1
|
Yang Y, Huang L, Zhang N, Deng YN, Cao X, Liang Y, Hou H, Luo Y, Yang Y, Li Q, Liang S. SUMOylation of annexin A6 retards cell migration and tumor growth by suppressing RHOU/AKT1-involved EMT in hepatocellular carcinoma. Cell Commun Signal 2024; 22:206. [PMID: 38566133 PMCID: PMC10986105 DOI: 10.1186/s12964-024-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Nan Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Xu Cao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yinheng Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Yang J, Pei T, Su G, Duan P, Liu X. AnnexinA6: a potential therapeutic target gene for extracellular matrix mineralization. Front Cell Dev Biol 2023; 11:1201200. [PMID: 37727505 PMCID: PMC10506415 DOI: 10.3389/fcell.2023.1201200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
5
|
Wang Y, Weremiejczyk L, Strzelecka‐Kiliszek A, Maniti O, Amabile Veschi E, Bolean M, Ramos AP, Ben Trad L, Magne D, Bandorowicz‐Pikula J, Pikula S, Millán JL, Bottini M, Goekjian P, Ciancaglini P, Buchet R, Dou WT, Tian H, Mebarek S, He XP, Granjon T. Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e38. [PMID: 38939118 PMCID: PMC11080897 DOI: 10.1002/jex2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/29/2024]
Abstract
Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.
Collapse
Affiliation(s)
- Yubo Wang
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - Liliana Weremiejczyk
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | | | | | - Ekeveliny Amabile Veschi
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Mayte Bolean
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | | | - David Magne
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | | | - Slawomir Pikula
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Massimo Bottini
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - René Buchet
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | - Wei Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | | - Xiao P. He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | |
Collapse
|
6
|
Ray S, Roth R, Keyel PA. Membrane repair triggered by cholesterol-dependent cytolysins is activated by mixed lineage kinases and MEK. SCIENCE ADVANCES 2022; 8:eabl6367. [PMID: 35294243 PMCID: PMC8926344 DOI: 10.1126/sciadv.abl6367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Sucharit Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Corresponding author.
| |
Collapse
|
7
|
The Ca 2+- and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183810. [PMID: 34699769 DOI: 10.1016/j.bbamem.2021.183810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Annexin A2 (AnxA2) is a calcium- and phospholipid-binding protein that plays roles in cellular processes involving membrane and cytoskeleton dynamics and is able to associate to several partner proteins. However, the principal molecular partners of AnxA2 are negatively charged phospholipids such as phosphatidylserine and phosphatidyl-inositol-(4,5)-phosphate. Herein we have studied different aspects of membrane lipid rearrangements induced by AnxA2 membrane binding. X-ray diffraction data revealed that AnxA2 has the property to stabilize lamellar structures and to block the formation of highly curved lipid phases (inverted hexagonal phase, HII). By using pyrene-labelled cholesterol and the environmental probe di-4-ANEPPDHQ, we observed that in model membranes, AnxA2 is able to modify both, cholesterol distribution and lipid compaction. In epithelial cells, we observed that AnxA2 localizes to membranes of different lipid order. The protein binding to membranes resulted in both, increases and/or decreases in membrane order depending on the cellular membrane regions. Overall, AnxA2 showed the capacity to modulate plasma membrane properties by inducing lipid redistribution that may lead to an increase in order or disorder of the membranes.
