1
|
Medina-Arellano AE, Albert-Garay JS, Medina-Sánchez T, Fonseca KH, Ruiz-Cruz M, Ochoa-de la Paz L. Müller cells and retinal angiogenesis: critical regulators in health and disease. Front Cell Neurosci 2024; 18:1513686. [PMID: 39720707 PMCID: PMC11666533 DOI: 10.3389/fncel.2024.1513686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Müller cells are the most abundant glial cells in the mammalian retina. Their morphology and metabolism enable them to be in close contact and interact biochemically and physically with almost all retinal cell types, including neurons, pericytes, endothelial cells, and other glial cells, influencing their physiology by releasing bioactive molecules. Studies indicate that Müller glial cells are the primary source of angiogenic growth factor secretion in the neuroretina. Because of this, over the past decade, it has been postulated that Müller glial cells play a significant role in maintaining retinal vascular homeostasis, with potential implications in vasoproliferative retinopathies. This review aims to summarize the current understanding of the mechanisms by which Müller glial cells influence retinal angiogenesis in health and disease, with a particular emphasis on three of the retinopathies with the most significant impact on visual health worldwide: diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration.
Collapse
Affiliation(s)
- Alan E. Medina-Arellano
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Jesús Silvestre Albert-Garay
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Tania Medina-Sánchez
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Karla Hernández Fonseca
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Matilde Ruiz-Cruz
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Lenin Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| |
Collapse
|
2
|
Adele R, Hussein R, Tavares E, Ahmed K, Di Scipio M, Charish J, Liang M, Monis S, Tumber A, Chen X, Paton TA, Roslin NM, Eileen C, Ivakine E, Sunny NE, Wilson MD, Campos E, Rajala RV, Maynes JT, Monnier PP, Paterson AD, Héon E, Vincent A. Autosomal-dominant macular dystrophy linked to a chromosome 17 tandem duplication. JCI Insight 2024; 9:e178768. [PMID: 39436697 PMCID: PMC11623951 DOI: 10.1172/jci.insight.178768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Hereditary macular dystrophies (HMDs) are a genetically diverse group of disorders that cause central vision loss due to photoreceptor and retinal pigment epithelium (RPE) damage. We investigated a family with a presumed novel autosomal-dominant HMD characterized by faint, hypopigmented RPE changes involving the central retina. Genome and RNA sequencing identified the disease-causing variant to be a 560 kb tandem duplication on chromosome 17 [NC_000017.10 (hg19): g.4012590_4573014dup], which led to the formation of a novel ZZEF1-ALOX15 fusion gene, which upregulates ALOX15. ALOX15 encodes a lipoxygenase involved in polyunsaturated fatty acid metabolism. Functional studies showed retinal disorganization and photoreceptor and RPE damage following electroporation of the chimera transcript in mouse retina. Photoreceptor damage also occurred following electroporation with a native ALOX15 transcript but not with a near-null ALOX15 transcript. Affected patients' lymphoblasts demonstrated lower levels of ALOX15 substrates and an accumulation of neutral lipids. We implicated the fusion gene as the cause of this family's HMD, due to mislocalization and overexpression of ALOX15, driven by the ZZEF1 promoter. To our knowledge, this is the first reported instance of a fusion gene leading to HMD or inherited retinal dystrophy, highlighting the need to prioritize duplication analysis in unsolved retinal dystrophies.
