul, Korea
| | - Jiwoo Yeon
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
16
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
17
|
Kogiso H, Raveau M, Yamakawa K, Saito D, Ikeuchi Y, Okazaki T, Asano S, Inui T, Marunaka Y, Nakahari T. Airway Ciliary Beating Affected by the Pcp4 Dose-Dependent [Ca 2+] i Increase in Down Syndrome Mice, Ts1Rhr. Int J Mol Sci 2020; 21:ijms21061947. [PMID: 32178446 PMCID: PMC7139761 DOI: 10.3390/ijms21061947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022] Open
Abstract
In Ts1Rhr, a Down syndrome model mouse, the airway ciliary beatings are impaired; that is, decreases in ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of ciliary beat amplitude)). A resumption to two copies of the Pcp4 gene on the Ts1Rhr trisomic segment (Ts1Rhr:Pcp4+/+/-) rescues the decreases in CBF and CBA that occur in Ts1Rhr. In airway cilia, upon stimulation with procaterol (a β2-agonist), the CBF increase is slower over the time course than the CBA increase because of cAMP degradation by Ca2+/calmodulin-dependent phosphodiesterase 1 (PDE1) existing in the metabolon regulating CBF. In Ts1Rhr, procaterol-stimulated CBF increase was much slower over the time course than in the wild-type mouse (Wt) or Ts1Rhr:Pcp4+/+/-. However, in the presence of 8MmIBMX (8-methoxymethyl isobutylmethyl xanthine, an inhibitor of PDE1) or calmidazolium (an inhibitor of calmodulin), in both Wt and Ts1Rhr, procaterol stimulates CBF and CBA increases over a similar time course. Measurements of cAMP revealed that the cAMP contents were lower in Ts1Rhr than in Wt or in Ts1Rhr:Pcp4+/+/-, suggesting the activation of PDE1A that is present in Ts1Rhr airway cilia. Measurements of the intracellular Ca2+ concentration ([Ca2+]i) in airway ciliary cells revealed that temperature (increasing from 25 to 37 °C) or 4αPDD (a selective transient receptor potential vanilloid 4 (TRPV4) agonist) stimulates a larger [Ca2+]i increase in Ts1Rhr than in Wt or Ts1Rhr:Pcp4+/+/-. In airway ciliary cells of Ts1Rhr, Pcp4-dose dependent activation of TRPV4 appears to induce an increase in the basal [Ca2+]i. In early embryonic day mice, a basal [Ca2+]i increased by PCP4 expressed may affect axonemal regulatory complexes regulated by the Ca2+-signal in Ts1Rhr, leading to a decrease in the basal CBF and CBA of airway cilia.
Collapse
Affiliation(s)
- Haruka Kogiso
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN, Brain Science Institute, Saitama 351-0198, Japan; (M.R.); (K.Y.)
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN, Brain Science Institute, Saitama 351-0198, Japan; (M.R.); (K.Y.)
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-cho, Mizuho-ku Nagoya 467-8601, Japan
| | - Daichi Saito
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Yukiko Ikeuchi
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomonori Okazaki
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Shinji Asano
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Physiology, Faculty of Pharmaceutical Sciences, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Saisei Mirai Clinics, Moriguchi 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu 525-8577, Japan; (H.K.); (D.S.); (Y.I.); (S.A.); (T.I.); (Y.M.)
- Correspondence: ; Tel.: 81-77-561-3488 (ext. 7554)
| |
Collapse
|
18
|
Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci 2020; 21:ijms21020379. [PMID: 31936182 PMCID: PMC7013859 DOI: 10.3390/ijms21020379] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS), commonly known as endotoxin, is ubiquitous and the most-studied pathogen-associated molecular pattern. A component of Gram-negative bacteria, extracellular LPS is sensed by our immune system via the toll-like receptor (TLR)-4. Given that TLR4 is membrane bound, it recognizes LPS in the extracellular milieu or within endosomes. Whether additional sensors, if any, play a role in LPS recognition within the cytoplasm remained unknown until recently. The last decade has seen an unprecedented unfolding of TLR4-independent LPS sensing pathways. First, transient receptor potential (TRP) channels have been identified as non-TLR membrane-bound sensors of LPS and, second, caspase-4/5 (and caspase-11 in mice) have been established as the cytoplasmic sensors for LPS. Here in this review, we detail the brief history of LPS discovery, followed by the discovery of TLR4, TRP as the membrane-bound sensor, and our current understanding of caspase-4/5/11 as cytoplasmic sensors.
