1
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Khan U, Mubariz M, Khlidj Y, Nasir MM, Ramadan S, Saeed F, Muhammad A, Abuelazm M. Safety and Efficacy of Camostat Mesylate for Covid-19: a systematic review and Meta-analysis of Randomized controlled trials. BMC Infect Dis 2024; 24:709. [PMID: 39030491 PMCID: PMC11264738 DOI: 10.1186/s12879-024-09468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/03/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Camostat mesylate, an oral serine protease inhibitor, is a powerful TMPRSS2 inhibitor and has been reported as a possible antiviral treatment against COVID-19. Therefore, we aim to assess the safety and efficacy of camostat mesylate for COVID-19 treatment. METHODS A systematic review and meta-analysis synthesizing randomized controlled trials from PubMed, Scopus, Embase, Cochrane, Web of Science, clinical trials.gov, and medrxiv until June 2023. The outcomes were pooled using Mean difference (MD) for continuous outcomes and risk ratio (RR) for dichotomous outcomes. The protocol is registered in PROSPERO with ID CRD42023439633. RESULTS Nine RCTs, including 1,623 patients, were included in this analysis. There was no difference between camostat mesylate and placebo in producing negative PCR test results at 1-7 days (RR: 0.76, 95% CI: [0.54, 1.06] P = 0.1), 8-14 days (RR: 1.02, 95% CI: [0.84, 1.23] P = 0.87), or 15-21 days (RR: 0.99, 95% CI: [0.82, 1.19] P = 0.90); clinical resolution of symptoms at 1-7 days (RR: 0.94 (95% CI: 0.58, 1.53) P = 0.81), 8-14 days (RR: 0.91, 95% CI: [0.74, 1.11] P = 0.33, ), or 15-21 days (RR: 0.77, 95% CI: [0.40, 1.51] P = 0.45); and time to symptom improvement (MD:-0.38 weeks (95% CI: [-1.42, 0.66] P = 0.47, I2 = 85%). CONCLUSION Camostat mesylate did not improve clinical outcomes in patients with COVID-19, compared to placebo.
Collapse
Affiliation(s)
- Ubaid Khan
- King Edward Medical University, Lahore, Pakistan.
| | | | - Yehya Khlidj
- Faculty of medicine, Algiers University, Alger Centre, Algeria
| | | | | | - Fatima Saeed
- King Edward Medical University, Lahore, Pakistan
| | | | | |
Collapse
|
4
|
Cani M, Epistolio S, Dazio G, Modesti M, Salfi G, Pedrani M, Isella L, Gillessen S, Vogl UM, Tortola L, Treglia G, Buttigliero C, Frattini M, Pereira Mestre R. Antiandrogens as Therapies for COVID-19: A Systematic Review. Cancers (Basel) 2024; 16:298. [PMID: 38254788 PMCID: PMC10814161 DOI: 10.3390/cancers16020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Samantha Epistolio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Giulia Dazio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Mikol Modesti
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Isella
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Milo Frattini
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Clinical Research Unit, myDoctorAngel, 6934 Bioggio, Switzerland
| |
Collapse
|
5
|
Zhu J, Li X, Lv F, Zhou W. Bioinformatics Approach to Identify the Influences of COVID-19 on Ischemic Stroke. Biochem Genet 2023; 61:2222-2241. [PMID: 37184686 PMCID: PMC10184096 DOI: 10.1007/s10528-023-10366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is becoming more infectious and less virulent, symptoms beyond the lungs of the Coronavirus Disease 2019 (COVID-19) patients are a growing concern. Studies have found that the severity of COVID-19 patients is associated with an increased risk of ischemic stroke (IS); however, the underlying pathogenic mechanisms remain unknown. In this study, bioinformatics approaches were utilized to explore potential pathogenic mechanisms and predict potential drugs that may be useful in the treatment of COVID-19 and IS. The GSE152418 and GSE122709 datasets were downloaded from the GEO website to obtain the common differentially expressed genes (DEGs) of the two datasets for further functional enrichment, pathway analysis, and drug candidate prediction. A total of 80 common DEGs were identified in COVID-19 and IS datasets for GO and KEGG analysis. Next, the protein-protein interaction (PPI) network was constructed and hub genes were identified. Further, transcription factor-gene interactions and DEGs-miRNAs coregulatory network were investigated to explore their regulatory roles in disease. Finally, protein-drug interactions with common DEGs were analyzed to predict potential drugs. We successfully identified the top 10 hub genes that could serve as novel targeted therapies for COVID-19 and screened out some potential drugs for the treatment of COVID-19 and IS.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Xiangui Li
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Fanzhen Lv
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affliated Hospital of Nanchang University, Minde Road 1, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
6
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
7
|
Kim G, Moon HK, Kim T, Yun SH, Yun HY, Hong JH, Kim DD. Safety Evaluation and Population Pharmacokinetics of Camostat Mesylate and Its Major Metabolites Using a Phase I Study. Pharmaceutics 2023; 15:2357. [PMID: 37765325 PMCID: PMC10534584 DOI: 10.3390/pharmaceutics15092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Camostat mesylate is expected to be promising as a treatment option for COVID-19, in addition to other indications for which it is currently used. Furthermore, in vitro experiments have confirmed the potential of camostat and its metabolites to be effective against COVID-19. Therefore, clinical trials were conducted to evaluate the safety and pharmacokinetic characteristics of camostat after single-dose administration. Additionally, we aim to predict the pharmacokinetics of repeated dosing through modeling and simulation based on clinical trials. Clinical trials were conducted on healthy Korean adults, and an analysis was carried out of the metabolites of camostat, GBPA, and GBA. Pharmacokinetic modeling and simulation were performed using Monolix. There were no safety issues (AEs, physical examinations, clinical laboratory tests, vital sign measurements, and ECG) during the clinical trial. The pharmacokinetic characteristics at various doses were identified. It was confirmed that AUC last and Cmax increased in proportion to dose in both GBPA and GBA, and linearity was also confirmed in log-transformed power model regression. Additionally, the accumulation index was predicted (1.12 and 1.08 for GBPA and GBA). The pharmacokinetics of camostat for various dose administrations and indications can be predicted prior to clinical trials using the developed camostat model. Furthermore, it can be used for various indications by connecting it with pharmacodynamic information.
Collapse
Affiliation(s)
- Gwanyoung Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea; (G.K.); (H.-k.M.); (T.K.); (S.-h.Y.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-ki Moon
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea; (G.K.); (H.-k.M.); (T.K.); (S.-h.Y.)
| | - Taeheon Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea; (G.K.); (H.-k.M.); (T.K.); (S.-h.Y.)
| | - So-hye Yun
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea; (G.K.); (H.-k.M.); (T.K.); (S.-h.Y.)