Collapse
Affiliation(s)
- Rabiat Adele
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Rowaida Hussein
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Erika Tavares
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Kashif Ahmed
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Matteo Di Scipio
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Jason Charish
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Minggao Liang
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto (U of T), Toronto, Ontario, Canada
| | - Simon Monis
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto (U of T), Toronto, Ontario, Canada
| | | | - Xiaoyan Chen
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tara A. Paton
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- The Centre for Applied Genomics, HSC, Toronto, Ontario, Canada
| | - Nicole M. Roslin
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Christabel Eileen
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Evgueni Ivakine
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Nishanth E. Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Michael D. Wilson
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Eric Campos
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Raju V.S. Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason T. Maynes
- Molecular Medicine program and
- Department of Anesthesia and Pain Medicine, HSC, Toronto, Ontario, Canada
| | - Philippe P. Monnier
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, and
| | - Andrew D. Paterson
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Elise Héon
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences and
- Department of Ophthalmology and Visual Sciences, U of T, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences and
- Department of Ophthalmology and Visual Sciences, U of T, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Elmasry K, Habib S, Helwa I, Khaled ML, Ibrahim AS, Tawfik A, Al-Shabrawey M. Possible Role of Endothelial-Derived Cellular and Exosomal-miRNAs in Lipid-Mediated Diabetic Retinopathy: Microarray Studies. Cells 2024; 13:1886. [PMID: 39594634 PMCID: PMC11592818 DOI: 10.3390/cells13221886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a salient cause of blindness worldwide. There is still an immense need to understand the pathophysiology of DR to discover better diagnostic and therapeutic modalities. Human retinal endothelial cells (HRECs) were treated with 15-HETE or D-glucose, then miRNAs were isolated, and a microarray was performed. MirWALK 2 and Ingenuity Pathway Analysis (IPA) were used to analyze the microarray results. Exosomal miRNAs from 15-HETE-treated HRECs were isolated, microarrayed, and then imported into IPA for further analysis. The microarray results showed that 15-HETE downregulated 343 miRNAs and upregulated 297 miRNAs in HRECs. High glucose treatment induced a differential expression of HREC-miRNAs where 185 miRNAs were downregulated and 244 were upregulated. Comparing the impact of 15-HETE versus DG or diabetic mouse retina elaborated commonly changing miRNAs. Pathway and target analysis for miRNAs changed in 15-HETE-treated HRECs revealed multiple targets and pathways that may be involved in 15-HETE-induced retinal endothelial dysfunction. The HREC-exosomal miRNAs were differentially expressed after 15-HETE treatment, with 34 miRNAs downregulated and 45 miRNAs upregulated, impacting different cellular pathways. Here, we show that 15-HETE induces various changes in the cellular and exosomal miRNA profile of HRECs, highlighting the importance of targeting the 12/15 lipoxygenase pathway in DR.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Habib
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Inas Helwa
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Histopathology, Faculty of Oral and Dental Medicine, Misr International University, Cairo 19648, Egypt
| | - Mariam Lotfy Khaled
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
4
|
Lin HT, Zheng CM, Tsai CH, Chen CL, Chou YC, Zheng JQ, Lin YF, Lin CW, Chen YC, Sun CA, Chen JT. The Association between Diabetic Retinopathy and Macular Degeneration: A Nationwide Population-Based Study. Biomedicines 2024; 12:727. [PMID: 38672083 PMCID: PMC11047965 DOI: 10.3390/biomedicines12040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Age-related macular degeneration (AMD), particularly its exudative form, is a primary cause of vision impairment in older adults. As diabetes becomes increasingly prevalent in aging, it is crucial to explore the potential relationship between diabetic retinopathy (DR) and AMD. This study aimed to assess the risk of developing overall, non-exudative, and exudative AMD in individuals with DR compared to those without retinopathy (non-DR) based on a nationwide population study in Taiwan. METHODS A retrospective cohort study was conducted using the Taiwan National Health Insurance Database (NHIRD) (2000-2013). A total of 3413 patients were placed in the study group (DR) and 13,652 in the control group (non-DR) for analysis. Kaplan-Meier analysis and the Cox proportional hazards model were used to calculate the hazard ratios (HRs) and adjusted hazard ratios (aHRs) for the development of AMD, adjusting for confounding factors, such as age, sex, and comorbid conditions. RESULTS Kaplan-Meier survival analysis indicated a significantly higher cumulative incidence of AMD in the DR group compared to the non-DR group (log-rank test, p < 0.001). Adjusted analyses revealed that individuals with DR faced a greater risk of overall AMD, with an aHR of 3.50 (95% CI = 3.10-3.95). For senile (unspecified) AMD, the aHR was 3.45 (95% CI = 3.04-3.92); for non-exudative senile AMD, it was 2.92 (95% CI = 2.08-4.09); and for exudative AMD, the aHR was 3.92 (95% CI = 2.51-6.14). CONCLUSION DR is a significant risk factor for both overall, senile, exudative, and non-exudative AMD, even after adjusting for demographic and comorbid conditions. DR patients tend to have a higher prevalence of vascular comorbidities; however, our findings indicate that the ocular pathologies inherent to DR might have a more significant impact on the progression to AMD. Early detection and appropriate treatment of AMD is critically important among DR patients.