Collapse
|
8
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
9
|
Méndez-Barbero N, Gutiérrez-Muñoz C, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:206-216. [PMID: 33622609 DOI: 10.1016/j.arteri.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The annexin superfamily consists of 12 proteins with a highly structural homology that binds to phospholipids depending on the availability of Ca2+-dependent. Different studies of overexpression, inhibition, or using recombinant proteins have linked the main function of these proteins to their dynamic and reversible binding to membranes. Annexins are found in multiple cellular compartments, regulating different functions, such as membrane trafficking, anchoring to the cell cytoskeleton, ion channel regulation, as well as pro- or anti-inflammatory and anticoagulant activities. The use of animals deficient in any of these annexins has established their possible functions in vivo, demonstrating that annexins can participate in relevant functions independent of Ca2+ signalling. This review will focus mainly on the role of different annexins in the pathological vascular remodelling that underlies the formation of the atherosclerotic lesion, as well as in the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Carmen Gutiérrez-Muñoz
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| |
Collapse
|
10
|
Fuentes NR, Mlih M, Wang X, Webster G, Cortes-Acosta S, Salinas ML, Corbin IR, Karpac J, Chapkin RS. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Res 2021; 62:100026. [PMID: 33515553 PMCID: PMC7933808 DOI: 10.1016/j.jlr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling drives the formation of many types of cancer, including colon cancer. Docosahexaenoic acid (DHA, 22∶6Δ4,7,10,13,16,19), a chemoprotective long-chain n-3 polyunsaturated fatty acid suppresses EGFR signaling. However, the mechanism underlying this phenotype remains unclear. Therefore, we used super-resolution microscopy techniques to investigate the mechanistic link between EGFR function and DHA-induced alterations to plasma membrane nanodomains. Using isogenic in vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and Fat-1 mice) models, cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling. Phospholipid incorporation of DHA reduced membrane rigidity and the size of EGFR nanoclusters. Similarly, pharmacological reduction of plasma membrane phosphatidic acid (PA), phosphatidylinositol-4,5-bisphosphate (PIP2) or cholesterol was associated with a decrease in EGFR nanocluster size. Furthermore, in DHA-treated cells only the addition of cholesterol, unlike PA or PIP2, restored EGFR nanoscale clustering. These findings reveal that DHA reduces EGFR signaling in part by reshaping EGFR proteolipid nanodomains, supporting the feasibility of using membrane therapy, i.e., dietary/drug-related strategies to target plasma membrane organization, to reduce EGFR signaling and cancer risk.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Mohamed Mlih
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Gabriella Webster
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Sergio Cortes-Acosta
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Alvarez-Guaita A, Blanco-Muñoz P, Meneses-Salas E, Wahba M, Pollock AH, Jose J, Casado M, Bosch M, Artuch R, Gaus K, Lu A, Pol A, Tebar F, Moss SE, Grewal T, Enrich C, Rentero C. Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice. Hepatology 2020; 72:2149-2164. [PMID: 32170749 DOI: 10.1002/hep.31232] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate-limiting step in this pathway. Na+ -coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+ -dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo- and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. APPROACH AND RESULTS Utilizing AnxA6 knockout mice (AnxA6-/- ), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6-/- mice liver proliferation and energetic metabolism. Most strikingly, AnxA6-/- mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6-/- mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6-/- mice was the consequence of an impaired alanine-dependent GNG in AnxA6-/- hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6-/- hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. CONCLUSIONS We conclude that the lack of AnxA6 compromises alanine-dependent GNG and liver regeneration in mice.
Collapse
Affiliation(s)
- Anna Alvarez-Guaita
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Currently at Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Blanco-Muñoz
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elsa Meneses-Salas
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Abigail H Pollock
- Center for Vascular Research, The University of New South Wales, Sydney, NSW, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mercedes Casado
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Marta Bosch
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Katharina Gaus
- Center for Vascular Research, The University of New South Wales, Sydney, NSW, Australia
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Albert Pol
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francesc Tebar
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stephen E Moss
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carlos Enrich
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
12
|
Korolkova OY, Widatalla SE, Williams SD, Whalen DS, Beasley HK, Ochieng J, Grewal T, Sakwe AM. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies. Cells 2020; 9:E1855. [PMID: 32784650 PMCID: PMC7465958 DOI: 10.3390/cells9081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Sarrah E. Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Stephen D. Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Diva S. Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Heather K. Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| |