Collapse
Affiliation(s)
- Lalita Mazgaeen
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)335-4536; Fax: +1-(319)335-4194
| |
Collapse
|
19
|
Nakazawa Y, Donaldson PJ, Petrova RS. Verification and spatial mapping of TRPV1 and TRPV4 expression in the embryonic and adult mouse lens. Exp Eye Res 2019; 186:107707. [PMID: 31229503 DOI: 10.1016/j.exer.2019.107707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
The transient receptor protein vanilloid channels, TRPV1 and TRPV4, have recently been shown to be mechanosensors in the ocular lens that act to transduce physical changes in lens volume and internal hydrostatic pressure into the activation of signalling pathways in lens epithelial cells. These pathways in turn regulate ion and water transport to ensure that the optical properties of the lens remain constant. Despite the functional evidence that implicate the roles of TRPV1 and TRPV4 in the lens, their respective cellular expression patterns in the different regions of the lens has to date not been fully characterised. Using Western blotting we have confirmed that TRPV1 and TRPV4 are expressed throughout all regions (epithelium, outer cortex, inner cortex/core) of the adult mouse lens. Subsequent immunolabeling of lens cryosections confirmed that TRPV1 and TRPV4 are expressed throughout all regions of the lens, but revealed differentiation-dependent differences in the subcellular expression of the two channels in the different regions. In the epithelium and outer cortex, intense TRPV1 and TRPV4 labeling was predominately associated with the cytoplasm. In a discrete zone in the inner cortex, labeling for both proteins was greatly diminished, but could be enhanced by incubating sections with the detergent Triton X-100 to reveal TRPV1 and TRPV4 labelling that was associated with the membrane. This suggests that in this region of the lens there is a potential interacting protein that masks the binding of the TRPV1 and TRPV4 antibodies to their respective epitopes in the lens inner cortex. In the core of the lens, which contains the embryonic nucleus, TRPV1 and TRPV4 labelling was associated exclusively with fibre cell membranes. This labelling in the lens core of the adult mouse lens appeared to originate in early development as a similar membrane labelling was observed at embryonic day 10 (E10) of the cells in the lens vesicle that subsequently forms the embryonic nucleus in the adult lens. During subsequent stages of embryonic development TRPV1 and TRPV4 remained membranous in the inner cortex and core, while showing labelling that was associated with the cytoplasm in the superficial outer cortical region. The extent of cytoplasmic labelling for TRPV4, but not TRPV1, in this cortical region could however be dynamically regulated by cutting the zonules that normally attach the lens to the ciliary body. We have shown an early onset and continuous expression of TRPV1 and TRPV4 across all lens regions, and that TRPV4 can be dynamically trafficked into the membranes of differentiating fibre cells, results that suggests that these mechanosensitive channels may also be functionally active in lens fibre cells.
Collapse
Affiliation(s)
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
20
|
Marozkina N, Bosch J, Cotton C, Smith L, Seckler J, Zaman K, Rehman S, Periasamy A, Gaston H, Altawallbeh G, Davis M, Jones DR, Schilz R, Randell SH, Gaston B. Cyclic compression increases F508 Del CFTR expression in ciliated human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 317:L247-L258. [PMID: 31116581 DOI: 10.1152/ajplung.00020.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin Cotton
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Seckler
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | - Ghaith Altawallbeh
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael Davis
- Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Schilz
- Pulmonology and Critical Care Medicine University Hospitals, Cleveland, Ohio
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
21
|
Li C, Wu YT, Zhu Q, Zhang HY, Huang Z, Zhang D, Qi H, Liang GL, He XQ, Wang XF, Tang X, Huang HF, Zhang J. TRPV4 is involved in levonorgestrel-induced reduction in oviduct ciliary beating. J Pathol 2019; 248:77-87. [PMID: 30632164 PMCID: PMC6593834 DOI: 10.1002/path.5233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/15/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Previous studies revealed the increasing risk of tubal pregnancy following failure of levonorgestrel (LNG)‐induced emergency contraception, which was attributed to the reduced ciliary motility in response to LNG. However, understanding of the mechanism of LNG‐induced reduction in the ciliary beat frequency (CBF) is limited. The transient receptor potential vanilloid (TRPV) 4 channel is located widely in the female reproductive tract and generates an influx of Ca2+ following its activation under normal physiological conditions, which regulates the CBF. The present study aimed to explore whether LNG reduced the CBF in the Fallopian tubes by modulating TRPV4 channels, leading to embryo retention in the Fallopian tubes and subsequent tubal pregnancy. The study provided evidence that the expression of TRPV4 was downregulated in the Fallopian tubes among patients with tubal pregnancy and negatively correlated with the serum level of progesterone. LNG downregulated the expression of TRPV4, limiting the calcium influx to reduce the CBF in mouse oviducts. Furthermore, the distribution of ciliated cells and the morphology of cilia did not change following the administration of LNG. LNG‐induced reduction in the CBF and embryo retention in the Fallopian tubes and in mouse oviducts were partially reversed by the progesterone receptor antagonist RU486 or the TRPV4 agonist 4α‐phorbol 12,13‐didecanoate (4α‐PDD). The results indicated that LNG could downregulate the expression of TRPV4 to reduce the CBF in both humans and mice, suggesting the possible mechanism of tubal pregnancy. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cheng Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan-Ting Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hui-Yu Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Qi