Collapse
Affiliation(s)
- Hsin-Ting Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-T.L.); (C.-L.C.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Hung Tsai
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.T.); (Y.-C.C.)
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-T.L.); (C.-L.C.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.T.); (Y.-C.C.)
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chia-Wei Lin
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 110, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yong-Chen Chen
- Department of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-T.L.); (C.-L.C.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| |
Collapse
|
5
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
6
|
Ren J, Ren A, Huang Z, Deng X, Jiang Z, Xue Y, Fu Z, Smith LE, Ke M, Gong Y. Metabolomic Profiling of Long-Chain Polyunsaturated Fatty Acid Oxidation in Adults with Retinal Vein Occlusion: A Case-Control Study. Am J Clin Nutr 2023; 118:579-590. [PMID: 37454758 DOI: 10.1016/j.ajcnut.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Jin Z, Guo Q, Wang Z, Wu X, Hu W, Li J, Li H, Zhu S, Zhang H, Chen Z, Xu H, Shi L, Yang L, Wang Y. Andrographolide suppresses hypoxia-induced embryonic hyaloid vascular system development through HIF-1a/VEGFR2 signaling pathway. Front Cardiovasc Med 2023; 10:1090938. [PMID: 36844722 PMCID: PMC9944699 DOI: 10.3389/fcvm.2023.1090938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ocular abnormalities and the development of retinal vasculature may cause postnatal retinopathy. In the past decade, tremendous progress has been made in identifying the mechanisms that regulate retina vasculature. However, the means of regulating embryonic hyaloid vasculature development is largely unknown. This study aims to determine whether and how andrographolide regulates embryonic hyaloid vasculature development. Methods Murine embryonic retinas were used in this study. Whole mount isolectin B4 (IB4) staining, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and immunofluorescence staining (IF) were performed to determine whether andrographolide is critical for embryonic hyaloid vasculature development. BrdU incorporation assay, Boyden chamber migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay were performed to evaluate whether andrographolide regulates the proliferation and migration of vascular endothelial cells. Molecular docking simulation and Co-immunoprecipitation assay were used to observe protein interaction. Results Hypoxia conditions exist in murine embryonic retinas. Hypoxia induces HIF-1a expression; high-expressed HIF-1a interacts with VEGFR2, resulting in the activation of the VEGF signaling pathway. Andrographolide suppresses hypoxia-induced HIF-1a expression and, at least in part, interrupts the interaction between HIF-1a and VEGFR2, causing inhibiting endothelial proliferation and migration, eventually inhibiting embryonic hyaloid vasculature development. Conclusion Our data demonstrated that andrographolide plays a critical role in regulating embryonic hyaloid vasculature development.