Collapse
|
13
|
Meneses-Salas E, García-Melero A, Kanerva K, Blanco-Muñoz P, Morales-Paytuvi F, Bonjoch J, Casas J, Egert A, Beevi SS, Jose J, Llorente-Cortés V, Rye KA, Heeren J, Lu A, Pol A, Tebar F, Ikonen E, Grewal T, Enrich C, Rentero C. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell Mol Life Sci 2020; 77:2839-2857. [PMID: 31664461 PMCID: PMC7326902 DOI: 10.1007/s00018-019-03330-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Frederic Morales-Paytuvi
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Júlia Bonjoch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Biomedical Research Institute of Barcelona-CSIC, Barcelona, Spain
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, USA
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Elina Ikonen
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
14
|
Hoque M, Elmaghrabi YA, Köse M, Beevi SS, Jose J, Meneses-Salas E, Blanco-Muñoz P, Conway JRW, Swarbrick A, Timpson P, Tebar F, Enrich C, Rentero C, Grewal T. Annexin A6 improves anti-migratory and anti-invasive properties of tyrosine kinase inhibitors in EGFR overexpressing human squamous epithelial cells. FEBS J 2020; 287:2961-2978. [PMID: 31869496 DOI: 10.1111/febs.15186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Annexin A6 (AnxA6), a member of the calcium (Ca2+ ) and membrane binding annexins, is known to stabilize and establish the formation of multifactorial signaling complexes. At the plasma membrane, AnxA6 is a scaffold for protein kinase Cα (PKCα) and GTPase-activating protein p120GAP to promote downregulation of epidermal growth factor receptor (EGFR) and Ras/mitogen-activated protein kinase (MAPK) signaling. In human squamous A431 epithelial carcinoma cells, which overexpress EGFR, but lack endogenous AnxA6, restoration of AnxA6 expression (A431-A6) promotes PKCα-mediated threonine 654 (T654)-EGFR phosphorylation, which inhibits EGFR tyrosine kinase activity. This is associated with reduced A431-A6 cell growth, but also decreased migration and invasion in wound healing, matrigel, and organotypic matrices. Here, we show that A431-A6 cells display reduced EGFR activity in vivo, with xenograft analysis identifying increased pT654-EGFR levels, but reduced tyrosine EGFR phosphorylation compared to controls. In contrast, PKCα depletion in A431-A6 tumors is associated with strongly reduced pT654 EGFR levels, yet increased EGFR tyrosine phosphorylation and MAPK activity. Moreover, tyrosine kinase inhibitors (TKIs; gefitinib, erlotinib) more effectively inhibit cell viability, clonogenic growth, and wound healing of A431-A6 cells compared to controls. Likewise, the ability of AnxA6 to inhibit A431 motility and invasiveness strongly improves TKI efficacy in matrigel invasion assays. This correlates with a greatly reduced invasion of the surrounding matrix of TKI-treated A431-A6 when cultured in 3D spheroids. Altogether, these findings implicate that elevated AnxA6 scaffold levels contribute to improve TKI-mediated inhibition of growth and migration, but also invasive properties in EGFR overexpressing human squamous epithelial carcinoma.
Collapse
Affiliation(s)
- Monira Hoque
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Yasmin A Elmaghrabi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Meryem Köse
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - James R W Conway
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Alexander Swarbrick
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
15
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
Almeida C, Maniti O, Di Pisa M, Swiecicki JM, Ayala-Sanmartin J. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation. PLoS One 2019; 14:e0210985. [PMID: 30673771 PMCID: PMC6343925 DOI: 10.1371/journal.pone.0210985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
Cell penetrating peptides (CPPs) are able to transport hydrophilic molecules inside cells. To reach the cytosol, the peptide associated with a cargo must cross the plasma or the endosomal membrane. Different molecular mechanisms for peptide internalisation into cells have been proposed and it is becoming clear that the cellular internalisation mechanisms are different depending on the peptide sequence and structure and the target membrane. Herein, the penetration of three peptides into large unilamellar vesicles were studied: the homeodomain derived 16-residues penetratin, nona-arginine (R9), and a small peptide containing 6 arginine and 3 tryptophan residues (RW9). The membrane models were composed of phospholipids from natural sources containing different molecular species. We observed that among the three peptides, only the amphipathic peptide RW9 was able to cross the membrane vesicles in the liquid disordered state. The changes in the distribution of the previously characterized cholesterol-pyrene probe show that cholesterol-pyrene molecules dissociate from clusters upon membrane interaction with the three peptides and that the cholesterol environment becomes more disordered in the presence of RW9. Finally, we studied the effect of the peptides on lipid ordering on giant plasma membrane vesicles. The amphipathic peptides RW9 and its longer homologue RW16 induced lipid de-packing in plasma membrane vesicles. Overall, the data suggest that a disordered membrane favours the translocation of RW9, that the membrane cholesterol is redistributed during peptide interaction, and that the peptide amphipathic character is important to increase membrane fluidity and peptide membrane translocation.
