1
|
Ren H, Sun Y, Li Y, Yuan X, Jiang B, Zhang W, Liu G, Lu P. Potential Mechanism of Platelet GPIIb/IIIa and Fibrinogen on Retinal Vein Occlusion. Curr Eye Res 2024; 49:731-741. [PMID: 38482878 DOI: 10.1080/02713683.2024.2327055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE To explore the role of coagulation and fibrinolytic factors, and the potential mechanism of platelet aggregation in the pathogenesis of retinal vein occlusion. METHODS Coagulation and fibrinolytic parameters in patients with retinal vein occlusion were determined using hemagglutinin and HISCL-5000. Relationships between these elevated parameters and factors representing typical clinical manifestations of retinal vein occlusion were examined, and these parameters were analyzed using a STRING database to indicate the potential role of platelet aggregation. Platelet glycoprotein IIb/IIIa (GPIIb/IIIa) levels were evaluated by flow cytometry after antiplatelet treatment in patients and mouse models. Furthermore, the GPIIb/IIIa ligand fibrinogen in peripheral blood and retina of mouse models was assessed by the turbidimetric method and real-time PCR, respectively. RESULTS In patients, significant increases in peripheral blood fibrinogen and GPIIb/IIIa levels were observed (p = 0.0040, p < 0.0001, respectively). A positive correlation was observed between macular thickness (MT) and both fibrinogen and GPIIb/IIIa (r = 0.4528, p = 0.0063; r = 0.3789, p = 0.0427, respectively). After intravitreal injections of anti-vascular endothelial growth factor drugs, a significant reduction in fibrinogen levels was observed (p = 0.0072). In addition, the use of antiplatelet drugs resulted in a significant decrease in GPIIb/IIIa (p < 0.0001). In a mouse model, antiplatelet therapy significantly reduced both peripheral blood and retina fibrinogen levels and the overall rate of vein occlusion 3 days after occlusion (p < 0.0005). In addition, the reduction in GPIIb/IIIa levels after antiplatelet therapy was remarkable. CONCLUSION Fibrinogen and GPIIb/IIIa may be involved in retinal vein occlusion and blocking platelet aggregation may be a new therapeutic approach for retinal vein occlusion.
Collapse
Affiliation(s)
- Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyue Sun
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanting Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xianbin Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Huang WT, Chen XJ, Lin YK, Shi JF, Li H, Wu HD, Jiang RL, Chen S, Wang X, Tan XX, Chen KY, Wang P. FGF17 protects cerebral ischemia reperfusion-induced blood-brain barrier disruption via FGF receptor 3-mediated PI3K/AKT signaling pathway. Eur J Pharmacol 2024; 971:176521. [PMID: 38522639 DOI: 10.1016/j.ejphar.2024.176521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Maintaining blood-brain barrier (BBB) integrity is critical components of therapeutic approach for ischemic stroke. Fibroblast growth factor 17 (FGF17), a member of FGF8 superfamily, exhibits the strongest expression throughout the wall of all major arteries during development. However, its molecular action and potential protective role on brain endothelial cells after stroke remains unclear. Here, we observed reduced levels of FGF17 in the serum of patients with ischemic stroke, as well as in the brains of mice subjected to middle cerebral artery occlusion (MCAO) injury and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cells (bEnd.3) cells. Moreover, treatment with exogenous recombinant human FGF17 (rhFGF17) decreased infarct volume, improved neurological deficits, reduced Evans Blue leakage and upregulated the expression of tight junctions in MCAO-injured mice. Meanwhile, rhFGF17 increased cell viability, enhanced trans-endothelial electrical resistance, reduced sodium fluorescein leakage, and alleviated reactive oxygen species (ROS) generation in OGD/R-induced bEnd.3 cells. Mechanistically, the treatment with rhFGF17 resulted in nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and upregulation of heme oxygenase-1 (HO-1) expression. Additionally, based on in-vivo and in-vitro research, rhFGF17 exerted protective effects against ischemia/reperfusion (I/R) -induced BBB disruption and endothelial cell apoptosis through the activation of the FGF receptor 3/PI3K/AKT signaling pathway. Overall, our findings indicated that FGF17 may hold promise as a novel therapeutic strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong-Jian Chen
- Department of Pharmacy, Wenzhou Central Hospital, Wenzhou, 325099, China
| | - Yu-Kai Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuai Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian-Xi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ke-Yang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Ceulemans A, Spronk HMH, Ten Cate H, van Zwam WH, van Oostenbrugge RJ, Nagy M. Current and potentially novel antithrombotic treatment in acute ischemic stroke. Thromb Res 2024; 236:74-84. [PMID: 38402645 DOI: 10.1016/j.thromres.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Acute ischemic stroke (AIS) is the most common type of stroke and requires immediate reperfusion. Current acute reperfusion therapies comprise the administration of intravenous thrombolysis and/or endovascular thrombectomy. Although these acute reperfusion therapies are increasingly successful, optimized secondary antithrombotic treatment remains warranted, specifically to reduce the risk of major bleeding complications. In the development of AIS, coagulation and platelet activation play crucial roles by driving occlusive clot formation. Recent studies implicated that the intrinsic route of coagulation plays a more prominent role in this development, however, this is not fully understood yet. Next to the acute treatments, antithrombotic therapy, consisting of anticoagulants and/or antiplatelet therapy, is successfully used for primary and secondary prevention of AIS but at the cost of increased bleeding complications. Therefore, better understanding the interplay between the different pathways involved in the pathophysiology of AIS might provide new insights that could lead to novel treatment strategies. This narrative review focuses on the processes of platelet activation and coagulation in AIS, and the most common antithrombotic agents in primary and secondary prevention of AIS. Furthermore, we provide an overview of promising novel antithrombotic agents that could be used to improve in both acute treatment and stroke prevention.