Collapse
Affiliation(s)
- Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiru Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongfei Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Zhu
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haidi Zhang
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yong Wang, ✉ ; ✉
| |
Collapse
|
9
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
10
|
Sharif N. Neuroaxonal and cellular damage/protection by prostanoid receptor ligands, fatty acid derivatives and associated enzyme inhibitors. Neural Regen Res 2023; 18:5-17. [PMID: 35799502 PMCID: PMC9241399 DOI: 10.4103/1673-5374.343887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical, mechanical, noxious and other stimuli. Prostaglandin D2, prostaglandin E2, prostaglandin F2α, prostaglandin I2 and thromboxane-A2 interact with five major receptors (and their sub-types) to elicit specific downstream cellular and tissue actions. In general, prostaglandins have been associated with pain, inflammation, and edema when they are present at high local concentrations and involved on a chronic basis. However, in acute settings, certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation, providing cellular protection, regulating sleep, and enhancing blood flow, to lowering intraocular pressure to prevent the development of glaucoma, a blinding disease. Several classes of prostaglandins are implicated (or are considered beneficial) in certain central nervous system dysfunctions (e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases; amyotrophic lateral sclerosis and multiple sclerosis; stroke, traumatic brain injuries and pain) and in ocular disorders (e.g., ocular hypertension and glaucoma; allergy and inflammation; edematous retinal disorders). This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease, and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists, polyunsaturated fatty acids, and cyclooxygenase inhibitors.
Collapse
|
11
|
Melecchi A, Amato R, Lapi D, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Increased efficacy of dietary supplement containing wax ester-rich marine oil and xanthophylls in a mouse model of dry macular degeneration. Front Pharmacol 2022; 13:1038730. [DOI: 10.3389/fphar.2022.1038730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is nowadays considered among the retinal diseases whose clinical management lacks established treatment approaches, mainly for its atrophic (dry) form. In this respect, the use of dietary patterns enriched in omega-3 and antioxidant xanthophylls has emerged as a promising approach to counteract dry AMD progression although the prophylactic potential of omega-3 of fish origin has been discussed. Whether enriched availability of omega-3 and xanthophylls may increase the effectiveness of diet supplementation in preventing dry AMD remains to be fully established. The present study aims at comparing the efficacy of an existing orally administered formulation based on lutein and fish oil, as a source of omega-3, with a novel formulation providing the combination of lutein and astaxanthin with Calanus oil (COil), which contains omega-3 together with their precursors policosanols. Using a mouse model of dry AMD based on subretinal injection of polyethylene glycol (PEG)-400, we assessed the comparative efficacy of both formulations on PEG-induced major hallmarks including oxidative stress, inflammation, glial reactivity and outer retinal thickness. Dietary supplementation with both mixtures has been found to exert a significant antioxidant and anti-inflammatory activity as reflected by the overall amelioration of the PEG-induced pathological hallmarks. Noteworthy, the formulation based on COil appeared to be more protective than the one based on fish oil, presumably because of the higher bioavailability of omega-3 in COil. These results support the use of dietary supplements combining omega-3 and xanthophylls in the prevention and treatment of AMD and suggest that the source of omega-3 might contribute to treatment efficacy.
Collapse
|
12
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Guo C, Jiang D, Xu Y, Peng F, Zhao S, Li H, Jin D, Xu X, Xia Z, Che M, Lai M, Huang R, Wang H, Zheng C, Mao G. High-Coverage Serum Metabolomics Reveals Metabolic Pathway Dysregulation in Diabetic Retinopathy: A Propensity Score-Matched Study. Front Mol Biosci 2022; 9:822647. [PMID: 35372500 PMCID: PMC8970305 DOI: 10.3389/fmolb.2022.822647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a major diabetes-related disease linked to metabolism. However, the cognition of metabolic pathway alterations in DR remains scarce. We aimed to corroborate alterations of metabolic pathways identified in prior studies and investigate novel metabolic dysregulations that may lead to new prevention and treatment strategies for DR. Methods: In this case-control study, we tested 613 serum metabolites in 69 pairs of type 2 diabetic patients (T2DM) with DR and propensity score-matched T2DM without DR via ultra-performance liquid chromatography-tandem mass spectrometry system. Metabolic pathway dysregulation in DR was thoroughly investigated by metabolic pathway analysis, chemical similarity enrichment analysis (ChemRICH), and integrated pathway analysis. The associations of ChemRICH-screened key metabolites with DR were further estimated with restricted cubic spline analyses. Results: A total of 89 differentially expressed metabolites were identified by paired univariate analysis and partial least squares discriminant analysis. We corroborated biosynthesis of unsaturated fatty acids, glycine, serine and threonine metabolism, glutamate and cysteine-related pathways, and nucleotide-related pathways were significantly perturbed in DR, which were identified in prior studies. We also found some novel metabolic alterations associated with DR, including the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives in DR. Conclusions: The results suggest that the metabolism disorder in DR can be better understood through integrating multiple biological knowledge databases. The progression of DR is associated with the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives.