| | - Hwi-yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Rizka Nurcahyaningtyas H, Irene A, Tri Wibowo J, Yunovilsa Putra M, Yanuar A. Identification of potential Indonesian marine invertebrate bioactive compounds as TMPRSS2 and SARS-CoV-2 Omicron spike protein inhibitors through computational screening. ARAB J CHEM 2023; 16:104984. [PMID: 37234226 PMCID: PMC10186851 DOI: 10.1016/j.arabjc.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus pandemic led to the announcement of a worldwide health emergency. The SARS-CoV-2 Omicron variant, which swiftly spread worldwide, has fueled existing challenges. Appropriate medication is necessary to avoid severe SARS-CoV-2 disease. The human TMPRSS2 and SARS-CoV-2 Omicron spike protein, which are required for viral entry into the host phase, were identified as the target proteins through computational screening. Structure-based virtual screening; molecular docking; absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis; and molecular dynamics simulation were the methods applied for TMPRSS2 and spike protein inhibitors. Bioactive marine invertebrates from Indonesia were employed as test ligands. Camostat and nafamostat (co-crystal) were utilized as reference ligands against TMPRSS2, whereas mefloquine was used as a reference ligand against spike protein. Following a molecular docking and dynamics simulation, we found that acanthomanzamine C has remarkable effectiveness against TMPRSS2 and spike protein. Compared to camostat (-8.25 kcal/mol), nafamostat (-6.52 kcal/mol), and mefloquine (-6.34 kcal/mol), acanthomanzamine C binds to TMPRSS2 and spike protein with binding energies of -9.75 kcal/mol and -9.19 kcal/mol, respectively. Furthermore, slight variances in the MD simulation demonstrated consistent binding to TMPRSS2 and spike protein after the initial 50 ns. These results are highly valuable in the search for a treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Alfrina Irene
- Faculty of Pharmacy Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Joko Tri Wibowo
- Research Center for Vaccine and Drug, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Arry Yanuar
- Faculty of Pharmacy Universitas Indonesia, Depok 16424, West Java, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
9
|
Mykytyn AZ, Breugem TI, Geurts MH, Beumer J, Schipper D, van Acker R, van den Doel PB, van Royen ME, Zhang J, Clevers H, Haagmans BL, Lamers MM. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models. J Virol 2023; 97:e0085123. [PMID: 37555660 PMCID: PMC10506477 DOI: 10.1128/jvi.00851-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
SARS-CoV-2 can enter cells after its spike protein is cleaved by either type II transmembrane serine proteases (TTSPs), like TMPRSS2, or cathepsins. It is now widely accepted that the Omicron variant uses TMPRSS2 less efficiently and instead enters cells via cathepsins, but these findings have yet to be verified in more relevant cell models. Although we could confirm efficient cathepsin-mediated entry for Omicron in a monkey kidney cell line, experiments with protease inhibitors showed that Omicron (BA.1 and XBB1.5) did not use cathepsins for entry into human airway organoids and instead utilized TTSPs. Likewise, CRISPR-edited intestinal organoids showed that entry of Omicron BA.1 relied on the expression of the serine protease TMPRSS2 but not cathepsin L or B. Together, these data force us to rethink the concept that Omicron has adapted to cathepsin-mediated entry and indicate that TTSP inhibitors should not be dismissed as prophylactic or therapeutic antiviral strategy against SARS-CoV-2. IMPORTANCE Coronavirus entry relies on host proteases that activate the viral fusion protein, spike. These proteases determine the viral entry route, tropism, host range, and can be attractive drug targets. Whereas earlier studies using cell lines suggested that the Omicron variant of SARS-CoV-2 has changed its protease usage, from cell surface type II transmembrane serine proteases (TTSPs) to endosomal cathepsins, we report that this is not the case in human airway and intestinal organoid models, suggesting that host TTSP inhibition is still a viable prophylactic or therapeutic antiviral strategy against current SARS-CoV-2 variants and highlighting the importance of relevant human in vitro cell models.
Collapse
Affiliation(s)
- Anna Z. Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tim I. Breugem
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maarten H. Geurts
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Amsterdam, the Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Amsterdam, the Netherlands
| | - Debby Schipper
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Romy van Acker
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Amsterdam, the Netherlands
| | - Bart L. Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M. Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
10
|
Resnick JD, Wilson JL, Anaya E, Conte A, Li M, Zhong W, Beer MA, Pekosz A. Growth media affects susceptibility of air-lifted human nasal epithelial cell cultures to SARS-CoV2, but not Influenza A, virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551381. [PMID: 37577692 PMCID: PMC10418194 DOI: 10.1101/2023.07.31.551381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary differentiated human epithelial cell cultures have been widely used by researchers to study viral fitness and virus-host interactions, especially during the COVID19 pandemic. These cultures recapitulate important characteristics of the respiratory epithelium such as diverse cell type composition, polarization, and innate immune responses. However, standardization and validation of these cultures remains an open issue. In this study, two different expansion medias were evaluated and the impact on the resulting differentiated culture was determined. Use of both Airway and Ex Plus media types resulted in high quality, consistent cultures that were able to be used for these studies. Upon histological evaluation, Airway-grown cultures were more organized and had a higher proportion of basal progenitor cells while Ex Plus- grown cultures had a higher proportion terminally differentiated cell types. In addition to having different cell type proportions and organization, the two different growth medias led to cultures with altered susceptibility to infection with SARS-CoV-2 but not Influenza A virus. RNAseq comparing cultures grown in different growth medias prior to differentiation uncovered a high degree of differentially expressed genes in cultures from the same donor. RNAseq on differentiated cultures showed less variation between growth medias but alterations in pathways that control the expression of human transmembrane proteases including TMPRSS11 and TMPRSS2 were documented. Enhanced susceptibility to SARS-CoV-2 cannot be explained by altered cell type proportions alone, rather serine protease cofactor expression also contributes to the enhanced replication of SARS-CoV-2 as inhibition with camostat affected replication of an early SARS-CoV-2 variant and a Delta, but not Omicron, variant showed difference in replication efficiency between culture types. Therefore, it is important for the research community to standardize cell culture protocols particularly when characterizing novel viruses.
Collapse
Affiliation(s)
- Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jo L Wilson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Deparment of Pediatric Allergy and Immunology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Eddy Anaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maggie Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael A Beer
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Wendler A, Wehling M. Translatability scoring in prospective and retrospective COVID drug development cases. Eur J Clin Pharmacol 2023; 79:1051-1071. [PMID: 37278822 PMCID: PMC10243273 DOI: 10.1007/s00228-023-03517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 has led to an enormous surge of clinical research. So far, the speed and success rate of related drug development projects, especially of vaccines, is unprecedented. For the first time, this situation allowed for the opportunistic evaluation of a translatability score, originally proposed in 2009, in a prospective manner. METHODS Several vaccines and treatments under development in clinical phase III trials were selected for translational scoring with the translatability score. Six prospective and six retrospective case studies were performed. The scores had to be determined for a fictive date before any results of the phase III trial were reported in any media. Spearman correlation analysis and a Kruskal Wallis test were performed for statistical evaluation. RESULTS A significant correlation between the translatability scores and the clinical outcomes in translation was found, as judged on the basis of positive/intermediate/negative endpoint studies or market approval. The Spearman correlation analysis of all cases (r = 0.91, p < 0.001), the prospective cases alone (r = 0.93, p = 0.008), and the retrospective cases alone (r = 0.93, p = 0.008) showed a strong correlation between the score and outcome; R2 demonstrated a score-derived determination of outcomes by 86%. CONCLUSIONS The score detects strengths and weaknesses of a given project, resulting in the opportunity of selective amelioration of a project, as well as prospective portfolio risk balancing. Its substantial predictive value that has been demonstrated here for the first time could be of particular interest for biomedical industry (pharmaceutical and device manufacturers), funding agencies, venture capitalists, and researchers in the area. Future evaluations will have to address the generalizability of results obtained in an exceptional pandemic situation, and the potential adaptations of weighing factors/items to particular therapeutic areas.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology, Faculty of Medicine, Ruprecht-Karls-University of Heidelberg, 68167, Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology, Faculty of Medicine, Ruprecht-Karls-University of Heidelberg, 68167, Mannheim, Germany.