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gui-Ling Liang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Qing He
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Feng Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xue Tang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
22
|
Jung C, Fernández-Dueñas V, Plata C, Garcia-Elias A, Ciruela F, Fernández-Fernández JM, Valverde MA. Functional coupling of GABA A/B receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct. Sci Signal 2018; 11:11/543/eaam6558. [PMID: 30108184 DOI: 10.1126/scisignal.aam6558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanism by which progesterone (P4) modulates the transport of ova and embryos along the oviduct is not fully resolved. We report a rapid response to P4 and agonists of γ-aminobutyric acid receptors A and B (GABAA/B) in the mouse oviduct that was characterized by oscillatory Ca2+ signals and increased ciliary beat frequency (CBF). Pharmacological manipulation, genetic ablation, and siRNA-mediated knockdown in oviductal cells, as well as overexpression experiments in HEK 293T cells, confirmed the participation of the cationic channel TRPV4, different subunits of GABAA (α1 to α3, β2, and β3), and GABAB1 in P4-induced responses. TRPV4-mediated Ca2+ entry in close proximity to the inositol trisphosphate receptor was required to initiate and maintain Ca2+ oscillations after P4 binding to GABAA and transactivation of Gi/o protein-coupled GABAB receptors. Coimmunoprecipitation experiments and imaging of native tissue and HEK 293T cells demonstrated the close association of GABAA and GABAB1 receptors and the activation of Gi/o proteins in response to P4 and GABA receptor agonists, confirming a molecular mechanism in which P4 and GABAergic agonists cooperatively stimulate cilial beating.
Collapse
Affiliation(s)
- Carole Jung
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomédica de Bellvitge-Universitat de Barcelona, Barcelona 08907, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08907, Spain
| | - Cristina Plata
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Anna Garcia-Elias
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomédica de Bellvitge-Universitat de Barcelona, Barcelona 08907, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08907, Spain
| | - José M Fernández-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
23
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Xia Y, Xia L, Lou L, Jin R, Shen H, Li W. Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. Lung 2018; 196:505-516. [PMID: 30094794 DOI: 10.1007/s00408-018-0145-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
Chronic airway inflammatory diseases remain a major problem worldwide, such that there is a need for additional therapeutic targets and novel drugs. Transient receptor potential (TRP) channels are a group of non-selective cation channels expressed throughout the body that are regulated by various stimuli. TRP channels have been identified in numerous cell types in the respiratory tract, including sensory neurons, airway epithelial cells, airway smooth muscle cells, and fibroblasts. Different types of TRP channels induce cough in sensory neurons via the vagus nerve. Permeability and cytokine production are also regulated by TRP channels in airway epithelial cells, and these channels also contribute to the modulation of bronchoconstriction. TRP channels may cooperate with other TRP channels, or act in concert with calcium-dependent potassium channels and calcium-activated chloride channel. Hence, TRP channels could be the potential therapeutic targets for chronic airway inflammatory diseases. In this review, we aim to discuss the expression profiles and physiological functions of TRP channels in the airway, and the roles they play in chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Lexin Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingyun Lou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Rui Jin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
25
|
Thyme extract increases mucociliary-beating frequency in primary cell lines from chronic obstructive pulmonary disease patients. Biomed Pharmacother 2018; 105:1248-1253. [PMID: 30021361 DOI: 10.1016/j.biopha.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 10/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder characterized by a progressive and irreversible airflow limitation. COPD is associated to a chronic inflammatory response with infiltration of inflammatory cells in the surface epithelium of large airways and abnormalities in structure and functions of cilia. Thyme (Thymus vulgaris L.) is a traditional medicinal plant of the Mediterranean area used to treat respiratory disorders. We previously evidenced that thyme extract reduce IL-1beta and IL-8, by downregulating the activated NF-κB levels, suggesting its potential therapeutically use in COPD. Cilia beating frequency (CBF) is dramatically impaired in COPD and different pharmacological agents can modulate cilia function. Herein we evaluated the effect of a commercial thyme extract in modulating CBF by measuring its activity in stimulating cAMP, Ca2+ levels and CBF in a MucilAir 3D human COPD airway epithelia reconstituted in vitro system using salmeterol, YM976, isoproterenol and GSK1016790 A as positive controls. Results showed that thyme extract increased cAMP levels starting from 12 h post-treatment, decreased extracellular Ca2+ levels and increased the CBF in airway epithelia from COPD donors. Overall, this work demonstrated that thyme extract is effective in stimulating CBF by inducing an increase of cAMP and Ca2+ levels, thus supporting its therapeutical use in the treatment of COPD.
