1
|
Ghovanloo MR, Effraim PR, Tyagi S, Aldrich AM, Cheng X, Yuan JH, Schulman BR, Jacobs DS, Dib-Hajj SD, Waxman SG. TRPM8 Mutations Associated With Persistent Pain After Surgical Injury of Corneal Trigeminal Axons. Neurol Genet 2024; 10:e200206. [PMID: 39555137 PMCID: PMC11567650 DOI: 10.1212/nxg.0000000000200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024]
Abstract
Background and Objectives Despite extensive efforts, the mechanisms underlying pain after axonal injury remain incompletely understood. Pain following corneal refractive surgery offers a valuable human model for investigating trigeminal axonal injury because laser-assisted in situ keratomileusis (LASIK) severs axons of trigeminal ganglion neurons innervating the cornea. While the majority of patients are pain-free shortly after surgery, a minority endure persistent postoperative ocular pain. Through genomic analysis of patients experiencing persistent postoperative ocular pain, we identified rare variants in genes encoding ion channels and receptors, including TRPM8, which codes for the menthol-sensitive and cold-sensing transient receptor potential cation channel. Methods We conducted a profiling of 2 TRPM8 mutant variants, D665N and V915M, which were identified in patients suffering from persistent pain after LASIK surgery. We used patch-clamp and multielectrode array (MEA) recordings to investigate the biophysical and pharmacologic properties of mutant vs wild-type (WT) channels. Results Patch-clamp analysis shows that these mutations shift the activation curves of TRPM8 in a hyperpolarized direction, with this effect being significantly different between WT and D665N channels. In addition, both mutations significantly increase channel sensitivity to the canonical ligand, menthol. MEA recordings from transfected rat trigeminal ganglion neurons indicate that expression of D665N and V915M mutant channels increases spontaneous activity compared with WT channels. Consistent with patch-clamp results, neuronal activity in MEA recordings was increased on exposure to menthol. Discussion Collectively, our findings suggest that proexcitatory mutations of TRPM8, in the context of axonal injury within the cornea, can produce trigeminal ganglion neuron hyperexcitability that contributes to persistent postoperative ocular pain. In addition to providing additional evidence for a role of TRPM8 in human pain, our results suggest that inhibitors of this channel merit future study.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Philip R Effraim
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Sidharth Tyagi
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Alecia M Aldrich
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Xiaoyang Cheng
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Jun-Hui Yuan
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Betsy R Schulman
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Deborah S Jacobs
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Sulayman D Dib-Hajj
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Stephen G Waxman
- From the Department of Neurology (M.-R.G., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University School of Medicine, New Haven; Center for Neuroscience and Regeneration Research (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Yale University, New Haven; Neuro-Rehabilitation Research Center (M.-R.G., P.R.E., S.T., A.M.A., X.C., J.-H.Y., B.R.S., S.D.D.-H., S.G.W.), Veterans Affairs Connecticut Healthcare System, West Haven; Department of Anesthesiology (P.R.E.), Yale University School of Medicine, New Haven, CT; and Department of Ophthalmology (D.S.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
2
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
3
|
Gou R, Liu Y, Gou L, Mi S, Li X, Yang Y, Cheng X, Zhang Y. Transient Receptor Potential Channels in Sensory Mechanisms of the Lower Urinary Tract. Urol Int 2024; 108:464-476. [PMID: 38657590 DOI: 10.1159/000538855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.
Collapse
Affiliation(s)
- Ruiqiang Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,
| | - Yuanyuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shengyan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaonan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaorong Cheng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yibao Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Mahmoud RH, Brooks SG, Yosipovitch G. Current and emerging drugs for the treatment of pruritus: an update of the literature. Expert Opin Pharmacother 2024; 25:655-672. [PMID: 38682595 DOI: 10.1080/14656566.2024.2349193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pruritus, particularly in its chronic form, often imposes significant suffering and reductions in patients' quality of life. The pathophysiology of itch is varied depending on disease context, creating opportunities for unique drug development and multimodal therapy. AREAS COVERED The purpose of this article is to provide an update of the literature regarding current and emerging therapeutics in itch. We review the multitudes of drug targets available and corresponding drugs that have shown efficacy in clinical trials, with a particular emphasis on phase 2 and 3 trials and beyond. Broadly, these targets include therapies directed against type 2 inflammation (i.e. Th2 cytokines, JAK/STAT, lipid mediators, T-cell mediators, and other enzymes and receptors) and neural receptors and targets (i.e. PARs, TRP channels, opioid receptors, MRGPRs, GABA receptors, and cannabinoid receptors). EXPERT OPINION Therapeutics for itch are emerging at a remarkable pace, and we are entering an era with more and more specialized therapies. Increasingly, these treatments are able to relieve itch beyond their effect on inflammation by directly targeting the neurosensory system.