Collapse
Affiliation(s)
- Claudia Almeida
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Ofelia Maniti
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Margherita Di Pisa
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Jean-Marie Swiecicki
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Jesus Ayala-Sanmartin
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Whalen DS, Widatalla SE, Korolkova OY, Nangami GS, Beasley HK, Williams SD, Virgous C, Lehmann BD, Ochieng J, Sakwe AM. Implication of calcium activated RasGRF2 in Annexin A6-mediated breast tumor cell growth and motility. Oncotarget 2019; 10:133-151. [PMID: 30719209 PMCID: PMC6349432 DOI: 10.18632/oncotarget.26512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/16/2018] [Indexed: 01/10/2023] Open
Abstract
The role of AnxA6 in breast cancer and in particular, the mechanisms underlying its contribution to tumor cell growth and/or motility remain poorly understood. In this study, we established the tumor suppressor function of AnxA6 in triple negative breast cancer (TNBC) cells by showing that loss of AnxA6 is associated with early onset and rapid growth of xenograft TNBC tumors in mice. We also identified the Ca2+ activated RasGRF2 as an effector of AnxA6 mediated TNBC cell growth and motility. Activation of Ca2+ mobilizing oncogenic receptors such as epidermal growth factor receptor (EGFR) in TNBC cells or pharmacological stimulation of Ca2+ influx led to activation, subsequent degradation and altered effector functions of RasGRF2. Inhibition of Ca2+ influx or overexpression of AnxA6 blocked the activation/degradation of RasGRF2. We also show that AnxA6 acts as a scaffold for RasGRF2 and Ras proteins and that its interaction with RasGRF2 is modulated by GTP and/or activation of Ras proteins. Meanwhile, down-regulation of RasGRF2 and treatment of cells with the EGFR-targeted tyrosine kinase inhibitor (TKI) lapatinib strongly attenuated the growth of otherwise EGFR-TKI resistant AnxA6 high TNBC cells. These data not only suggest that AnxA6 modulated Ca2+ influx and effector functions of RasGRF2 underlie at least in part, the AnxA6 mediated TNBC cell growth and/or motility, but also provide a rationale to target Ras-driven TNBC with EGFR targeted therapies in combination with inhibition of RasGRF2.
Collapse
Affiliation(s)
- Diva S Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Sarrah E Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Olga Y Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Gladys S Nangami
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Heather K Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Stephen D Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Carlos Virgous
- Animal Care Facility, Meharry Medical College, Nashville, TN, USA
| | - Brian D Lehmann
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Amos M Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
18
|
Cairns R, Fischer AW, Blanco-Munoz P, Alvarez-Guaita A, Meneses-Salas E, Egert A, Buechler C, Hoy AJ, Heeren J, Enrich C, Rentero C, Grewal T. Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS One 2018; 13:e0201310. [PMID: 30110341 PMCID: PMC6093612 DOI: 10.1371/journal.pone.0201310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) controls cholesterol and membrane transport in endo- and exocytosis, and modulates triglyceride accumulation and storage. In addition, AnxA6 acts as a scaffolding protein for negative regulators of growth factor receptors and their effector pathways in many different cell types. Here we investigated the role of AnxA6 in the regulation of whole body lipid metabolism and insulin-regulated glucose homeostasis. Therefore, wildtype (WT) and AnxA6-knockout (KO) mice were fed a high-fat diet (HFD) for 17 weeks. During the course of HFD feeding, AnxA6-KO mice gained less weight compared to controls, which correlated with reduced adiposity. Systemic triglyceride and cholesterol levels of HFD-fed control and AnxA6-KO mice were comparable, with slightly elevated high density lipoprotein (HDL) and reduced triglyceride-rich lipoprotein (TRL) levels in AnxA6-KO mice. AnxA6-KO mice displayed a trend towards improved insulin sensitivity in oral glucose and insulin tolerance tests (OGTT, ITT), which correlated with increased insulin-inducible phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6) in liver extracts. However, HFD-fed AnxA6-KO mice failed to downregulate hepatic gluconeogenesis, despite similar insulin levels and insulin signaling activity, as well as expression profiles of insulin-sensitive transcription factors to controls. In addition, increased glycogen storage in livers of HFD- and chow-fed AnxA6-KO animals was observed. Together with an inability to reduce glucose production upon insulin exposure in AnxA6-depleted HuH7 hepatocytes, this implicates AnxA6 contributing to the fine-tuning of hepatic glucose metabolism with potential consequences for the systemic control of glucose in health and disease.