Collapse
|
26
|
De Clercq K, Van den Eynde C, Hennes A, Van Bree R, Voets T, Vriens J. The functional expression of transient receptor potential channels in the mouse endometrium. Hum Reprod 2018; 32:615-630. [PMID: 28077439 DOI: 10.1093/humrep/dew344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does mouse endometrial epithelial cells and stromal cells have a similar transient receptor potential (TRP)-channel expression profile and to that found in the human endometrium? SUMMARY ANSWER Mouse endometrial epithelial and stromal cells have a distinct TRP channel expression profile analogous to what has been found in human endometrium, and hence suggests the mouse a good model to investigate the role of TRP channels in reproduction. WHAT IS KNOWN ALREADY An optimal intercellular communication between epithelial and stromal endometrial cells is crucial for successful reproduction. Members of the TRP family were recently described in the human endometrial stroma; however their functional expression in murine endometrium remains unspecified. Furthermore, epithelial and stromal cells have distinct functions in the reproductive process, implying the possibility for a different expression profile. However, knowledge about the functional expression pattern of TRP channels in either epithelial or stromal cells is not available. STUDY DESIGN, SIZE, DURATION In this study, the expression pattern of TRP channels in the murine (C57BL/6 J strain) endometrium was investigated and compared to the human expression pattern. Therefore, expression was examined in uterine tissue isolated during the natural estrous cycle (n = 16) or during an induced menstrual cycle using the menstruating mouse model (n = 28). Next, the functional expression of TRP channels was assessed separately in endometrial epithelial and stromal cell populations. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative RT-PCR was used to evaluate the relative mRNA expression of TRP channels in murine uterine tissue and cells. To further assess the functional expression in epithelial or stromal cells, primary endometrial cell cultures and Fura2-based calcium-microfluorimetry experiments were performed. MAIN RESULTS AND THE ROLE OF CHANCE The expression pattern of TRP channels during the natural estrous cycle or the induced menstrual cycle is analog to what has been shown in human samples. Furthermore, a very distinct expression pattern was observed in epithelial cells compared to stromal cells. Expression of TRPV4, TRPV6 and TRPM6 was significantly higher in epithelial cells whereas TRPV2, TRPC1/4 and TRPC6 were almost exclusively expressed in stromal cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although relevant mRNA levels are detected for TRPV6 and TRPM6, and TRPM4, lack of selective, available pharmacology restricted functional analysis of these ion channels. WIDER IMPLICATIONS OF THE FINDINGS Successful reproduction, and more specifically embryo implantation, is a dynamic developmental process that integrates many signaling molecules into a precisely orchestrated program. Here, we describe the expression pattern of TRP channels in mouse endometrium that is similar to human tissue and their restricted functionality in either stromal cells or epithelial cells, suggesting a role in the epithelial-stromal crosstalk. These results will be very helpful to identify key players involved in the signaling cascades required for successful embryo implantation. In addition, these results illustrate that mouse endometrium is a valid representative for human endometrium to investigate TRP channels in the field of reproduction. STUDY FUNDING/COMPETING INTEREST(S) The Research Foundation-Flanders (G.0856.13 N to J.V.); the Research Council of the Katholieke Universiteit Leuven (OT/13/113 to J.V. and PF-TRPLe to T.V.); the Planckaert-De Waele fund (to J.V.); Fonds Wetenschappelijk Onderzoek Belgium (to K.D.C. and A.H.). None of the authors have a conflict of interest.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Charlotte Van den Eynde
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Aurélie Hennes
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Rieta Van Bree
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| |
Collapse
|
27
|
Sanchez A, Alvarez JL, Demydenko K, Jung C, Alpizar YA, Alvarez-Collazo J, Cokic SM, Valverde MA, Hoet PH, Talavera K. Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells. Part Fibre Toxicol 2017; 14:43. [PMID: 29100528 PMCID: PMC5670529 DOI: 10.1186/s12989-017-0224-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells. RESULTS Using fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells. CONCLUSIONS Our results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.