Collapse
Affiliation(s)
- Rami H Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| |
Collapse
|
5
|
Park KT, Ko SG, Kim W. Phlomidis Radix Extract Alleviates Paclitaxel-Induced Neuropathic Pain by Modulating Spinal TRPV1 in Mice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3819. [PMID: 38005716 PMCID: PMC10674976 DOI: 10.3390/plants12223819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Paclitaxel is a chemotherapeutic drug reported to have excellent activity against tumors; however, various side effects, including peripheral neuropathy, limit its use in some cases. In this study, the effect of Phlomidis radix (P.Radix) extract was assessed on paclitaxel-induced cold and mechanical peripheral neuropathy in mice. Multiple paclitaxel injections (accumulative dose of 8 mg/kg, i.p.) induced increased behavioral responses to cold and mechanical stimuli in mice from D10 to D21 after the first paclitaxel injection. Cold and mechanical stimuli were performed by acetone drop and von Frey filament, respectively. Oral administrations of 25% ethanol extract of P.Radix (300 and 500 mg/kg) relieved cold and mechanical pain in a dose-dependent manner. Furthermore, among the various transient receptor potential (TRP) cation channel subfamilies, paclitaxel upregulated the spinal gene expression of transient receptor potential vanilloid 1 (TRPV1) and melastatin 4 (TRPM4), but not ankyrin 1 (TRPA1). However, 500 mg/kg but not 300 mg/kg of P.Radix extract significantly downregulated the gene expression of TRPV1 but not TRPM4. Among the components of P.Radix, sesamoside was identified and quantified by high-performance liquid chromatography (HPLC), and the administration of sesamoside (7.5 mg/kg, i.p.) showed a similar analgesic effect to 300 mg/kg P.Radix. These results suggest that P.Radix and sesamoside should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
6
|
Fujita Y, Matsuoka H, Chiba Y, Tsurutani J, Yoshida T, Sakai K, Nakura M, Sakamoto R, Makimura C, Ohtake Y, Tanaka K, Hayashi H, Takeda M, Okuno T, Takegawa N, Haratani K, Takahama T, Tanizaki J, Koyama A, Nishio K, Nakagawa K. Novel single nucleotide polymorphism biomarkers to predict opioid effects for cancer pain. Oncol Lett 2023; 26:355. [PMID: 37545623 PMCID: PMC10398630 DOI: 10.3892/ol.2023.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 08/08/2023] Open
Abstract
There have been few studies on predictive biomarkers that may be useful to select the most suitable opioids to optimize therapeutic efficacy in individual patients with cancer pain. We recently investigated the efficacy of morphine and oxycodone using single nucleotide polymorphisms (SNPs) of the catechol-O-methyltransferase (COMT) rs4680 gene as a biomarker (RELIEF study). To explore additional biomarkers that may enable the selection of an appropriate opioid for individual patients with cancer pain, three SNPs were examined: C-C motif chemokine ligand 11 (CCL11; rs17809012), histamine N-methyltransferase (HNMT; rs1050891) and transient receptor potential V1 (TRPV1; rs222749), which were screened from 74 pain-related SNPs. These SNPs, which were identified as being significantly associated with the analgesic effect of morphine, were then used to genotype the 135 patients in the RELIEF study who had been randomized into a morphine group (n=69) or an oxycodone group (n=66). The present study then assessed whether the SNPs could also be used as selective biomarkers to predict which opioid(s) might be the most suitable to provide pain relief for patients with cancer. Oxycodone tended to provide superior analgesic effects over morphine in patients carrying the genotype AA for the CCL11 rs17809012 SNP (P=0.012 for interaction), suggesting that it could serve as a potential biomarker for personalized analgesic therapy for patients suffering with cancer pain.
Collapse
Affiliation(s)
- Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hiromichi Matsuoka
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai Hospital, Osaka 589-8511, Japan
- Palliative Care Team, National Cancer Center, Tokyo 104-0045, Japan
| | - Yasutaka Chiba
- Department of Biostatics, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takeshi Yoshida
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kiyohiro Sakai
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai Hospital, Osaka 589-8511, Japan
| | - Miki Nakura
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Ryo Sakamoto
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Chihiro Makimura
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yoichi Ohtake
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Tatsuya Okuno
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Naoki Takegawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Atsuko Koyama
- Department of Psychosomatic Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
- Palliative Care Center, Kindai Hospital, Osaka 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
7
|
Spicarova D, Nerandzic V, Muzik D, Pontearso M, Bhattacharyya A, Nagy I, Palecek J. Inhibition of synaptic transmission by anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front Mol Neurosci 2023; 16:1188503. [PMID: 37426071 PMCID: PMC10325575 DOI: 10.3389/fnmol.2023.1188503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Transient receptor potential ion channel, vanilloid subfamily, type 1 (TRPV1) cation channel, and cannabinoid receptor 1 (CB1) are essential in the modulation of nociceptive signaling in the spinal cord dorsal horn that underlies different pathological pain states. TRPV1 and CB1 receptors share the endogenous agonist anandamide (AEA), produced from N-arachidonoylphosphatidylethanolamine (20:4-NAPE). We investigated the effect of the anandamide precursor 20:4-NAPE on synaptic activity in naive and inflammatory conditions. Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) from superficial dorsal horn neurons in rat acute spinal cord slices were used. Peripheral inflammation was induced by subcutaneous injection of carrageenan. Under naive conditions, mEPSCs frequency (0.96 ± 0.11 Hz) was significantly decreased after 20 μM 20:4-NAPE application (55.3 ± 7.4%). This 20:4-NAPE-induced inhibition was blocked by anandamide-synthesizing enzyme N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor LEI-401. In addition, the inhibition was prevented by the CB1 receptor antagonist PF 514273 (0.2 μM) but not by the TRPV1 receptor antagonist SB 366791 (10 μM). Under inflammatory conditions, 20:4-NAPE (20 μM) also exhibited a significant inhibitory effect (74.5 ± 8.9%) on the mEPSCs frequency that was prevented by the TRPV1 receptor antagonist SB 366791 but not by PF 514273 application. Our results show that 20:4-NAPE application has a significant modulatory effect on spinal cord nociceptive signaling that is mediated by both TRPV1 and CB1 presynaptic receptors, whereas peripheral inflammation changes the underlying mechanism. The switch between TRPV1 and CB1 receptor activation by the AEA precursor 20:4-NAPE during inflammation may play an important role in nociceptive processing, hence the development of pathological pain.
Collapse
Affiliation(s)
- Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimir Nerandzic
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Muzik
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
9
|
Friston DA, Cuddihy J, Souza Luiz J, Truong AH, Ho L, Basra M, Santha P, Oszlacs O, de Sousa Valente J, Marczylo T, Junttila S, Laycock H, Collins D, Vizcaychipi M, Gyenesei A, Takats Z, Jancso G, Want E, Nagy I. Elevated 18:0 lysophosphatidylcholine contributes to the development of pain in tissue injury. Pain 2023; 164:e103-e115. [PMID: 36638307 PMCID: PMC9833116 DOI: 10.1097/j.pain.0000000000002709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Tissue injuries, including burns, are major causes of death and morbidity worldwide. These injuries result in the release of intracellular molecules and subsequent inflammatory reactions, changing the tissues' chemical milieu and leading to the development of persistent pain through activating pain-sensing primary sensory neurons. However, the majority of pain-inducing agents in injured tissues are unknown. Here, we report that, amongst other important metabolite changes, lysophosphatidylcholines (LPCs) including 18:0 LPC exhibit significant and consistent local burn injury-induced changes in concentration. 18:0 LPC induces immediate pain and the development of hypersensitivities to mechanical and heat stimuli through molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1, and member 2 at least partly via increasing lateral pressure in the membrane. As levels of LPCs including 18:0 LPC increase in other tissue injuries, our data reveal a novel role for these lipids in injury-associated pain. These findings have high potential to improve patient care.