Collapse
Affiliation(s)
- Angelique Ceulemans
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Henri M H Spronk
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Hugo Ten Cate
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of internal medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wim H van Zwam
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Magdolna Nagy
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Biochemistry, Maastricht University Medical Center+, Maastricht, the Netherlands; Thrombosis Expertise Center, Heart & Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Xu Y, Hu Y, Wu G, Niu L, Fang C, Li Y, Jiang L, Yuan C, Huang M. Specific inhibition on PAI-1 reduces the dose of Alteplase for ischemic stroke treatment. Int J Biol Macromol 2024; 257:128618. [PMID: 38070813 DOI: 10.1016/j.ijbiomac.2023.128618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
Administration of recombinant tPA (rtPA, or trade name Alteplase®) is an FDA-approved therapy for acute ischemic stroke (AIS), but poses the risk of hemorrhagic complications. Recombinant tPA can be rapidly inactivated by the endogenous inhibitor, plasminogen activator inhibitor 1 (PAI-1). In this work, we study a novel treatment approach that combines a PAI-1 inhibitor, PAItrap4, with a reduced dose of rtPA to address the hemorrhagic concern of rtPA. PAItrap4 is a highly specific and very potent protein-based inhibitor of PAI-1, comprising of a variant of uPA serine protease domain, human serum albumin, and a cyclic RGD peptide. PAItrap4 efficiently targets and inhibits PAI-1 on activated platelets, and also possesses a long half-life in vivo. Our results demonstrate that PAItrap4 effectively counteracts the inhibitory effects of PAI-1 on rtPA, preserving rtPA activity based on amidolytic and clot lysis assays. In an in vivo murine stroke model, PAItrap4, together with low-dose rtPA, enhances the blood perfusion in the stroke-affected areas, reduces infarct size, and promotes neurological recovery in mice. Importantly, such treatment does not increase the amount of cerebral hemorrhage, thus reducing the risk of cerebral hemorrhage. In addition, PAItrap4 does not compromise the normal blood coagulation function in mice, demonstrating its safety as a therapeutic agent. These findings highlight this combination therapy as a promising alternative for the treatment of ischemic stroke, offering improved safety and efficacy.
Collapse
Affiliation(s)
- Yanyan Xu
- College of Chemical Engineering, Fuzhou University, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yinping Hu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guangqian Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lili Niu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongkun Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, No. 134 Dong Street, Fuzhou, Fujian 350001, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Natalia B, Tomasz M, Ewa C, Anna GP. Sex-dependent effects of finerenone on hemostasis in normoglycemic and streptozotocin-induced diabetic mice. Biomed Pharmacother 2023; 169:115910. [PMID: 38006618 DOI: 10.1016/j.biopha.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Diabetes is associated with aldosterone excess and the overactivation of its mineralocorticoid receptor (MR) which leads to the development of many cardiovascular dysfunctions. Therefore, MR antagonists have been found to exert favorable effects on the cardiovascular system. Finerenone is a new nonsteroidal MR antagonist approved for the treatment of chronic kidney disease associated with type 2 diabetes. Clinical studies have demonstrated that finerenone improves cardiovascular outcomes. However, its influence on hemostasis in the cardioprotective effect is unknown. Therefore, the main aim of our study was to evaluate the effects of finerenone (10 mg/kg, p.o.) on selected hemostasis parameters in streptozotocin (180 mg/kg, i.p.)-induced diabetes. Since regulation of the MR activity is sex-dependent, the study was conducted in both female and male mice. The most beneficial effects of finerenone were observed in diabetic female mice which included a decrease in thrombus formation, attenuation of platelet activity, inhibition of the coagulation system, and activation of fibrinolysis. In contrast, in male diabetic mice only an attenuation of the coagulation system was observed. Furthermore, finerenone also exerted unfavorable effects, but only in normoglycemic mice, manifested as a slight increase in platelet activity in males and an enhancement of the coagulation system activity in females. Our study is the first to show the sex-dependent and glycemia-dependent effects of finerenone on hemostasis in diabetes. The occurrence of beneficial effects only in female diabetic mice requires in-depth study.
Collapse
Affiliation(s)
- Bielicka Natalia
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, ul. Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Misztal Tomasz
- Department of Physical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Chabielska Ewa
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, ul. Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Gromotowicz-Popławska Anna
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, ul. Mickiewicza 2C, 15-222 Bialystok, Poland
| |
Collapse
|
6
|
Xu ZH, Zhang JC, Chen K, Liu X, Li XZ, Yuan M, Wang Y, Tian JY. Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse. Eur J Pharmacol 2023; 960:176128. [PMID: 37866747 DOI: 10.1016/j.ejphar.2023.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death receptor/ligand 1 (PD-1/PD-L1) blockade therapy for various cancers induces itch. However, few studies have evaluated the mechanism underlying PD-1/PD-L1 inhibitor-induced itch. This study aimed to establish and evaluate a mouse model of acute itch induced by PD-1/PD-L1 inhibitors and to explore the role of the PD-1/PD-L1 pathway in chronic itch. The intradermal injection of the PD-1/PD-L1 small molecule inhibitors, or anti-PD-1/PD-L1 antibodies in the nape of the neck in the mice elicited intense spontaneous scratches. The model was evaluated using pharmacological methods. The number of scratches was reduced by naloxone but not by antihistamines or the transient receptor potential (TRP) channel inhibitor. Moreover, the PD-1 receptor was detected in the spinal cord of the mouse models of chronic itch that exhibited acetone, diethyl ether, and water (AEW)-induced dry skin, imiquimod-induced psoriasis, and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced allergic contact dermatitis. Intrathecal PD-L1 (1 μg, 4 times a week for 1 week) suppressed the activation of the microglia in the spinal dorsal horn to relieve the chronic itch that was elicited by imiquimod-induced psoriasis and DNFB-induced allergic contact dermatitis. Although the activation of the microglia in the spinal dorsal horn was not detected in the AEW-treated mice, intrathecal PD-L1 still reduced the number of scratches that were elicited by AEW. Our findings suggest that histamine receptor inhibitors or TRP channel inhibitors have limited effects on PD-1/PD-L1 inhibitor-induced itch and that spinal PD-1 is important for the spinal activation of the microglia, which may underlie chronic itch.
Collapse
Affiliation(s)
- Zhe-Hao Xu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China.
| | - Jing-Cheng Zhang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, China
| | - Ke Chen
- Department of General Surgery, The Frist Affiliated of Anhui Medical University, China
| | - Xuan Liu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Xian-Zhi Li
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Ming Yuan
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Jing-Yu Tian
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10:1272971. [PMID: 37937289 PMCID: PMC10626538 DOI: 10.3389/fcvm.2023.1272971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk. In this review, we briefly describe the current state of antithrombotic therapy, and then present a detailed discussion of the new generation of drugs that are being developed to target more safely existing or newly identified pathways, alongside the strategies to reverse direct oral anticoagulants, showcasing the breadth of approaches. Combined, these exciting advances in antithrombotic therapy bring us closer than we have ever been to the "holy grail" of the field, a treatment that separates the hemostatic and thrombotic systems, preventing clots without any concurrent bleeding risk.