Collapse
Affiliation(s)
- Rose Cairns
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alexander W. Fischer
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Blanco-Munoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Science, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (TG); (CR)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- * E-mail: (TG); (CR)
| |
Collapse
|
19
|
Tan LHR, Tan AJR, Ng YY, Chua JJE, Chew WS, Muralidharan S, Torta F, Dutta B, Sze SK, Herr DR, Ong WY. Enriched Expression of Neutral Sphingomyelinase 2 in the Striatum is Essential for Regulation of Lipid Raft Content and Motor Coordination. Mol Neurobiol 2018; 55:5741-5756. [PMID: 29043558 PMCID: PMC5994222 DOI: 10.1007/s12035-017-0784-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Sphingomyelinases are a family of enzymes that hydrolyze sphingomyelin to generate phosphocholine and ceramide. The brain distribution and function of neutral sphingomyelinase 2 (nSMase2) were elucidated in this study. nSMase2 mRNA expression was greatest in the striatum, followed by the prefrontal cortex, hippocampus, cerebellum, thalamus, brainstem, and olfactory bulb. The striatum had the highest level of nSMase2 protein expression, followed by the prefrontal cortex, thalamus, hippocampus, brainstem, and cerebellum. Dense immunolabeling was observed in the striatum, including the caudate-putamen, while moderately dense staining was found in the olfactory bulb and cerebral neocortex. Electron microscopy of the caudate-putamen showed nSMase2 immunoreaction product was present in small diameter dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled axon terminals containing small round vesicles; and characteristics of glutamatergic axons. Lipidomic analysis of the striatum showed increase in long chain sphingomyelins, SM36:1 and SM38:1 after inhibition of nSMase activity. Quantitative proteomic analysis of striatal lipid raft fraction showed many proteins were downregulated by more than 2-fold after inhibition or antisense knockdown of nSMase; consistent with the notion that nSMase2 activity is important for aggregation or clustering of proteins in lipid rafts. Inhibition or antisense knockdown of nSMase2 in the caudate-putamen resulted in motor deficits in the rotarod and narrow beam tests; as well as decreased acoustic startle and improved prepulse inhibition of the startle reflex. Together, results indicate an important function of nSMase2 in the striatum.