Collapse
Affiliation(s)
- Dominic Anthony Friston
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Joshua Cuddihy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Jessica Souza Luiz
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - An Hoai Truong
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Laptin Ho
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Meirvaan Basra
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Peter Santha
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Orsolya Oszlacs
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Joao de Sousa Valente
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Research, BHF Cardiovascular Centre of Research Excellence, King's College London, London, United Kingdom
| | - Tim Marczylo
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards, Didcot, United Kingdom
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku, Turku, Finland
| | - Helen Laycock
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Declan Collins
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Marcela Vizcaychipi
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Anaesthetics, Chelsea and Westminster NHS Trust, London, United Kingdom
| | - Attila Gyenesei
- Szentagothai Research Centre, University of Pecs, Pécs, Hungary
| | - Zoltan Takats
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gabor Jancso
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Elizabeth Want
- Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Istvan Nagy
- Nociception Group, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Progress in the Structural Basis of thermoTRP Channel Polymodal Gating. Int J Mol Sci 2023; 24:ijms24010743. [PMID: 36614186 PMCID: PMC9821180 DOI: 10.3390/ijms24010743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The thermosensory transient receptor potential (thermoTRP) family of ion channels is constituted by several nonselective cation channels that are activated by physical and chemical stimuli functioning as paradigmatic polymodal receptors. Gating of these ion channels is achieved through changes in temperature, osmolarity, voltage, pH, pressure, and by natural or synthetic chemical compounds that directly bind to these proteins to regulate their activity. Given that thermoTRP channels integrate diverse physical and chemical stimuli, a thorough understanding of the molecular mechanisms underlying polymodal gating has been pursued, including the interplay between stimuli and differences between family members. Despite its complexity, recent advances in cryo-electron microscopy techniques are facilitating this endeavor by providing high-resolution structures of these channels in different conformational states induced by ligand binding or temperature that, along with structure-function and molecular dynamics, are starting to shed light on the underlying allosteric gating mechanisms. Because dysfunctional thermoTRP channels play a pivotal role in human diseases such as chronic pain, unveiling the intricacies of allosteric channel gating should facilitate the development of novel drug-based resolving therapies for these disorders.
Collapse
|
11
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
12
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
13
|
Bogdan DM, Studholme K, DiBua A, Gordon C, Kanjiya MP, Yu M, Puopolo M, Kaczocha M. FABP5 deletion in nociceptors augments endocannabinoid signaling and suppresses TRPV1 sensitization and inflammatory pain. Sci Rep 2022; 12:9241. [PMID: 35655086 PMCID: PMC9163147 DOI: 10.1038/s41598-022-13284-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
The endocannabinoid anandamide (AEA) produces antinociceptive effects by activating cannabinoid receptor 1 (CB1). However, AEA also serves as an agonist at transient receptor potential vanilloid receptor 1 (TRPV1) in nociceptive sensory neurons, which may exacerbate pain. This potential functional duality is highlighted by the failure of an inhibitor of the AEA catabolic enzyme fatty acid amide hydrolase (FAAH) to afford pain relief in a clinical trial. Consequently, it remains to be determined whether elevating AEA levels in nociceptors leads to antinociceptive or pro-nociceptive effects. Fatty acid binding protein 5 (FABP5) is an intracellular carrier that mediates AEA transport to FAAH for inactivation. Leveraging the abundant expression of FABP5 in TRPV1+ nociceptors, we employed a conditional knockout strategy to demonstrate that FABP5 deletion in nociceptors augments AEA levels, resulting in the emergence of antinociceptive effects mediated by CB1. Mechanistically, FABP5 deletion suppresses inflammation- and nerve growth factor-mediated TRPV1 sensitization via CB1, an effect mediated by calcineurin. Unexpectedly, inhibition of FAAH failed to blunt TRPV1 sensitization, uncovering functionally distinct outputs resulting from FABP5 and FAAH inhibition. Collectively, our results demonstrate that FABP5 serves a key role in governing endocannabinoid signaling in nociceptors to disrupt TRPV1 sensitization and pain, and position FABP5 as a therapeutic target for the development of analgesics.
Collapse
Affiliation(s)
- Diane M Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adriana DiBua
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martha P Kanjiya
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mei Yu
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
14
|
Hori A, Hotta N, Fukazawa A, Estrada JA, Katanosaka K, Mizumura K, Sato J, Ishizawa R, Kim HK, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Insulin potentiates the response to capsaicin in dorsal root ganglion neurons in vitro and muscle afferents ex vivo in normal healthy rodents. J Physiol 2022; 600:531-545. [PMID: 34967443 PMCID: PMC8810710 DOI: 10.1113/jp282740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.
Collapse
Affiliation(s)
- Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Ayumi Fukazawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan A. Estrada
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimiaki Katanosaka
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Jun Sato
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front Immunol 2021; 12:785355. [PMID: 34975876 PMCID: PMC8716370 DOI: 10.3389/fimmu.2021.785355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.