| |
Collapse
|
12
|
Yang Z, Fu X, Zhao Y, Li X, Long J, Zhang L. Molecular insights into the inhibition mechanism of harringtonine against essential proteins associated with SARS-CoV-2 entry. Int J Biol Macromol 2023; 240:124352. [PMID: 37054859 PMCID: PMC10085973 DOI: 10.1016/j.ijbiomac.2023.124352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently posed a serious threat to global public health. Harringtonine (HT), as a small-molecule antagonist, has antiviral activity against a variety of viruses. There is evidence that HT can inhibit the SARS-CoV-2 entry into host cells by blocking the Spike protein and transmembrane protease serine 2 (TMPRSS2). However, the molecular mechanism underlying the inhibition effect of HT is largely elusive. Here, docking and all-atom molecular dynamics simulations were used to investigate the mechanism of HT against the receptor binding domain (RBD) of Spike, TMPRSS2, as well as the complex of RBD and angiotensin-converting enzyme 2 complex (RBD-ACE2). The results reveal that HT binds to all proteins primarily through hydrogen bond and hydrophobic interactions. Binding with HT influences the structural stability and dynamic motility processes of each protein. The interactions of HT with residues N33, H34 and K353 of ACE2, and residue K417 and Y453 of RBD contribute to disrupting the binding affinity between RBD and ACE2, which may hinder the virus entry into host cells. Our research provides molecular insights into the inhibition mechanism of HT against SARS-CoV-2 associated proteins, which will help for the novel antiviral drugs development.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xinyue Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Pavan M, Fanti CD, Lucia AD, Canato E, Acquasaliente L, Sonvico F, Delgado J, Hicks A, Torrelles JB, Kulkarni V, Dwivedi V, Zanellato AM, Galesso D, Pasut G, Buttini F, Martinez-Sobrido L, Guarise C. AEROSOLIZED SULFATED HYALURONAN DERIVATIVES PROLONG THE SURVIVAL OF K18 ACE2 MICE INFECTED WITH A LETHAL DOSE OF SARS-COV-2. Eur J Pharm Sci 2023:106489. [PMID: 37311533 DOI: 10.1016/j.ejps.2023.106489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mauro Pavan
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy.
| | - Chiara D Fanti
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Alba Di Lucia
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Jennifer Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Population Health and Host-Pathogens Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jordi B Torrelles
- Population Health and Host-Pathogens Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Varun Dwivedi
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Anna M Zanellato
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Devis Galesso
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Cristian Guarise
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| |
Collapse
|
14
|
Peiffer A, Garlick JM, Wu Y, Wotring JW, Arora S, Harmata AS, Bochar DA, Stephenson CJ, Soellner MB, Sexton JZ, Brooks CL, Mapp AK. TMPRSS2 Inhibitor Discovery Facilitated through an In Silico and Biochemical Screening Platform. ACS Med Chem Lett 2023; 14:860-866. [PMID: 37284689 PMCID: PMC10237299 DOI: 10.1021/acsmedchemlett.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
The COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents. Here, we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we identify new noncovalent TMPRSS2 inhibitors that block SARS-CoV-2 infectivity in a cellular model. One such inhibitor, debrisoquine, has high ligand efficiency, and an initial structure-activity relationship study demonstrates that debrisoquine is a tractable hit compound for TMPRSS2.
Collapse
Affiliation(s)
- Amanda
L. Peiffer
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie M. Garlick
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse W. Wotring
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sahil Arora
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander S. Harmata
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A. Bochar
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey J. Stephenson
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Z. Sexton
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- University
of Michigan Medical School, Ann
Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48019, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: M Pro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel) 2023; 16:834. [PMID: 37375781 PMCID: PMC10301481 DOI: 10.3390/ph16060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the importance of the 2019 outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19) pandemic, an overview of two proteases that play an important role in the infection by SARS-CoV-2, the main protease of SARS-CoV-2 (MPro) and the host transmembrane protease serine 2 (TMPRSS2), is presented in this review. After summarising the viral replication cycle to identify the relevance of these proteases, the therapeutic agents already approved are presented. Then, this review discusses some of the most recently reported inhibitors first for the viral MPro and next for the host TMPRSS2 explaining the mechanism of action of each protease. Afterward, some computational approaches to design novel MPro and TMPRSS2 inhibitors are presented, also describing the corresponding crystallographic structures reported so far. Finally, a brief discussion on a few reports found some dual-action inhibitors for both proteases is given. This review provides an overview of two proteases of different origins (viral and human host) that have become important targets for the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
| | | | | | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland; (B.F.); (M.M.); (M.M.)
| |
Collapse
|
16
|
Sha A, Liu Y, Zhao X. SARS-CoV-2 and gastrointestinal diseases. Front Microbiol 2023; 14:1177741. [PMID: 37323898 PMCID: PMC10267706 DOI: 10.3389/fmicb.2023.1177741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. Literature review SARS-CoV-2 invades not only the respiratory system, but also the digestive system, causing a variety of gastrointestinal diseases. Significance Understanding the gastrointestinal diseases caused by SARS-CoV-2, and the damage mechanisms of SARS-CoV-2 to the gastrointestinal tracts and gastrointestinal glands are crucial to treating the gastrointestinal diseases caused by SARS-CoV-2. Conclusion This review summarizes the gastrointestinal diseases caused by SARS-CoV-2, including gastrointestinal inflammatory disorders, gastrointestinal ulcer diseases, gastrointestinal bleeding, and gastrointestinal thrombotic diseases, etc. Furthermore, the mechanisms of gastrointestinal injury induced by SARS-COV-2 were analyzed and summarized, and the suggestions for drug prevention and treatment were put forward for the reference of clinical workers.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
17
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
18
|
Metallo-antiviral aspirants: Answer to the upcoming virusoutbreak. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 8:100104. [PMID: 37035854 PMCID: PMC10070197 DOI: 10.1016/j.ejmcr.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In light of the current SARS-CoV-2 outbreak, about one million research papers (articles, reviews, communications, etc.) were published in the last one and a half years. It was also noticed that in the past few years; infectious diseases, mainly those of viral origin, burdened the public health systems worldwide. The current wave of the Covid-19 pandemic has unmasked critical demand for compounds that can be swiftly mobilized for the treatment of re-emerging or emerging viral infections. With the potential chemical and structural characteristics of organic motifs, the coordination compounds might be a promising and flexible option for drug development. Their therapeutic consequence may be tuned by varying metal nature and its oxidation number, ligands characteristics, and stereochemistry of the species formed. The emerging successes of cisplatin in cancer chemotherapy inspire researchers to make new efforts for studying metallodrugs as antivirals. Metal-based compounds have immense therapeutic potential in terms of structural diversity and possible mechanisms of action; therefore, they might offer an excellent opportunity to achieve new antivirals. This review is an attempt to summarize the current status of antiviral therapies against SARS-CoV-2 from the available literature sources, discuss the specific challenges and solutions in the development of metal-based antivirals, and also talk about the possibility to accelerate discovery efforts in this direction.
Collapse
|
19
|
Maehara Y, Oki E, Ota M, Harimoto N, Ando K, Nakanishi R, Kawazoe T, Fujimoto Y, Nonaka K, Kitao H, Iimori M, Makino K, Takechi T, Sagara T, Miyadera K, Matsuoka K, Tsukihara H, Kataoka Y, Wakasa T, Ochiiwa H, Kamahori Y, Tokunaga E, Saeki H, Yoshizumi T, Kakeji Y, Shirabe K, Baba H, Shimada M. Lineage of drug discovery research on fluorinated pyrimidines: chronicle of the achievements accomplished by Professor Setsuro Fujii. Int J Clin Oncol 2023; 28:613-624. [PMID: 36961615 DOI: 10.1007/s10147-023-02326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Prof. Setsuro Fujii achieved significant results in the field of drug discovery research in Japan. He developed nine well-known drugs: FT, UFT, S-1 and FTD/TPI are anticancer drugs, while cetraxate hydrochloride, camostat mesilate, nafamostat mesilate, gabexate mesilate and pravastatin sodium are therapeutic drugs for various other diseases. He delivered hope to patients with various diseases across the world to improve their condition. Even now, drug discovery research based on Dr. Fujii's ideas is continuing.
Collapse
Affiliation(s)
- Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, 815-8588, Japan.