Collapse
Affiliation(s)
- Alicia Sanchez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio L Alvarez
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Kateryna Demydenko
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.,Present address: Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, Leuven, KU, Belgium
| | - Carole Jung
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter H Hoet
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
28
|
Alpizar YA, Boonen B, Sanchez A, Jung C, López-Requena A, Naert R, Steelant B, Luyts K, Plata C, De Vooght V, Vanoirbeek JAJ, Meseguer VM, Voets T, Alvarez JL, Hellings PW, Hoet PHM, Nemery B, Valverde MA, Talavera K. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat Commun 2017; 8:1059. [PMID: 29057902 PMCID: PMC5651912 DOI: 10.1038/s41467-017-01201-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
Lipopolysaccharides (LPS), the major components of the wall of gram-negative bacteria, trigger powerful defensive responses in the airways via mechanisms thought to rely solely on the Toll-like receptor 4 (TLR4) immune pathway. Here we show that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application. This response occurs in a TLR4-independent manner, via activation of the transient receptor potential vanilloid 4 cation channel (TRPV4). We found that TRPV4 mediates immediate LPS-induced increases in ciliary beat frequency and the production of bactericidal nitric oxide. Upon LPS challenge TRPV4-deficient mice display exacerbated ventilatory changes and recruitment of polymorphonuclear leukocytes into the airways. We conclude that LPS-induced activation of TRPV4 triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction. LPS is a major component of gram-negative bacterial cell walls, and triggers immune responses in airway epithelium by activating TLR4. Here the authors show that LPS also activates TRPV4, thereby inducing fast defense responses such as nitric oxide production and increased ciliary beating in mice.
Collapse
Affiliation(s)
- Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Brett Boonen
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Alicia Sanchez
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Carole Jung
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Alejandro López-Requena
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Robbe Naert
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Katrien Luyts
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Cristina Plata
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Vanessa De Vooght
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Jeroen A J Vanoirbeek
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, E-03550, San Juan de Alicante, Spain
| | - Thomas Voets
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Julio L Alvarez
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium
| | - Peter W Hellings
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven, Leuven, 3000, Belgium.,Department of Oto-Rhino-Laryngology, Upper Airways Research Laboratory, Ghent University, Ghent, 9000, Belgium
| | - Peter H M Hoet
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Benoit Nemery
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium. .,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.
| |
Collapse
|
29
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
30
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
31
|
De Logu F, Patacchini R, Fontana G, Geppetti P. TRP functions in the broncho-pulmonary system. Semin Immunopathol 2016; 38:321-9. [PMID: 27083925 DOI: 10.1007/s00281-016-0557-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
Abstract
The current understanding of the role of transient receptor potential (TRP) channels in the airways and lung was initially based on the localization of a series of such channels in a subset of sensory nerve fibers of the respiratory tract. Soon after, TRP channel expression and function have been identified in respiratory nonneuronal cells. In these two locations, TRPs regulate physiological processes aimed at integrating different stimuli to maintain homeostasis and to react to harmful agents and tissue injury by building up inflammatory responses and repair processes. There is no doubt that TRPs localized in the sensory network contribute to airway neurogenic inflammation, and emerging evidence underlines the role of nonneuronal TRPs in orchestrating inflammation and repair in the respiratory tract. However, recent basic and clinical studies have offered clues regarding the contribution of neuronal and nonneuronal TRPs in the mechanism of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cough, and other respiratory diseases.