Collapse
Affiliation(s)
- Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mortaza F. Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Anand U, Oldfield C, Pacchetti B, Anand P, Sodergren MH. Dose-Related Inhibition of Capsaicin Responses by Cannabinoids CBG, CBD, THC and their Combination in Cultured Sensory Neurons. J Pain Res 2021; 14:3603-3614. [PMID: 34853533 PMCID: PMC8627890 DOI: 10.2147/jpr.s336773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The analgesic effects of Cannabis sativa are mediated by ∆9 tetrahydrocannabinol (THC), but the contributions of other bioactive complex components, including cannabigerol (CBG) and cannabidiol (CBD), are unclear. We describe the individual and combined effects of CBG, CBD and THC, on blocking capsaicin responses in dorsal root ganglion (DRG) neurons, in an in vitro model of nociceptor hypersensitivity. MATERIALS AND METHODS Adult rat DRG were dissected and enzyme digested to obtain a neuronal suspension in BSF2 medium containing 2% fetal calf serum, and the neurotrophic factors NGF and GDNF. After 48 h, cultured neurons were loaded with Fura-2 AM, to determine the effects of cannabinoids on capsaicin responses using calcium imaging. In control experiments, neurons were treated with vehicle, followed by 1 µM capsaicin. In cannabinoid treated cultures, CBG, CBD or THC were applied individually, or combined (1:1:1 ratio), followed by 1 µM capsaicin. Data from n = 6 experiments were analysed with Student's t-test and Pearson's correlation coefficient. RESULTS CBG, CBD and THC, applied individually, elicited dose-related calcium influx in a subset of DRG neurons, and a corresponding dose-related reduction of subsequent responses to capsaicin. Maximum inhibition of capsaicin responses was observed at 30 µM CBG, 100 µM CBD, and 100 µM THC individually, and with combined CBD+CBG+THC (1:1:1) at 90 µM. THC+CBD+CBG combined in a 1:1:1 proportion has the potential to enhance the potency of these compounds applied individually. There was a high correlation between cannabinoid-mediated calcium influx and reduction of capsaicin responses: CBG = -0.88, THC = -0.97, CBD = -0.99 and combined CBG + THC + CBD = -1.00. CONCLUSION CBG, CBD and THC demonstrated potent dose-related inhibition of capsaicin responses in DRG neurons when applied individually in vitro, and enhanced when applied in combination, being most effective at 90 μM. Thus, efficacy and tolerability of THC could be improved in combination with CBG and CBD at optimal concentrations, which deserve further studies in vivo.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | - Christian Oldfield
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | | | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | - Mikael H Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
- EMMAC Life Sciences Ltd, London, UK
| |
Collapse
|
17
|
de Sousa Valente J, Alawi KM, Bharde S, Zarban AA, Kodji X, Thapa D, Argunhan F, Barrett B, Nagy I, Brain SD. (-)-Englerin-A Has Analgesic and Anti-Inflammatory Effects Independent of TRPC4 and 5. Int J Mol Sci 2021; 22:6380. [PMID: 34203675 PMCID: PMC8232259 DOI: 10.3390/ijms22126380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- João de Sousa Valente
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Khadija M Alawi
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Sabah Bharde
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Ali A. Zarban
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
- Department of Pharmacological Sciences, Faculty of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Xenia Kodji
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Dibesh Thapa
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Fulye Argunhan
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Brentton Barrett
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetic, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Susan D. Brain
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| |
Collapse
|
18
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
19
|
Ragozzino FJ, Arnold RA, Fenwick AJ, Riley TP, Lindberg JEM, Peterson B, Peters JH. TRPM3 expression and control of glutamate release from primary vagal afferent neurons. J Neurophysiol 2020; 125:199-210. [PMID: 33296617 DOI: 10.1152/jn.00229.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.
Collapse
Affiliation(s)
- Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Timothy P Riley
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
20
|
Fernández-Carvajal A, González-Muñiz R, Fernández-Ballester G, Ferrer-Montiel A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs 2020; 29:1209-1222. [PMID: 32941080 DOI: 10.1080/13543784.2020.1825680] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Thermo transient receptor potential (thermoTRP) channels are some of the most intensely pursued therapeutic targets of the past decade. They are considered promising targets of numerous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice yet. AREAS COVERED The therapeutic potential of targeting thermoTRP channels is discussed. The discussion is centered on our experience and on available data found in SciFinder, PubMed, and ClinicalTrials.gov database from the past decade. This review focuses on the therapeutic progress concerning this family of channels, including strategies to improve their therapeutic index for overcoming adverse effects. EXPERT OPINION Although thermoTRPs are pivotal drug targets, translation to the clinic has faced two key problems, (i) unforeseen side effects in Phase I trials and, (ii) poor clinical efficacy in Phase II trials. Thus, there is a need for (i) an enhanced understanding of the physiological role of these channels in tissues and organs and (ii) the development of human-based pre-clinical models with higher clinical translation. Furthermore, progress in nanotechnology-based delivery strategies will positively impact thermoTRP human pharmacology.
Collapse
Affiliation(s)
- Asia Fernández-Carvajal
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | | | - Gregorio Fernández-Ballester
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | - Antonio Ferrer-Montiel
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| |
Collapse
|
21
|
Gadotti VM, Kreitinger JM, Wageling NB, Budke D, Diaz P, Zamponi GW. Cav3.2 T-type calcium channels control acute itch in mice. Mol Brain 2020; 13:119. [PMID: 32873320 PMCID: PMC7465799 DOI: 10.1186/s13041-020-00663-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and highlight these channels as potential pharmacological targets to treat pruritus.
Collapse
Affiliation(s)
- Vinicius M Gadotti
- Department of Physiology and Pharmacology Hotchkiss Brain Institute, Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | - Philippe Diaz
- Dermaxon LLC, Missoula, MT, USA.,Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology Hotchkiss Brain Institute, Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
22
|
Morita T, Mitsuyama K, Yamasaki H, Mori A, Yoshimura T, Araki T, Morita M, Tsuruta K, Yamasaki S, Kuwaki K, Yoshioka S, Takedatsu H, Torimura T. Gene Expression of Transient Receptor Potential Channels in Peripheral Blood Mononuclear Cells of Inflammatory Bowel Disease Patients. J Clin Med 2020; 9:jcm9082643. [PMID: 32823895 PMCID: PMC7547374 DOI: 10.3390/jcm9082643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
We examined the expression profile of transient receptor potential (TRP) channels in peripheral blood mononuclear cells (PBMCs) from patients with inflammatory bowel disease (IBD). PBMCs were obtained from 41 ulcerative colitis (UC) patients, 34 Crohn's disease (CD) patients, and 30 normal subjects. mRNA levels of TRP channels were measured using the quantitative real-time polymerase chain reaction, and correlation tests with disease ranking, as well as laboratory parameters, were performed. Compared with controls, TRPV2 and TRPC1 mRNA expression was lower, while that of TRPM2, was higher in PBMCs of UC and CD patients. Moreover, TRPV3 mRNA expression was lower, while that of TRPV4 was higher in CD patients. TRPC6 mRNA expression was higher in patients with CD than in patients with UC. There was also a tendency for the expression of TRPV2 mRNA to be negatively correlated with disease activity in patients with UC and CD, while that of TRPM4 mRNA was negatively correlated with disease activity only in patients with UC. PBMCs from patients with IBD exhibited varying mRNA expression levels of TRP channel members, which may play an important role in the progression of IBD.
