1
|
Bai HX, Gao YX, Wang S, Ma GY, Zhao W, Li XQ, Wang YF, Nong QN, Wang YB, Tan J, Duan Q, Cao W. Structure characteristics of a novel pectic polysaccharide from Fructus Corni and its protective effect on alcoholic fatty liver. Carbohydr Polym 2025; 352:123153. [PMID: 39843058 DOI: 10.1016/j.carbpol.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/09/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by the accumulation of hepatic lipid and has no effective treatment yet. Fructus Corni is a traditional Chinese medicinal herb, and its extractions have demonstrated hepatoprotective properties. We hypothesize that the polysaccharides in Fructus Corni might have therapeutic effects on AFLD. In this study, we isolated a novel homogeneous polysaccharide, APFC-2 (Mw= 63.0 kDa), from the Fructus Corni, and its structure was elucidated by monosaccharide composition, methylation analysis, partial acid hydrolysis, and NMR spectra. APFC-2 is a pectic polysaccharide characterized by a backbone of T-β-Galp-(1 → 6)-β-Galp-(1 → 3,6)-β-Galp-(1 → [4)-α-GalpA-OMe-(1 → 4)-α-GalpA-(1→]m → [2,4)-α-Rhap-(1 → 4)-α-GalpA-(1→]n, with branches comprising T-Araf-(1→, →3)-α-Araf-(1→, →3,5)-α-Araf-(1→, and →5)-α-Araf-(1→. In vivo experiments indicated that APFC-2 could significantly reduce hepatic steatosis, fasting triglyceride, and cholesterol levels in AFLD mice. Cell proliferation and Oil Red O staining results showed that APFC-2 concentration-dependently increased cell viability and significantly improved lipid metabolism in vitro. Mechanistically, APFC-2 markedly inhibited the formation of lipid both in vitro and in vivo through activating liver kinase B1 (LKB1) and then regulating adenosine 5'-monophosphate-activated protein kinase (AMPK)-SREBP-1 and AMPK-PPAR-α pathways. This research provides a theoretical basis for the potential application of Fructus Corni pectic polysaccharide as a specific activator of LKB1 for treating AFLD.
Collapse
Affiliation(s)
- Hong-Xin Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-Xuan Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Shuyao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Guang-Yuan Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wenjing Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yu-Fan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-Bo Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin Tan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qimei Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ren J, Chen X, Wang HY, Yang T, Zhang KR, Lei SY, Qi LY, Feng CL, Zhou R, Zhou H, Tang W. Gentiopicroside ameliorates psoriasis-like skin lesions in mice via regulating the Keap1-Nrf2 pathway and inhibiting keratinocyte activation. Acta Pharmacol Sin 2025:10.1038/s41401-024-01449-8. [PMID: 39779965 DOI: 10.1038/s41401-024-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities. In this study, we investigated the potential effects of GPS in imiquimod (IMQ)-induced psoriasis mouse model and the underlying mechanisms. The mice were sensitized on their shaved back with IMQ cream for 7 days with or without topical application of 1% or 2% GPS cream. We showed that the application of GPS cream significantly ameliorated psoriasis-like skin lesions; GPS effect was better than that of calcipotriol. GPS rectified the immune cells infiltration and keratinocytes activation in the skin lesions, and significantly inhibited TNF-α/IFN-γ stimulated human keratinocyte (HaCaT) activation in vitro. Proteomic analysis from keratinocytes with and without GPS treatment prompted that GPS regulated the Keap1-Nrf2 pathway, which was the most important pathway in regulating oxidative stress and inflammation. We demonstrated that GPS regulated the protein expression of p62 and Keap1, induced Nrf2 nuclear translocation followed by transcription of Nrf2 downstream antioxidant genes in HaCaT cells. Furthermore, the antioxidant effects of GPS were abolished in Nrf2-/- keratinocytes. Simultaneously, Nrf2-/- mice showed increased psoriasiform symptoms with a diminished protective effect in response to GPS treatment. Collectively, the study discloses that GPS inhibits keratinocyte activation and ameliorates psoriasis-like skin lesions in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jing Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Rong Zhang
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shu-Yue Lei
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu-Yao Qi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rong Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Song L, Tai Y, Li JX, Cao S, Han J, Liu XZ, Cao S, Li MY, Zuo HX, Xing Y, Ma J, Jin X. Mollugin inhibits IL-1β production by reducing zinc finger protein 91-regulated Pro-IL-1β ubiquitination and inflammasome activity. Int Immunopharmacol 2025; 145:113757. [PMID: 39642566 DOI: 10.1016/j.intimp.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Rubia cordifolia L. has been formally included in the Chinese Pharmacopoeia and utilized for centuries as a traditional Chinese medicine. Mollugin, a quinone compound, is a major active compound extracted from Rubia cordifolia L. Mollugin was reported has multiple pharmacological activity, including anti-inflammatory, anti-tumor effects. However, the anti-inflammatory mechanism is not yet clear. In this study, we explored the anti-inflammatory activity and potential mechanism of mollugin in vitro and in vivo. MATERIALS AND METHODS We explored the mechanisms that mollugin suppressed IL-1β expression through ZFP91 using various assays, including western blot, immunofluorescence, immunoprecipitation, MTT, RT-PCR, and ELISA assays in vitro. In vivo, oral administration of DSS induced colitis in mice and intraperitoneal injection of alum induced peritonitis in mice. RESULTS First, the results demonstrated that mollugin dramatically suppressed IL-1β secretion through reducing ZFP91 in macrophages. Crucially, we proved that mollugin inhibited K63-linked Pro-IL-1β ubiquitination through ZFP91 and limitated Pro-IL-1β cleavage efficacy. In addition, ZFP91-mediated Caspase-8 inflammasome component expression was inhibited by mollugin. Furthermore, mollugin inhibited the assembly of the Caspase-8 inflammasome complex by downregulating ZFP91. In vivo studies further revealed that mollugin improved DSS-induced colitis and alum-induced peritonitis in mice by reducing ZFP91. Notely, mollugin significantly altered the abundance of gut flora in DSS-induced colitis mice, which in turn ameliorated the colitis. CONCLUSION We present a novel finding that mollugin inhibition of ZFP91 is a crucial regulatory step, preventing undue inflammatory responses and thereby maintaining immune homeostasis. The current study offers new insight into the development of anti-inflammatory therapeutics targeting ZFP91.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jia Xuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Sheng Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
4
|
Li Z, Zhu X, Li C, Tang R, Zou Y, Liu S. Integrated serum metabolomics, 16S rRNA sequencing and bile acid profiling to reveal the potential mechanism of gentiopicroside against nonalcoholic steatohepatitis in lean mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118526. [PMID: 38972531 DOI: 10.1016/j.jep.2024.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lean nonalcoholic steatohepatitis (NASH) poses a serious threat to public health worldwide. Herbs of the genus Gentiana have been used for centuries to treat hepatic disease or have been consumed for hepatic protection efficiency. Gentiopicroside (GPS), the main bioactive component of Gentiana herbs, has been shown to be beneficial for protecting the liver, improving intestinal disorders, modulating bile acid profiles, ameliorating alcoholic hepatosteatosis, and so on. It is plausible to speculate that GPS may hold potential as a therapeutic strategy for lean NASH. However, no related studies have been conducted thus far. AIM OF THE STUDY The present work aimed to investigate the benefit of GPS on NASH in a lean mouse model. MATERIALS AND METHODS NASH in a lean mouse model was successfully established via a published method. GPS of 50 and 100 mg/kg were orally administered to verify the effect. Untargeted metabolomics, 16S rDNA sequencing and bile acid (BA) profiling, as well as qPCR and Western blotting analysis were employed to investigate the mechanism underlying the alleviating effect. RESULTS GPS significantly reduced the increase in serum biochemicals and liver index, and attenuated the accumulation of fat in the livers of lean mice with NASH. Forty-two potential biomarkers were identified by metabolomics analysis, leading to abnormal metabolic pathways of primary bile acid biosynthesis and fatty acid biosynthesis, which were subsequently rebalanced by GPS. A decreased Firmicutes/Bacteroidetes (F/B) ratio and disturbed BA related GM profiles were revealed in lean mice with NASH but were partially recovered by GPS. Furthermore, serum profiling of 23 BAs confirmed that serum BA levels were elevated in the lean model but downregulated by GPS treatment. Pearson correlation analysis validated associations between BA profiles, serum biochemical indices and related GM. qPCR and Western blotting analysis further elucidated the regulation of genes associated with liver lipid synthesis and bile acid metabolism. CONCLUSIONS GPS may ameliorate steatosis in lean mice with NASH, regulating the metabolomic profile, BA metabolism, fatty acid biosynthesis, and BA-related GM. All these factors may contribute to its beneficial effect.