Collapse
Affiliation(s)
- Laura Hui-Ru Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Angela Jin-Rong Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yu-Ying Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - John Jia-En Chua
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore
- Department of Physiology, National University of Singapore, Singapore, 119260, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Wee-Siong Chew
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore
| | - Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, Singapore, 119260, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, Singapore, 119260, Singapore
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
20
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
21
|
Lloyd-Lewis B, Krueger CC, Sargeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem 2018; 293:4244-4261. [PMID: 29343516 PMCID: PMC5868265 DOI: 10.1074/jbc.ra118.001777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/19/2022] Open
Abstract
Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both in vivo and in vitro, that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death. To further investigate the impact of Stat3 on lysosomal function, we conducted a proteomic screen of changes in lysosomal membrane protein components induced by Stat3 using an iron nanoparticle enrichment strategy. Our results show that Stat3 activation not only elevates the levels of known membrane proteins but results in the appearance of unexpected factors, including cell surface proteins such as annexins and flotillins. These data suggest that Stat3 may coordinately regulate endocytosis, intracellular trafficking, and lysosome biogenesis to drive lysosome-mediated cell death in mammary epithelial cells. The methodologies described in this study also provide significant improvements to current techniques used for the purification and analysis of the lysosomal proteome.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| | - Caroline C Krueger
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Timothy J Sargeant
- the Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia, and
| | - Michael E D'Angelo
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Michael J Deery
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Renata Feret
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Julie A Howard
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Kathryn S Lilley
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Christine J Watson
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| |
Collapse
|
22
|
When a transmembrane channel isn't, or how biophysics and biochemistry (mis)communicate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1099-1104. [PMID: 29408340 DOI: 10.1016/j.bbamem.2018.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022]
Abstract
Annexins are a family of soluble proteins that bind to acidic phospholipids such as phosphatidylserine in a calcium-dependent manner. The archetypical member of the annexin family is annexin A5. For many years, its function remained unknown despite the availability of a high-resolution structure. This, combined with the observations of specific ion conductance in annexin-bound membranes, fueled speculations about the possible membrane-spanning forms of annexins that functioned as ion channels. The channel hypothesis remained controversial and did not gather sufficient evidence to become accepted. Yet, it continues to draw attention as a framework for interpreting indirect (e.g., biochemical) data. The goal of the mini-review is to examine the data on annexin-lipid interactions from the last ~30 years from the point of view of the controversy between the two lines of inquiry: the well-characterized peripheral assembly of the annexins at membranes vs. their putative transmembrane insertion. In particular, the potential role of lipid rearrangements induced by annexin binding is highlighted.
Collapse
|
23
|
Cairns R, Alvarez-Guaita A, Martínez-Saludes I, Wason SJ, Hanh J, Nagarajan SR, Hosseini-Beheshti E, Monastyrskaya K, Hoy AJ, Buechler C, Enrich C, Rentero C, Grewal T. Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Exp Cell Res 2017; 358:397-410. [PMID: 28712927 DOI: 10.1016/j.yexcr.2017.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023]
Abstract
Annexin A6 (AnxA6) has been implicated in the regulation of endo-/exocytic pathways, cholesterol transport, and the formation of multifactorial signaling complexes in many different cell types. More recently, AnxA6 has also been linked to triglyceride storage in adipocytes. Here we investigated the potential role of AnxA6 in fatty acid (FA) - induced lipid droplet (LD) formation in hepatocytes. AnxA6 was associated with LD from rat liver and HuH7 hepatocytes. In oleic acid (OA) -loaded HuH7 cells, substantial amounts of AnxA6 bound to LD in a Ca2+-independent manner. Remarkably, stable or transient AnxA6 overexpression in HuH7 cells led to elevated LD numbers/size and neutral lipid staining under control conditions as well as after OA loading compared to controls. In contrast, overexpression of AnxA1, AnxA2 and AnxA8 did not impact on OA-induced lipid accumulation. On the other hand, incubation of AnxA6-depleted HuH7 cells or primary hepatocytes from AnxA6 KO-mice with OA led to reduced FA accumulation and LD numbers. Furthermore, morphological analysis of liver sections from A6-KO mice revealed significantly lower LD numbers compared to wildtype animals. Interestingly, pharmacological inhibition of cytoplasmic phospholipase A2α (cPLA2α)-dependent LD formation was ineffective in AnxA6-depleted HuH7 cells. We conclude that cPLA2α-dependent pathways contribute to the novel regulatory role of hepatic AnxA6 in LD formation.