Collapse
Affiliation(s)
- Taku Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Keiichi Mitsuyama
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
- Correspondence: ; Tel.: +81-942-31-7561
| | - Hiroshi Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Masaru Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Kotaro Kuwaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Hidetoshi Takedatsu
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Takuji Torimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| |
Collapse
|
23
|
Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci 2020; 10:brainsci10060344. [PMID: 32503260 PMCID: PMC7348931 DOI: 10.3390/brainsci10060344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.
Collapse
|
24
|
Friston D, Junttila S, Lemes JBP, Laycock H, Torres-Perez JV, Want E, Gyenesei A, Nagy I. Leptin and fractalkine: novel subcutaneous cytokines in burn injury. Dis Model Mech 2020; 13:dmm042713. [PMID: 32127397 PMCID: PMC7197715 DOI: 10.1242/dmm.042713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Burn injury is a pathology underpinned by progressive and aberrant inflammation. It is a major clinical challenge to survival and quality of life. Although the complex local and disseminating pathological processes of a burn injury ultimately stem from local tissue damage, to date relatively few studies have attempted to characterise the local inflammatory mediator profile. Here, cytokine content and associated transcriptional changes were measured in rat skin for three hours immediately following induction of a scald-type (60°C, 2 min) burn injury model. Leptin (P=0.0002) and fractalkine (P=0.0478) concentrations were significantly elevated post-burn above pre-burn and control site values, coinciding with the development of burn site oedema and differential expression of leptin mRNA (P=0.0004). Further, gene sequencing enrichment analysis indicated cytokine-cytokine receptor interaction (P=1.45×10-6). Subsequent behavioural studies demonstrated that, following subcutaneous injection into the dorsum of the paw, both leptin and fractalkine induced mechanical allodynia, heat hyperalgesia and the recruitment of macrophages. This is the first report of leptin elevation specifically at the burn site, and the first report of fractalkine elevation in any tissue post-burn which, together with the functional findings, calls for exploration of the influence of these cytokines on pain, inflammation and burn wound progression. In addition, targeting these signalling molecules represents a therapeutic potential as early formative mediators of these pathological processes.
Collapse
Affiliation(s)
- Dominic Friston
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Carl Von Linnaeus, Sao Paulo, 13083-864, Brazil
| | - Helen Laycock
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Jose Vicente Torres-Perez
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
- Department of Physiology, University of Debrecen, Debrecen, Nagyerdei krt 98, H-4012, Hungary
| |
Collapse
|
25
|
Kelemen B, Lisztes E, Vladár A, Hanyicska M, Almássy J, Oláh A, Szöllősi AG, Pénzes Z, Posta J, Voets T, Bíró T, Tóth BI. Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem Pharmacol 2020; 174:113826. [PMID: 31987857 DOI: 10.1016/j.bcp.2020.113826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8. Here, we investigated the effect of VAs on TRPM3, a less characterized member of the thermosensitive TRP channels playing a central role in noxious heat sensation. METHODS We investigated the effect of VAs on the activity of recombinant and native TRPM3, by monitoring changes in the intracellular Ca2+ concentration and measuring TRPM3-mediated transmembrane currents. RESULTS All the investigated VAs (chloroform, halothane, isoflurane, sevoflurane) inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca2+ signals and transmembrane currents in a concentration dependent way in HEK293T cells overexpressing recombinant TRPM3. Among the tested VAs, halothane was the most potent blocker (IC50 = 0.52 ± 0.05 mM). We also investigated the effect of VAs on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While VAs activated certain sensory neurons independently of TRPM3, they strongly and reversibly inhibited the agonist-induced TRPM3 activity. CONCLUSIONS These data provide a better insight into the molecular mechanism beyond the analgesic effect of VAs and propose novel strategies to attenuate TRPM3 dependent nociception.
Collapse
Affiliation(s)
- Balázs Kelemen
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Vladár
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Hanyicska
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Pénzes
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary; Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Posta
- Laboratory of Toxicology, Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine and TRP Research Platform Leuven (TRPLe), KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Center of Excellence for Molecular Medicine, Szeged, Hungary
| | - Balázs István Tóth
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
26
|
Boiko YA, Nesterkina MV, Shandra AA, Kravchenko IA. Analgesic and Anti-Inflammatory Activity of Vanillin Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02056-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
28
|
Yosipovitch G, Rosen JD, Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol 2019; 142:1375-1390. [PMID: 30409247 DOI: 10.1016/j.jaci.2018.09.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Itch is a common sensory experience that is prevalent in patients with inflammatory skin diseases, as well as in those with systemic and neuropathic conditions. In patients with these conditions, itch is often severe and significantly affects quality of life. Itch is encoded by 2 major neuronal pathways: histaminergic (in acute itch) and nonhistaminergic (in chronic itch). In the majority of cases, crosstalk existing between keratinocytes, the immune system, and nonhistaminergic sensory nerves is responsible for the pathophysiology of chronic itch. This review provides an overview of the current understanding of the molecular, neural, and immune mechanisms of itch: beginning in the skin, proceeding to the spinal cord, and eventually ascending to the brain, where itch is processed. A growing understanding of the mechanisms of chronic itch is expanding, as is our pipeline of more targeted topical and systemic therapies. Our therapeutic armamentarium for treating chronic itch has expanded in the last 5 years, with developments of topical and systemic treatments targeting the neural and immune systems.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla.
| | - Jordan Daniel Rosen
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| | - Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center Miller School of Medicine University of Miami, Miami, Fla
| |
Collapse
|
29
|
The selective TRPV4 channel antagonist HC-067047 attenuates mechanical allodynia in diabetic mice. Eur J Pharmacol 2019; 856:172408. [DOI: 10.1016/j.ejphar.2019.172408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
|
30
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
31
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
32
|
|
33
|
González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress in TRPM8 Modulation: An Update. Int J Mol Sci 2019; 20:ijms20112618. [PMID: 31141957 PMCID: PMC6600640 DOI: 10.3390/ijms20112618] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.
