1
|
Mehl F, Sánchez-Archidona AR, Meitil I, Gerl M, Cruciani-Guglielmacci C, Wigger L, Le Stunff H, Meneyrol K, Lallement J, Denom J, Klose C, Simons K, Pagni M, Magnan C, Ibberson M, Thorens B. A multiorgan map of metabolic, signaling, and inflammatory pathways that coordinately control fasting glycemia in mice. iScience 2024; 27:111134. [PMID: 39507247 PMCID: PMC11539597 DOI: 10.1016/j.isci.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
To identify the pathways that are coordinately regulated in pancreatic β cells, muscle, liver, and fat to control fasting glycemia we fed C57Bl/6, DBA/2, and Balb/c mice a regular chow or a high fat diet for 5, 13, and 33 days. Physiological, transcriptomic and lipidomic data were used in a data fusion approach to identify organ-specific pathways linked to fasting glycemia across all conditions investigated. In pancreatic islets, constant insulinemia despite higher glycemic levels was associated with reduced expression of hormone and neurotransmitter receptors, OXPHOS, cadherins, integrins, and gap junction mRNAs. Higher glycemia and insulin resistance were associated, in muscle, with decreased insulin signaling, glycolytic, Krebs' cycle, OXPHOS, and endo/exocytosis mRNAs; in hepatocytes, with reduced insulin signaling, branched chain amino acid catabolism and OXPHOS mRNAs; in adipose tissue, with increased innate immunity and lipid catabolism mRNAs. These data provide a resource for further studies of interorgan communication in glucose homeostasis.
Collapse
Affiliation(s)
- Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Ana Rodríguez Sánchez-Archidona
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ida Meitil
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | | | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Hervé Le Stunff
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Kelly Meneyrol
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | - Jessica Denom
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | | | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Bernard Thorens
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Rajkumari N, Shalayel I, Tubbs E, Perrier Q, Chabert C, Lablanche S, Benhamou PY, Arnol C, Gredy L, Divoux T, Stephan O, Zebda A, van der Sanden B. Matrix design for optimal pancreatic β cells transplantation. BIOMATERIALS ADVANCES 2024; 164:213980. [PMID: 39126900 DOI: 10.1016/j.bioadv.2024.213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
New therapeutic approaches to treat type 1 diabetes mellitus relies on pancreatic islet transplantation. Here, developing immuno-isolation strategies is essential to eliminate the need for systemic immunosuppression after pancreatic islet grafts. A solution is the macro-encapsulation of grafts in semipermeable matrixes with a double function: separating islets from host immune cells and facilitating the diffusion of insulin, glucose, and other metabolites. This study aims to synthesize and characterize different types of gelatin-collagen matrixes to prepare a macro-encapsulation device for pancreatic islets that fulfill these functions. While natural polymers exhibit superior biocompatibility compared to synthetic ones, their mechanical properties are challenging to reproduce. To address this issue, we conducted a comparative analysis between photo-crosslinked gelatin matrixes and chemically crosslinked collagen matrixes. We show that the different crosslinkers and polymerization methods influence the survival and glucose-stimulated insulin production of pancreatic β cells (INS1) in vitro, as well as the in vitro and in vivo stability of the matrix and the immuno-isolation in vivo. Among the matrixes, the stiff multilayer GelMA matrixes (8.5 kPa), fabricated by digital light processing, were the best suited for pancreatic β cells macro-encapsulation regarding these parameters. Within the alveoli of this matrix, pancreatic β cells spontaneously formed aggregates.
Collapse
Affiliation(s)
- Nikita Rajkumari
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Nantes University, CRCI2NA, INSERM 1307, 44000 Nantes, France.
| | - Ibrahim Shalayel
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Emily Tubbs
- Grenoble Alpes University, CEA, INSERM, IRIG, 38000 Grenoble, Biomics, France.
| | - Quentin Perrier
- Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Department of Pharmacy, LBFA U1055, Grenoble, France.
| | - Clovis Chabert
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France.
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Capucine Arnol
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France
| | - Laetitia Gredy
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Olivier Stephan
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Abdelkader Zebda
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Boudewijn van der Sanden
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| |
Collapse
|
3
|
Langlois A, Pinget M, Kessler L, Bouzakri K. Islet Transplantation: Current Limitations and Challenges for Successful Outcomes. Cells 2024; 13:1783. [PMID: 39513890 PMCID: PMC11544954 DOI: 10.3390/cells13211783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.
Collapse
Affiliation(s)
- Allan Langlois
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Michel Pinget
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Laurence Kessler
- Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, 67200 Strasbourg, France;
- Inserm UMR 1260, Nanomédicine Regenerative, University of Strasbourg, 67085 Strasbourg, France
| | - Karim Bouzakri
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| |
Collapse
|
4
|
Johansen CG, Holcomb K, Sela A, Morrall S, Park D, Farnsworth NL. Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca 2+ dynamics. Matrix Biol Plus 2024; 22:100148. [PMID: 38803329 PMCID: PMC11128509 DOI: 10.1016/j.mbplus.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca2+ dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca2+ influx and altered Ca2+ dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the peri-islet ECM leads to increased tissue stiffness and islet dysfunction.
Collapse
Affiliation(s)
- Chelsea G Johansen
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Keifer Holcomb
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Amit Sela
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Morrall
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nikki L Farnsworth
- Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences & Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
5
|
Nie X, Shi Y, Wang L, Abudureheman W, Yang J, Lin C. Study on the mechanism of magnesium calcium alloys/mineralized collagen composites mediating macrophage polarization to promote bone repair. Heliyon 2024; 10:e30279. [PMID: 38711636 PMCID: PMC11070863 DOI: 10.1016/j.heliyon.2024.e30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2β1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.