Collapse
Affiliation(s)
- Zeyun Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xueya Zhu
- Department of pharmacy, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China.
| | - Chenhao Li
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ruiting Tang
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yuanyuan Zou
- Yichun University, Yichun, 336000, Jiangxi, China.
| | - Shuaibing Liu
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Jiang P, Jiang W, Li X, Zhu Q. Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway. Appl Biochem Biotechnol 2024; 196:6726-6744. [PMID: 38401043 DOI: 10.1007/s12010-024-04873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Natural substances have been demonstrated to be an unrivalled source of anticancer drugs in the present era of pharmacological development. Plant-based substances, together with their derivatives through analogues, play a significant character in the treatment of cancer by altering the tumor microenvironment and several signaling pathways. In this study, it was investigated whether the natural drugs, formononetin (FN) and sulforaphane (SFN), when combined, assess the efficacy of inhibiting cervical cancer cell proliferation by impeding the PI3K/Akt/mTOR signaling pathway in HeLa cells. The cells were treated with the combination of FN and SFN (FN + SFN) in various concentrations (0-50 µM) for 24 h and then analyzed for various experiments. The combination of FN + SFN-mediated cytotoxicity was analyzed by MTT assay. DCFH-DA staining was used to assess the ROS measurement, and apoptotic changes were studied by dual (AO/EtBr) staining assays. Protein expressions of cell survival, cell cycle, proliferation, and apoptosis protein were evaluated by flow cytometry and western blotting. Results showed that the cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM after 24-h incubation. Additionally, HeLa cells treated with FN and SFN together showed increased apoptotic signals and considerable ROS generation. Consequently, by preventing the production of PI3K, AKT, and mToR-mediated regulation of proliferation and cell cycle-regulating proteins, the combined use of FN + SFN has been regarded as a chemotherapeutic medication. Further research will need to be done shortly to determine how effectively the co-treatment promotes apoptosis to employ them economically.
Collapse
Affiliation(s)
- Ping Jiang
- Gynaecology and Obstetrics, Yantai Mountain Hospital, Yantai, 264005, China
| | - Wei Jiang
- Medical Department, Jinan Maternity and Child Care Hospital, Jinan, 250000, China
| | - Xiujin Li
- Delivery Room, Jinan Maternity and Child Care Hospital, Jinan, 250000, China
| | - Qiuling Zhu
- Delivery Room, Jinan Maternity and Child Care Hospital, Jinan, 250000, China.
| |
Collapse
|
6
|
Meng G, Li P, Du X, Feng X, Qiu F. Berberine alleviates ulcerative colitis by inhibiting inflammation through targeting IRGM1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155909. [PMID: 39068762 DOI: 10.1016/j.phymed.2024.155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/28/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Berberine (BBR), the main active component of Coptis chinensis Franch., has a variety of pharmacological effects, notably anti-inflammatory, which make it a potential treatment for ulcerative colitis (UC). Nevertheless, the specific target and the mode of action of BBR against UC are still unclear. PURPOSE Here, we aim to identify BBR's anti-inflammatory target and its mode of action in UC treatment. METHODS The therapeutic effects of BBR and Coptis chinensis Franch. extract were first assessed in UC mice. Then, stable isotope labeling using amino acids in cell culture-activity-based protein profiling (SILAC-ABPP) was applied to identify the anti-inflammatory target proteins of BBR in an inflammation model of RAW264.7 cells stimulated by LPS. Molecular docking, drug affinity responsive target stability (DARTS), molecular dynamics simulation, cellular thermal shift assay (CETSA), and biological layer interference (BLI) measurement were employed to study the interaction between BBR and its targets. Lentiviral transfection was used to knock down the target protein and investigate BBR's anti-inflammatory mechanism. RESULTS BBR and Coptis chinensis Franch. extracts both significantly alleviated UC in mice. SILAC-ABPP identified IRGM1 as BBR's anti-inflammatory target, with its overexpression reduced by BBR treatment in both RAW264.7 cell inflammation models stimulated by LPS and UC mice. BBR significantly reduced inflammatory cytokines in LPS-induced RAW264.7 cells by blocking the PI3K/AKT/mTOR pathway. Knockdown of IRGM1 weakened BBR's effects on cytokine expression and pathway regulation. CONCLUSION For the first time, IRGM1 was identified as the direct anti-inflammatory target of BBR. BBR has the potential to inhibit IRGM1 expression in vitro as well as in vivo. The molecular mechanism of BBR's anti-inflammatory activity was inhibiting the PI3K/AKT/mTOR pathway by targeting IRGM1.
Collapse
Affiliation(s)
- Guibing Meng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyan Li
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemei Du
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
7
|
Xie Q, Zeng Y, Zhang X, Yu F. The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:171. [PMID: 38954021 PMCID: PMC11220057 DOI: 10.1007/s00262-024-03748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of the tumor microenvironment, tumor-associated macrophages (TAMs) emerge as a ubiquitous cellular component that profoundly affects the oncogenic process. The microenvironment of hepatocellular carcinoma (HCC) is characterized by a pronounced infiltration of TAMs, underscoring their pivotal role in modulating the trajectory of the disease. Amidst the evolving therapeutic paradigms for HCC, the strategic reprogramming of metabolic pathways presents a promising avenue for intervention, garnering escalating interest within the scientific community. Previous investigations have predominantly focused on elucidating the mechanisms of metabolic reprogramming in cancer cells without paying sufficient attention to understanding how TAM metabolic reprogramming, particularly lipid metabolism, affects the progression of HCC. In this review article, we intend to elucidate how TAMs exert their regulatory effects via diverse pathways such as E2F1-E2F2-CPT2, LKB1-AMPK, and mTORC1-SREBP, and discuss correlations of TAMs with these processes and the characteristics of relevant pathways in HCC progression by consolidating various studies on TAM lipid uptake, storage, synthesis, and catabolism. It is our hope that our summary could delineate the impact of specific mechanisms underlying TAM lipid metabolic reprogramming on HCC progression and provide useful information for future research on HCC and the development of new treatment strategies.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Yao Y, Zuo X, Shao F, Yu K, Liang Q. Jaceosidin attenuates the progression of hepatic fibrosis by inhibiting the VGLL3/HMGB1/TLR4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155502. [PMID: 38489889 DOI: 10.1016/j.phymed.2024.155502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-β, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1β in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-β-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Xiaoling Zuo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Feng Shao
- Qingdao Jinmotang Biotechnology Co., Ltd, Qingdao, Shandong Province 266000, China
| | - Kexin Yu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Quanquan Liang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
9
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2024:nuae048. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2024:S2090-1232(24)00123-1. [PMID: 38565403 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Huang C, Yong Q, Lu Y, Wang L, Zheng Y, Zhao L, Li P, Peng C, Jia W, Liu F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1. Front Pharmacol 2024; 15:1335814. [PMID: 38515850 PMCID: PMC10956515 DOI: 10.3389/fphar.2024.1335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS's anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihui Lu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Peiwu Li
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Liu R, Zhao B, Zhao J, Zhang M. Ethanol causes non-communicable disease through activation of NLRP3 inflammasome: a review on mechanism of action and potential interventions. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:139-149. [PMID: 38237017 DOI: 10.1080/00952990.2023.2297349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 04/28/2024]
Abstract
Background: Ethanol exposure has been suggested to be implicated in the initiation and progression of several non-communicable diseases (NCD), including neurological disorders, diabetes mellitus, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis. Recent findings show that the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in the progression of ethanol-induced NCDs.Objective: The aim of this review was to summarize the research progress on NCDs associated with the action of the NLRP3 inflammasome by ethanol and potential interventions, with a specific focus on preclinical literature.Methods: A literature search was conducted on PubMed using the keywords "[ethanol] and [NLRP3]" up until January 2023. Articles describing cases of NCDs caused by ethanol and associated with the NLRP3 inflammasome were included.Results: After removing duplicates, 35 articles were included in this review. These studies, mostly conducted in animals or in vitro, provide evidence that ethanol can contribute to the development of NCDs, such as neurological disorders, alcoholic liver disease, gastric injury, pancreatitis, and atherosclerosis, by activating the NLRP3 inflammasome. Ethanol exposure primarily triggers NLRP3 inflammasome activation by influencing the TRL/NF-κB, ROS-TXNIP-NLRP3 and P2X7 receptor (P2X7R) signaling pathways. Several natural extracts and compounds have been found to alleviate NCDs caused by ethanol consumption by inhibiting the activation of the NLRP3 inflammasome.Conclusion: Preclinical research supports a role for ethanol-induced NLRP3 inflammasome in the development of NCDs. However, the clinical relevance remains uncertain in the relative absence of clinical studies.
Collapse
Affiliation(s)
- Ruizi Liu
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Jie Zhao
- Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Meng Zhang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Antoniadi L, Bartnik M, Angelis A, Wawruszak A, Halabalaki M, Kukula-Koch W, Skaltsounis LA. Gentiopicroside-An Insight into Its Pharmacological Significance and Future Perspectives. Cells 2023; 13:70. [PMID: 38201274 PMCID: PMC10778152 DOI: 10.3390/cells13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Gentiopicroside (GPS) is a leading component of several plant species from the Gentianaceae botanical family. As a compound with plenty of biological activities and a component of herbal drugs, GPS has an important role in the regulation of physiological processes in humans. The results of recently published scientific studies underline a meaningful role of this molecule as an active factor in metabolic pathways and mechanisms, which may have an influence in the treatment of different diseases, including digestive tract disorders, malignant changes, neurological disorders, microbial infections, bone formation disorders, inflammatory conditions, and others. This review aims to collect previously published reports on the biological properties of GPS as a single compound that were confirmed by in vitro and in vivo studies, and to draw attention to the newly discovered role of this bitter-tasting secoiridoid. Thanks to these properties, the research on this substance could be revisited.