Collapse
Affiliation(s)
| | - M Angeles Bonache
- Instituto de Química Médica, IQM-CSIC. Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
34
|
Lin Z, Phadke S, Lu Z, Beyhan S, Aziz MHA, Reilly C, Schmidt EW. Onydecalins, Fungal Polyketides with Anti- Histoplasma and Anti-TRP Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:2605-2611. [PMID: 30507122 PMCID: PMC6474802 DOI: 10.1021/acs.jnatprod.7b01067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report an unusual 3-substituted pyridine polyketide, onydecalin A (1), which was obtained along with 2 as a major constituent from the fungus Aioliomyces pyridodomos (order: Onygenales) following a two-month fermentation. Feeding studies demonstrated that the pyridine subunit originates via an unprecedented biosynthetic process in comparison to other polyketide-linked pyridines or derivatives such as pyridones. The slow growth of the fungus led us to perform a one-year fermentation, leading to production of compounds 2-4 as the major constituents. These compounds showed modest but selective inhibition against a variety of transient receptor potential channels, as well as against the human pathogenic fungus Histoplasma capsulatum.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Sujal Phadke
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - Zhenyu Lu
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - May H. Abdel Aziz
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Chris Reilly
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
35
|
Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 2018; 125:28-38. [DOI: 10.1016/j.ejps.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
|
36
|
Dallazen JL, Maria-Ferreira D, da Luz BB, Nascimento AM, Cipriani TR, de Souza LM, Glugoski LP, Silva BJG, Geppetti P, de Paula Werner MF. Distinct mechanisms underlying local antinociceptive and pronociceptive effects of natural alkylamides from Acmella oleracea compared to synthetic isobutylalkyl amide. Fitoterapia 2018; 131:225-235. [DOI: 10.1016/j.fitote.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|
37
|
Lakk M, Young D, Baumann JM, Jo AO, Hu H, Križaj D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:353. [PMID: 30386208 PMCID: PMC6198093 DOI: 10.3389/fncel.2018.00353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 01/23/2023] Open
Abstract
Retinal ganglion cells (RGCs) are projection neurons that transmit the visual signal from the retina to the brain. Their excitability and survival can be strongly influenced by mechanical stressors, temperature, lipid metabolites, and inflammatory mediators but the transduction mechanisms for these non-synaptic sensory inputs are not well characterized. Here, we investigate the distribution, functional expression, and localization of two polymodal transducers of mechanical, lipid, and inflammatory signals, TRPV1 and TRPV4 cation channels, in mouse RGCs. The most abundant vanilloid mRNA species was Trpv4, followed by Trpv2 and residual expression of Trpv3 and Trpv1. Immunohistochemical and functional analyses showed that TRPV1 and TRPV4 channels are expressed as separate molecular entities, with TRPV1-only (∼10%), TRPV4-only (∼40%), and TRPV1 + TRPV4 (∼10%) expressing RGC subpopulations. The TRPV1 + TRPV4 cohort included SMI-32-immunopositive alpha RGCs, suggesting potential roles for polymodal signal transduction in modulation of fast visual signaling. Arguing against obligatory heteromerization, optical imaging showed that activation and desensitization of TRPV1 and TRPV4 responses evoked by capsaicin and GSK1016790A are independent of each other. Overall, these data predict that RGC subpopulations will be differentially sensitive to mechanical and inflammatory stressors.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Derek Young
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
| | - Andrew O Jo
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States.,Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
38
|
Storozhuk MV, Zholos AV. TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Curr Neuropharmacol 2018; 16:137-150. [PMID: 28440188 PMCID: PMC5883376 DOI: 10.2174/1570159x15666170424120802] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Chronic pain is a significant clinical problem and a very complex pathophysiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several subtypes of the large superfamily of cation TRP channels have been coined as “ionotropic cannabinoid receptors”, thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize the existing evidence in this area of research, but also propose several possible cellular mechanisms linking nociceptive and cannabinoid signaling with TRP channels. Results: We begin with an overview of physiology of the endocannabinoid system and its major components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation. The role of different endocannabinoids in the regulation of synaptic transmission is then discussed in detail. The connection between the endocannabinoid system and several TRP channels, especially TRPV1-4, TRPA1 and TRPM8, is then explored, while highlighting the role of these same channels in pain signalling. Conclusion: There is increasing evidence implicating several TRP subtypes not only as an integral part of the endocannabinoid system, but also as promising molecular targets for pain alleviation with the use of endo- and phytocannabinoids, especially when the function of these channels is upregulated under inflammatory conditions.
Collapse
Affiliation(s)
- Maksim V Storozhuk
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine
| | - Alexander V Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine.,Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine
| |
Collapse
|
39
|
Misery L, Santerre A, Batardière A, Hornez N, Nedelec A, Le Caër F, Bourgeois P, Huet F, Neufang G. Real-life study of anti-itching effects of a cream containing menthoxypropanediol, a TRPM8 agonist, in atopic dermatitis patients. J Eur Acad Dermatol Venereol 2018; 33:e67-e69. [DOI: 10.1111/jdv.15199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. Misery
- Department of Dermatology; University Hospital of Brest; Brest France
- Laboratory on Interactions Neurons-Keratinocytes (LINK); University of Western Brittany; Brest France
| | - A. Santerre
- Research & Development; Beiersdorf AG; Hamburg Germany
| | | | | | | | | | | | - F. Huet
- Department of Dermatology; University Hospital of Brest; Brest France
- Laboratory on Interactions Neurons-Keratinocytes (LINK); University of Western Brittany; Brest France
| | - G. Neufang
- Research & Development; Beiersdorf AG; Hamburg Germany
| |
Collapse
|
40
|
Alharthi N, Christensen P, Hourani W, Ortori C, Barrett DA, Bennett AJ, Chapman V, Alexander SPH. n-3 polyunsaturated N-acylethanolamines are CB 2 cannabinoid receptor-preferring endocannabinoids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1433-1440. [PMID: 30591150 DOI: 10.1016/j.bbalip.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
Abstract
Anandamide, the first identified endogenous cannabinoid and TRPV1 agonist, is one of a series of endogenous N-acylethanolamines, NAEs. We have generated novel assays to quantify the levels of multiple NAEs in biological tissues and their rates of hydrolysis through fatty acid amide hydrolase. This range of NAEs was also tested in rapid response assays of CB1, CB2 cannabinoid and TRPV1 receptors. The data indicate that PEA, SEA and OEA are not endocannabinoids or endovanilloids, and that the higher endogenous levels of these metabolites compared to polyunsaturated analogues are a correlate of their slow rates of hydrolysis. The n-6 NAEs (AEA, docosatetraenoyl and docosapentaenoyl derivatives) activated both CB1 and CB2 receptors, as well as TRPV1 channels, suggesting them to be 'genuine' endocannabinoids and 'endovanilloids'. The n-3 NAEs (eicosapentaenoyl, docosapentaenoyl and docosahexaenoyl derivatives) activated CB2 receptors and some n-3 NAEs (docosapentaenoyl and docosahexaenoyl derivatives) also activated TRPV1 channels, but failed to activate the CB1 receptor. We hypothesise that the preferential activation of CB2 receptors by n-3 PUFA NAEs contributes, at least in some part, to their broad anti-inflammatory profile.