Collapse
Affiliation(s)
- Martha M. S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Semekidus Shiferawe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
10
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Sun X, Wang Y, Zhao Y, Xu X, Lu W, Li Y, Bian F, Xiang L, Zhou L. Activation of the Epac/Rap1 signaling pathway alleviates blood-brain barrier disruption and brain damage following cerebral ischemia/reperfusion injury. Int Immunopharmacol 2023; 117:110014. [PMID: 36931001 DOI: 10.1016/j.intimp.2023.110014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Blood brain barrier (BBB) destruction plays a key role in ischemia stroke, including promoting BBB leakage and brain edema, and leads to unfavorable patient prognosis. Epac/Rap1 signaling pathway is important in mediating endothelial cell barrier function. This study will investigate the regulatory role of Epac/Rap1 signaling pathway in BBB disruption after cerebral ischemia/reperfusion (CI/R) injury. CI/R model was induced by 90 min of transient middle cerebral artery occlusion (MCAO) in male C57BL/6J mice. Injection of Epac/Rap1 signaling pathway agonist was performed half an hour before the MCAO operation. The results showed that CI/R injured the tight connection of BBB and evoked the suppression of the Epac/Rap1 signaling pathway. Based on Epac activation with a cAMP analogue, 8-CPT could improve BBB disfunction by increasing the expression of tight junction protein and reducing the formation of stress fibers. In addition, 8-CPT could ameliorate neurobehavioral disorders, cerebral edema, and cerebral infarction volume in MCAO mice. Moreover, inhibition of Epac pathway with Rap1 inhibitor GGTI298 and Rac1 inhibitor NSC23766 could aggravate the damage of BBB and cerebral injury accordingly. Our results indicate that, the activation of Epac/Rap1 signaling pathway has neuroprotective effects on CI/R damaged brain, through the recovery of BBB.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China; The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000, China
| | - Yingnan Wang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Xinyi Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Wenjie Lu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Yuying Li
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fei Bian
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
12
|
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice. Sci Rep 2023; 13:932. [PMID: 36650229 PMCID: PMC9845220 DOI: 10.1038/s41598-023-28225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antihyperglycemic drugs that decrease mortality from cardiovascular diseases. However, their effects on hemostasis in the cardioprotective effects have not been evaluated. Therefore, the effects of canagliflozin (CANA, 100 mg/kg, p.o.) and dapagliflozin (DAPA, 10 mg/kg, p.o.) on the parameters of hemostasis were investigated in female and male normoglycemic and streptozotocin (180 mg/kg, i.p.)-induced diabetic mice. CANA and DAPA reduced platelet activity in thrombus in male and female mice both normoglycemic and diabetic. CANA decreased thrombus formation in diabetic male mice, and platelet activation to ADP in diabetic female and male mice. Activation of fibrinolysis was observed in female mice, both normoglycemic and diabetic. DAPA reduced thrombus formation in diabetic male and female mice, and decreased platelet activation to ADP and fibrin formation in diabetic male mice. DAPA increased fibrin formation in normoglycemic female mice and activated fibrinolysis in diabetic female mice. CANA and DAPA exerted sex-specific effects, which were more pronounced in hyperglycemia. The antithrombotic effect of CANA and DAPA was more noticeable in male mice and could be due to platelet inhibition. The effect on coagulation and fibrinolysis was not clear since an increased coagulation and fibrinolysis were observed only in female mice.
Collapse
|
13
|
Kozlov S, Okhota S, Avtaeva Y, Melnikov I, Matroze E, Gabbasov Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front Cardiovasc Med 2022; 9:1038030. [PMID: 36531725 PMCID: PMC9755348 DOI: 10.3389/fcvm.2022.1038030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 10/10/2023] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric glycoprotein involved in hemostasis. It is essential for platelet adhesion to the subendothelium of the damaged endothelial layer at high shear rates. Such shear rates occur in small-diameter arteries, especially at stenotic sites. Moreover, VWF carries coagulation factor VIII and protects it from proteolysis in the bloodstream. Deficiency or dysfunction of VWF predisposes to bleeding. In contrast, an increase in the concentration of high molecular weight multimers (HMWM) of VWF is closely associated with arterial thrombotic events. Severe aortic stenosis (AS) or hypertrophic obstructive cardiomyopathy (HOCM) can deplete HMWM of VWF and lead to cryptogenic, gastrointestinal, subcutaneous, and mucosal bleeding. Considering that VWF facilitates primary hemostasis and a local inflammatory response at high shear rates, its dysfunction may contribute to the development of coronary artery disease (CAD) and its complications. However, current diagnostic methods do not allow for an in-depth analysis of this contribution. The development of novel diagnostic techniques, primarily microfluidic, is underway. Such methods can provide physiologically relevant assessments of VWF function at high shear rates; however, they have not been introduced into clinical practice. The development and use of agents targeting VWF interaction with the vessel wall and/or platelets may be reasonable in prevention of CAD and its complications, given the prominent role of VWF in arterial thrombosis.
Collapse
Affiliation(s)
- Sergey Kozlov
- Department of Problems of Atherosclerosis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Okhota
- Department of Problems of Atherosclerosis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ivan Melnikov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation—The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Matroze
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Innovative Pharmacy, Medical Devices and Biotechnology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology Named After Academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
15
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
16
|
Steubing RD, Szepanowski F, David C, Mohamud Yusuf A, Mencl S, Mausberg AK, Langer HF, Sauter M, Deuschl C, Forsting M, Fender AC, Hermann DM, Casas AI, Langhauser F, Kleinschnitz C. Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain Behav Immun Health 2022; 24:100493. [PMID: 35928516 PMCID: PMC9343933 DOI: 10.1016/j.bbih.2022.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3–28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages. Stable and safe global platelet depletion can be achieved for a prolonged period. Platelets only play a minor role in neurological recovery during the chronic phase. Platelet depletion after infarct maturation does not alter inflammatory response. Cerebral architecture after stroke is not influenced by delayed platelet depletion.