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mitsuhiko Ota
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norifumi Harimoto
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuro Kawazoe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshiaki Fujimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Makoto Iimori
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, 814-0193, Japan
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kunio Makino
- Division of Clinical Development and Medical Affairs, Taiho Pharmaceutical Co. Ltd, Tokyo, 101-8444, Japan
| | - Teiji Takechi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Takeshi Sagara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Kazuaki Matsuoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Hiroshi Tsukihara
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Yuki Kataoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Takeshi Wakasa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Hiroaki Ochiiwa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, 300-2611, Japan
| | - Yoshihiro Kamahori
- Division of Clinical Development and Medical Affairs, Taiho Pharmaceutical Co. Ltd, Tokyo, 101-8444, Japan
| | - Eriko Tokunaga
- Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1347, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, 1-1-1, Honjyo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| |
Collapse
|
20
|
Resnick JD, Beer MA, Pekosz A. Early Transcriptional Responses of Human Nasal Epithelial Cells to Infection with Influenza A and SARS-CoV-2 Virus Differ and Are Influenced by Physiological Temperature. Pathogens 2023; 12:480. [PMID: 36986402 PMCID: PMC10051809 DOI: 10.3390/pathogens12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an understudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insight into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affected SCV2, but not IAV, viral replicative fitness and that SCV2-infected cultures were slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changed the basal transcriptomic landscape of epithelial cells, but that it also impacted the response to infection. The induction of interferon and other innate immune responses was not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remained consistent, there may be metabolic or signaling changes that affect how well the cultures were able to adapt to new pressures, such as infection. Finally, we show that hNECs responded differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
Collapse
Affiliation(s)
- Jessica D. Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A. Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Resnick JD, Beer MA, Pekosz A. Early transcriptional responses of human nasal epithelial cells to infection with Influenza A and SARS-CoV-2 virus differ and are influenced by physiological temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531609. [PMID: 36945583 PMCID: PMC10028862 DOI: 10.1101/2023.03.07.531609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an un-derstudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insights into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affects SCV2, but not IAV, viral replicative fitness and that SCV2 infected cultures are slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changes the basal transcriptomic landscape of epithelial cells, but that it also impacts the response to infection. The induction of interferon and other innate immune responses were not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remains consistent, there may be metabolic or signaling changes that affect how well the cultures are able to adapt to new pressures such as infection. Finally, we show that hNECs respond differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
Collapse
Affiliation(s)
- Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Beer
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Panahi Y, Gorabi AM, Talaei S, Beiraghdar F, Akbarzadeh A, Tarhriz V, Mellatyar H. An overview on the treatments and prevention against COVID-19. Virol J 2023; 20:23. [PMID: 36755327 PMCID: PMC9906607 DOI: 10.1186/s12985-023-01973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/14/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to plague the world. While COVID-19 is asymptomatic in most individuals, it can cause symptoms like pneumonia, ARDS (acute respiratory distress syndrome), and death in others. Although humans are currently being vaccinated with several COVID-19 candidate vaccines in many countries, however, the world still is relying on hygiene measures, social distancing, and approved drugs. RESULT There are many potential therapeutic agents to pharmacologically fight COVID-19: antiviral molecules, recombinant soluble angiotensin-converting enzyme 2 (ACE2), monoclonal antibodies, vaccines, corticosteroids, interferon therapies, and herbal agents. By an understanding of the SARS-CoV-2 structure and its infection mechanisms, several vaccine candidates are under development and some are currently in various phases of clinical trials. CONCLUSION This review describes potential therapeutic agents, including antiviral agents, biologic agents, anti-inflammatory agents, and herbal agents in the treatment of COVID-19 patients. In addition to reviewing the vaccine candidates that entered phases 4, 3, and 2/3 clinical trials, this review also discusses the various platforms that are used to develop the vaccine COVID-19.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Thabet RH, Massadeh NA, Badarna OB, Al-Momani OM. Highlights on molecular targets in the management of COVID-19: Possible role of pharmacogenomics. J Int Med Res 2023; 51:3000605231153764. [PMID: 36717541 PMCID: PMC9893104 DOI: 10.1177/03000605231153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
By the end of 2022, there had been a reduction in new cases and deaths caused by coronavirus disease 2019 (COVID-19). At the same time, new variants of the severe acute respiratory syndrome coronavirus 2 virus were being discovered. Critically ill patients with COVID-19 have been found to have high serum levels of proinflammatory cytokines, especially interleukin (IL)-6. COVID-19-related mortality has been attributed in most cases to the cytokine storm caused by increased levels of inflammatory cytokines. Dexamethasone in low doses and immunomodulators such as IL-6 inhibitors are recommended to overcome the cytokine storm. This current narrative review highlights the place of other therapeutic choices such as proteasome inhibitors, protease inhibitors and nuclear factor kappa B inhibitors in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Romany H. Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan,Romany H. Thabet, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Shafiq Irshidat Street, Irbid 21163, Jordan.
| | - Noor A. Massadeh
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar B. Badarna
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar M. Al-Momani
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| |
Collapse
|
24
|
Pauly I, Kumar Singh A, Kumar A, Singh Y, Thareja S, Kamal MA, Verma A, Kumar P. Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment. Curr Pharm Des 2023; 28:3677-3705. [PMID: 36345244 DOI: 10.2174/1381612829666221107123841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION The drug repurposing approach provides a new avenue in COVID-19 treatment.
Collapse
Affiliation(s)
- Irine Pauly
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jaddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, Australia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
25
|
Rivera-Torres J, Girón N, San José E. COVID-19: A Comprehensive Review on Cardiovascular Alterations, Immunity, and Therapeutics in Older Adults. J Clin Med 2023; 12:488. [PMID: 36675416 PMCID: PMC9865642 DOI: 10.3390/jcm12020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Here, we present a review focusing on three relevant issues related to COVID-19 and its impact in older adults (60 years and older). SARS-CoV-2 infection starts in the respiratory system, but the development of systemic diseases accompanied by severe clinical manifestations has also been reported, with cardiovascular and immune system dysfunction being the major ones. Additionally, the presence of comorbidities and aging represent major risk factors for the severity and poor prognosis of the disease. Since aging-associated decline has been largely related to immune and cardiovascular alterations, we sought to investigate the consequences and the underlying mechanisms of these pathologies to understand the severity of the illness in this population. Understanding the effects of COVID-19 on both systems should translate into comprehensive and improved medical care for elderly COVID-19 patients, preventing cardiovascular as well as immunological alterations in this population. Approved therapies that contribute to the improvement of symptoms and a reduction in mortality, as well as new therapies in development, constitute an approach to managing these disorders. Among them, we describe antivirals, cytokine antagonists, cytokine signaling pathway inhibitors, and vaccines.
Collapse
Affiliation(s)
- José Rivera-Torres
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Natalia Girón
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Esther San José
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
26
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
27
|
Zhao H, Meng X, Peng Z, Lam H, Zhang C, Zhou X, Chan JFW, Kao RYT, To KKW, Yuen KY. Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants. Emerg Microbes Infect 2022; 11:926-937. [PMID: 35259078 PMCID: PMC8973381 DOI: 10.1080/22221751.2022.2051753] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pandemic influenza virus and SARS-CoV-2 vaiants have posed major global threats to public health. Broad-spectrum antivirals blocking viral entry can be an effective strategy for combating these viruses. Here, we demonstrate a frog-defensin-derived basic peptide (FBP), which broadly inhibits the influenza virus by binding to haemagglutinin so as to block low pH-induced HA-mediated fusion and antagonizes endosomal acidification to inhibit the influenza virus. Moreover, FBP can bind to the SARS-CoV-2 spike to block spike-mediated cell–cell fusion in 293T/ACE2 cells endocytosis. Omicron spike shows a weak cell–cell fusion mediated by TMPRSS2 in Calu3 cells, making the Omicron variant sensitive to endosomal inhibitors. In vivo studies show that FBP broadly inhibits the A(H1N1)pdm09 virus in mice and SARS-CoV-2 (HKU001a and Delta)in hamsters. Notably, FBP shows significant inhibition of Omicron variant replication even though it has a high number of mutations in spike. In conclusion, these results suggest that virus-targeting FBP with a high barrier to drug resistance can be an effective entry-fusion inhibitor against influenza virus and SARS-CoV-2 in vivo.