Collapse
Affiliation(s)
- Nahed Alharthi
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Peter Christensen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Wafa Hourani
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Catherine Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Andrew J Bennett
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
41
|
Hu F, Liu HC, Su DQ, Chen HJ, Chan SO, Wang Y, Wang J. Nogo-A promotes inflammatory heat hyperalgesia by maintaining TRPV-1 function in the rat dorsal root ganglion neuron. FASEB J 2018; 33:668-682. [PMID: 30024789 DOI: 10.1096/fj.201800382rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nogo-A is a key inhibitory molecule of axon regeneration in oligodendrocytes. However, little is known about its role in adult neurons. In this study, we showed an important function of Nogo-A on regulation of inflammatory pain in dorsal root ganglion (DRG) neurons. In adult rats with complete Freund's adjuvant (CFA) hind paw inflammation, DRG neurons showed a significant increase in Nogo-A expression. Disruption of Nogo-A signaling with Nogo-66 receptor antagonist peptide, Nogo-A blocking antibody, Nogo-A short hairpin RNA, or Nogo-A gene knockout attenuated CFA-induced inflammatory heat hyperalgesia. Moreover, disruption of Nogo-A signaling suppressed the function and expression in DRG neurons of the transient receptor potential vanilloid subfamily member (TRPV)-1 channel, which is known to be the endogenous transducer of noxious heat during inflammation. These effects were accompanied with a reduction in LIM domain kinase (LIMK)/cofilin phosphorylation and actin polymerization. Similar disruption of actin filament architecture by direct action of Latrunculin A reduced the TRPV-1 activity and up-regulation of TRPV-1 protein caused by CFA. We conclude that Nogo-A plays an essential role in the development of inflammatory heat hyperalgesia, partly through maintaining TRPV-1 function via activation of the LIMK/cofilin pathway, which regulates actin filament dynamics. These findings support a therapeutic potential of modulating Nogo-A signaling in pain management.-Hu, F., Liu, H.-C., Su, D.-Q., Chen, H.-J., Chan, S.-O., Wang, Y., Wang, J. Nogo-A promotes inflammatory heat hyperalgesia by maintaining TRPV-1 function in the rat dorsal root ganglion neuron.
Collapse
Affiliation(s)
- Fang Hu
- Department of Neurobiology, Neuroscience Research Institute, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health Commission, Peking University Health Science Center, Beijing, China.,Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Huai-Cun Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China; and
| | - Dong-Qiang Su
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China; and
| | - Hai-Jing Chen
- Department of Neurobiology, Neuroscience Research Institute, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health Commission, Peking University Health Science Center, Beijing, China
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Wang
- Department of Neurobiology, Neuroscience Research Institute, Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health Commission, Peking University Health Science Center, Beijing, China.,Peking University-International Data Group (PKU-IDG)/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jun Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China; and
| |
Collapse
|
42
|
Maqboul A, Elsadek B. Expression profiles of TRPV1, TRPV4, TLR4 and ERK1/2 in the dorsal root ganglionic neurons of a cancer-induced neuropathy rat model. PeerJ 2018; 6:e4622. [PMID: 29637027 PMCID: PMC5889703 DOI: 10.7717/peerj.4622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background The spread of tumors through neural routes is common in several types of cancer in which patients suffer from a moderate-to-severe neuropathy, neural damage and a distorted quality of life. Here we aim to examine the expression profiles of transient receptor potential vanilloid 1 (TRPV1) and of transient receptor potential vanilloid 4 (TRPV4), toll-like receptor 4 (TLR4) and extracellular signal-regulated kinase (ERK1/2), and to assess the possible therapeutic strategies through blockade of transient receptor potential (TRP) channels. Methods Cancer was induced within the sciatic nerves of male Copenhagen rats, and tissues from dorsal root ganglia (DRG) were collected and used for measurements of immunofluorescence and Western blotting. The TRPV1 antagonist capsazepine, the selective TRPV4 antagonist HC-067047 and the calcium ions inhibitor ruthenium red were used to treat thermal and/or mechanical hyperalgesia. Results Transient receptor potential vanilloid 1 showed a lower expression in DRGs on days 7 and 14. The expression of TRPV4, TLR4 and ERK1/2 showed an increase on day 3 then a decrease on days 7 and 14. TRPV1 and TLR4 as well as TRPV4 and ERK1/2 co-existed on the same neuronal cells. The neuropathic pain was reversed in dose-dependent manners by using the TRP antagonists and the calcium ions inhibitor. Conclusion The decreased expression of TRPV1 and TRPV4 is associated with high activation. The increased expression of TLR4 and ERK1/2 reveals earlier immune response and tumor progression, respectively, and their ultimate decrease is an indicator of nerve damage. We studied the possible role of TRPV1 and TRPV4 in transducing cancer-induced hyperalgesia. The possible treatment strategies of cancer-induced thermal and/or mechanical hyperalgesia using capsazepine, HC-067047 and ruthenium red are examined.