Collapse
|
17
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
18
|
Factors Associated with Platelet Activation-Recent Pharmaceutical Approaches. Int J Mol Sci 2022; 23:ijms23063301. [PMID: 35328719 PMCID: PMC8955963 DOI: 10.3390/ijms23063301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Platelets are at the forefront of human health and disease following the advances in their research presented in past decades. Platelet activation, their most crucial function, although beneficial in the case of vascular injury, may represent the initial step for thrombotic complications characterizing various pathologic states, primarily atherosclerotic cardiovascular diseases. In this review, we initially summarize the structural and functional characteristics of platelets. Next, we focus on the process of platelet activation and its associated factors, indicating the potential molecular mechanisms involving inflammation, endothelial dysfunction, and miRs. Finally, an overview of the available antiplatelet agents is being portrayed, together with agents possessing off-set platelet-inhibitory actions, while an extensive presentation of drugs under investigation is being given.
Collapse
|
19
|
Sun Y, Langer HF. Platelets, Thromboinflammation and Neurovascular Disease. Front Immunol 2022; 13:843404. [PMID: 35309326 PMCID: PMC8930842 DOI: 10.3389/fimmu.2022.843404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The brain and spinal cord are immune-privileged organs, but in the disease state protection mechanisms such as the blood brain barrier (BBB) are ineffective or overcome by pathological processes. In neuroinflammatory diseases, microglia cells and other resident immune cells contribute to local vascular inflammation and potentially a systemic inflammatory response taking place in parallel. Microglia cells interact with other cells impacting on the integrity of the BBB and propagate the inflammatory response through the release of inflammatory signals. Here, we discuss the activation and response mechanisms of innate and adaptive immune processes in response to neuroinflammation. Furthermore, the clinical importance of neuroinflammatory mediators and a potential translational relevance of involved mechanisms are addressed also with focus on non-classical immune cells including microglia cells or platelets. As illustrative examples, novel agents such as Anfibatide or Revacept, which result in reduced recruitment and activation of platelets, a subsequently blunted activation of the coagulation cascade and further inflammatory process, demonstrating that mechanisms of neuroinflammation and thrombosis are interconnected and should be further subject to in depth clinical and basic research.
Collapse
Affiliation(s)
- Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: Harald F. Langer,
| |
Collapse
|
20
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
21
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
22
|
Structure of the platelet glycoprotein Ib receptor in complex with a novel antithrombotic agent. Blood 2021; 137:844-847. [PMID: 33181828 DOI: 10.1182/blood.2020008028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Agkisacucetin, a snake C-type lectin-like protein isolated from the venom of Deinagkistrodon acutus (formerly Agkistrodon acutus), is a novel antithrombotic drug candidate in phase 2 clinical trials. Agkisacucetin specifically recognizes the platelet surface receptor glycoprotein Ib α chain (GPIbα) to block GPIb and von Willebrand factor (VWF). In this study, we solved the crystal structure of the GPIbα N-terminal domain (residues 1-305) in complex with agkisacucetin to understand their molecular recognition mechanism. The crystal structure showed that agkisacucetin primarily contacts GPIbα at the C-terminal part of the conserved leucine-rich repeat (LRR) domain (LRR-6 to LRR-8) and the previously described "β-switch" region through the β chain. In addition, we found that agkisacucetin α chain contacts part of the GPIbα C-terminal peptide after the LRR domain through complementary charge interactions. This C-terminal peptide plays a key role in GPIbα and thrombin recognition. Therefore, our structure revealed that agkisacucetin can sterically block the interaction between the GPIb receptor and VWF and thrombin proteins to inhibit platelet function. Our structural work provides key molecular insights into how an antithrombotic drug candidate recognizes the GPIb receptor to modulate platelet function to inhibit thrombosis.
Collapse
|
23
|
Li BX, Dai X, Xu XR, Adili R, Neves MAD, Lei X, Shen C, Zhu G, Wang Y, Zhou H, Hou Y, Ni T, Pasman Y, Yang Z, Qian F, Zhao Y, Gao Y, Liu J, Teng M, Marshall AH, Cerenzia EG, Li ML, Ni H. In vitro assessment and phase I randomized clinical trial of anfibatide a snake venom derived anti-thrombotic agent targeting human platelet GPIbα. Sci Rep 2021; 11:11663. [PMID: 34083615 PMCID: PMC8175443 DOI: 10.1038/s41598-021-91165-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.
Collapse
Affiliation(s)
- Benjamin Xiaoyi Li
- Lee's Pharmaceutical Holdings Limited, 1/F, Building 20E, Phase 3, Hong Kong Science Park, Shatin, N.T. Hong Kong SAR, China. .,Zhaoke Pharmaceutical Co. Limited, Hefei, China.