Collapse
Affiliation(s)
- Hanjun Zhao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Peng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoiyan Lam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinxin Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Richard Yi Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| |
Collapse
|
28
|
Jiang Y, Rubin L, Zhou Z, Zhang H, Su Q, Hou ST, Lazarovici P, Zheng W. Pharmacological therapies and drug development targeting SARS-CoV-2 infection. Cytokine Growth Factor Rev 2022; 68:13-24. [PMID: 36266222 PMCID: PMC9558743 DOI: 10.1016/j.cytogfr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023]
Abstract
The development of therapies for SARS-CoV-2 infection, based on virus biology and pathology, and of large- and small-scale randomized controlled trials, have brought forward several antiviral and immunomodulatory drugs targeting the disease severity. Casirivimab/Imdevimab monoclonal antibodies and convalescent plasma to prevent virus entry, Remdesivir, Molnupiravir, and Paxlovid nucleotide analogs to prevent viral replication, a variety of repurposed JAK-STAT signaling pathway inhibitors, corticosteroids, and recombinant agonists/antagonists of cytokine and interferons have been found to provide clinical benefits in terms of mortality and hospitalization. However, current treatment options face multiple clinical needs, and therefore, in this review, we provide an update on the challenges of the existing therapeutics and highlight drug development strategies for COVID-19 therapy, based on ongoing clinical trials, meta-analyses, and clinical case reports.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zhiwei Zhou
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Haibo Zhang
- Anesthesia, Critical Care Medicine and Physiology, St. Michael’s Hospital, University of Toronto, Ontario, Canada
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Science, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China,Correspondence to: Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Philip Lazarovici
- Pharmacology, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China,Correspondence to: Faculty of Health Sciences, University of Macau, Room 3057, Building E12, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
29
|
Chattaraj R, Kim CY, Lee D, Hammer DA. Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus. ACS NANO 2022; 16:17466-17477. [PMID: 36191145 PMCID: PMC9578646 DOI: 10.1021/acsnano.2c09015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The continuing emergence of variants of the SARS-CoV-2 virus requires the development of modular molecular therapies. Here, we engineered a recombinant amphiphilic protein, oleosin, to spontaneously self-assemble into multivalent micellar nanostructures which can block the Spike S1 protein of SARS-CoV-2 pseudoviruses (PVs). Short recombinant proteins like oleosin can be formulated more easily than antibodies and can be functionalized with precision through genetic engineering. We cloned S1-binding mini-protein genes called LCBx, previously designed by David Baker's laboratory (UW Seattle), to the N-terminus of oleosin, expressing Oleo-LCBx proteins in E. coli. These proteins largely formed 10-100 nm micelles as verified by dynamic light scattering. Two proteins, Oleo-LCB1 and Oleo-LCB3, were seen to completely and irreversibly block transduction by both wild-type and delta variant PVs into 293T-hsACE2 cells at 10 μM. Presented in multivalent micelles, these proteins reduced transduction by PVs down to a functional protein concentration of 5 nM. Additionally, Oleo-LCB1 micelles outperformed corresponding synthetic LCB1 mini-proteins in reducing transduction by PVs. Tunable aqueous solubility of recombinant oleosin allowed incorporation of peptides/mini-proteins at high concentrations within micelles, thus enhancing drug loading. To validate the potential multifunctionality of the micelles, we showed that certain combinations of Oleo-LCB1 and Oleo-LCB3 performed much better than the individual proteins at the same concentration. These micelles, which we showed to be non-toxic to human cells, are thus a promising step toward the design of modular, multifunctional therapeutics that could bind to and inactivate multiple receptors and proteins necessary for the infection of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina Y. Kim
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Kinoshita T, Shinoda M, Nishizaki Y, Shiraki K, Hirai Y, Kichikawa Y, Tsushima K, Shinkai M, Komura N, Yoshida K, Kido Y, Kakeya H, Uemura N, Kadota J. A multicenter, double-blind, randomized, parallel-group, placebo-controlled study to evaluate the efficacy and safety of camostat mesilate in patients with COVID-19 (CANDLE study). BMC Med 2022; 20:342. [PMID: 36163020 PMCID: PMC9512971 DOI: 10.1186/s12916-022-02518-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro drug screening studies have indicated that camostat mesilate (FOY-305) may prevent SARS-CoV-2 infection into human airway epithelial cells. This study was conducted to investigate whether camostat mesilate is an effective treatment for SARS-CoV-2 infection (COVID-19). METHODS This was a multicenter, double-blind, randomized, parallel-group, placebo-controlled study. Patients were enrolled if they were admitted to a hospital within 5 days of onset of COVID-19 symptoms or within 5 days of a positive test for asymptomatic patients. Severe cases (e.g., those requiring oxygenation/ventilation) were excluded. Patients were enrolled, randomized, and allocated to each group using an interactive web response system. Randomization was performed using a minimization method with the factors medical institution, age, and underlying diseases (chronic respiratory disease, chronic kidney disease, diabetes mellitus, hypertension, cardiovascular diseases, and obesity). The patients, investigators/subinvestigators, study coordinators, and other study personnel were blinded throughout the study. Patients were administered camostat mesilate (600 mg qid; four to eight times higher than the clinical doses in Japan) or placebo for up to 14 days. The primary efficacy endpoint was the time to the first two consecutive negative tests for SARS-CoV-2. RESULTS One-hundred fifty-five patients were randomized to receive camostat mesilate (n = 78) or placebo (n = 77). The median time to the first test was 11.0 days (95% confidence interval [CI]: 9.0-12.0) in the camostat mesilate group and 11.0 days (95% CI: 10.0-13.0) in the placebo group. Conversion to negative viral status by day 14 was observed in 45 of 74 patients (60.8%) in the camostat mesilate group and 47 of 74 patients (63.5%) in the placebo group. The primary (Bayesian) and secondary (frequentist) analyses found no significant differences in the primary endpoint between the two groups. No additional safety concerns beyond those already known for camostat mesilate were identified. CONCLUSIONS Camostat mesilate did not substantially reduce the time to viral clearance, based on upper airway viral loads, compared with placebo for treating patients with mild to moderate SARS-CoV-2 infection with or without symptoms. TRIAL REGISTRATION ClinicalTrials.gov, NCT04657497. Japan Registry for Clinical Trials, jRCT2031200198.
Collapse
Affiliation(s)
- Taku Kinoshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan.,Present Address: Respiratory Medicine, Chiba Rosai Hospital, Chiba, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Tokyo, Japan
| | | | - Katsuya Shiraki
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Hachioji, Japan
| | | | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Tokyo, Japan
| | - Naoyuki Komura
- Clinical Development Planning, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuo Yoshida
- Department of Statistical Analysis, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yasutoshi Kido
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoto Uemura
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita-ken, 879-5593, Japan.
| | - Junichi Kadota
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Oita, Japan.,Nagasaki Harbor Medical Center, Nagasaki, Japan
| |
Collapse
|
31
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|
32
|
Saloni, Kumari D, Ranjan P, Chakraborty T. A computational study of potential therapeutics for COVID-19 invoking conceptual density functional theory. Struct Chem 2022; 33:2195-2204. [PMID: 36097582 PMCID: PMC9452875 DOI: 10.1007/s11224-022-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
The pandemic, COVID-19, has caused social and economic disruption at a larger pace all over the world. Identification of an effective drug for the deadliest disease is still an exigency. One of the most promising approaches to combat the lethal disease is use of repurposed drugs. This study provides insights into some of the potential repurposed drugs viz. camostat mesylate, hydroxychloroquine, nitazoxanide, and oseltamivir in terms of the computational quantum chemical method. Properties of these compounds have been elucidated in terms of Conceptual Density Functional Theory (CDFT)-based descriptors, IR spectra, and thermochemical properties. Computed results specify that hydroxychloroquine is the most reactive drug among them. Thermochemical data reveals that camostat mesylate has the utmost heat capacity, entropy, and thermal energy. Our findings indicate that camostat mesylate and hydroxychloroquine may be investigated further as potential COVID-19 therapeutics. We anticipate that the current study will aid the scientific community to design and develop viable therapeutics against COVID-19.