Collapse
Affiliation(s)
- Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Lei Wang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Wumidan Abudureheman
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Jingxin Yang
- Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing Union University, No.4 Gongti North Road, Chaoyang District, Beijing, 100027, PR China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| |
Collapse
|
6
|
Lundkvist P, Grönberg A, Carlsson PO, Ludvigsson J, Espes D. Predictive biomarkers of rapidly developing insulin deficiency in children with type 1 diabetes. BMJ Open Diabetes Res Care 2024; 12:e003924. [PMID: 38413173 PMCID: PMC10900379 DOI: 10.1136/bmjdrc-2023-003924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION The rate of progression to complete insulin deficiency varies greatly in type 1 diabetes. This constitutes a challenge, especially when randomizing patients in intervention trials aiming to preserve beta cell function. This study aimed to identify biomarkers predictive of either a rapid or slow disease progression in children with new-onset type 1 diabetes. RESEARCH DESIGN AND METHODS A retrospective, longitudinal cohort study of children (<18 years) with type 1 diabetes (N=46) was included at diagnosis and followed until complete insulinopenia (C-peptide <0.03 nmol/L). Children were grouped into rapid progressors (n=20, loss within 30 months) and slow progressors (n=26). A sex-matched control group of healthy children (N=45) of similar age was included for comparison. Multiple biomarkers were assessed by proximity extension assay (PEA) at baseline and follow-up. RESULTS At baseline, rapid progressors had lower C-peptide and higher autoantibody levels than slow. Three biomarkers were higher in the rapid group: carbonic anhydrase 9, corticosteroid 11-beta-dehydrogenase isozyme 1, and tumor necrosis factor receptor superfamily member 21. In a linear mixed model, 25 proteins changed over time, irrespective of group. One protein, a coxsackievirus B-adenovirus receptor (CAR) increased over time in rapid progressors. Eighty-one proteins differed between type 1 diabetes and healthy controls. Principal component analysis could not distinguish between rapid, slow, and healthy controls. CONCLUSIONS Despite differences in individual proteins, the combination of multiple biomarkers analyzed by PEA could not distinguish the rate of progression in children with new-onset type 1 diabetes. Only one marker was altered significantly when considering both time and group effects, namely CAR, which increased significantly over time in the rapid group. Nevertheless, we did find some markers that may be useful in predicting the decline of the C-peptide. Moreover, these could potentially be important for understanding type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- Per Lundkvist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Grönberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johnny Ludvigsson
- Department of Biomedical and Clinical Sciences, Linköping University, Crown Princess Victoria Children's Hospital and Division of Pediatrics, Linköping, Sweden
| | - Daniel Espes
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ho KH, Gu G, Kaverina I. Preparation of Whole-mount Mouse Islets on Vascular Extracellular Matrix for Live Islet Cell Microscopy. Bio Protoc 2023; 13:e4868. [PMID: 37969764 PMCID: PMC10632159 DOI: 10.21769/bioprotoc.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 11/17/2023] Open
Abstract
Pancreatic islet β cells preferentially secrete insulin toward the plasma membrane, making contact with the capillary extracellular matrix (ECM). Isolated islets separated from the exocrine acinar cells are the best system for cell biology studies of primary β cells, whereas isolated islets lose their capillary network during ex vivo culture. Providing the appropriate extracellular signaling by attaching islets to vascular ECM-coated surfaces can restore the polarized insulin secretion toward the ECM. The guided secretion toward ECM-coated glass coverslips provides a good model for recording insulin secretion in real time to study its regulation. Additionally, β cells attached to the ECM-coated coverslips are suitable for confocal live imaging of subcellular components including adhesion molecules, cytoskeleton, and ion channels. This procedure is also compatible for total internal reflection fluorescence (TIRF) microscopy, which provides optimal signal-to-noise ratio and high spatial precision of structures close to the plasma membrane. In this article, we describe the optimized protocol for vascular ECM-coating of glass coverslips and the process of attachment of isolated mouse islets on the coverslip. This preparation is compatible with any high-resolution microscopy of live primary β cells. Key features • Optimized coating procedure to attach isolated islets, compatible for both confocal and TIRF microscopy. • The ECM-coated glass coverslip functions as the artificial capillary surface to guide secretion toward the coated surface for optimal imaging of secretion events. • Shows the process of islets attachment to the ECM-coated surface in a 6-day ex vivo culture.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Bai B, Gao K, Zhang K, Liu L, Chen X, Zhang Q. Pathological mechanisms of type 1 diabetes in children: investigation of the exosomal protein expression profile. Front Endocrinol (Lausanne) 2023; 14:1271929. [PMID: 37886648 PMCID: PMC10599151 DOI: 10.3389/fendo.2023.1271929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Type 1 diabetes (T1D) is a serious autoimmune disease with high morbidity and mortality. Early diagnosis and treatment remain unsatisfactory. While the potential for development of T1D biomarkers in circulating exosomes has attracted interest, progress has been limited. This study endeavors to explore the molecular dynamics of plasma exosome proteins in pediatric T1D patients and potential mechanisms correlated with T1D progression. Methods Liquid chromatography-tandem mass spectrometry with tandem mass tag (TMT)6 labeling was used to quantify exosomal protein expression profiles in 12 healthy controls and 24 T1D patients stratified by age (≤ 6 years old and > 6 years old) and glycated hemoglobin (HbA1c) levels (> 7% or > 7%). Integrated bioinformatics analysis was employed to decipher the functions of differentially expressed proteins, and Western blotting was used for validation of selected proteins' expression levels. Results We identified 1035 differentially expressed proteins (fold change > 1.3) between the T1D patients and healthy controls: 558 in those ≤ 6-year-old and 588 in those > 6-year-old. In those who reached an HbA1c level < 7% following 3 or more months of insulin therapy, the expression levels of most altered proteins in both T1D age groups returned to levels comparable to those in the healthy control group. Bioinformatics analysis revealed that differentially expressed exosome proteins are primarily related to immune function, hemostasis, cellular stress responses, and matrix organization. Western blotting confirmed the alterations in RAB40A, SEMA6D, COL6A5, and TTR proteins. Discussion This study delivers valuable insights into the fundamental molecular mechanisms contributing to T1D pathology. Moreover, it proposes potential therapeutic targets for improved T1D management.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Kang Gao