| | - Xiangrong Dai
- Lee's Pharmaceutical Holdings Limited, 1/F, Building 20E, Phase 3, Hong Kong Science Park, Shatin, N.T. Hong Kong SAR, China.,Zhaoke Pharmaceutical Co. Limited, Hefei, China
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Reheman Adili
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Yiming Wang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Hui Zhou
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Yan Hou
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yfke Pasman
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Canada
| | | | - Fang Qian
- Zhaoke Pharmaceutical Co. Limited, Hefei, China
| | - Yanan Zhao
- Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Wuhu, China
| | - Yongxiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jing Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Maikun Teng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Alexandra H Marshall
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Eric G Cerenzia
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Toronto Platelet Immunobiology Group, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Mandy Lokyee Li
- Lee's Pharmaceutical Holdings Limited, 1/F, Building 20E, Phase 3, Hong Kong Science Park, Shatin, N.T. Hong Kong SAR, China
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada. .,Toronto Platelet Immunobiology Group, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Canadian Blood Services Centre for Innovation, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,St. Michael's Hospital, Room 421, LKSKI-Keenan Research Centre, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
24
|
Li Y, Gong M. Analysis of the neuroprotective effect of GLP-1 receptor agonist peptide on cerebral ischemia-reperfusion injury by Quantitative Proteomics Mass Spectrometry. Brain Behav 2021; 11:e02190. [PMID: 34018701 PMCID: PMC8213929 DOI: 10.1002/brb3.2190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The pathological characteristics of cerebral ischemia-reperfusion injury (CIRI) are complex, and the mechanism involved remains unknown. The treatment for CIRI has become an increasingly important challenge in the clinic, prompting us to explore the mechanism of CIRI. It was reported that GLP-1 receptor agonist, Liraglutide, exhibited alleviating effects on CIRI. The previous findings suggested that the administration of Liraglutide in rodents results in the attenuation of the infarct volume following ischemia-reperfusion injury by mediating the reactive oxygen species, apoptotic and necroptotic pathways. METHODS Here, a proteomic study was performed aiming to clarify the physiological protection role of GLP-1 receptor agonist during the development of CIRI in MCAO mice. This proteomic investigations is contributed to reveal the mechanism associated with the treatment of GLP-1 receptor agonist in MCAO mice. RESULTS The results indicated that the occurrence of ischemia-reperfusion led to complex pathological processes, including inflammation, necroptosis and apoptosis. The treatment of Liraglutide significantly reduced the infract volume resulted from ischemia reperfusion injury. The proteomic data revealed that the administration of Liraglutide in MCAO mice induced the various effects on proteins expression level and phosphorylation. CONCLUSIONS The findings in this study was beneficial for identifying the novel therapeutic target for the treatment of ischemia reperfusion.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | - Min Gong
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, China.,Department of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Platelets as drivers of ischemia/reperfusion injury after stroke. Blood Adv 2021; 5:1576-1584. [PMID: 33687431 DOI: 10.1182/bloodadvances.2020002888] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide and, despite reperfusion either via thrombolysis or thrombectomy, stroke patients often suffer from lifelong disabilities. These persistent neurological deficits may be improved by treating the ischemia/reperfusion (I/R) injury that occurs following ischemic stroke. There are currently no approved therapies to treat I/R injury, and thus it is imperative to find new targets to decrease the burden of ischemic stroke and related diseases. Platelets, cell fragments from megakaryocytes, are primarily known for their role in hemostasis. More recently, investigators have studied the nonhemostatic role of platelets in inflammatory pathologies, such as I/R injury after ischemic stroke. In this review, we seek to provide an overview of how I/R can lead to platelet activation and how activated platelets, in turn, can exacerbate I/R injury after stroke. We will also discuss potential mechanisms by which platelets may ameliorate I/R injury.
Collapse
|
26
|
Chu W, Sun X, Zhu X, Zhao YC, Zhang J, Kong Q, Zhou L. Blockade of platelet glycoprotein receptor Ib ameliorates blood-brain barrier disruption following ischemic stroke via Epac pathway. Biomed Pharmacother 2021; 140:111698. [PMID: 34029954 DOI: 10.1016/j.biopha.2021.111698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
Glycoprotein (GP) Ib is a platelet membrane receptor complex exposed to vascular injury, proposed as an effective target for stroke therapy. Previously, we have observed that the GPIb antagonist anfibatide (ANF) could mitigate blood-brain barrier (BBB) disruption following cerebral ischemia/reperfusion (CI/R) injury. The current study was designed to investigate whether the amelioration of the BBB by ANF is mediated via the Epac signaling pathway. A murine model of CI/R injury was induced following 90 min of transient middle cerebral artery occlusion (MCAO). ANF (4 μg/kg) was intravenously injected 1 h after reperfusion. Herein, ANF ameliorated BBB disruption, increased the expression of tight junction proteins, suppressed F-actin cytoskeleton rearrangement, decreased the permeability of the ischemic brain tissue, and relieved brain edema. ANF-treated mice had smaller infarct volumes and less severe neurological deficits than the MCAO mice. Moreover, the effects of ANF and Epac1 agonists were very similar in the MCAO mice. Epac activation with a cAMP analog, 8-CPT-2'-O-Me-cAMP, mitigated the breakdown of BBB function and CI/R injury. The Epac specific antagonist, ESI-09, worsened barrier damage and cerebral impairment, antagonizing the protective effects afforded by ANF. In addition, ANF upregulated the expression of Epac1 protein in the ischemic cerebral cortex. Collectively, our results indicate that the protective effect of ANF on the BBB after CI/R could be attributed to the activation of the Epac pathway.
Collapse
Affiliation(s)
- Wei Chu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xuemei Sun
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xiaoxiao Zhu
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Yu Chen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Jingcheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Qin Kong
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Lanlan Zhou
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
27
|
Denorme F, Martinod K, Vandenbulcke A, Denis CV, Lenting PJ, Deckmyn H, Vanhoorelbeke K, Meyer SFD. The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice. Haematologica 2021; 106:819-828. [PMID: 32107335 PMCID: PMC7927893 DOI: 10.3324/haematol.2019.241042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/25/2020] [Indexed: 01/30/2023] Open
Abstract
von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Cécile V. Denis
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Peter J. Lenting
- Institut National de la Sante et de la Recherche Medicale, UMR_S 1176, Univ. Paris-Sud, Universite Paris-Saclay, Le Kremlin-Bicetre, France
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
28
|
Lichota A, Szewczyk EM, Gwozdzinski K. Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. Int J Mol Sci 2020; 21:E7975. [PMID: 33121005 PMCID: PMC7663413 DOI: 10.3390/ijms21217975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Eligia M. Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
29
|
Role of the Platelets and Nitric Oxide Biotransformation in Ischemic Stroke: A Translative Review from Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2979260. [PMID: 32908630 PMCID: PMC7474795 DOI: 10.1155/2020/2979260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Ischemic stroke remains the fifth cause of death, as reported worldwide annually. Endothelial dysfunction (ED) manifesting with lower nitric oxide (NO) bioavailability leads to increased vascular tone, inflammation, and platelet activation and remains among the major contributors to cardiovascular diseases (CVD). Moreover, temporal fluctuations in the NO bioavailability during ischemic stroke point to its key role in the cerebral blood flow (CBF) regulation, and some data suggest that they may be responsible for the maintenance of CBF within the ischemic penumbra in order to reduce infarct size. Several years ago, the inhibitory role of the platelet NO production on a thrombus formation has been discovered, which initiated the era of extensive studies on the platelet-derived nitric oxide (PDNO) as a platelet negative feedback regulator. Very recently, Radziwon-Balicka et al. discovered two subpopulations of human platelets, based on the expression of the endothelial nitric oxide synthase (eNOS-positive or eNOS-negative platelets, respectively). The e-NOS-negative ones fail to produce NO, which attenuates their cyclic guanosine monophosphate (cGMP) signaling pathway and-as result-promotes adhesion and aggregation while the e-NOS-positive ones limit thrombus formation. Asymmetric dimethylarginine (ADMA), a competitive NOS inhibitor, is an independent cardiovascular risk factor, and its expression alongside with the enzymes responsible for its synthesis and degradation was recently shown also in platelets. Overproduction of ADMA in this compartment may increase platelet activation and cause endothelial damage, additionally to that induced by its plasma pool. All the recent discoveries of diverse eNOS expression in platelets and its role in regulation of thrombus formation together with studies on the NOS inhibitors have opened a new chapter in translational medicine investigating the onset of acute cardiovascular events of ischemic origin. This translative review briefly summarizes the role of platelets and NO biotransformation in the pathogenesis and clinical course of ischemic stroke.