Collapse
Affiliation(s)
- Saloni
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Dimple Kumari
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Prabhat Ranjan
- Department of Mechatronics Engineering, Manipal University Jaipur, Dehmi Kalan-303007, Rajasthan, India
| | - Tanmoy Chakraborty
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| |
Collapse
|
33
|
Kayabolen A, Akcan U, Özturan D, Ulbegi‐Polat H, Sahin GN, Pinarbasi‐Degirmenci N, Bayraktar C, Soyler G, Sarayloo E, Nurtop E, Ozer B, Guney‐Esken G, Barlas T, Yildirim IS, Dogan O, Karahuseyinoglu S, Lack NA, Kaya M, Albayrak C, Can F, Solaroglu I, Bagci‐Onder T. Protein Scaffold-Based Multimerization of Soluble ACE2 Efficiently Blocks SARS-CoV-2 Infection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201294. [PMID: 35896894 PMCID: PMC9353362 DOI: 10.1002/advs.202201294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ugur Akcan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Doğancan Özturan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Hivda Ulbegi‐Polat
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Gizem Nur Sahin
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | | | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Gizem Soyler
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ehsan Sarayloo
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Elif Nurtop
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Berna Ozer
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Gulen Guney‐Esken
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Tayfun Barlas
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Ismail Selim Yildirim
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Ozlem Dogan
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Sercin Karahuseyinoglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Koç University School of Medicine, Department of Histology and EmbryologyIstanbul34450Türkiye
| | - Nathan A. Lack
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Vancouver Prostate CentreUniversity of British ColumbiaVancouverBC V6H 3Z6Canada
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Cem Albayrak
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Fusun Can
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Ihsan Solaroglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of Basic SciencesLoma Linda UniversityLoma LindaCA92354USA
| | - Tugba Bagci‐Onder
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| |
Collapse
|
34
|
Zarkoob H, Allué-Guardia A, Chen YC, Garcia-Vilanova A, Jung O, Coon S, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Iben J, Li T, Fu J, Porter FD, Yewdell J, Martinez-Sobrido L, Cherry S, Torrelles JB, Ferrer M, Lee EM. Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents. Commun Biol 2022; 5:810. [PMID: 35962146 PMCID: PMC9373898 DOI: 10.1038/s42003-022-03753-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.,Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Steven Coon
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Tianwei Li
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Jiaqi Fu
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordi B Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Emily M Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
35
|
Karolyi M, Pawelka E, Omid S, Koenig F, Kauer V, Rumpf B, Hoepler W, Kuran A, Laferl H, Seitz T, Traugott M, Rathkolb V, Mueller M, Abrahamowicz A, Schoergenhofer C, Hecking M, Assinger A, Wenisch C, Zeitlinger M, Jilma B, Zoufaly A. Camostat Mesylate Versus Lopinavir/Ritonavir in Hospitalized Patients With COVID-19-Results From a Randomized, Controlled, Open Label, Platform Trial (ACOVACT). Front Pharmacol 2022; 13:870493. [PMID: 35935856 PMCID: PMC9354138 DOI: 10.3389/fphar.2022.870493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To date, no oral antiviral drug has proven to be beneficial in hospitalized patients with COVID-19. Methods: In this randomized, controlled, open-label, platform trial, we randomly assigned patients ≥18 years hospitalized with COVID-19 pneumonia to receive either camostat mesylate (CM) (considered standard-of-care) or lopinavir/ritonavir (LPV/RTV). The primary endpoint was time to sustained clinical improvement (≥48 h) of at least one point on the 7-category WHO scale. Secondary endpoints included length of stay (LOS), need for mechanical ventilation (MV) or death, and 29-day mortality. Results: 201 patients were included in the study (101 CM and 100 LPV/RTV) between 20 April 2020 and 14 May 2021. Mean age was 58.7 years, and 67% were male. The median time from symptom onset to randomization was 7 days (IQR 5-9). Patients in the CM group had a significantly shorter time to sustained clinical improvement (HR = 0.67, 95%-CI 0.49-0.90; 9 vs. 11 days, p = 0.008) and demonstrated less progression to MV or death [6/101 (5.9%) vs. 15/100 (15%), p = 0.036] and a shorter LOS (12 vs. 14 days, p = 0.023). A statistically nonsignificant trend toward a lower 29-day mortality in the CM group than the LPV/RTV group [2/101 (2%) vs. 7/100 (7%), p = 0.089] was observed. Conclusion: In patients hospitalized for COVID-19, the use of CM was associated with shorter time to clinical improvement, reduced need for MV or death, and shorter LOS than the use of LPV/RTV. Furthermore, research is needed to confirm the efficacy of CM in larger placebo-controlled trials. Systematic Review Registration: [https://clinicaltrials.gov/ct2/show/NCT04351724, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001302-30/AT], identifier [NCT04351724, EUDRACT-NR: 2020-001302-30].
Collapse
Affiliation(s)
- M. Karolyi
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - E. Pawelka
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - S. Omid
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - F. Koenig
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - V. Kauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - B. Rumpf
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - W. Hoepler
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - A. Kuran
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - H. Laferl
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - T. Seitz
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - M. Traugott
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - V. Rathkolb
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - M. Mueller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A. Abrahamowicz
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - C. Schoergenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - M. Hecking
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - A. Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - C. Wenisch
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - M. Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - B. Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A. Zoufaly
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
36
|
Li C, Zhou H, Guo L, Xie D, He H, Zhang H, Liu Y, Peng L, Zheng L, Lu W, Mei Y, Liu Z, Huang J, Wang M, Shu D, Ding L, Lang Y, Luo F, Wang J, Huang B, Huang P, Gao S, Chen J, Qian CN. Potential inhibitors for blocking the interaction of the coronavirus SARS-CoV-2 spike protein and its host cell receptor ACE2. J Transl Med 2022; 20:314. [PMID: 35836239 PMCID: PMC9281089 DOI: 10.1186/s12967-022-03501-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social. The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health and economic stability worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. Methods We first established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus spike protein and its host receptor ACE2. Two compound libraries of 2,864 molecules were screened with this platform. Selected candidate compounds were validated by SARS-CoV-2_S pseudotyped lentivirus and ACE2-overexpressing cell system. Molecular docking was used to analyze the interaction between S protein and compounds. Results We identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S protein and the human cell ACE2 receptor. Additionally, tannic acid showed moderate inhibitory effect on the interaction of S protein and ACE2. Conclusion This platform is a rapid, sensitive, specific, and high throughput system, and available for screening large compound libraries. TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03501-9.
Collapse
Affiliation(s)
- Changzhi Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Lingling Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dehuan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huiping He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yixiu Liu
- Exploring Health, LLC., Guangzhou, 510663, China
| | - Lixia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lisheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jie Huang
- Exploring Health, LLC., Guangzhou, 510663, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ditian Shu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liuyan Ding
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yanhong Lang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Feifei Luo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Song Gao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Jindong Chen
- Exploring Health, LLC., Guangzhou, 510663, China.