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lingyun Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaobo Chen
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
9
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Brennecke BR, Yang US, Liu S, Ilerisoy FS, Ilerisoy BN, Joglekar A, Kim LB, Peachee SJ, Richtsmeier SL, Stephens SB, Sander EA, Strack S, Moninger TO, Ankrum JA, Imai Y. Utilization of commercial collagens for preparing well-differentiated human beta cells for confocal microscopy. Front Endocrinol (Lausanne) 2023; 14:1187216. [PMID: 37305047 PMCID: PMC10248405 DOI: 10.3389/fendo.2023.1187216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction With technical advances, confocal and super-resolution microscopy have become powerful tools to dissect cellular pathophysiology. Cell attachment to glass surfaces compatible with advanced imaging is critical prerequisite but remains a considerable challenge for human beta cells. Recently, Phelps et al. reported that human beta cells plated on type IV collagen (Col IV) and cultured in neuronal medium preserve beta cell characteristics. Methods We examined human islet cells plated on two commercial sources of Col IV (C6745 and C5533) and type V collagen (Col V) for differences in cell morphology by confocal microscopy and secretory function by glucose-stimulated insulin secretion (GSIS). Collagens were authenticated by mass spectrometry and fluorescent collagen-binding adhesion protein CNA35. Results All three preparations allowed attachment of beta cells with high nuclear localization of NKX6.1, indicating a well-differentiated status. All collagen preparations supported robust GSIS. However, the morphology of islet cells differed between the 3 preparations. C5533 showed preferable features as an imaging platform with the greatest cell spread and limited stacking of cells followed by Col V and C6745. A significant difference in attachment behavior of C6745 was attributed to the low collagen contents of this preparation indicating importance of authentication of coating material. Human islet cells plated on C5533 showed dynamic changes in mitochondria and lipid droplets (LDs) in response to an uncoupling agent 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP) or high glucose + oleic acid. Discussion An authenticated preparation of Col IV provides a simple platform to apply advanced imaging for studies of human islet cell function and morphology.
Collapse
Affiliation(s)
- Brianna R. Brennecke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - USeong Yang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Fatma S. Ilerisoy
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Beyza N. Ilerisoy
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Aditya Joglekar
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Lucy B. Kim
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Spencer J. Peachee
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Syreine L. Richtsmeier
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Samuel B. Stephens
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Thomas O. Moninger
- Central Microscopy Research Facility, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - James A. Ankrum
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Medical Service, Endocrinology Section, Iowa City Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
11
|
Fonseca LM, Lebreton F, Wassmer CH, Berishvili E. Generation of Insulin-Producing Multicellular Organoids. Methods Mol Biol 2022; 2592:37-60. [PMID: 36507984 DOI: 10.1007/978-1-0716-2807-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical islet transplantation (CIT) is an established noninvasive treatment for type I diabetes (T1D) and has demonstrated improved glycemic control, preventing the occurrence of severe hypoglycemia. However, CIT has several limitations, such as the need for multiple donors, lifelong immunosuppression, and suboptimal long-term graft function. Most of the transplanted islets are lost due to inflammation, ischemic damage, and delayed revascularization.Generation of organoids have gained increasing interest in regenerative medicine in recent years. In the context of beta-cell replacement, it offers a possibility to address limitations of CIT by allowing to produce uniform organoids from single or multiple cell types facilitating revascularization and anti-inflammatory and/or immunomodulatory protection. We have previously generated multicellular insulin-secreting organoids composed of islet cells and the human amniotic epithelial cells (hAECs). These 3D insulin-secreting structures demonstrated improved viability and function both in vitro and in vivo. Here we detail a stepwise methodology to generate insulin-secreting organoids using two different methods. In addition, quality assessment in vitro tests are also described.
Collapse
Affiliation(s)
- Laura Mar Fonseca
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Fanny Lebreton
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland.,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | | | - Ekaterine Berishvili
- Laboratory of Tissue Engineering and Organ Regeneration, Department of Surgery, University of Geneva, Geneva, Switzerland. .,Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland. .,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland. .,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
| |
Collapse
|
12
|
Barillaro M, Schuurman M, Wang R. β1-Integrin-A Key Player in Controlling Pancreatic Beta-Cell Insulin Secretion via Interplay With SNARE Proteins. Endocrinology 2022; 164:6772824. [PMID: 36282882 DOI: 10.1210/endocr/bqac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/16/2023]
Abstract
Shortcomings in cell-based therapies for patients with diabetes have been revealed to be, in part, a result of an improper extracellular matrix (ECM) environment. In vivo, pancreatic islets are emersed in a diverse ECM that provides physical support and is crucial for healthy function. β1-Integrin receptors have been determined to be responsible for modulation of beneficial interactions with ECM proteins influencing beta-cell development, proliferation, maturation, and function. β1-Integrin signaling has been demonstrated to augment insulin secretion by impacting the actin cytoskeleton via activation of focal adhesion kinase and downstream signaling pathways. In other secretory cells, evidence of a bidirectional relationship between integrins and exocytotic machinery has been demonstrated, and, thus, this relationship could be present in pancreatic beta cells. In this review, we will discuss the role of ECM-β1-integrin interplay with exocytotic proteins in controlling pancreatic beta-cell insulin secretion through their dynamic and unique signaling pathway.