Collapse
Affiliation(s)
- Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Riccardo Patacchini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Giovanni Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
32
|
Atkinson SK, Sadofsky LR, Morice AH. How does rhinovirus cause the common cold cough? BMJ Open Respir Res 2016; 3:e000118. [PMID: 26835135 PMCID: PMC4716235 DOI: 10.1136/bmjresp-2015-000118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023] Open
Abstract
Cough is a protective reflex to prevent aspiration and can be triggered by a multitude of stimuli. The commonest form of cough is caused by upper respiratory tract infection and has no benefit to the host. The virus hijacks this natural defence mechanism in order to propagate itself through the population. Despite the resolution of the majority of cold symptoms within 2 weeks, cough can persist for some time thereafter. Unfortunately, the mechanism of infectious cough brought on by pathogenic viruses, such as human rhinovirus, during colds, remains elusive despite the extensive work that has been undertaken. For socioeconomic reasons, it is imperative we identify the mechanism of cough. There are several theories which have been proposed as the causative mechanism of cough in rhinovirus infection, encompassing a range of different processes. Those of which hold most promise are physical disruption of the epithelial lining, excess mucus production and an inflammatory response to rhinovirus infection which may be excessive. And finally, neuronal modulation, the most convincing hypothesis, is thought to potentiate cough long after the original stimulus has been cleared. All these hypotheses will be briefly covered in the following sections.
Collapse
Affiliation(s)
- Samantha K Atkinson
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Laura R Sadofsky
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Alyn H Morice
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| |
Collapse
|
33
|
Workman AD, Cohen NA. The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. Am J Rhinol Allergy 2015; 28:454-64. [PMID: 25514481 DOI: 10.2500/ajra.2014.28.4092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cilia in the human respiratory tract play a critical role in clearing mucus and debris from the airways. Their function can be affected by a number of drugs or other substances, many of which alter ciliary beat frequency (CBF). This has implications for diseases of the respiratory tract and nasal drug delivery. This article is a systematic review of the literature that examines 229 substances and their effect on CBF. METHODS MEDLINE was the primary database used for data collection. Eligibility criteria based on experimental design were established, and 152 studies were ultimately selected. Each individual trial for the substances tested was noted whenever possible, including concentration, time course, specific effect on CBF, and source of tissue. RESULTS There was a high degree of heterogeneity between the various experiments examined in this article. Substances and their general effects (increase, no effect, decrease) were grouped into six categories: antimicrobials and antivirals, pharmacologics, human biological products, organisms and toxins, drug excipients, and natural compounds/other manipulations. CONCLUSION Organisms, toxins, and drug excipients tend to show a cilioinhibitory effect, whereas substances in all other categories had mixed effects. All studies examined were in vitro experiments, and application of the results in vivo is confounded by several factors. The data presented in this article should be useful in future respiratory research and examination of compounds for therapeutic and drug delivery purposes.
Collapse
Affiliation(s)
- Alan D Workman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
34
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Zygmunt PM, Ermund A, Movahed P, Andersson DA, Simonsen C, Jönsson BAG, Blomgren A, Birnir B, Bevan S, Eschalier A, Mallet C, Gomis A, Högestätt ED. Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1. PLoS One 2013; 8:e81618. [PMID: 24312564 PMCID: PMC3847081 DOI: 10.1371/journal.pone.0081618] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/25/2013] [Indexed: 01/17/2023] Open
Abstract
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.
Collapse
Affiliation(s)
- Peter M. Zygmunt
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund University Pain Research Centre, Lund University, Lund, Sweden
- * E-mail: (PMZ); (EDH)
| | - Anna Ermund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pouya Movahed
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David A. Andersson
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | | - Bo A. G. Jönsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Blomgren
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacologie, Hôpital G. Montpied, Clermont-Ferrand, France
| | - Christophe Mallet
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France
- Inserm, U1107 Neuro-Dol, Clermont-Ferrand, France
| | - Ana Gomis
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Spain
| | - Edward D. Högestätt
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund University Pain Research Centre, Lund University, Lund, Sweden
- * E-mail: (PMZ); (EDH)
| |
Collapse
|