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Guangzhou Concord Cancer Center, Guangzhou, 510555, China.
| |
Collapse
|
37
|
Terada J, Fujita R, Kawahara T, Hirasawa Y, Kinoshita T, Takeshita Y, Isaka Y, Kinouchi T, Tajima H, Tada Y, Tsushima K. Favipiravir, camostat, and ciclesonide combination therapy in patients with moderate COVID-19 pneumonia with/without oxygen therapy: An open-label, single-center phase 3 randomized clinical trial. EClinicalMedicine 2022; 49:101484. [PMID: 35692220 PMCID: PMC9165527 DOI: 10.1016/j.eclinm.2022.101484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The effectiveness of combination therapy for COVID-19 pneumonia remains unclear. We evaluated favipiravir, camostat, and ciclesonide combination therapy in patients with moderate COVID-19 pneumonia. METHODS In this open-label phase 3 study, hospitalized adults who were positive for SARS-CoV-2 and had COVID-19 pneumonia were enrolled prior to official vaccination drive in Japan. Participants were randomly assigned to favipiravir monotherapy or favipiravir + camostat + ciclesonide combination therapy. The primary outcome was the length of hospitalization due to COVID-19 infection after study treatment. The hospitalization period was calculated from the time of admission to the time of patient discharge using the clinical management guide of COVID-19 for front-line healthcare workers developed by the Japanese Ministry of Health, Labour, and Welfare (Version 3). Cases were registered between November 11, 2020, and May 31, 2021. Japan Registry of Clinical Trials registration: jRCTs031200196. FINDINGS Of 121 enrolled patients, 56 received monotherapy and 61 received combination therapy. Baseline characteristics were balanced between the groups. The median time of hospitalization was 10 days for the combination and 11 days for the monotherapy group. The median time to discharge was statistically significantly lower in the combination therapy vs monotherapy group (HR, 1·67 (95% CI 1·03-2·7; P = 0·035). The hospital discharge rate was statistically significantly higher in the combination therapy vs monotherapy group in patients with less severe COVID-19 infections and those who were ≤60 years. There were no significant differences in clinical findings between the groups at 4, 8, 11, 15, and 29 days. Adverse events were comparable between the groups. There were two deaths, with one in each group. INTERPRETATION Combination oral favipiravir, camostat and, ciclesonide therapy could decrease the length of hospitalization stays without safety concerns in patients with moderate COVID-19 pneumonia. However, lack of hard clinical primary outcome is one of the major limitations of the study. FUNDING This research was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 20fk0108261h0001.
Collapse
Affiliation(s)
- Jiro Terada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Correspondence: 852 Hatakeda, Narita city, 286-8520, Chiba, Japan, Telephone: 81-476-35-5600, Fax: 81-476-35-5586.
| | - Retsu Fujita
- Innovation and Research Support Center, Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasutaka Hirasawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Taku Kinoshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuri Isaka
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Tajima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
38
|
Criscuolo E, Giuliani B, Ferrari D, Ferrarese R, Diotti RA, Clementi M, Mancini N, Clementi N. Proper Selection of In Vitro Cell Model Affects the Characterization of the Neutralizing Antibody Response against SARS-CoV-2. Viruses 2022; 14:1232. [PMID: 35746703 PMCID: PMC9230092 DOI: 10.3390/v14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022] Open
Abstract
(1) Background: Our aim is the evaluation of the neutralizing activity of BNT162b2 mRNA vaccine-induced antibodies in different in vitro cellular models, as this still represents one of the surrogates of protection against SARS-CoV-2 viral variants. (2) Methods: The entry mechanisms of SARS-CoV-2 in three cell lines (Vero E6, Vero E6/TMPRSS2 and Calu-3) were evaluated with both pseudoviruses and whole virus particles. The neutralizing capability of sera collected from vaccinated subjects was characterized through cytopathic effects and Real-Time RT PCR. (3) Results: In contrast to Vero E6 and Vero E6/TMPRSS2, Calu-3 allowed the evaluation of both viral entry mechanisms, resembling what occurs during natural infection. The choice of an appropriate cellular model can decisively influence the determination of the neutralizing activity of antibodies against SARS-CoV-2 variants. Indeed, the lack of correlation between neutralizing data in Calu-3 and Vero E6 demonstrated that testing the antibody inhibitory activity by using a single cell model possibly results in an inaccurate characterization. (4) Conclusions: Cellular systems allowing only one of the two viral entry pathways may not fully reflect the neutralizing activity of vaccine-induced antibodies moving increasingly further away from possible correlates of protection from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
| | - Benedetta Giuliani
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
| | - Davide Ferrari
- SCVSA Department, University of Parma, 43121 Parma, Italy;
| | - Roberto Ferrarese
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
| | - Roberta A. Diotti
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
- IRCCS Ospedale San Raffaele, 20158 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
- IRCCS Ospedale San Raffaele, 20158 Milan, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20158 Milan, Italy; (E.C.); (B.G.); (R.F.); (R.A.D.); (M.C.); (N.M.)
- IRCCS Ospedale San Raffaele, 20158 Milan, Italy
| |
Collapse
|
39
|
Khalatbari A, Aghazadeh Z, Ji C. Adverse Effects of Anti-Covid-19 Drug Candidates and Alcohol on Cellular Stress Responses of Hepatocytes. Hepatol Commun 2022; 6:1262-1277. [PMID: 34910385 PMCID: PMC9134820 DOI: 10.1002/hep4.1887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022] Open
Abstract
During the pandemic, dexamethasone (DEX), remdesivir (RDV), hydroxychloroquine (HCQ), thapsigargin (TG), camostat mesylate (CaM), and pralatrexate were repurposed drugs for coronavirus disease 2019 (COVID-19). However, the side effects on the liver associated with the anti-COVID therapies are unknown. Cellular stresses by these drugs at 0-30 μM were studied using HepG2, Huh7, and/or primary human hepatocytes. DEX or RDV induced endoplasmic reticulum stress with increased X-box binding protein 1 and autophagic response with increased accumulation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II). DEX and RDV had additive effects on the stress responses in the liver cells, which further increased expression of activating transcription factor 4 and C/EBP homology protein 1 (CHOP), and cell death. Alcohol pretreatment (50 mM) and DEX induced greater cellular stress responses than DEX and RDV. Pralatrexate induced Golgi fragmentation, cell cycle arrest at G0/G1 phase, activations of poly (ADP-ribose) polymerase-1 (PARP) and caspases, and cell death. Pralatrexate and alcohol had synergistic effects on the cell death mediators of Bim, caspase3, and PARP. The protease inhibitor CaM and TG induced autophagic response and mitochondrial stress with altered mitochondrial membrane potential, B-cell lymphoma 2, and cytochrome C. TG and HCQ induced autophagic response markers of Unc-51 like autophagy activating kinase, LC3-II, Beclin1, and Atg5, and severe ER stress marker CHOP. Conclusion: These results suggest that the anti-COVID-19 drugs, especially with drug-drug or alcohol-drug combinations, cause cellular stress responses and injuries in the liver cells.
Collapse
Affiliation(s)
- Atousa Khalatbari
- Department of MedicineKeck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | | |
Collapse
|
40
|
Matusewicz L, Golec M, Czogalla A, Kuliczkowski K, Konka A, Zembala-John J, Sikorski AF. COVID-19 therapies: do we see substantial progress? Cell Mol Biol Lett 2022; 27:42. [PMID: 35641916 PMCID: PMC9152818 DOI: 10.1186/s11658-022-00341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
The appearance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its spread all over the world is the cause of the coronavirus disease 2019 (COVID-19) pandemic, which has recently resulted in almost 400 million confirmed cases and 6 million deaths, not to mention unknown long-term or persistent side effects in convalescent individuals. In this short review, we discuss approaches to treat COVID-19 that are based on current knowledge of the mechanisms of viral cell receptor recognition, virus-host membrane fusion, and inhibition of viral RNA and viral assembly. Despite enormous progress in antiviral therapy and prevention, new effective therapies are still in great demand.
Collapse
Affiliation(s)
- Lucyna Matusewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Marlena Golec
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Joanna Zembala-John
- Chair and Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, 41-800 Zabrze, Poland
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| |
Collapse
|
41
|
A Fair and Safe Usage Drug Recommendation System in Medical Emergencies by a Stacked ANN. ALGORITHMS 2022. [DOI: 10.3390/a15060186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The importance of online recommender systems for drugs, medical professionals, and hospitals is growing. Today, the majority of people use online consultations for drug recommendations for all types of health issues. Emergencies such as pandemics, floods, or cyclones can be helped by the medical recommender system. In the era of machine learning (ML), recommender systems produce more accurate, quick, and reliable clinical predictions with minimal costs. As a result, these systems maintain better performance, integrity, and privacy of patient data in the decision-making process and provide precise information at any time. Therefore, we present drug recommender systems with a stacked artificial neural network (ANN) model to improve the fairness and safety of treatment for infectious diseases. To reduce side effects, drugs are recommended based on a patient’s previous health profile, lifestyle, and habits. The proposed system produced results with 97.5% accuracy. A system such as this could be useful in recommending safe medicines to patients, especially during health emergencies.