Collapse
Affiliation(s)
- Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| |
Collapse
|
14
|
Wang M, Jiang Y, Wang S, Fu L, Liang Z, Zhang Y, Huang X, Li X, Feng M, Long D. Yak milk protects against alcohol-induced liver injury in rats. Food Funct 2023; 14:9857-9871. [PMID: 37853817 DOI: 10.1039/d3fo03675h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The protective effects of yak milk (YM) against chronic alcoholic liver injury in rats were investigated in this study. Histologic and biochemical analyses demonstrated that YM consumption ameliorates alcohol-induced liver injury by increasing the liver antioxidant enzyme activity and reducing inflammation. Furthermore, microbiome and metabolomic analyses exploring YM's impact on gut microbiota and metabolism found that YM administration regulates gut microbiota composition. Specifically, there was a decrease in the relative abundance of Helicobacter, Streptococcus, Peptococcus and Tyzzerella, along with an increase in Turisibacter and Intestinimonas. Moreover, Pearson analysis indicated positive correlations between Peptococcus and Tyzzerella with ALT and AST levels, while showing a negative correlation with ADH levels. Furthermore, differential metabolite analysis of fecal samples from the YM group identified significant increases in the taurine (2-Aminoethanesulfonic acid), hypotaurine (2-Aminoethanesulfonic Acid) and isethionic acid levels. Finally, KEGG topology analysis highlighted taurine and hypotaurine metabolism as the primary pathways influenced by YM intervention. Therefore, these findings collectively suggest that YM may protect alcohol-exposed rats against liver injury by modulating oxidative stress, inflammatory response, gut microbiota disorder, and metabolic regulation.
Collapse
Affiliation(s)
- Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Yanshi Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Zujin Liang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Meiying Feng
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
15
|
Kou B, Jiang Y, Chen Y, Yang J, Sun J, Yan Y, Weng L, Xiao C. A Study of Gentianae Radix et Rhizoma Class Differences Based on Chemical Composition and Core Efficacy. Molecules 2023; 28:7132. [PMID: 37894611 PMCID: PMC10609378 DOI: 10.3390/molecules28207132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Establishment of a method for evaluating Gentianae Radix et Rhizoma (GRR) classes based on chemical composition and core efficacy; (2) Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to determine the chemical constituents of GRR-first class (GF) and GRR-second class (GS). The cell viability, liver function, oxidative stress enzyme activity, and inflammatory factor levels of GF and GS on H2O2-induced HepG2 cells were determined with CCK-8, ELISA, and biochemical methods, and the antioxidant activity of the two was evaluated using bioefficacy; ELISA, biochemical methods, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method, and Western blot (WB) were used to determine the liver function, oxidative stress enzyme activity, inflammatory factor levels, and expression of related genes and proteins in mice with acute liver injury (ALI) model induced with 0.3% CCl4 olive oil solution after gavage administration; (3) Results: GF and GS had the same types of components, but the cyclic enol ether terpenes such as morinlon goside c, loganin, gentiopicroside, and swertiamarin differed significantly between the two; the effect of GF on CCl4-induced acute hepatic injury in C57BL/6 mice was stronger compared to GS. It helped alleviate weight loss, increase hepatic and splenic indices, improve hepatic lobular structure and hepatocyte status, inhibit collagen deposition, enhance oxidative stress and anti-inflammatory-related genes and protein expression, and decrease apoptotic genes and proteins more significantly than GS; (4) Conclusions: In this study, we established a GRR class evaluation method combining chemical composition and core medicinal effects, which can rapidly determine the differential composition of GF and GS, detect the quality of GRR through antioxidant bioefficacy, and validate it with in vivo experiments, which provides references for the evaluation of the class of GRR and the rational use of medication in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (B.K.); (Y.J.); (Y.C.); (J.Y.); (J.S.); (Y.Y.)
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (B.K.); (Y.J.); (Y.C.); (J.Y.); (J.S.); (Y.Y.)
| |
Collapse
|
16
|
Subramaiyam N. Insights of mitochondrial involvement in alcoholic fatty liver disease. J Cell Physiol 2023; 238:2175-2190. [PMID: 37642259 DOI: 10.1002/jcp.31100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Alcoholic liver disease (ALD) is a global concern affecting most of the population and leading to the development of end-stage liver disease. Metabolic alterations due to increased alcohol consumption surge the hepatic accumulation of lipids and develop into a severe form of alcoholic steatohepatitis (ASH), depending on age and the consumption rate. The mitochondria in the hepatocyte actively regulate metabolic homeostasis and are disrupted in ALD pathogenesis. The increased NADH upon ethanol metabolism inhibits the mitochondrial oxidation of fatty acids, alters oxidative phosphorylation, and favors de novo lipogenesis. The higher mitochondrial respiration in early ALD increases free radical generation, whereas mitochondrial respiration is uncoupled in chronic ALD, affecting the cellular energy status. The defective glutathione importer due to excessive cholesterol loading and low adenosine triphosphate accounts for additional oxidative stress leading to hepatocyte apoptosis. The defective mitochondrial transcription machinery and sirtuins function in ALD affect mitochondrial function and biogenesis. The metabolites of ethanol metabolism epigenetically alter the gene expression profile of hepatic cell populations by modulating the promoters and sirtuins, aiding hepatic fibrosis and inflammation. The defect in mitophagy increases the accumulation of megamitochondria in hepatocytes and attracts immune cells by releasing mitochondrial damage-associated molecular patterns to initiate hepatic inflammation and ASH progression. Thus, maintaining mitochondrial lipid homeostasis and antioxidant capacity pharmacologically could provide a better outcome for ALD management.
Collapse
Affiliation(s)
- Nithyananthan Subramaiyam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Wang X, Long D, Hu X, Guo N. Gentiopicroside modulates glucose homeostasis in high-fat-diet and streptozotocin-induced type 2 diabetic mice. Front Pharmacol 2023; 14:1172360. [PMID: 37601073 PMCID: PMC10438990 DOI: 10.3389/fphar.2023.1172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Gluconeogenesis is closely related to the occurrence and development of type 2 diabetes mellitus (T2DM). Gentiopicroside (GPS) is the main active secoiridoid glycoside in Gentiana manshurica Kitagawa, which can improve chronic complications associated with diabetes and regulate glucose metabolism. However, the effects and potential mechanisms by which GPS affects T2DM understudied and poorly understood. In this study, we systematically explored the pharmacological effects of GPS on T2DM induced by a high-fat diet (HFD) and streptozotocin (STZ) as well as explored its related mechanisms. The results showed that GPS supplementation discernibly decreased blood glucose levels, food intake and water consumption, ameliorated glucose intolerance, abnormal pyruvate tolerance, insulin resistance and dyslipidemia. Furthermore, GPS discernibly ameliorated pathological morphological abnormalities of the liver and pancreas, reduced hepatic steatosis and maintain the balance between α-cells and β-cells in pancreas. Moreover, GPS significantly inhibited gluconeogenesis, as evidenced by the suppressed protein expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver. Additionally, the results of Western blot analysis revealed that GPS increased p-PI3K, p-AKT, and p-FOXO1 expression levels, and decreased FOXO1 expression at protein level in the liver. Furthermore, the results of the immunostaining and Western blot analysis demonstrated that GPS supplementation increased the expression of zonula occludens-1 (ZO-1) and occludin in the ileum. Collectively, these results indicate that GPS may inhibit hepatic gluconeogenesis by regulating the PI3K/AKT/FOXO1 signaling pathway and maintain intestinal barrier integrity, and ultimately improve T2DM. Together, these findings indicate that GPS is a potential candidate drug for the prevention and treatment of T2DM, and the results of our study will provide experimental basis for further exploration of the possibility of GPS as a therapeutic agent for T2DM.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Xianghong Hu
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Ortiz S, Šavikin K, Massicot F, Olivier E, Dutot M, Rat P, Deguin B, Gođevac D, Menković N, Živković J, Zdunić G, Boutefnouchet S. P2X7-Receptor Pathway Involvement in the Anti-Inflammatory Activity of Medicinal Plants. Chem Biodivers 2023; 20:e202300427. [PMID: 37439445 DOI: 10.1002/cbdv.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Medicinal plants used in European folk medicine attached to Lamiales, Gentianales or Asterales orders are used to treat inflammatory disorders. Many targets have been identified but to date, implication of purinergic receptor P2X7 activation has not yet been investigated. We managed to evaluate the protective effect on P2X7 activation by plant extracts used as anti-inflammatory in European folk medicine by the YO-PRO-1 uptake dye in vitro bioassay. Results revealed that among our selected plants, species from Scrophularia and Plantago genus were able to decrease significantly P2X7 activation (>50 % at 0.1 and 1 μg/mL). UPLC/MS, dereplication and metabolomic analysis of Scrophularia extracts, allowed us to identify the cinnamoyl-iridoid harpagoside as putative inhibitor of P2X7 activation. These results open a new research field regarding the anti-inflammatory mechanism of cinnamoyl-iridoids bearing plants, which may involve the P2X7 receptor.