Collapse
Affiliation(s)
- Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Anna Alvarez-Guaita
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Inés Martínez-Saludes
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sundeep J Wason
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Jacky Hanh
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Science & Bosch Institute; Sydney Medical School; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- Discipline of Physiology, School of Medical Science & Bosch Institute; Sydney Medical School; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Science & Bosch Institute; Sydney Medical School; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Grewal T, Wason SJ, Enrich C, Rentero C. Annexins - insights from knockout mice. Biol Chem 2017; 397:1031-53. [PMID: 27318360 DOI: 10.1515/hsz-2016-0168] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Annexins are a highly conserved protein family that bind to phospholipids in a calcium (Ca2+) - dependent manner. Studies with purified annexins, as well as overexpression and knockdown approaches identified multiple functions predominantly linked to their dynamic and reversible membrane binding behavior. However, most annexins are found at multiple locations and interact with numerous proteins. Furthermore, similar membrane binding characteristics, overlapping localizations and shared interaction partners have complicated identification of their precise functions. To gain insight into annexin function in vivo, mouse models deficient of annexin A1 (AnxA1), A2, A4, A5, A6 and A7 have been generated. Interestingly, with the exception of one study, all mice strains lacking one or even two annexins are viable and develop normally. This suggested redundancy within annexins, but examining these knockout (KO) strains under stress conditions revealed striking phenotypes, identifying underlying mechanisms specific for individual annexins, often supporting Ca2+ homeostasis and membrane transport as central for annexin biology. Conversely, mice lacking AnxA1 or A2 show extracellular functions relevant in health and disease that appear independent of membrane trafficking or Ca2+ signaling. This review will summarize the mechanistic insights gained from studies utilizing mouse models lacking members of the annexin family.
Collapse
|
25
|
Oren T, Nimri L, Yehuda-Shnaidman E, Staikin K, Hadar Y, Friedler A, Amartely H, Slutzki M, Pizio AD, Niv MY, Peri I, Graeve L, Schwartz B. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Mol Nutr Food Res 2017; 61. [PMID: 28464422 DOI: 10.1002/mnfr.201700057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
SCOPE Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Collapse
Affiliation(s)
- Tom Oren
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lili Nimri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katy Staikin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Friedler
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Hadar Amartely
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Michal Slutzki
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lutz Graeve
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Betty Schwartz
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep 2017; 7:42025. [PMID: 28165022 PMCID: PMC5292732 DOI: 10.1038/srep42025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The ATP-binding cassette sub-family G member 1 (ABCG1) exports cellular cholesterol to high-density lipoproteins (HDL). However, a number of recent studies have suggested ABCG1 is predominantly localised to intracellular membranes. In this study, we found that ABCG1 was organized into two distinct cellular pools: one at the plasma membrane and the other associated with the endoplasmic reticulum (ER). The plasma membrane fraction was organized into filamentous structures that were associated with cortical actin filaments. Inhibition of actin polymerization resulted in complete disruption of ABCG1 filaments. Cholesterol loading of the cells increased the formation of the filamentous ABCG1, the proximity of filamentous ABCG1 to actin filaments and the diffusion rate of membrane associated ABCG1. Our findings suggest that the actin cytoskeleton plays a critical role in the plasma membrane localization of ABCG1.
Collapse
|
27
|
Hatoum D, Yagoub D, Ahadi A, Nassif NT, McGowan EM. Annexin/S100A Protein Family Regulation through p14ARF-p53 Activation: A Role in Cell Survival and Predicting Treatment Outcomes in Breast Cancer. PLoS One 2017; 12:e0169925. [PMID: 28068434 PMCID: PMC5222396 DOI: 10.1371/journal.pone.0169925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
The annexin family and S100A associated proteins are important regulators of diverse calcium-dependent cellular processes including cell division, growth regulation and apoptosis. Dysfunction of individual annexin and S100A proteins is associated with cancer progression, metastasis and cancer drug resistance. This manuscript describes the novel finding of differential regulation of the annexin and S100A family of proteins by activation of p53 in breast cancer cells. Additionally, the observed differential regulation is found to be beneficial to the survival of breast cancer cells and to influence treatment efficacy. We have used unbiased, quantitative proteomics to determine the proteomic changes occurring post p14ARF-p53 activation in estrogen receptor (ER) breast cancer cells. In this report we identified differential regulation of the annexin/S100A family, through unique peptide recognition at the N-terminal regions, demonstrating p14ARF-p53 is a central orchestrator of the annexin/S100A family of calcium regulators in favor of pro-survival functions in the breast cancer cell. This regulation was found to be cell-type specific. Retrospective human breast cancer studies have demonstrated that tumors with functional wild type p53 (p53wt) respond poorly to some chemotherapy agents compared to tumors with a non-functional p53. Given that modulation of calcium signaling has been demonstrated to change sensitivity of chemotherapeutic agents to apoptotic signals, in principle, we explored the paradigm of how p53 modulation of calcium regulators in ER+ breast cancer patients impacts and influences therapeutic outcomes.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, Faculty of Science, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alireza Ahadi
- Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Najah T. Nassif
- School of Life Sciences, Faculty of Science, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Eileen M. McGowan
- School of Life Sciences, Faculty of Science, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
28
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
29
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, Bressy C, Sergé A, Lavaut MN, Dusetti N, Loncle C, Roques J, Pietrasz D, Bousquet C, Garcia S, Granjeaud S, Ouaissi M, Bachet JB, Brun C, Iovanna JL, Zimmermann P, Vasseur S, Tomasini R. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 2016; 126:4140-4156. [PMID: 27701147 DOI: 10.1172/jci87734] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell-mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF-tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.