Collapse
|
42
|
Niemeyer BF, Benam KH. Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. Pharmacol Ther 2022; 233:108027. [PMID: 34718070 PMCID: PMC8552695 DOI: 10.1016/j.pharmthera.2021.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Responding quickly to emerging respiratory viruses, such as SARS-CoV-2 the causative agent of coronavirus disease 2019 (COVID-19) pandemic, is essential to stop uncontrolled spread of these pathogens and mitigate their socio-economic impact globally. This can be achieved through drug repurposing, which tackles inherent time- and resource-consuming processes associated with conventional drug discovery and development. In this review, we examine key preclinical and clinical therapeutic and prophylactic approaches that have been applied for treatment of SARS-CoV-2 infection. We break these strategies down into virus- versus host-targeting and discuss their reported efficacy, advantages, and disadvantages. Importantly, we highlight emerging evidence on application of host serine protease-inhibiting anticoagulants, such as nafamostat mesylate, as a potentially powerful therapy to inhibit virus activation and offer cross-protection against multiple strains of coronavirus, lower inflammatory response independent of its antiviral effect, and modulate clotting problems seen in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Brian F Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
43
|
David A, Parkinson N, Peacock TP, Pairo-Castineira E, Khanna T, Cobat A, Tenesa A, Sancho-Shimizu V, Casanova JL, Abel L, Barclay WS, Baillie JK, Sternberg MJ. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr Res Transl Med 2022; 70:103333. [PMID: 35104687 PMCID: PMC8743599 DOI: 10.1016/j.retram.2022.103333] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. METHODS We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. RESULTS We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p = 1.3 × 10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. CONCLUSION TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.
Collapse
Affiliation(s)
- Alessia David
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Nicholas Parkinson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Thomas P Peacock
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | | | - Tarun Khanna
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Aurelie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France; Howard Hughes Medical Institute, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU France; University of Paris, Imagine Institute, Paris, EU France
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK; Intenstive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
| | - Michael Je Sternberg
- Centre for Integrative System Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
44
|
Kosinsky Y, Peskov K, Stanski DR, Wetmore D, Vinetz J. Semi-Mechanistic Pharmacokinetic-Pharmacodynamic Model of Camostat Mesylate-Predicted Efficacy against SARS-CoV-2 in COVID-19. Microbiol Spectr 2022; 10:e0216721. [PMID: 35412356 PMCID: PMC9047529 DOI: 10.1128/spectrum.02167-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.
Collapse
Affiliation(s)
| | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- STU “Sirius,” Sochi, Russia
| | | | - Diana Wetmore
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Guo W, Porter LM, Crozier TW, Coates M, Jha A, McKie M, Nathan JA, Lehner PJ, Greenwood EJ, McCaughan F. Topical TMPRSS2 inhibition prevents SARS-CoV-2 infection in differentiated human airway cultures. Life Sci Alliance 2022; 5:e202101116. [PMID: 35110354 PMCID: PMC8814636 DOI: 10.26508/lsa.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.
Collapse
Affiliation(s)
- Wenrui Guo
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Linsey M Porter
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Thomas Wm Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Matthew Coates
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Akhilesh Jha
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Mikel McKie
- Medical Research Council, Biostatistic Unit, Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Edward Jd Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Frank McCaughan
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
47
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to have devastating consequences worldwide. Recently, great efforts have been made to identify SARS-CoV-2 host factors, but the regulatory mechanisms of these host molecules, as well as the virus per se, remain elusive. Here we report a role of RNA G-quadruplex (RG4) in SARS-CoV-2 infection. Combining bioinformatics, biochemical and biophysical assays, we demonstrate the presence of RG4s in both SARS-CoV-2 genome and host factors. The biological and pathological importance of these RG4s is then exemplified by a canonical 3-quartet RG4 within Tmprss2, which can inhibit Tmprss2 translation and prevent SARS-CoV-2 entry. Intriguingly, G-quadruplex (G4)-specific stabilizers attenuate SARS-CoV-2 infection in pseudovirus cell systems and mouse models. Consistently, the protein level of TMPRSS2 is increased in lungs of COVID-19 patients. Our findings reveal a previously unknown mechanism underlying SARS-CoV-2 infection and suggest RG4 as a potential target for COVID-19 prevention and treatment. Understanding the mechanisms of SARS-CoV-2 infection is important to control the pandemic. Here the authors show the biological and pathological role of RNA G-quadruplex structure in both SARS-CoV-2 genome and host factors, particularly TMPRSS2.
Collapse
|
48
|
Zhao L, Li S, Zhong W. Mechanism of Action of Small-Molecule Agents in Ongoing Clinical Trials for SARS-CoV-2: A Review. Front Pharmacol 2022; 13:840639. [PMID: 35281901 PMCID: PMC8916227 DOI: 10.3389/fphar.2022.840639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Since the first reports from December 2019, COVID-19 caused an overwhelming global pandemic that has affected 223 countries, seriously endangering public health and creating an urgent need for effective drugs to treat SARS-CoV-2 infection. Currently, there is a lack of safe, effective, and specific therapeutic drugs for COVID-19, with mainly supportive and symptomatic treatments being administered to patients. The preferred option for responding to an outbreak of acute infectious disease is through drug repurposing, saving valuable time that would otherwise be lost in preclinical and clinical research, hastening clinical introduction, and lowering treatment costs. Alternatively, researchers seek to design and discover novel small-molecule candidate drugs targeting the key proteins in the life cycle of SARS-CoV-2 through an in-depth study of the infection mechanism, thus obtaining a number of candidate compounds with favorable antiviral effects in preclinical and clinical settings. There is an urgent need to further elucidate the efficacy and mechanism of action of potential anti-SARS-CoV-2 small-molecule drugs. Herein, we review the candidate small-molecule anti-SARS-CoV-2 drugs in ongoing clinical trials, with a major focus on their mechanisms of action in an attempt to provide useful insight for further research and development of small-molecule compounds against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Sunho Pharmaceutical Co., Ltd., Beijing, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
49
|
In Silico Molecular Characterization of Human TMPRSS2 Protease Polymorphic Variants and Associated SARS-CoV-2 Susceptibility. Life (Basel) 2022; 12:life12020231. [PMID: 35207518 PMCID: PMC8876804 DOI: 10.3390/life12020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic continues to challenge health care systems worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the cause of global pandemic. Type 2 transmembrane serine protease (TMPRSS2) is important in the cell entry and spread of SARS-CoV-2 and plays a crucial role in the proteolytic cleavage of SARS-CoV-2 spike (S) glycoprotein. Here, using reported structural data, we analyzed the molecular complex of TMPRSS2 and the S glycoprotein and further examined intermolecular interactions of natural TMPRSS2 polymorphic variants. We identified several TMPRSS2 variants that could possibly alter host susceptibility to the SARS-CoV-2 infection. Molecular docking analysis revealed that G462D/G462S variants were predicted to be protective variants, whereas Q438E and S339F variants were predicted to increase susceptibility. In addition, we examined intermolecular interactions between TMPRSS2 and its two potential serine protease inhibitors, camostat mesylate and nafamostat. Further, we investigated the effect of TMPRSS2 variants on these interactions. Our structural analysis revealed that G462D, C297S and S460R variants had possibly altered the interactions with the protease inhibitors. Our results identified important TMPRSS2 variations that could be useful to develop high affinity and personalized drugs for treating COVID-19 patients.
Collapse
|
50
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|