Collapse
Affiliation(s)
- Sergio Ortiz
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
- UMR 7200 Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - France Massicot
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Elodie Olivier
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Melody Dutot
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Patrice Rat
- Team Analytical Chemistry and Experimental Toxicology, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Brigitte Deguin
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| | - Dejan Gođevac
- Institute of Chemistry, Technology and Metallurgy, National Institute, Univeristy of Belgrade, Njegoševa 12, Belgrade, Serbia
| | - Nebojša Menković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Department of Pharmaceutical Research and Development, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Sabrina Boutefnouchet
- Team Natural Products, Analyzes and Syntheses, Université Paris Cité, CNRS, Faculté de Pharmacie de, 4 Avenue de l'Observatoire F, 75006, Paris, France
| |
Collapse
|
19
|
Li F, Zhu H, Chang Z, Li Y. Gentiopicroside alleviates acute myocardial infarction injury in rats by disrupting Nrf2/NLRP3 signaling. Exp Biol Med (Maywood) 2023; 248:1254-1266. [PMID: 37850391 PMCID: PMC10621478 DOI: 10.1177/15353702231199076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/20/2023] [Indexed: 10/19/2023] Open
Abstract
The objective of the present investigation was to assess the protective impact of gentiopicroside (GPS) on acute myocardial infarction (AMI) through the modulation of NF-E2-related factor 2 (Nrf2)/nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) signaling. H9c2 cells were subjected to varying concentrations of GPS, and subsequently, the cells and Sprague-Dawley (SD) rats were segregated into control, model, GPS, t-BHQ (an Nrf2 activator), and GPS + ML385 (an Nrf2 inhibitor) groups. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were analyzed. Reactive oxygen species (ROS) and cell apoptosis were assessed, while Nrf2 and the expression of the NLRP3 inflammatory body signal pathway were evaluated using western blot and immunofluorescence techniques. The infarct area and pathological changes were also examined. Treatment with varying doses of GPS resulted in increased viability of H9c2 cells. Notably, the model group exhibited significantly elevated levels of cell apoptosis, MDA, and ROS compared to the control group, while SOD and Nrf2 levels were significantly reduced. Furthermore, the expression of NLRP3, cleaved caspase-1, interleukin (IL)-1β, and IL-18 were found to be augmented. Following the implementation of GPS in cells and animals, there was a notable reduction in MDA and ROS levels, a decrease in the rate of cellular apoptosis, and a mitigation of inflammation scores. In addition, there was an increase in the expression of SOD and Nrf2. However, the protective effects of GPS were negated when co-administered with ML385. GPS exhibits therapeutic properties in AMI rats by activating Nrf2 expression, thereby reducing the NLRP3 inflammatory body and alleviating the inflammatory response and oxidative stress of myocardial cells. GPS may hold promise as a potential drug for the treatment of AMI.
Collapse
Affiliation(s)
- Fei Li
- The First Ward of Cardiovascular Medicine, Yantaishan Hospital, Yantai 264000, China
| | - Hongxiang Zhu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Zijuan Chang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Ying Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai 264000, China
| |
Collapse
|
20
|
Li X, Bai X, Tang Y, Qiao C, Zhao R, Peng X. Research progress on the P2X7 receptor in liver injury and hepatocellular carcinoma. Chem Biol Drug Des 2023; 101:794-808. [PMID: 36403102 DOI: 10.1111/cbdd.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7 receptor) is an adenosine triphosphate (ATP)-gated ion channel that is widely distributed on the surfaces of immune cells and tissues such as those in the liver, kidney, lung, intestine, and nervous system. Hepatocellular carcinoma (HCC) is one of the most common malignancies with increasing incidence and mortality. Although many treatments for liver cancer have been studied, the prognosis for liver cancer is still very poor. Therefore, new liver cancer treatments are urgently needed. P2X7 receptor activation can secrete proinflammatory factors through the P2X7 receptor-NLRP3 signaling pathway, thereby affecting the progression of liver injury. The P2X7 receptor may be a target for growth inhibition of HCC cells and may affect the invasion and migration of HCC cells through the PI3K/AKT and AMPK signaling pathways. In recent years, P2X7 receptor antagonists or inhibitors have attracted widespread attention as therapeutic targets for hepatocellular carcinoma and liver injury. Therefore, this review covers the basic concepts of the P2X7 receptor and role of the P2X7 receptor in liver cancer and liver injury, providing new potential therapeutic targets for hepatocellular carcinoma and liver injury.
Collapse
Affiliation(s)
- Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of clinical laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Zuo RM, Jiao JY, Chen N, Jiang XL, Wu YL, Nan JX, Lian LH. Carnosic acid suppressed the formation of NETs in alcoholic hepatosteatosis based on P2X7R-NLRP3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154599. [PMID: 36577209 DOI: 10.1016/j.phymed.2022.154599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is accompanied by a disruption of lipid metabolism and an inflammatory response in the liver during the process of disease. Carnosic acid (CA), a natural diterpene extracted from Rosmarinus officinalis (rosemary) and Salvia officinalis (sage), has more pharmacological activities, which is known to be useful in the treatment of obesity and acts by regulating energy metabolism. However, the role and regulation mechanism of CA against ALD remain unclear. HYPOTHESIS We hypothesized that CA might improve alcoholic-induced hepatosteatosis. STUDY DESIGN AND METHODS The alcoholic liver disease model was established a mouse chronic ethanol feeding by Lieber-DeCarli control liquid feed (10 d) plus a single binge with or without CA administration. AML12 cells were exposed to ethanol for 24 h. Murine peritoneal macrophages (MPM) were stimulated with LPS and ATP. RESULTS CA ameliorated lipid accumulation in the liver of mice in the NIAAA model, acting by inhibiting the expression of genes related to lipid synthesis. CA reduced alcohol-induced immune cell infiltration in the liver, and inhibited the activation of P2X7R-NLRP3 inflammasome, meanwhile blocked the formation of NETs in mouse livers tissue. In AML12 cells, CA attenuated the lipid accumulation triggered by ethanol stimulation, which was achieved by inhibiting the expression of SREBP1 and CA reduced the release of inflammatory factor IL-1β by inhibiting the activation of P2X7R-NLRP3. In MPM, IL-1β and HMGB1 were reduced after LPS/ATP stimulation in CA-treated cells and supernatant. CONCLUSIONS CA attenuated alcohol-induced fat accumulation, suppressed the formation of NETs based on P2X7R-NLRP3 axis in mouse livers. Our data indicated that CA exerted hepatoprotective effects, which might be a promising candidate.
Collapse
Affiliation(s)
- Rong-Mei Zuo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Jing-Ya Jiao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Nan Chen
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
22
|
Qi PX, Liu SS, Zhang P, Xie YQ, Yang ZY, Khan A, Liu L. (±)-Gentiovarisin A and gentiovarisin B, unusual secoiridoid dimer skeletons from gentiopicroside. Fitoterapia 2023; 164:105392. [PMID: 36526221 DOI: 10.1016/j.fitote.2022.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Gentiana scabra, a famous traditional Chinese medicine (TCM), has been documented in Chinese Pharmacopoeia for the treatment of hepatitis. Its index component gentiopicroside could not be detected in the decoction, which suggested that the quality control of the TCM with this ingredient needs attention. The transformed products were obtained from gentiopicroside, mimicking the traditional process of G. scabra. Further investigation of the heat-transformed products yielded two secoiridoid dimers, gentiovarisin A (1) and B (2), with an unprecedented 6/6/6/6/6-fused pentacyclic skeletons. Their structures were elucidated by extensive spectroscopic analyses and single-crystal X-ray diffraction analysis, and the absolute configurations of 1 were confirmed as (+)-1 and (-)-1 by ECD method. Plausible transformation pathways of the isolates were also proposed. Compounds 1 and 2 exhibited in vitro hepatoprotective activity similar to gentiopicroside, while (+)-1 displayed a more potent hepatoprotective activity than N-Acetyl-L-cysteine.
Collapse
Affiliation(s)
- Ping-Xing Qi
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Shuang-Shuang Liu
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Peng Zhang
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Yan-Qing Xie
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Zhu-Ya Yang
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
23
|
Do MH, Lee HHL, Park M, Oh MJ, Lee E, Kweon M, Park HY. Morinda citrifolia Extract Prevents Alcoholic Fatty Liver Disease by Improving Gut Health. J Med Food 2022; 25:1102-1111. [PMID: 36516056 DOI: 10.1089/jmf.2022.k.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major chronic liver disease. Chronic alcohol consumption induces dysbiosis, disruption of gut barrier function, oxidative stress, inflammation, and changes in lipid metabolism, thereby leading to ALD. In this study, we investigated whether the commercial Morinda citrifolia extract Nonitri can ameliorate ALD symptoms through the gut-liver axis. We used mice chronically administered EtOH and found a marked increase in serum endotoxin levels and biomarkers of liver pathology. Moreover, the EtOH-treated group showed significantly altered gut microbial composition particularly that of Alistipes, Bacteroides, and Muribaculum and disrupted gut barrier function. However, Nonitri improved serum parameters, restored the microbial proportions, and regulated levels of zonula occludens1, occludin, and claudin1. Furthermore, Nonitri suppressed inflammation by inhibiting endotoxin-triggered toll-like receptor 4-signaling pathway and fat deposition by reducing lipogenesis through activating AMP-activated protein kinase in the liver. Furthermore, Pearson's correlation analysis showed that gut microbiota and ALD-related markers were correlated, and Nonitri regulated these bacteria. Taken together, our results indicate that the hepatoprotective effect of Nonitri reduces endotoxin levels by improving gut health, and inhibits fat deposition by regulating lipid metabolism.