Collapse
Affiliation(s)
- Malina Barillaro
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Meg Schuurman
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Medicine, University of Western Ontario, London, ON N6C 2V5, Canada
| |
Collapse
|
13
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Wang Y, Yang D, Zhu R, Dai F, Yuan M, Zhang L, Zheng Y, Liu S, Yang X, Cheng Y. YY1/ITGA3 pathway may affect trophoblastic cells migration and invasion ability. J Reprod Immunol 2022; 153:103666. [DOI: 10.1016/j.jri.2022.103666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
|
15
|
Barillaro M, Schuurman M, Wang R. Collagen IV-β1-Integrin Influences INS-1 Cell Insulin Secretion via Enhanced SNARE Protein Expression. Front Cell Dev Biol 2022; 10:894422. [PMID: 35573663 PMCID: PMC9096118 DOI: 10.3389/fcell.2022.894422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
β1-integrin is a key receptor that regulates cell-ECM interactions and is important in maintaining mature beta-cell functions, including insulin secretion. However, there is little reported about the relationship between ECM-β1-integrin interactions and exocytotic proteins involved in glucose-stimulated insulin secretion (GSIS). This study examined the effect of collagen IV-β1-integrin on exocytotic proteins (Munc18-1, Snap25, and Vamp2) involved in insulin secretion using rat insulinoma (INS-1) cell line. Cells cultured on collagen IV (COL IV) had promoted INS-1 cell focal adhesions and GSIS. These cells also displayed changes in levels and localization of β1-integrin associated downstream signals and exocytotic proteins involved in insulin secretion. Antibody blocking of β1-integrin on INS-1 cells cultured on COL IV showed significantly reduced cell adhesion, spreading and insulin secretion along with reduced exocytotic protein levels. Blocking of β1-integrin additionally influenced the cellular localization of exocytotic proteins during the time of GSIS. These results indicate that specific collagen IV-β1-integrin interactions are critical for proper beta-cell insulin secretion.
Collapse
Affiliation(s)
- Malina Barillaro
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Meg Schuurman
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Rennian Wang
- Children’s Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- *Correspondence: Rennian Wang,
| |
Collapse
|
16
|
Noordstra I, van den Berg CM, Boot FWJ, Katrukha EA, Yu KL, Tas RP, Portegies S, Viergever BJ, de Graaff E, Hoogenraad CC, de Koning EJP, Carlotti F, Kapitein LC, Akhmanova A. Organization and dynamics of the cortical complexes controlling insulin secretion in β-cells. J Cell Sci 2022; 135:274234. [PMID: 35006275 PMCID: PMC8918791 DOI: 10.1242/jcs.259430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5β (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid–liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release. Summary: Characterization of the composition of cortical complexes controlling insulin secretion, showing that their dynamics is inconsistent with assembly through liquid–liquid phase separation.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fransje W J Boot
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ka Lou Yu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bastiaan J Viergever
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther de Graaff
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Schiesser JV, Loudovaris T, Thomas HE, Elefanty AG, Stanley EG. Integrin αvβ5 heterodimer is a specific marker of human pancreatic beta cells. Sci Rep 2021; 11:8315. [PMID: 33859325 PMCID: PMC8050092 DOI: 10.1038/s41598-021-87805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
The identification of cell surface markers specific to pancreatic beta cells is important for both the study of islet biology and for investigating the pathophysiology of diseases in which this cell type is lost or damaged. Following analysis of publicly available RNAseq data, we identified specific integrin subunits, integrin αv and integrin β5, that were expressed in beta cells. This finding was further elaborated using immunofluorescence analysis of histological sections derived from donor human pancreas. Despite the broad expression of specific integrin subunits, we found that expression of integrin αvβ5 heterodimers was restricted to beta cells and that this complex persisted in islet remnants of some type 1 diabetic individuals from which insulin expression had been lost. This study identifies αvβ5 heterodimers as a novel cell surface marker of human pancreatic beta cells, a finding that will aid in the identification and characterisation of this important cell type.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia. .,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, 3052, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
18
|
Santini-González J, Simonovich JA, Castro-Gutiérrez R, González-Vargas Y, Abuid NJ, Stabler CL, Russ HA, Phelps EA. In vitro generation of peri-islet basement membrane-like structures. Biomaterials 2021; 273:120808. [PMID: 33895491 DOI: 10.1016/j.biomaterials.2021.120808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
The peri-islet extracellular matrix (ECM) is a key component of the microenvironmental niche surrounding pancreatic islets of Langerhans. The cell anchorage and signaling provided by the peri-islet ECM is critical for optimum beta cell glucose responsiveness, but islets lose this important native ECM when isolated for transplantation or in vitro studies. Here, we established a method to construct a peri-islet ECM on the surfaces of isolated rat and human islets by the co-assembly from solution of laminin, nidogen and collagen IV proteins. Successful deposition of contiguous peri-islet ECM networks was confirmed by immunofluorescence, western blot, and transmission electron microscopy. The ECM coatings were disrupted when assembly occurred in Ca2+/Mg2+-free conditions. As laminin network polymerization is divalent cation dependent, our data are consistent with receptor-driven ordered ECM network formation rather than passive protein adsorption. To further illustrate the utility of ECM coatings, we employed stem cell derived beta-like cell clusters (sBCs) as a renewable source of functional beta cells for cell replacement therapy. We observe that sBC pseudo-islets lack an endogenous peri-islet ECM, but successfully applied our approach to construct a de novo ECM coating on the surfaces of sBCs.