Collapse
Affiliation(s)
- Ahmad Maqboul
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Faculty of Medicine, Humboldt-Universität zu Berlin, Campus Mitte and Campus Virchow-Klinikum, Berlin, Germany.,Department of Biochemistry, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| | - Bakheet Elsadek
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| |
Collapse
|
43
|
Liu C, Li C, Deng Z, Du E, Xu C. Long Non-coding RNA BC168687 is Involved in TRPV1-mediated Diabetic Neuropathic Pain in Rats. Neuroscience 2018; 374:214-222. [PMID: 29421435 DOI: 10.1016/j.neuroscience.2018.01.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in a diverse range of molecular and biological processes, and dysregulation of lncRNAs has been observed in the pathogenesis of various human diseases. We observed alterations in mechanical withdrawal thresholds (MWT) and thermal withdrawal latencies (TWL) in streptozotocin (STZ)-induced diabetic rats treated with small interfering RNA (siRNA) of lncRNA BC168687. We detected expression of transient receptor potential vanilloid type 1 (TRPV1) in rat dorsal root ganglia (DRG) by a series of molecular experiments. We determined relative levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in rat serum by enzyme-linked immunosorbent assay (ELISA). In addition, we examined extracellular regulated protein kinases (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways by Western blot (WB). We showed that the MWT and TWL of diabetic rats increased significantly compared with control. Expression of TRPV1 receptors in DRG substantially decreased. Relative levels of TNF-α and IL-1β in the serum of lncRNA BC168687 siRNA-treated rats were reduced. Phosphorylation (p)-ERK and p-p38 signaling pathways in DRG were also decreased. Taken together, we concluded lncRNA BC168687 siRNA may alleviate TRPV1-mediated diabetic neuropathic pain.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Congcong Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Errong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China.
| |
Collapse
|
44
|
Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 2018; 15:021001. [PMID: 29135465 DOI: 10.1088/1478-3975/aa9a6f] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Collapse
Affiliation(s)
- Karen Castillo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile. www.cinv.cl
| | | | | | | | | |
Collapse
|
45
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
46
|
Nerandzic V, Mrozkova P, Adamek P, Spicarova D, Nagy I, Palecek J. Peripheral inflammation affects modulation of nociceptive synaptic transmission in the spinal cord induced by N-arachidonoylphosphatidylethanolamine. Br J Pharmacol 2017; 175:2322-2336. [PMID: 28476070 DOI: 10.1111/bph.13849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids play an important role in modulating spinal nociceptive signalling, crucial for the development of pain. The cannabinoid CB1 receptor and the TRPV1 cation channel are both activated by the endocannabinoid anandamide, a product of biosynthesis from the endogenous lipid precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE). Here, we report CB1 receptor- and TRPV1-mediated effects of 20:4-NAPE on spinal synaptic transmission in control and inflammatory conditions. EXPERIMENTAL APPROACH Spontaneous (sEPSCs) and dorsal root stimulation-evoked (eEPSCs) excitatory postsynaptic currents from superficial dorsal horn neurons in rat spinal cord slices were assessed. Peripheral inflammation was induced by carrageenan. Anandamide concentration was assessed by mass spectrometry. KEY RESULTS Application of 20:4-NAPE increased anandamide concentration in vitro. 20:4-NAPE (20 μM) decreased sEPSCs frequency and eEPSCs amplitude in control and inflammatory conditions. The inhibitory effect of 20:4-NAPE was sensitive to CB1 receptor antagonist PF514273 (0.2 μM) in both conditions, but to the TRPV1 antagonist SB366791 (10 μM) only after inflammation. After inflammation, 20:4-NAPE increased sEPSCs frequency in the presence of PF514273 and this increase was blocked by SB366791. CONCLUSIONS AND IMPLICATIONS While 20:4-NAPE treatment inhibited the excitatory synaptic transmission in both naive and inflammatory conditions, peripheral inflammation altered the underlying mechanisms. Our data indicate that 20:4-NAPE application induced mainly CB1 receptor-mediated inhibitory effects in naive animals while TRPV1-mediated mechanisms were also involved after inflammation. Increasing anandamide levels for analgesic purposes by applying substrate for its local synthesis may be more effective than systemic anandamide application or inhibition of its degradation. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Vladimir Nerandzic
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Mrozkova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Adamek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Diana Spicarova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Boeckxstaens GE, Wouters MM. Neuroimmune factors in functional gastrointestinal disorders: A focus on irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 28027594 DOI: 10.1111/nmo.13007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Abnormal abdominal pain perception is the most bothersome and difficult to treat symptom of functional gastrointestinal disorders (FGIDs). Visceral pain stimuli are perceived and transmitted by afferent neurons residing in the dorsal root ganglia that have sensory nerve endings in the gut wall and mesentery. Accumulating evidence indicates that peripheral activation and sensitization of these sensory nerve endings by bioactive mediators released by activated immune cells, in particular mast cells, can lead to aberrant neuroimmune interactions and the development and maintenance of visceral hypersensitivity. Besides direct neuronal activation, low concentrations of proteases, histamine, and serotonin can chronically sensitize nociceptors, such as TRP channels, leading to persistent aberrant pain perception. PURPOSE This review discusses the potential mechanisms underlying aberrant neuroimmune interactions in peripheral sensitization of sensory nerves. A better understanding of the cells, mediators, and molecular mechanisms triggering persistent aberrant neuroimmune interactions brings new insights into their contribution to the physiology and pathophysiology of visceral pain perception and provides novel opportunities for more efficient therapeutic treatments for these disorders.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| | - M M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| |
Collapse
|
48
|
Sousa-Valente J, Varga A, Torres-Perez JV, Jenes A, Wahba J, Mackie K, Cravatt B, Ueda N, Tsuboi K, Santha P, Jancso G, Tailor H, Avelino A, Nagy I. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons. J Comp Neurol 2017; 525:1778-1796. [PMID: 27997038 DOI: 10.1002/cne.24154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 11/11/2022]
Abstract
Elevation of intracellular Ca2+ concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca2+ -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- João Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.,Department of Physiology, University of Debrecen, Medical and Health Science Center, Debrecen, H-4012, Hungary
| | - Jose Vicente Torres-Perez
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Agnes Jenes
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.,Department of Physiology, University of Debrecen, Medical and Health Science Center, Debrecen, H-4012, Hungary
| | - John Wahba
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomedical Sciences, Indiana University, Bloomington, Indiana, 47405
| | - Benjamin Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, 92037
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, 761-0793, Japan
| | - Peter Santha
- Department of Physiology, University of Szeged, 6720, Szeged, Hungary
| | - Gabor Jancso
- Department of Physiology, University of Szeged, 6720, Szeged, Hungary
| | - Hiren Tailor
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - António Avelino
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto, 4200-450, Porto, Portugal.,I3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, 4200-135, Porto, Portugal
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
49
|
Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology 2017; 25:247-254. [DOI: 10.1007/s10787-017-0324-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
|
50
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|