Collapse
Affiliation(s)
- Moon Ho Do
- Food Functionality Research Division; Jeollabuk-do, Korea
| | - Hyun Hee L Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Korea
| | - Miri Park
- Food Functionality Research Division; Jeollabuk-do, Korea
| | - Mi-Jin Oh
- Food Functionality Research Division; Jeollabuk-do, Korea
| | - Eunjung Lee
- Food Convergence Research Division; Korea Food Research Institute, Jeollabuk-do, Korea
| | - Minson Kweon
- Functional Ingredient Development Team, COSMAX NS INC, Gyeonggi-do, Korea
| | - Ho-Young Park
- Food Functionality Research Division; Jeollabuk-do, Korea
| |
Collapse
|
24
|
Geng J, Zhang Y, Meng Q, Yan H, Wang Y. The role of liver kinase B1 in tumor progression through regulation of lipid metabolism. Clin Transl Oncol 2022; 24:2045-2054. [PMID: 35896782 PMCID: PMC9522762 DOI: 10.1007/s12094-022-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 10/30/2022]
Abstract
The somatic mutation of liver kinase B1 (LKB1) has been implicated in various tumors, which is reflected in the survival, proliferation, and metastasis of tumor cells. However, the regulation of LKB1 in lipid metabolism, a process that is involved in tumor progression is not completely clear. We conclude that LKB1 deficiency results in abnormal expression and activation of multiple molecules related to lipid metabolism which locate downstream of AMP-activated protein kinase (AMPK) or salt-induced kinase (SIK). Abnormal lipid metabolism induced by LKB1 deficiency contributes to the proliferation and metastasis of tumor cells through energy regulation.
Collapse
Affiliation(s)
- Jialu Geng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Hang Yan
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
26
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
27
|
Xie F, Zhong Y, Wang D, So KF, Xiao J, Lv Y. Metformin protects against ethanol-induced liver triglyceride accumulation by the LKB1/AMPK/ACC pathway. Mol Biol Rep 2022; 49:7837-7848. [PMID: 35733070 DOI: 10.1007/s11033-022-07610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic lipid accumulation is one of the main pathological features of alcoholic liver disease (ALD). Metformin serves as an AMPK activator and has been shown to have lipids lowering effects in non-alcoholic fatty liver disease (NAFLD), but its role in ALD remains unclear. The purpose of this study was to explore the potential mechanism of metformin regulating lipid metabolism in ALD. METHODS AND RESULTS In vitro and in vivo ALD models were established using AML12 cells and C57BL/6 mice, respectively. To determine the effect of metformin on ALD in vitro, the concentration of cellular triglyceride was examined by Nile red staining and a biochemical kit. To further reveal the role of metformin on ALD in vivo, liver tissues were examined by HE and oil red O staining, and the levels of ALT and AST in serum were determined via an automatic biochemical analyzer. The expression of mRNA and proteins were measured using qRT-PCR and Western blot, respectively. The role of the LKB1/AMPK/ACC axis on metformin regulating ethanol-induced lipid accumulation was evaluated by siRNA and AAV-shRNA interference. The results showed metformin reduced the ethanol-induced lipid accumulation in AML12 cells through activating AMPK, inhibiting ACC, reducing SREBP1c, and increasing PPARα. In addition, compared with control mice, metformin treatment inhibited ethanol-induced liver triglyceride accumulation and the increase of ALT and AST in serum. Interference with LKB1 attenuated the effect of metformin on ethanol-induced lipid accumulation both in vitro and in vivo. CONCLUSION Metformin protects against lipid formation in ALD by activating the LKB1/AMPK/ACC axis.
Collapse
Affiliation(s)
- Fotian Xie
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanming Zhong
- School of Physical Education and Sport Science, Fujian normal university, Fuzhou, China
| | - Dongmei Wang
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Kwok Fai So
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
28
|
Xiao H, Sun X, Lin Z, Yang Y, Zhang M, Xu Z, Liu P, Liu Z, Huang H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm Sin B 2022; 12:2887-2904. [PMID: 35755276 PMCID: PMC9214054 DOI: 10.1016/j.apsb.2021.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
The obstruction of post-insulin receptor signaling is the main mechanism of insulin-resistant diabetes. Progestin and adipoQ receptor 3 (PAQR3), a key regulator of inflammation and metabolism, can negatively regulate the PI3K/AKT signaling pathway. Here, we report that gentiopicroside (GPS), the main bioactive secoiridoid glycoside of Gentiana manshurica Kitagawa, decreased lipid synthesis and increased glucose utilization in palmitic acid (PA) treated HepG2 cells. Additionally, GPS improved glycolipid metabolism in streptozotocin (STZ) treated high-fat diet (HFD)-induced diabetic mice. Our findings revealed that GPS promoted the activation of the PI3K/AKT axis by facilitating DNA-binding protein 2 (DDB2)-mediated PAQR3 ubiquitinated degradation. Moreover, results of surface plasmon resonance (SPR), microscale thermophoresis (MST) and thermal shift assay (TSA) indicated that GPS directly binds to PAQR3. Results of molecular docking and cellular thermal shift assay (CETSA) revealed that GPS directly bound to the amino acids of the PAQR3 NH2-terminus including Leu40, Asp42, Glu69, Tyr125 and Ser129, and spatially inhibited the interaction between PAQR3 and the PI3K catalytic subunit (P110α) to restore the PI3K/AKT signaling pathway. In summary, our study identified GPS, which inhibits PAQR3 expression and directly targets PAQR3 to restore insulin signaling pathway, as a potential drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Corresponding authors.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
29
|
Liu SX, Liu H, Wang S, Zhang CL, Guo FF, Zeng T. Diallyl disulfide ameliorates ethanol-induced liver steatosis and inflammation by maintaining the fatty acid catabolism and regulating the gut-liver axis. Food Chem Toxicol 2022; 164:113108. [PMID: 35526736 DOI: 10.1016/j.fct.2022.113108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Diallyl disulfide (DADS) has been suggested to possess hepatoprotection against alcoholic liver disease (ALD) by a couple of pilot studies, while the underlying mechanisms remain largely unknown. This study aimed to investigate the hepatoprotective effects of DADS against ethanol-induced liver steatosis and early inflammation by using the chronic-plus-binge mice model and cultured J774A.1 macrophages and AML12 hepatocytes. We found that DADS significantly attenuated ethanol-induced elevation of serum aminotransferase activities, accumulation of liver triglyceride, hepatocytes apoptosis, oxidative stress, infiltration of macrophages and neutrophils, and proinflammatory polarization of macrophages in mice livers. In addition, chronic-plus-binge drinking induced apparent intestinal mucosa damage and disturbance of gut microbiota, endotoxemia, and activation of hepatic NF-κB signaling and NLRP3 inflammasome, which was inhibited by DADS. In vitro studies using cocultured AML12/J774A.1 cells showed that DADS suppressed ethanol/LPS-induced cell injury and inflammatory activation of macrophages. Furthermore, DADS ameliorated ethanol-induced decline of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1 (CPT1), and phosphorylated AMP-activated protein kinase (AMPK) protein levels in mice liver and AML12 cells. These results demonstrate that DADS could prevent ethanol-induced liver steatosis and early inflammation by regulating the gut-liver axis and maintaining fatty acid catabolism.
Collapse
Affiliation(s)
- Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
30
|
Shang Y, Yang HX, Li X, Zhang Y, Chen N, Jiang XL, Zhang ZH, Zuo RM, Wang H, Lan XQ, Ren J, Wu YL, Cui ZY, Nan JX, Lian LH. Modulation of IL-36-based inflammatory feedback loop through hepatocytes-derived IL-36R-P2X7R axis improves steatosis in alcoholic steatohepatitis. Br J Pharmacol 2022; 179:4378-4399. [PMID: 35481896 DOI: 10.1111/bph.15858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-36 is induced by proinflammatory cytokines and itself promotes inflammatory responses, shaping an IL-36-based inflammation loop. Although, hepatocytes, as "epithelial cell-like" hepatic parenchymal cells, produce IL-36 responses to drug-induced liver injury, little is known about the mechanistic role of the IL-36 signalling during the progression of alcoholic steatohepatitis (ASH). Regarding IL-36/IL-36R and P2X7R coregulates the inflammatory response, we elucidated the modulation of IL-36R-P2X7R-TLRs axis affected hepatocytes steatosis and IL-36-based inflammatory feedback loop that accompanies the onset of ASH. EXPERIMENTAL APPROACH C57BL/6J mice were subjected to chronic-plus-binge ethanol feeding or acute gavage with multiple doses of ethanol to establish ASH, followed by pharmacological inhibition or genetic silencing of IL-36R and P2X7R. AML12 cells or mouse primary hepatocytes were stimulated with alcohol, LPS plus ATP or Poly(I:C) plus ATP, followed by silencing of IL-36γ, IL-36R or P2X7R. KEY RESULTS P2X7R and IL-36R deficiency blocked the inflammatory loop, especially made by IL-36 cytokines, in hepatocytes of mice suffering from ASH. Pharmacological inhibition to P2X7R or IL-36R alleviated lipid accumulation and inflammatory response in ASH. IL-36R was indispensable for P2X7R modulated NLRP3 inflammasome activation in ASH and IL-36 led to a vicious cycle of P2X7R-driven inflammation in alcohol-exposed hepatocytes. TLR ligands promoted IL-36γ production in hepatocytes based on the synergism of P2X7R. CONCLUSIONS AND IMPLICATIONS Blockade of IL-36-based inflammatory feedback loop via IL-36R-P2X7R-TLRs-modulated NLRP3 inflammasome activation circumvented the steatosis and inflammation that accompanies the onset of ASH, suggesting that targeting IL-36 might serve as a novel therapeutic approach to combat ASH.