Collapse
Affiliation(s)
- Jorge Santini-González
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jennifer A Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Roberto Castro-Gutiérrez
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yarelis González-Vargas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Puerto Rico-Mayagüez Campus, Mayagüez, PR, USA
| | - Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Nakayama-Iwatsuki K, Yanagisawa K, Tanaka D, Hirabayashi M, Negishi J, Hochi S. Acellular matrix derived from rat liver improves the functionality of rat pancreatic islets before or after vitrification. Cryobiology 2021; 100:90-95. [PMID: 33757759 DOI: 10.1016/j.cryobiol.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Cryopreservation of pancreatic islets can overcome the severe shortage of islet donors in clinical islet transplantation, but the impaired quality of post-warm islets need improvement. This present study was conducted to investigate whether the pre- or post-treatment of rat islets with liver decellularized matrix (LDM) for vitrification can improve the viability (FDA/PI double staining) and the functionality (glucose-stimulated insulin secretion [GSIS] assay). Rat LDM was prepared by high-hydrostatic pressure, lyophilization, and re-suspension in saline. Co-culturing of isolated islets with 0 (control), 30, 60, or 90 μg/ml LDM for 24 h resulted in the comparable viability among the 4 groups (98.7-99.6%) and the higher insulin secretion potential in 30 and 60 μg/ml LDM treatment groups than the control group (stimulation index [SI]: 12.1 and 12.7, respectively, vs. 6.5 in the control group, P < 0.05). When the islets co-cultured with 60 μg/ml LDM were vitrified-warmed on a nylon mesh cryodevice, the viability and the GSIS of the post-warm islets were not improved. Post-treatment of vitrified-warmed islets with 60 μg/ml LDM during the recovery culture for 12 h resulted in the comparable clearance of degenerating cell debris from the post-warm islets, while their insulin secretion potential was improved (SI: 5.0 vs. 3.5 in the control group, P < 0.05). These findings indicate that the components in LDM can enhance the insulin secretion potential of rat islets suffering damage by enzymatic stress during the islet isolation process or by cryoinjuries during the vitrification-warming process.
Collapse
Affiliation(s)
- Kenyu Nakayama-Iwatsuki
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kotaro Yanagisawa
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Dan Tanaka
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Masumi Hirabayashi
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8787, Japan
| | - Jun Negishi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
20
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
21
|
Tan RP, Hallahan N, Kosobrodova E, Michael PL, Wei F, Santos M, Lam YT, Chan AHP, Xiao Y, Bilek MMM, Thorn P, Wise SG. Bioactivation of Encapsulation Membranes Reduces Fibrosis and Enhances Cell Survival. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56908-56923. [PMID: 33314916 DOI: 10.1021/acsami.0c20096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulation devices are an emerging barrier technology designed to prevent the immunorejection of replacement cells in regenerative therapies for intractable diseases. However, traditional polymers used in current devices are poor substrates for cell attachment and induce fibrosis upon implantation, impacting long-term therapeutic cell viability. Bioactivation of polymer surfaces improves local host responses to materials, and here we make the first step toward demonstrating the utility of this approach to improve cell survival within encapsulation implants. Using therapeutic islet cells as an exemplar cell therapy, we show that internal surface coatings improve islet cell attachment and viability, while distinct external coatings modulate local foreign body responses. Using plasma surface functionalization (plasma immersion ion implantation (PIII)), we employ hollow fiber semiporous poly(ether sulfone) (PES) encapsulation membranes and coat the internal surfaces with the extracellular matrix protein fibronectin (FN) to enhance islet cell attachment. Separately, the external fiber surface is coated with the anti-inflammatory cytokine interleukin-4 (IL-4) to polarize local macrophages to an M2 (anti-inflammatory) phenotype, muting the fibrotic response. To demonstrate the power of our approach, bioluminescent murine islet cells were loaded into dual FN/IL-4-coated fibers and evaluated in a mouse back model for 14 days. Dual FN/IL-4 fibers showed striking reductions in immune cell accumulation and elevated levels of the M2 macrophage phenotype, consistent with the suppression of fibrotic encapsulation and enhanced angiogenesis. These changes led to markedly enhanced islet cell survival and importantly to functional integration of the implant with the host vasculature. Dual FN/IL-4 surface coatings drive multifaceted improvements in islet cell survival and function, with significant implications for improving clinical translation of therapeutic cell-containing macroencapsulation implants.
Collapse
Affiliation(s)
- Richard P Tan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Nicole Hallahan
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Praveesuda L Michael
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Miguel Santos
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Yuen Ting Lam
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, United States
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4000, Australia
| | - Marcela M M Bilek
- Applied Plasma and Physics, A28, School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| | - Steven G Wise
- Department of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia
| |
Collapse
|
22
|
Arous C, Mizgier ML, Rickenbach K, Pinget M, Bouzakri K, Wehrle-Haller B. Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells. J Biol Chem 2020; 295:16510-16528. [PMID: 32934005 PMCID: PMC7864053 DOI: 10.1074/jbc.ra120.012957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/09/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2-AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)-dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.
| | - Maria Luisa Mizgier
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Katharina Rickenbach
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Michel Pinget
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Karim Bouzakri
- UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
24
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Stephens CH, Morrison RA, McLaughlin M, Orr K, Tersey SA, Scott-Moncrieff JC, Mirmira RG, Considine RV, Voytik-Harbin S. Oligomeric collagen as an encapsulation material for islet/β-cell replacement: effect of islet source, dose, implant site, and administration format. Am J Physiol Endocrinol Metab 2020; 319:E388-E400. [PMID: 32543944 PMCID: PMC7473915 DOI: 10.1152/ajpendo.00066.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Replacement of islets/β-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days. Here, we further evaluated this macroencapsulation strategy, defining effects of islet source (allogeneic and xenogeneic) and dose (500 and 800 islets), injection microenvironment (subcutaneous and intraperitoneal), and macrocapsule format (injectable and preformed implantable) on islet functional longevity and recipient immune response. We found that xenogeneic rat islets functioned similarly to or better than allogeneic mouse islets, with only modest improvements in longevity noted with dosage. Additionally, subcutaneous injection led to more consistent encapsulation outcomes along with improved islet health and longevity, compared with intraperitoneal administration, whereas no significant differences were observed between subcutaneous injectable and preformed implantable formats. Collectively, these results document the benefits of incorporating natural collagen for islet/β-cell replacement therapies.