Collapse
|
30
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
31
|
Izzo AA, Teixeira M, Alexander SPH, Cirino G, Docherty JR, George CH, Insel PA, Ji Y, Kendall DA, Panattieri RA, Sobey CG, Stanford SC, Stefanska B, Stephens G, Ahluwalia A. A practical guide for transparent reporting of research on natural products in the British Journal of Pharmacology: Reproducibility of natural product research. Br J Pharmacol 2020; 177:2169-2178. [PMID: 32298474 DOI: 10.1111/bph.15054] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Mauro Teixeira
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | - Paul A Insel
- University of San Diego, San Diego, California, USA
| | - Yong Ji
- Nanjing University, Nanjing, China
| | | | | | | | | | - Barbara Stefanska
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Amrita Ahluwalia
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Zhang J, Ding Y, Jiang D, Xie J, Liu Y, Ma J, Mu Y, Zhang X, Yu C, Zhang Y, Yi X, Zhou Z, Fang L, Shen S, Yang Y, Cheng K, Zhuang R, Zhang Y. Deficiency of platelet adhesion molecule CD226 causes megakaryocyte development and platelet hyperactivity. FASEB J 2020; 34:6871-6887. [PMID: 32248623 DOI: 10.1096/fj.201902142r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
This study used constitutive CD226 gene knockout (KO) mice as a model to investigate the functions and mechanisms of CD226 in megakaryocyte (MK) maturation and platelet activation. Although CD226 deficiency did not cause MK polyploidization or platelet granule abnormalities, increased MK counts were detected in the femora bone marrow (BM) and spleen of CD226 KO mice. Particularly, CD226 KO mice have a more extensive membrane system in MKs and platelets than wild-type (WT) mice. We also demonstrated that CD226 KO mice displayed increased platelet counts, shortened bleeding time, and enhanced platelet aggregation. CD226 KO platelets had an increased mature platelet ratio compared to the control platelets. In addition, the observed reduction in bleeding time may be due to decreased nitric oxide (NO) production in the platelets. Platelet-specific CD226-deficient mice showed similar increased MK counts, shortened bleeding time, enhanced platelet aggregation, and decreased NO production in platelets. Furthermore, we performed middle cerebral artery occlusion-reperfusion surgery on WT and CD226 KO mice to explore the potential effect of CD226 on acute ischemia-reperfusion injury; the results revealed that CD226 deficiency led to significantly increased infarct area. Thus, CD226 is a promising candidate for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Jinxue Zhang
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongxu Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Fourth Military Medical University, Xi'an, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yang Mu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Xuexin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Chaoping Yu
- Department of Emergency, Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Xin Yi
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziqing Zhou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Shen Shen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yixin Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Kun Cheng
- Transplant Immunology Laboratory, Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.,Transplant Immunology Laboratory, Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
33
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
34
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Horman S, Dechamps M, Octave M, Lepropre S, Bertrand L, Beauloye C. Platelet Function and Coronary Microvascular Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Li J, Kim K, Jeong SY, Chiu J, Xiong B, Petukhov PA, Dai X, Li X, Andrews RK, Du X, Hogg PJ, Cho J. Platelet Protein Disulfide Isomerase Promotes Glycoprotein Ibα-Mediated Platelet-Neutrophil Interactions Under Thromboinflammatory Conditions. Circulation 2019; 139:1300-1319. [PMID: 30586735 DOI: 10.1161/circulationaha.118.036323] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Platelet-neutrophil interactions contribute to vascular occlusion and tissue damage in thromboinflammatory disease. Platelet glycoprotein Ibα (GPIbα), a key receptor for the cell-cell interaction, is believed to be constitutively active for ligand binding. Here, we established the role of platelet-derived protein disulfide isomerase (PDI) in reducing the allosteric disulfide bonds in GPIbα and enhancing the ligand-binding activity under thromboinflammatory conditions. METHODS Bioinformatic analysis identified 2 potential allosteric disulfide bonds in GPIbα. Agglutination assays, flow cytometry, surface plasmon resonance analysis, a protein-protein docking model, proximity ligation assays, and mass spectrometry were used to demonstrate a direct interaction between PDI and GPIbα and to determine a role for PDI in regulating GPIbα function and platelet-neutrophil interactions. Also, real-time microscopy and animal disease models were used to study the pathophysiological role of PDI-GPIbα signaling under thromboinflammatory conditions. RESULTS Deletion or inhibition of platelet PDI significantly reduced GPIbα-mediated platelet agglutination. Studies using PDI-null platelets and recombinant PDI or Anfibatide, a clinical-stage GPIbα inhibitor, revealed that the oxidoreductase activity of platelet surface-bound PDI was required for the ligand-binding function of GPIbα. PDI directly bound to the extracellular domain of GPIbα on the platelet surface and reduced the Cys4-Cys17 and Cys209-Cys248 disulfide bonds. Real-time microscopy with platelet-specific PDI conditional knockout and sickle cell disease mice demonstrated that PDI-regulated GPIbα function was essential for platelet-neutrophil interactions and vascular occlusion under thromboinflammatory conditions. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that PDI-GPIbα signaling played a crucial role in tissue damage. CONCLUSIONS Our results demonstrate that PDI-facilitated cleavage of the allosteric disulfide bonds tightly regulates GPIbα function, promoting platelet-neutrophil interactions, vascular occlusion, and tissue damage under thromboinflammatory conditions.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho).,Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Si-Yeon Jeong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Joyce Chiu
- The Centenary Institute, Newtown, NSW, Australia (J. Chiu, P.J.H.).,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, NSW, Australia (J. Chiu, P.J.H.)
| | - Bei Xiong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago (P.A.P.)
| | - Xiangrong Dai
- Lee's Pharmaceutical Holdings Ltd, Shatin, Hong Kong (X. Dai, X.L.)
| | - Xiaoyi Li
- Lee's Pharmaceutical Holdings Ltd, Shatin, Hong Kong (X. Dai, X.L.)