Collapse
Affiliation(s)
- Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xia Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yu Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong Province, China
| | - Nan Chen
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Rong-Mei Zuo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xiao-Qi Lan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Jie Ren
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission; College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China.,Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
31
|
Yang L, Xu WB, Sun L, Zhang C, Jin CH. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem 2022; 17:e202200221. [PMID: 35475328 DOI: 10.1002/cmdc.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past 2017 to 2021 years of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and data for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Collapse
Affiliation(s)
- Liu Yang
- Yanbian University, College of Pharmacy, CHINA
| | - Wen Bo Xu
- Yanbian University, College of Pharmacy, CHINA
| | | | | | - Cheng Hua Jin
- Yanbian University, College of Pharmacy, Gongyuan, 133002, Yanji, CHINA
| |
Collapse
|
32
|
Jiang YC, Han X, Dou JY, Yuan MH, Zhou MJ, Cui ZY, Lian LH, Nan JX, Zhang X, Wu YL. Protective role of Siberian onions against toxin-induced liver dysfunction: an insight into health-promoting effects. Food Funct 2022; 13:4678-4690. [PMID: 35377371 DOI: 10.1039/d1fo04404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xin Han
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Chinese Medicine Processing Centre, College of pharmacy, Zhejiang Chinese Medical University, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133002, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
33
|
Emerging roles of Sirtuins in alleviating alcoholic liver Disease: A comprehensive review. Int Immunopharmacol 2022; 108:108712. [PMID: 35397391 DOI: 10.1016/j.intimp.2022.108712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Sirtuins (SIRTs), a NAD+ family of dependent deacetylases, are involved in the regulation of various human diseases. Recently, accumulating evidence has uncovered number of substrates and crucial roles of SIRTs in the pathogenesis of alcoholic liver disease (ALD). However, systematic reports are still lacking, so this review provides a comprehensive profile of the crucial physiological functions of SIRTs and its role in attenuating ALD, including alcoholic liver steatosis, steatohepatitis, and fibrosis. SIRTs play beneficial roles in energy/lipid metabolism, oxidative stress, inflammatory response, mitochondrial homeostasis, autophagy and necroptosis of ALD via regulating multiple signaling transduction pathways such as AMPK, LKB1, SREBP1, Lipin1, PGC-1α, PPARα/γ, FoxO1/3a, Nrf2/p62, mTOR, TFEB, RIPK1/3, HMGB1, NFATc4, NF-κB, TLR4, NLRP3, P2X7R, MAPK, TGF1β/Smads and Wnt/β-catenin. In addition, the mechanism and clinical application of natural/ synthetic SIRTs agonists in ALD are summarized, which provide a new idea for the treatment of ALD and basic foundation for further studies into target drugs.
Collapse
|
34
|
Sut S, Tahmasebi A, Ferri N, Ferrarese I, Rossi I, Panighel G, Lupo MG, Maggi F, Karami A, Dall’Acqua S. NMR, LC-MS Characterization of Rydingia michauxii Extracts, Identification of Natural Products Acting as Modulators of LDLR and PCSK9. Molecules 2022; 27:2256. [PMID: 35408655 PMCID: PMC9000307 DOI: 10.3390/molecules27072256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Rydingia michauxii (Briq.) Scheen and V.A.Albert (Lamiaceae) is used in Iranian traditional medicine to treat malaria, diabetes, hyperlipidemia, rheumatism and cardiovascular diseases. NMR and LC-DAD-MSn analyses were used to establish extract composition and phenylethanoid, flavonoid glycosides, lignans, labdane diterpenes and iridoids were identified and quantified. The main constituents were isolated, and structures were elucidated based on NMR, polarimetric and MS measurements. A new natural compound, ent-labda-8(17),13-dien-18-glucopyranosyl ester-15,16-olide is described here. The effects of ent-labda-8(17),13-dien-18-oic acid-15,16-olide (1), ent-labda-8(17),13-dien-18-glucopyranosyl es-ter-15,16-olide (2), antirrhinoside (3), echinacoside (4), verbascoside (5), and apigenin 6,8-di-C-glucoside (6), on the low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), were studied in the human hepatocarcinoma cell line Huh7. Among the six constituents, (3) showed the strongest induction of the LDLR (3.7 ± 2.2 fold vs. control) and PCSK9 (3.2 ± 1.5 fold vs. control) at a concentration of 50 µM. The in vitro observations indicated a potential lipid lowering activity of (3) with a statin-like mechanism of action.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 79177, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 79177, Iran
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35122 Padova, Italy;
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Giovanni Panighel
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 7134754331, Iran
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (I.F.); (I.R.); (G.P.); (M.G.L.)
| |
Collapse
|
35
|
Shang Y, Jiang M, Chen N, Jiang XL, Zhan ZY, Zhang ZH, Zuo RM, Wang H, Lan XQ, Ren J, Wu YL, Cui ZY, Nan JX, Lian LH. Inhibition of HMGB1/TLR4 Signaling Pathway by Digitoflavone: A Potential Therapeutic Role in Alcohol-Associated Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2968-2983. [PMID: 35212223 DOI: 10.1021/acs.jafc.2c00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Digitoflavone (DG) is a natural flavonoid abundant in many fruits, vegetables, and medicinal plants. We investigated whether DG inhibits lipid accumulation and inflammatory responses in alcoholic liver disease (ALD) in vivo and in vitro. The mouse ALD model was established by chronically feeding male C57BL/6 mice an ethanol-containing Lieber-DeCarli liquid diet. In vitro, mouse peritoneal macrophages (MPMs) and mouse bone marrow-derived macrophages (BMDMs) were stimulated with LPS/ATP, whereas HepG2 cells and mouse primary hepatocytes were treated with ethanol. DG reduced the serum levels of transaminase and serum and hepatic levels of triglycerides and malondialdehyde in ALD mice. DG downregulated SREBP1 and its target genes and upregulated PPARα and its target genes in the liver of mice with ALD. DG inhibited TLR4-mediated NLRP3 inflammasome activation, consequently reversing the inflammatory response, including the production of HMGB1, IL-1β, and IL-36γ, as well as the infiltration of macrophages and neutrophils. DG blocked NLRP3/ASC/caspase-1 inflammasome activation and HMGB1 release in LPS/ATP-stimulated MPMs. When Tlr4 was knocked in LPS/ATP-stimulated BMDMs, HMGB1 production and release were blocked, and NLRP3-mediated cleavage and release of IL-1β was suppressed in Hmgb1-silenced BMDMs. DG amplified these inhibitory effects in Tlr4 or Hmgb1 knockdown BMDMs. In ethanol-exposed hepatocytes, DG reduced lipogenesis and promoted lipid oxidation by inhibiting the HMGB1-TLR4 signaling pathway while suppressing the inflammatory response induced by ethanol exposure. Our data demonstrated that DG inhibited the occurrence of lipid accumulation and the inflammatory response via the HMGB1-TLR4 axis, underscoring a promising approach and utility of DG for the treatment of ALD.
Collapse
Affiliation(s)
- Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong 264000, China
| | - Nan Chen
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xue-Li Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Rong-Mei Zuo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hui Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiao-Qi Lan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jie Ren
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
36
|
Han M, Lian J, Su Y, Deng C. Cevimeline co-treatment attenuates olanzapine-induced metabolic disorders via modulating hepatic M3 muscarinic receptor: AMPKα signalling pathway in female rats. J Psychopharmacol 2022; 36:202-213. [PMID: 34694173 DOI: 10.1177/02698811211050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olanzapine is one of the most commonly used antipsychotic drugs; however, its metabolic disorders are the main obstacle in the clinic. Olanzapine is a potent antagonist of the M3 acetylcholine muscarinic receptor (M3R), while the downregulated hepatic M3R-AMPKα signalling pathway is involved in metabolic disorders. AIM This study investigated the effects of chronic co-treatment with cevimeline (an agonist of M3Rs) in attenuating olanzapine-induced metabolic disorders and the underlying mechanisms. METHODS Forty-eight adult female Sprague-Dawley rats were treated orally with olanzapine (2 mg/kg, 3 times/day (t.i.d.)) and/or cevimeline (9 mg/kg, t.i.d.), or control (vehicle) for 9 weeks. RESULTS Cevimeline co-treatment significantly attenuated olanzapine-induced body weight gain and glucolipid metabolic disorders. Importantly, cevimeline co-treatment attenuated olanzapine-induced upregulation of M3Rs, while the co-treatment improved olanzapine-induced downregulation of AMPKα in the liver. Cevimeline co-treatment attenuated olanzapine-induced dyslipidaemia by modulating the hepatic M3R-AMPKα downstream pathways. Cevimeline co-treatment also improved lower activated AKT-GSK3β signalling to reverse impairment of glucose metabolism and insulin resistance caused by chronic olanzapine treatment. CONCLUSION These results not only support the important role of M3R antagonism and its related AMPKα and downstream pathways in antipsychotic-induced metabolic disorders but also indicate that these pathways might be promising targets for pharmacological intervention to control these side effects caused by antipsychotic therapy.