Collapse
Affiliation(s)
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Madeline McLaughlin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Kara Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
26
|
Affiliation(s)
- Juergen Eckel
- Institute for Clinical Diabetology German Diabetes Center Düsseldorf Germany
| |
Collapse
|
27
|
Møldrup A, Lindberg MN, Galsgaard ED, Henriksen U, Dalgaard LT, Nielsen JH. Regulation of integrin α6A by lactogenic hormones in rat pancreatic β-cells: Implications for the physiological adaptation to pregnancy. Acta Physiol (Oxf) 2020; 229:e13454. [PMID: 32056357 DOI: 10.1111/apha.13454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
AIM During pregnancy, the maternal β-cell mass is increased in order to adapt to the physiological changes in insulin demand. Lactogenic hormones stimulate rodent β-cell attachment and proliferation in vitro. The aim of this study was to identify adhesion molecules involved in expansion of the β-cell mass during pregnancy in the rat. METHODS Quantitative RT-PCR was used to evaluate the expression of several integrins and laminins in isolated neonatal rat islets in response to growth hormone (GH) and prolactin (PRL) treatment. Double-immunofluorescence staining of rat pancreas was used to localize the expression of integrin α6β1. β-cell proliferation was evaluated by incorporation of bromodeoxyuridine (BrdU). The role of STAT5 phosphorylation was tested by addition of STAT5 mutants. RESULTS We found that the mRNA level of integrin-α6A, was upregulated 2.5-fold by PRL or GH. During pregnancy, a biphasic 3.4-4.5-fold increase of integrin-α6A and B mRNA levels was detected. A disintegrin peptide (DP) reduced the hormone-stimulated mitotic activity in neonatal rat β-cells from 2.9 ± 0.4-fold to 1.3 ± 0.3-fold. The hormone-induced expression of α6β1 integrin was shown to be mediated via STAT5 as a dominant negative (DN) mutant prevented and a constitutive active (CA) mutant augmented the hGH-stimulated expression. The DP was found to inhibit hGH-induced transactivation of the PRL receptor promoter 1A and reduce the hGH-induced phosphorylation of STAT5. CONCLUSION These results show that integrin-α6 in β-cells is upregulated by lactogenic hormones and is required but not sufficient for the expansion of the β-cell mass in pregnancy in the rat, which may have implications for the understanding and treatment of gestational diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Ulrik Henriksen
- Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
| | - Louise T. Dalgaard
- Department of Science and Environment Roskilde University Roskilde Denmark
| | | |
Collapse
|
28
|
Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater 2020; 7:53-61. [PMID: 32440359 PMCID: PMC7233620 DOI: 10.1093/rb/rbz033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/25/2019] [Accepted: 09/07/2019] [Indexed: 12/14/2022] Open
Abstract
Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 4′6-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin α2, integrin β1, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway.
Collapse
Affiliation(s)
- Xiaojing Nie
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xirao Sun
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chengyue Wang
- Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jingxin Yang
- College of Robotics, Beijing Union University, Beijing 100000, China
| |
Collapse
|
29
|
Alessandra G, Algerta M, Paola M, Carsten S, Cristina L, Paolo M, Elisa M, Gabriella T, Carla P. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020; 9:E413. [PMID: 32053947 PMCID: PMC7072458 DOI: 10.3390/cells9020413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Embryonic and pluripotent stem cells hold great promise in generating β-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these β-like cells still fail to fully mirror the adult β-cell physiology. For their proper growth and functioning, β-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where β-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in β-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that β-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the β-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of β-cell differentiation capacity in vitro.