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC (R.K.A.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Philip J Hogg
- The Centenary Institute, Newtown, NSW, Australia (J. Chiu, P.J.H.).,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, NSW, Australia (J. Chiu, P.J.H.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| |
Collapse
|
37
|
Denorme F, Vanhoorelbeke K, De Meyer SF. von Willebrand Factor and Platelet Glycoprotein Ib: A Thromboinflammatory Axis in Stroke. Front Immunol 2019; 10:2884. [PMID: 31921147 PMCID: PMC6928043 DOI: 10.3389/fimmu.2019.02884] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023] Open
Abstract
von Willebrand factor (VWF) and platelets are key mediators of normal hemostasis. At sites of vascular injury, VWF recruits platelets via binding to the platelet receptor glycoprotein Ibα (GPIbα). Over the past decades, it has become clear that many hemostatic factors, including VWF and platelets, are also involved in inflammatory processes, forming intriguing links between hemostasis, thrombosis, and inflammation. The so-called “thrombo-inflammatory” nature of the VWF-platelet axis becomes increasingly recognized in different cardiovascular pathologies, making it a potential therapeutic target to interfere with both thrombosis and inflammation. In this review, we discuss the current evidence for the thrombo-inflammatory activity of VWF with a focus on the VWF-GPIbα axis and discuss its implications in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| | | | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
38
|
Stegner D, Klaus V, Nieswandt B. Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Front Immunol 2019; 10:2505. [PMID: 31736950 PMCID: PMC6838001 DOI: 10.3389/fimmu.2019.02505] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Klaus
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine–Department I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Abdelgawwad MS, Cao W, Zheng L, Kocher NK, Williams LA, Zheng XL. Transfusion of Platelets Loaded With Recombinant ADAMTS13 (A Disintegrin and Metalloprotease With Thrombospondin Type 1 Repeats-13) Is Efficacious for Inhibiting Arterial Thrombosis Associated With Thrombotic Thrombocytopenic Purpura. Arterioscler Thromb Vasc Biol 2019; 38:2731-2743. [PMID: 30354235 DOI: 10.1161/atvbaha.118.311407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective- ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats-13) cleaves VWF (von Willebrand factor). This process is essential for hemostasis. Severe deficiency of plasma ADAMTS13 activity, most commonly resulting from autoantibodies against ADAMTS13, causes thrombotic thrombocytopenic purpura. Therapeutic plasma exchange is the standard of care to date, which removes autoantibodies and replenishes ADAMTS13. However, such a therapy is often ineffective to raise plasma ADAMTS13 activity, and in-hospital mortality rate remains as high as 20%. Approach and Results- To overcome the inhibition by autoantibodies, we developed a novel approach by delivering rADAMTS13 (recombinant ADAMTS13 ) using platelets as vehicles. We show that both human and murine platelets can uptake rADAMTS13 ex vivo. The endocytosed rADAMTS13 within platelets remains intact, active, and is stored in α-granules. Under arterial shear (100 dyne/cm2), the rADAMTS13 in platelets is released and effectively inhibits platelet adhesion and aggregation on a collagen-coated surface in a concentration-dependent manner. Transfusion of rADAMTS13-loaded platelets into Adamts13-/- mice dramatically reduces the rate of thrombus formation in the mesenteric arterioles after FeCl3 injury. An ex vivo transfusion of rADAMTS13-loaded platelets to a reconstituted whole blood containing plasma from a patient with immune-mediated thrombotic thrombocytopenic purpura and the cellular components (eg, erythrocytes and leukocytes) from a healthy individual, as well as a fresh whole blood obtained from a patient with congenital or immune-mediated thrombotic thrombocytopenic purpura also dramatically reduces the rate of thrombus formation under arterial flow. Conclusions- Our results demonstrate that transfusion of rADAMTS13-loaded platelets may be a novel and potentially effective therapeutic approach for arterial thrombosis, associated with congenital and immune-mediated thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Mohammad S Abdelgawwad
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| | - Wenjing Cao
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| | - Liang Zheng
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| | - Nicole K Kocher
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| | - Lance A Williams
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| | - X Long Zheng
- From the Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham
| |
Collapse
|
40
|
Majithia A, Bhatt DL. Novel Antiplatelet Therapies for Atherothrombotic Diseases. Arterioscler Thromb Vasc Biol 2019; 39:546-557. [PMID: 30760019 PMCID: PMC6445601 DOI: 10.1161/atvbaha.118.310955] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
Antiplatelet therapies are an essential tool to reduce the risk of developing clinically apparent atherothrombotic disease and are a mainstay in the therapy of patients who have established cardiovascular, cerebrovascular, and peripheral artery disease. Strategies to intensify antiplatelet regimens are limited by concomitant increases in clinically significant bleeding. The development of novel antiplatelet therapies targeting additional receptor and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, holds tremendous potential to improve outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Arjun Majithia
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| | - Deepak L. Bhatt
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
42
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
43
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
44
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Chen C, Li T, Zhao Y, Qian Y, Li X, Dai X, Huang D, Pan T, Zhou L. Platelet glycoprotein receptor Ib blockade ameliorates experimental cerebral ischemia-reperfusion injury by strengthening the blood-brain barrier function and anti-thrombo-inflammatory property. Brain Behav Immun 2018; 69:255-263. [PMID: 29195783 DOI: 10.1016/j.bbi.2017.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Blood-brain barrier (BBB) disruption, thrombus formation and immune-mediated inflammation are important steps in the pathophysiology of cerebral ischemia-reperfusion injury but are still inaccessible to therapeutic interventions. Recent studies have provided increasing evidence that blocking of platelet glycoprotein (GP) receptor Ib might represent a novel target in treating acute ischemic stroke. This research was conducted to explore the therapeutic efficacy and potential mechanisms of GPIbα inhibitor (anfibatide) in a model of brain ischemia-reperfusion injury in mice. Male mice underwent 90 min of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Anfibatide (1, 2, 4 ug/kg) or tirofiban were administered intravenously 1 h after reperfusion. The results showed that anfibatide could significantly reduce infarct volumes, increase the number of intact neuronal cells and improve neurobehavioral function. Moreover, anfibatide could reduce post ischemic BBB damage by attenuating increased paracellular permeability in the ischemia hemisphere significantly. Stroke-induced increases in activity and protein expression of macrophage-1 antigen (MAC-1) and P-selectin were also reduced by anfibatide intervention. Finally, anfibatide exerted antithrombotic effects upon stroke by decreased the number of microthrombi formation. This is the first demonstration of anfibatide's efficacy in protecting the BBB integrity and decreasing neutrophil inflammation response mediated by MAC-1 besides microthrombus formation inhibition in the brain during reperfusion. Anfibatide, as a promising anti-thrombo-inflammation agent, could be beneficial for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Tingting Li