Collapse
Affiliation(s)
- Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Yueqing Su
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
37
|
An Q, Yue G, Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiological Role of Purinergic P2X Receptors in Digestive System Diseases. Front Physiol 2022; 12:781069. [PMID: 35002763 PMCID: PMC8740087 DOI: 10.3389/fphys.2021.781069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
P2X receptors (P2XRs) are trimeric, non-selective cation channels activated by extracellular ATP and widely distributed in the digestive system. P2XRs have an important role in the physiological function of the digestive system, such as neurotransmission, ion transports, proliferation and apoptosis, muscle contraction, and relaxation. P2XRs can be involved in pain mechanisms both centrally and in the periphery and confirmed the association of P2XRs with visceral pain. In the periphery, ATP can be released as a result of tissue injury, visceral distension, or sympathetic activation and can excite nociceptive primary afferents by acting at homomeric P2X(3)R or heteromeric P2X(2/3)R. Thus, peripheral P2XRs, and homomeric P2X(3) and/or heteromeric P2X(2/3)R in particular, constitute attractive targets for analgesic drugs. Recently studies have shown that P2XRs have made significant advances in inflammation and cancer. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. It is believed that with the further study of P2XRs and its subtypes, P2XRs and its specific antagonists will be expected to be widely used in the treatment of human digestive diseases in the future.
Collapse
Affiliation(s)
- Qimin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
38
|
Xing Y, Wang JY, Li MY, Zhang ZH, Jin HL, Zuo HX, Ma J, Jin X. Convallatoxin inhibits IL-1β production by suppressing zinc finger protein 91-mediated pro-IL-1β ubiquitination and caspase-8 inflammasome activity. Br J Pharmacol 2021; 179:1887-1907. [PMID: 34825365 DOI: 10.1111/bph.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE ZFP91 positively regulates IL-1β production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. Therefore, we investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS We confirmed that convallatoxin inhibited the release of IL-1β by downregulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1β regulated by ZFP91 and decreased the efficacy of pro-IL-1β cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical caspase-8 inflammasome and MAPK signaling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. In vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis, and alum-induced peritonitis by downregulating ZFP91. CONCLUSION AND IMPLICATIONS We report for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain of immune homeostasis. This mechanism provides new perspectives for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
39
|
Wang JY, Jiang MW, Li MY, Zhang ZH, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Ma J, Zuo HX, Jin X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J Nutr Biochem 2021; 100:108899. [PMID: 34748924 DOI: 10.1016/j.jnutbio.2021.108899] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023]
Abstract
Astragalus membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.
Collapse
Affiliation(s)
- Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Wen Jiang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
40
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Zhang ZH, Yang HX, Jin Q, Wu YL, Cui ZY, Shang Y, Liu J, Zhan ZY, Lian LH, Nan JX. Luteolin attenuates hepatic injury in septic mice by regulating P2X7R-based HMGB1 release. Food Funct 2021; 12:10714-10727. [PMID: 34607339 DOI: 10.1039/d1fo01746b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2X7 receptor (P2X7R) and NLRP3 cooperatively participate in inflammation and hepatocyte damage during hepatic injury induced by lipopolysaccharides (LPS). High-mobility group box 1 (HMGB1) released from immune cells in response to such stimuli plays a vital role in mediating inflammation via TLR4 and the receptor for advanced glycation end products (RAGE), a receptor for HMGB1. However, the correlation among P2X7R, RAGE and TLR4 in regulating the release of HMGB1 has not been elucidated. Increasing the number of daily foods is found to be beneficial for hepatocyte damage in septic hepatic injury. Hence, we investigated the effects of luteolin, a natural flavonoid mainly existing in vegetables and fruits, on liver injury, focusing on how luteolin participates in hepatitis based on the P2X7R-RAGE-TLR4 axis by regulating the release of HMGB1. The results demonstrated that the indicators of hepatic injury such as increased ALT, AST in the serum and infiltration of immune cells were attenuated after luteolin treatment in LPS-induced mice. Luteolin could also suppress the production and release of HMGB1 and the activation of caspase 1 both in LPS-induced mice and LPS/ATP-stimulated HepG2 cells. Collectively, luteolin reversed LPS-induced hepatic injury, especially inflammation, likely by regulating the release of HMGB1 through the P2X7R-RAGE-TLR4 axis.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Quan Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Jian Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
42
|
Sun FR, Wang BY. Alcohol and Metabolic-associated Fatty Liver Disease. J Clin Transl Hepatol 2021; 9:719-730. [PMID: 34722187 PMCID: PMC8516839 DOI: 10.14218/jcth.2021.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
The diagnosis of metabolic-associated fatty liver disease is based on the detection of liver steatosis together with the presence of metabolic dysfunction. According to this new definition, the diagnosis of metabolic-associated fatty liver disease is independent of the amount of alcohol consumed. Actually, alcohol and its metabolites have various effects on metabolic-associated abnormalities during the process of alcohol metabolism. Studies have shown improved metabolic function in light to moderate alcohol drinkers. There are several studies focusing on the role of light to moderate alcohol intake on metabolic dysfunction. However, the results from studies are diverse, and the conclusions are often controversial. This review systematically discusses the effects of alcohol consumption, focusing on light to moderate alcohol consumption, obesity, lipid and glucose metabolism, and blood pressure.
Collapse
Affiliation(s)
| | - Bing-Yuan Wang
- Correspondence to: Bing-Yuan Wang, Department of Elderly Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China. ORCID: https://orcid.org/0000-0002-4233-6093. Tel: + 86-24-8328-3764, E-mail:
| |
Collapse
|
43
|
Liu J, Jiang M, Jin Q, Wu YL, Cui ZY, Cui BW, Shang Y, Zhan ZY, Lin YC, Jiao JY, Piao MH, Zhang ZH, Sun RH, Nan JX, Lian LH. Modulation of HMGB1 Release in APAP-Induced Liver Injury: A Possible Strategy of Chikusetsusaponin V Targeting NETs Formation. Front Pharmacol 2021; 12:723881. [PMID: 34366873 PMCID: PMC8333615 DOI: 10.3389/fphar.2021.723881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP), one of the most common antipyretic analgesics, which is safe at therapeutic dose, cause acute liver injury and even death at overdose. However, the mechanism of APAP-induced inflammation in liver injury is still controversial. Therefore, effective drug intervention is urgently needed. The aim of this study was to explore the inflammatory exact mechanism of APAP, especially on neutrophils, and to study the intervention effect of Chikusetsusaponin V (CKV) derived from Panax japonicus. Establishment of hepatotoxicity model of APAP in vitro and in vivo. In vitro, HepG2 cells, AML12 cells, primary mouse hepatocytes and neutrophils were used to mimic APAP-affected hepatocytes and neutrophil. In vivo, C57BL/6 mice were administrated overdose of APAP with or without neutrophil depletion or abolishing neutrophil extracellular traps (NETs) formation. In this study, APAP stimulation increased the level of HMGB1, IL-1β and Caspase-1 in mouse liver, especially hepatocytes, which had a synergistic effect with LPS/ATP combination. NETs were formatted at early stage of APAP or HMGB1-stimulated neutrophils’ damage. Conditioned mediums from APAP-treated hepatocytes induced more significant NETs than direct APAP stimulation. Neutrophil depletion or abolishing NETs formation decreased HMGB1 level, eventually blocked hepatocytes necrosis. CKV pretreatment interfered Caspase-1 activation and HMGB1 release in APAP-damaged hepatocytes. CKV also prevented NETs formation. These results indicate that the production of HMGB1 may depend on the activation of Caspase-1 and play a key role in liver inflammation caused by APAP. The cross-dialogue between hepatocytes and neutrophils can be mediated by HMGB1. Therefore, CKV has a positive intervention effect on NETs-related inflammation in APAP-damaged liver, targeting Caspase-1-HMGB1.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Min Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Quan Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ben-Wen Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yong-Ce Lin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing-Ya Jiao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei-Hua Piao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Rong-Hui Sun
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Centre, Yanbian University Hospital, Yanji, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
44
|
Zhao LM, Guo FY, Wang HM, Dou T, Da Qi J, Xu WB, Piao L, Jin X, Chen FE, Piao HR, Zheng CJ, Jin CH. Synthesis and Evaluation of Chiral Rhodanine Derivatives Bearing Quinoxalinyl Imidazole Moiety as ALK5 Inhibitors. Med Chem 2021; 18:509-520. [PMID: 34182915 DOI: 10.2174/1573406417666210628144849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/16/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND TGF-β signaling pathway inhibition is considered an effective way to prevent the development of several diseases. In the design and synthesis of TGF-β inhibitors, a rhodanine compound containing a quinoxalinyl imidazole moiety was found to have strong antimicrobial activity. OBJECTIVE The purpose of this work was to investigate the antimicrobial activity of other chiral rhodanine TGF-β inhibitors synthesized. METHODS Two series of 3-substituted-5-((5-(6-methylpyridin-2-yl)-4-(quinoxalinyl-6-yl)- 1H-imidazol-2-yl)methylene)-2-thioxothiazolin-4-ones (12a-h and 13a-e) were synthesized and evaluated for their ALK5 inhibitory and antimicrobial activity. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive strains, Gram-negative strains, and fungi. RESULTS Among the synthesized compounds, compound 12h showed the highest activity (IC50 = 0.416 μM) against ALK5 kinase. Compound 12h exhibited a good selectivity index of > 24 against p38α MAP kinase and was 6.0-fold more selective than the clinical candidate, compound 2 (LY-2157299). Nearly all the compounds displayed high selectivity toward both Gram-positive and Gram-negative bacteria. They also showed similar or 2.0-fold greater antifungal activity (minimum inhibitory concentration [MIC] = 0.5 µg/mL) compared with the positive control compounds Gatifloxacin (MIC = 0.5 µg/mL) and fluconazole (MIC = 1 µg/mL). CONCLUSION The findings suggest that the synthesized rhodanine compounds have good ALK5 inhibitory activity and can be used for further research and development as potential antifungal drugs.