Collapse
|
32
|
Dongsheng H, Zhuo Z, Jiamin L, Hailan M, Lijuan H, Fan C, Dan Y, He Z, Yun X. Proteomic Analysis of the Peri-Infarct Area after Human Umbilical Cord Mesenchymal Stem Cell Transplantation in Experimental Stroke. Aging Dis 2016; 7:623-634. [PMID: 27699085 PMCID: PMC5036957 DOI: 10.14336/ad.2016.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
Among various therapeutic approaches for stroke, treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) has acquired some promising results. However, the underlying mechanisms remain unclear. We analyzed the protein expression spectrum of the cortical peri-infarction region after ischemic stroke followed by treatment with hUC-MSCs, and found 16 proteins expressed differentially between groups treated with or without hUC-MSCs. These proteins were further determined by Gene Ontology term analysis and network with CD200-CD200R1, CCL21-CXCR3 and transcription factors. Three of them: Abca13, Grb2 and Ptgds were verified by qPCR and ELISA. We found the protein level of Abca13 and the mRNA level of Grb2 consistent with results from the proteomic analysis. Finally, the function of these proteins was described and the potential proteins that deserve to be further studied was also highlighted. Our data may provide possible underlying mechanisms for the treatment of stroke using hUC-MSCs.
Collapse
Affiliation(s)
- He Dongsheng
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang Zhuo
- 4Department of Gastroenterology, Children's Hospital of Nanjing, Nanjing Medical University, Nanjing 210008, China
| | - Lao Jiamin
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Meng Hailan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Han Lijuan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Chen Fan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Ye Dan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang He
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xu Yun
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
33
|
Annexin A6 regulates interleukin-2-mediated T-cell proliferation. Immunol Cell Biol 2016; 94:543-53. [PMID: 26853809 DOI: 10.1038/icb.2016.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023]
Abstract
Annexin A6 (AnxA6) has been implicated in cell signalling by contributing to the organisation of the plasma membrane. Here we examined whether AnxA6 regulates signalling and proliferation in T cells. We used a contact hypersensitivity model to immune challenge wild-type (WT) and AnxA6(-/-) mice and found that the in vivo proliferation of CD4(+) T cells, but not CD8(+) T cells, was impaired in AnxA6(-/-) relative to WT mice. However, T-cell migration and signalling through the T-cell receptor ex vivo was similar between T cells isolated from AnxA6(-/-) and WT mice. In contrast, interleukin-2 (IL-2) signalling was reduced in AnxA6(-/-) compared with WT T cells. Further, AnxA6-deficient T cells had reduced membrane order and cholesterol levels. Taken together, our data suggest that AnxA6 regulates IL-2 homeostasis and sensitivity in T cells by sustaining a lipid raft-like membrane environment.
Collapse
|
34
|
|
35
|
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. J Biol Chem 2015; 291:1320-35. [PMID: 26578516 DOI: 10.1074/jbc.m115.683557] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.
Collapse
Affiliation(s)
- Ana García-Melero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meritxell Reverter
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elsa Meneses-Salas
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meryem Koese
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Camilla H Johnsen
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Frederic Morales-Paytuvi
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Yasmin A Elmaghrabi
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Albert Pol
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Francesc Tebar
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4095, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Carlos Enrich
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia,
| | - Carles Rentero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| |
Collapse
|