Collapse
Affiliation(s)
- Galli Alessandra
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marku Algerta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marciani Paola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Schulte Carsten
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lenardi Cristina
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Milani Paolo
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tedeschi Gabriella
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Perego Carla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
30
|
Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, Ma L, Chen D, Kanaporis G, Wang J, Li L, Cheng T, Wang Y, Wu C, Xiao G. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun 2020; 11:484. [PMID: 31980627 PMCID: PMC6981167 DOI: 10.1038/s41467-019-14186-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
β-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal region, binds to and stabilizes MafA, which activates insulin expression. Kindlin-2 loss impairs insulin secretion in primary human and mouse islets in vitro and in mice by reducing, at least in part, Ca2+ release in β-cells. Kindlin-2 loss activates GSK-3β and downregulates β-catenin, leading to reduced β-cell proliferation and mass. Kindlin-2 loss reduces the percentage of β-cells and concomitantly increases that of α-cells during early pancreatic development. Genetic activation of β-catenin in β-cells restores the diabetes-like phenotypes induced by Kindlin-2 loss. Finally, the inducible deletion of β-cell Kindlin-2 causes diabetic phenotypes in adult mice. Collectively, our results establish an important function of Kindlin-2 and provide a potential therapeutic target for diabetes. Beta cell dysfunction and reduction in beta cell mass are hallmark events in the pathogenesis of diabetes mellitus. We identify focal adhesion protein Kindlin-2 as a key factor that controls insulin synthesis and secretion and beta cell mass by modulating MafA and beta-catenin proteins in pancreatic beta cells.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chuanju Liu
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Qinnan Yan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Liting Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Giedrius Kanaporis
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Junqi Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and Nankai University College of Pharmacy, 300071, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Yong Wang
- UVA Islet Microfluidic Laboratory, Department of Surgery, the University of Virginia, Charlottesville, VA, 22908, USA
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China. .,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
31
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
32
|
Li Y, Li BS, Liu C, Hong SS, Min J, Hu M, Tang JM, Li ST, Wang TT, Zhou HX, Hong L. Effect of integrin β1 in the treatment of stress urinary incontinence by electrical stimulation. Mol Med Rep 2019; 19:4727-4734. [PMID: 31059065 PMCID: PMC6522829 DOI: 10.3892/mmr.2019.10145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/02/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of integrin β1 in the treatment of stress urinary incontinence (SUI) by electrical stimulation, and the underlying mechanisms by which electrical stimulation regulates the collagen metabolism of female vaginal wall fibroblasts (FVWFs). FVWFs obtained from the vaginal wall tissue of patients with (Ingelman-Sundberg scale; grade II, n=8; grade III, n=10) or without (n=8) SUI during gynecological operations were isolated by enzymatic digestion and subsequently identified by immunocytochemistry. Following this, cultured FVWFs were treated with an inhibitor of integrin β1, recombinant human integrin β1 and electrical stimulation (100 mv/mm, 2 h, 20 Hz), followed by total mRNA and protein extraction. mRNA and protein expression levels of integrin β1, transforming growth factor (TGF)-β1 and collagen (COL) I and III in FVWFs were quantified by reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis respectively. Integrin β1, TGF-β1 and COL I and III expression levels were decreased in patients with SUI compared with healthy controls, and the grade III group had lower levels than the grade II group. Following electrical stimulation treatment, the expression levels of TGF-β1, COL I and III were enhanced in the grade II group, but not in the grade III group. Nevertheless, the inhibitor of integrin β1 reduced the protective effect of electrical stimulation in the grade II group. In addition, electrical stimulation combined with recombinant human integrin β1 could also protect cells from SUI in the grade III group. The present study provides evidence for the increased degradation of the extracellular matrix and integrin β1 in the vaginal wall tissues of patients with SUI, and the protective effect of electrical stimulation against SUI via integrin β1. These results provide a novel mechanism for the treatment of SUI using electrical stimulation.
Collapse
Affiliation(s)
- Yang Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha-Sha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Su-Ting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting-Ting Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui-Xin Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
33
|
Mizukami Y, Takahashi Y, Shimizu K, Konishi S, Takakura Y, Nishikawa M. Regulation of the Distribution of Cells in Mixed Spheroids by Altering Migration Direction. Tissue Eng Part A 2019; 25:390-398. [DOI: 10.1089/ten.tea.2018.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazunori Shimizu
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Maikiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
34
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
35
|
Olaniru OE, Persaud SJ. Identifying novel therapeutic targets for diabetes through improved understanding of islet adhesion receptors. Curr Opin Pharmacol 2018; 43:27-33. [DOI: 10.1016/j.coph.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
|
36
|
Harata M, Liu S, Promes JA, Burand AJ, Ankrum JA, Imai Y. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiol Rep 2018; 6:e13907. [PMID: 30370689 PMCID: PMC6204361 DOI: 10.14814/phy2.13907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Rodent islets are widely used to study the pathophysiology of beta cells and islet function, however, structural and functional differences exist between human and rodent islets, highlighting the need for human islet studies. Human islets are highly variable, deteriorate during culture, and are difficult to genetically modify, making mechanistic studies difficult to conduct and reproduce. To overcome these limitations, we tested whether pseudoislets, created by dissociation and reaggregation of islet cell suspensions, allow for assessment of dynamic islet function after genetic modulation. Characterization of pseudoislets cultured for 1 week revealed better preservation of first-phase glucose-stimulated insulin secretion (GSIS) compared with cultured-intact islets and insulin secretion profiles similar to fresh islets when challenged by glibenclamide and KCl. qPCR indicated that pseudoislets are similar to the original islets for the expression of markers for cell types, beta cell function, and cellular stress with the exception of reduced proinflammatory cytokine genes (IL1B, CCL2, CXCL8). The expression of extracellular matrix markers (ASPN, COL1A1, COL4A1) was also altered in pseudoislets compared with intact islets. Compared with intact islets transduced by adenovirus, pseudoislets transduced by lentivirus showed uniform transduction and better first-phase GSIS. Lastly, the lentiviral-mediated delivery of short hairpin RNA targeting glucokinase (GCK) achieved significant reduction of GCK expression in pseudoislets as well as marked reduction of both first and second phase GSIS without affecting the insulin secretion in response to KCl. Thus, pseudoislets are a tool that enables efficient genetic modulation of human islet cells while preserving insulin secretion.