Collapse
Affiliation(s)
- Li-Min Zhao
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Fang Yan Guo
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Hui Min Wang
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Tong Dou
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Jun Da Qi
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Wen Bo Xu
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Lianxun Piao
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| | - Fen-Er Chen
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Chang Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Phamacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
45
|
Danielewski M, Matuszewska A, Szeląg A, Sozański T. The Impact of Anthocyanins and Iridoids on Transcription Factors Crucial for Lipid and Cholesterol Homeostasis. Int J Mol Sci 2021; 22:6074. [PMID: 34199904 PMCID: PMC8200123 DOI: 10.3390/ijms22116074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (A.M.); (A.S.); (T.S.)
| | | | | | | |
Collapse
|
46
|
Li B, Mao Q, Zhou D, Luo M, Gan R, Li H, Huang S, Saimaiti A, Shang A, Li H. Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice. Foods 2021; 10:foods10061232. [PMID: 34071491 PMCID: PMC8228948 DOI: 10.3390/foods10061232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis has been a crucial contributor to the pathogenesis of alcoholic fatty liver disease (AFLD). Tea is a popular beverage worldwide and exerts antioxidant and anti-inflammatory activities, as well as hepatoprotective effects. However, the potential role of gut microbiota regulated by tea in the prevention and management of AFLD remains unclear. Here, the protective effects of oolong tea, black tea, and dark tea on AFLD and its regulation of gut microbiota in chronic alcohol-exposed mice were explored and investigated. The results revealed that tea supplementation significantly prevented liver steatosis, decreased oxidative stress and inflammation, and modulated gut microbiota in chronic alcohol-exposed mice, especially oolong tea and dark tea. However, black tea showed less effectiveness against liver injury caused by alcohol. Moreover, the diversity, structure and composition of chronic alcohol-disrupted gut microbiota were restored by the supplementation of oolong tea and dark tea based on the analysis of gut microbiota. Furthermore, the relationship between liver injury biochemical indicators and gut microbiota indicated that some specific bacteria, such as Bacteroides, Alloprevotella, and Parabacteroides were closely associated with AFLD. In addition, the phytochemical components in tea extracts were measured by high-performance liquid chromatography, which could contribute to preventive effects on AFLD. In summary, oolong tea and dark tea could prevent chronic alcohol exposure-induced AFLD by modulating gut microbiota.
Collapse
Affiliation(s)
- Bangyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Qianqian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Dandan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, China
| | - Hangyu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
47
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
48
|
Dai J, Chen Q, Huang W, Shi K, Zhang Y, Li T, Mou T, Huang Z, Wu Z. Liver kinase B1 attenuates liver ischemia/reperfusion injury via inhibiting the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai) 2021; 53:601-611. [PMID: 33783473 DOI: 10.1093/abbs/gmab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 02/05/2023] Open
Abstract
Liver ischemia/reperfusion injury (IRI), a serious inflammatory response driven by innate immunity, occurs in liver surgeries such as liver resection and liver transplantation, leading to liver dysfunction, liver failure, and even rejection after transplantation. Liver kinase B1 (LKB1) plays a pivotal anti-inflammatory role in IRI. One of the most important factors involved in liver IRI is the aberrant activation of the nucleotide binding oligomerization domain like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in Kupffer cells. However, the mechanisms underlying the effect of LKB1 on the NLRP3 inflammasome in liver IRI remain elusive. In this study, we found that the expression of LKB1 was decreased in liver IRI, while the NLRP3 inflammasome level was increased as shown, as revealed by RT-qPCR and western blot analysis. Furthermore, upregulation of LKB1 abrogated the expression of the NLRP3 inflammasome, which improved liver function and liver pathology in the liver IRI model in vivo. In vitro, overexpression of LKB1 inhibited the activation of NLRP3 inflammasome and nuclear factor-κB, while the inhibitory effect was reversed by silencing the expression of the forkhead box protein O1 in the RAW264.7 macrophage hypoxia/reoxygenation model. In conclusion, our results suggest that LKB1 exerts a protective effect against liver IRI by downregulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiangwen Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qingsong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weifeng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Kun Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuke Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
49
|
Zhao X, Gong L, Wang C, Liu M, Hu N, Dai X, Peng C, Li Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113569. [PMID: 33186701 DOI: 10.1016/j.jep.2020.113569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevanceQuercetin is the active component of the higher content in PCP, which exerts various biological activities such as anti-obesity effect, anti-inflammatory and anti-oxidant activities in alcoholic liver disease (ALD). AIM OF THE STUDY P2X7 receptor (P2X7R) plays an important role in health and disease, which can be activated by extracellular ATP to induce a variety of downstream events, including lipid metabolism, inflammatory molecule release, oxidative stress. However, whether the mechanism of quercetin on ethanol-induced hepatic steatosis via P2X7R-mediated haven't been elucidated. MATERIAL AND METHODS Zebrafish transgenic (fabp10: EGFP) larvae were treated with 100 μM, 50 μM, 25 μM quercetin for 48 h at 3 days post fertilization (dpf), then soaked in 350 mmol/L ethanol for 32 h, treated with 1 mM ATP (P2X7R activator) for 30min. Serum lipids, liver steatosis, oxidative stress factors were respectively detected. The mRNA levels in the related pathways were measured by quantitative Real-Time PCR (RT-qPCR) to investigate the mechanisms. RESULTS Quercetin improved the liver function via decreasing ALT, AST and γ-GT level of zebrafish with acute ethanol-induced hepatic steatosis and attenuated hepatic TG, TC accumulation. Additionally, quercetin significantly reduced the MDA content and suppressed the ethanol-induced reduction of hepatic oxidative stress biomarkers GSH, CAT and SOD and significantly down-regulated the expression of P2X7R, and up-regulated the expression of phosphatidylinositol 3-kinase (PI3K), Kelch like ECH associated protein1 (Keap1), Nuclear Factor E2 related factor 2 (Nrf2). Moreover, ATP stimulation activated P2X7R, which further mediated the mRNA expressions of PI3K, Keap1 and Nrf2. CONCLUSION Quercetin exhibited hepatoprotective capacity in zebrafish model, via regulating P2X7R-mediated PI3K/Keap1/Nrf2 oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
50
|
Gu Y, Zhang Y, Li M, Huang Z, Jiang J, Chen Y, Chen J, Jia Y, Zhang L, Zhou F. Ferulic Acid Ameliorates Atherosclerotic Injury by Modulating Gut Microbiota and Lipid Metabolism. Front Pharmacol 2021; 12:621339. [PMID: 33841148 PMCID: PMC8026864 DOI: 10.3389/fphar.2021.621339] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide. Recent studies have emphasized the significance of gut microbiota and lipid metabolism in the development of atherosclerosis. Herein, the effects and molecular mechanisms involving ferulic acid (FA) was examined in atherosclerosis using the ApoE-knockout (ApoE-∕-, c57BL/6 background) mouse model. Eighteen male ApoE-/- mice were fed a high-fat diet (HFD) for 12 weeks and then randomly divided into three groups: the model group, the FA (40 mg/kg/day) group and simvastatin (5 mg/kg/day) group. As results, FA could significantly alleviate atherosclerosis and regulate lipid levels in mice. Liver injury and hepatocyte steatosis induced by HFD were also mitigated by FA. FA improved lipid metabolism involving up-regulation of AMPKα phosphorylation and down-regulation of SREBP1 and ACC1 expression. Furthermore, FA induced marked structural changes in the gut microbiota and fecal metabolites and specifically reduced the relative abundance of Fimicutes, Erysipelotrichaceae and Ileibacterium, which were positively correlated with serum lipid levels in atherosclerosis mice. In conclusion, we demonstrate that FA could significantly ameliorate atherosclerotic injury, which may be partly by modulating gut microbiota and lipid metabolism via the AMPKα/SREBP1/ACC1 pathway.
Collapse
Affiliation(s)
- Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mei Li
- VIP Healthcare Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yihao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqi Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Zhang
- Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|