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Yuchen Zhao
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Xiaoyi Li
- Zhaoke Pharmaceutical Co. Ltd, Hefei 230032, PR China
| | - Xiangrong Dai
- Zhaoke Pharmaceutical Co. Ltd, Hefei 230032, PR China
| | - Dake Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei 230032, PR China
| | - Tianzhong Pan
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Lanlan Zhou
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
46
|
Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117:1249-1257. [DOI: 10.1160/th16-12-0911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
SummaryAnti-platelet drugs reduce arterial thrombosis after plaque rupture and erosion, prevent stent thrombosis and are used to prevent and treat myocardial infarction and ischaemic stroke. Some of them may also be helpful in treating less frequent diseases such as thrombotic thrombocytopenic purpura. The present concise review aims to cover current and future developments of anti-platelet drugs interfering with the interaction of von Willebrand factor (VWF) with glycoprotein (GP) Ibα, and directed against GPVI, GPIIb/IIIa (integrin αIIbβ3), the thrombin receptor PAR-1, and the ADP receptor P2Y12. The high expectations of having novel antiplatelet drugs which selectively inhibit arterial thrombosis without interfering with normal haemostasis could possibly be met in the near future.
Collapse
|
47
|
Luo SY, Li R, Le ZY, Li QL, Chen ZW. Anfibatide protects against rat cerebral ischemia/reperfusion injury via TLR4/JNK/caspase-3 pathway. Eur J Pharmacol 2017; 807:127-137. [DOI: 10.1016/j.ejphar.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023]
|
48
|
Wang W, Li M, Wang Y, Wang Z, Zhang W, Guan F, Chen Q, Wang J. GSK-3β as a target for protection against transient cerebral ischemia. Int J Med Sci 2017; 14:333-339. [PMID: 28553165 PMCID: PMC5436475 DOI: 10.7150/ijms.17514] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
Stroke remains the leading cause of death and disability worldwide. This fact highlights the need to search for potential drug targets that can reduce stroke-related brain damage. We showed recently that a glycogen synthase kinase-3β (GSK-3β) inhibitor attenuates tissue plasminogen activator-induced hemorrhagic transformation after permanent focal cerebral ischemia. Here, we examined whether GSK-3β inhibition mitigates early ischemia-reperfusion stroke injury and investigated its potential mechanism of action. We used the rat middle cerebral artery occlusion (MCAO) model to mimic transient cerebral ischemia. At 3.5 h after MCAO, cerebral blood flow was restored, and rats were administered DMSO (vehicle, 1% in saline) or GSK-3β inhibitor TWS119 (30 mg/kg) by intraperitoneal injection. Animals were sacrificed 24 h after MCAO. TWS119 treatment reduced neurologic deficits, brain edema, infarct volume, and blood-brain barrier permeability compared with those in the vehicle group. TWS119 treatment also increased the protein expression of β-catenin and zonula occludens-1 but decreased β-catenin phosphorylation while suppressing the expression of GSK-3β. These results indicate that GSK-3β inhibition protects the blood-brain barrier and attenuates early ischemia-reperfusion stroke injury. This protection may be related to early activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Yuefei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Zhongyu Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
49
|
Matsui T, Hori A, Hamako J, Matsushita F, Ozeki Y, Sakurai Y, Hayakawa M, Matsumoto M, Fujimura Y. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination. J Thromb Haemost 2017; 15:538-548. [PMID: 28071872 DOI: 10.1111/jth.13617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/29/2022]
Abstract
Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. SUMMARY Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction.
Collapse
Affiliation(s)
- T Matsui
- Clinical Laboratory Medicine, Graduate School of Health Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - A Hori
- Clinical Laboratory Medicine, Graduate School of Health Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - J Hamako
- Department of Physiology, Faculty of Medical Management and Information Science, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - F Matsushita
- Clinical Laboratory Medicine, Graduate School of Health Sciences, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Y Ozeki
- Department of Environmental Biosciences, Yokohama City University, Yokohama, Japan
| | - Y Sakurai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - M Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - M Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Y Fujimura
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Von Willebrand factor (VWF) is a large multidomain, multimeric glycoprotein that plays an essential role in regulating the balance between blood clotting and bleeding. Aberrant VWF regulation can lead to a spectrum of diseases extending from bleeding disorders [Von Willebrand disease (VWD)] to aberrant thrombotic thrombocytopenic purpura (TTP). Understanding the biology of VWF expression and secretion is essential for developing novel targeted therapies for VWF-related hemostasis disorders. RECENT FINDINGS A number of recent elegant in-vitro and in-vivo studies will be highlighted, including the discovery of intronic splicing in the VWF gene, microRNA-regulated VWF gene expression, and syntaxin binding protein and autophagy mediated VWF secretion. Compared with the already established critical role of VWF in VWD and TTP pathophysiology, additional clinical studies have clarified and reinforced the association of elevated plasma levels of VWF with an increased risk of stroke, myocardial infarction, venous thrombosis, and diabetic thrombotic complications. Moreover, experimental mouse models of ischemic stroke and myocardial infarction have further supported VWF as a potential therapeutic target. SUMMARY VWF biosynthesis, maturation, and secretion is a complex process, which mandates tight regulation. Significant progress has been made in our understandings of VWF expression and secretion and its association with thrombotic diseases, contributing to the development of novel targeting VWF drugs for prevention and treatment of deficient and enhanced hemostasis.
Collapse
Affiliation(s)
- Yaozu Xiang
- aYale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, New Haven, Connecticut, USA bSchool of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | | |
Collapse
|