Collapse
Affiliation(s)
- Mikako Harata
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Siming Liu
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Joseph A. Promes
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| | - Anthony J. Burand
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowa
| | - James A. Ankrum
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
- Department of Biomedical EngineeringUniversity of IowaIowa CityIowa
| | - Yumi Imai
- Department of Internal MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowa
| |
Collapse
|
37
|
Schaschkow A, Sigrist S, Mura C, Dissaux C, Bouzakri K, Lejay A, Bruant-Rodier C, Pinget M, Maillard E. Extra-Hepatic Islet Transplantation: Validation of the h-Omental Matrix Islet filliNG (hOMING) Technique on a Rodent Model Using an Alginate Carrier. Cell Transplant 2018; 27:1289-1293. [PMID: 29996661 PMCID: PMC6434471 DOI: 10.1177/0963689718784873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Following the tremendous development of hydrogels for cell therapy, there is now a growing need for surgical techniques to validate in vivo scaffold benefits for islet transplantation. Therefore, we propose a newly designed surgical procedure involving the injection of hydrogel-embedded pancreatic islets in the omentum, which is considered a favorable environment for cell survival and function. Our technique, called h-Omental Matrix Islet filliNG (hOMING) was designed to test the benefits of hydrogel on islet survival and function in vivo. Islets were implanted in the omentum of diabetic rats using the hOMING technique and alginate as an islet carrier. Blood glucose and C-peptide levels were recorded to assess graft function. After 2 months, grafts were explanted and studied using insulin and vessel staining. All rats that underwent hOMING exhibited graft function characterized by a glycemia decrease and a C-peptidemia increase (P < 0.001 compared with preoperative levels). Furthermore, hOMING appeared to preserve islet morphology and insulin content and allowed the proper revascularization of grafted islets. The results suggest that hOMING is a viable and promising approach to test in vivo the benefits of hydrogel administration for islet transplantation into the omental tissue.
Collapse
Affiliation(s)
- Anaïs Schaschkow
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Séverine Sigrist
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Carole Mura
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Caroline Dissaux
- 2 Service de Chirurgie Plastique et Maxillo-faciale, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| | - Karim Bouzakri
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Anne Lejay
- 3 Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| | - Catherine Bruant-Rodier
- 2 Service de Chirurgie Plastique et Maxillo-faciale, Hôpitaux Universitaires de Strasbourg, Strasbourg Cedex, France
| | - Michel Pinget
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Elisa Maillard
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| |
Collapse
|
38
|
Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans. Sci Rep 2018; 8:9979. [PMID: 29967323 PMCID: PMC6028636 DOI: 10.1038/s41598-018-28019-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ex vivo expansion and differentiation of human pancreatic β-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which β-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that β-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving β-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies.
Collapse
|
39
|
Benomar K, Chetboun M, Espiard S, Jannin A, Le Mapihan K, Gmyr V, Caiazzo R, Torres F, Raverdy V, Bonner C, D'Herbomez M, Pigny P, Noel C, Kerr-Conte J, Pattou F, Vantyghem MC. Purity of islet preparations and 5-year metabolic outcome of allogenic islet transplantation. Am J Transplant 2018; 18:945-951. [PMID: 28941330 DOI: 10.1111/ajt.14514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023]
Abstract
In allogenic islet transplantation (IT), high purity of islet preparations and low contamination by nonislet cells are generally favored. The aim of the present study was to analyze the relation between the purity of transplanted preparations and graft function during 5 years post-IT. Twenty-four patients with type 1 diabetes, followed for 5 years after IT, were enrolled. Metabolic parameters and daily insulin requirements were compared between patients who received islet preparations with a mean purity <50% (LOW purity) or ≥50% (HIGH purity). We also analyzed blood levels of carbohydrate antigen 19-9 (CA 19-9)-a biomarker of pancreatic ductal cells-and glucagon, before and after IT. At 5 years, mean hemoglobin A1c (HbA1c levels) (P = .01) and daily insulin requirements (P = .03) were lower in the LOW purity group. Insulin independence was more frequent in the LOW purity group (P < .05). CA19-9 and glucagon levels increased post-IT (P < .0001) and were inversely correlated with the degree of purity. Overall, our results suggest that nonislet cells have a beneficial effect on long-term islet graft function, possibly through ductal-to-endocrine cell differentiation. ClinicalTrial.gov NCT00446264 and NCT01123187.
Collapse
Affiliation(s)
- K Benomar
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France.,UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - M Chetboun
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - S Espiard
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - A Jannin
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - K Le Mapihan
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France
| | - V Gmyr
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - R Caiazzo
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - F Torres
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - V Raverdy
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - C Bonner
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - M D'Herbomez
- Department of Biology, CHRU Lille, Lille, France
| | - P Pigny
- Department of Biology, CHRU Lille, Lille, France
| | - C Noel
- Department of Nephrology and Transplantation, CHRU Lille, Lille, France
| | - J Kerr-Conte
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| | - F Pattou
- UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France.,Department of Endocrine Surgery, CHRU Lille, Lille, France
| | - M C Vantyghem
- Department of Endocrinology and Metabolism, CHRU Lille, Lille, France.,UMR 1190, Translational Research in Diabetes INSERM, Lille, France.,EGID (European Genomic Institute for Diabetes), Univ Lille, Lille, France
| |
Collapse
|
40
|
Abstract
In this chapter, we describe the methods used to culture mainly rat pancreatic beta cells. We consider necessary to use this approach to get more information about physiological, biophysical, and molecular biology characteristics of primary beta cells. Most of the literature published has been developed in murine and human beta-cell lines. However, there are many differences between tumoral cell lines and native cells because, in contrast to cell lines, primary cells do not divide. Moreover, cell lines can be in various stages of the cell cycle and thus have a different sensitivity to glucose, compared to primary cells. Finally, for these reasons, cell lines can be heterogeneous, as the primary cells are. The main problem in using primary beta cells is that despite that they are a majority within a culture they appear mixed with other kinds of pancreatic islet cells. If one needs to identify single cells or has an only beta-cell composition, it is necessary to process the sample further. For example, one may obtain an enriched population of beta cells using fluorescence-activated cell sorting or identify single cells with the reverse hemolytic plaque assay. The other problem is that cells change with time in culture, becoming old and losing some characteristics, and so must be used preferentially during the first week. The development of human beta-cell cultures is of importance in medicine because we hope one day to be able to transplant viable beta cells to patients with diabetes mellitus type 1.
Collapse
|
41
|
Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|