Collapse
Affiliation(s)
- Chengnan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Depeng Jiang
- Department of Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yixi Xu
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shuzhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Dongzhen Jin
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xin Xu
- Department of Nursing, School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Zhezheng Xia
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mingzhu Che
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mengyuan Lai
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Ruogu Huang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chao Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chao Zheng, , orcid org/0000-0003-3814-4643; Guangyun Mao, , orcid.org/0000-0002-4548-7524
| | - Guangyun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Clinical Research, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chao Zheng, , orcid org/0000-0003-3814-4643; Guangyun Mao, , orcid.org/0000-0002-4548-7524
| |
Collapse
|
14
|
Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin W, Kuang H. Dapagliflozin Reduces Apoptosis of Diabetic Retina and Human Retinal Microvascular Endothelial Cells Through ERK1/2/cPLA2/AA/ROS Pathway Independent of Hypoglycemic. Front Pharmacol 2022; 13:827896. [PMID: 35281932 PMCID: PMC8908030 DOI: 10.3389/fphar.2022.827896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction: It is known that the metabolic disorder caused by high glucose is one of pathogenesis in diabetic retinopathy (DR), the leading cause of blindness, due to the main pathological change of apoptosis of endothelial cells (ECs). In previous studies, the potential impact of sodium glucose cotransporter-2 (SGLT-2), whose inhibitors slow the progression of DR, has not been elucidated. The purpose of the presented study was to explore the effect of SGLT-2 inhibitors dapagliflozin (DAPA) on apoptosis of diabetic mice retina and human retinal microvascular endothelial cells (HRMECs), examine the effects of dapagliflozin on HRMECs metabolism, and explore the molecular processes that affect DR. Methods and Results: The eyeballs of male streptozotocin (STZ)-induced diabetic C57BL/6N mice were evaluated. C57BL/6N mice were divided into control group (CON), diabetic untreated group (DM), diabetic dapagliflozin treatment group (DM + DAPA) and diabetic insulin treatment group (DM + INS). Hematoxylin-Eosin (HE) staining was performed to observe the pathological structure of the mice retina, and TUNEL staining to detect apoptosis of mice retinal cells. In vitro, DCFH-DA and western blot (WB) were used to evaluate ROS, Bcl-2, BAX, cleaved-caspase 3 in HRMECs and metabolomics detected the effect of dapagliflozin on the metabolism of HRMECs. And then, we performed correlation analysis and verification functions for significantly different metabolites. In vivo, dapagliflozin reduced the apoptosis of diabetic mice retina independently of hypoglycemic. In vitro, SGLT-2 protein was expressed on HRMECs. Dapagliflozin reduced the level of ROS caused by high glucose, decreased the expression of cleaved-caspase3 and the ratio of BAX/Bcl-2. Metabolomics results showed that dapagliflozin did not affect the intracellular glucose level. Compared with the high glucose group, dapagliflozin reduced the production of arachidonic acid (AA) and inhibited the phosphorylation of ERK1/2, therefore, reducing the phosphorylation of cPLA2, which is a key enzyme for arachidonic acid release. Conclusion: Collectively, results unearthed for the first time that dapagliflozin reduced apoptosis of retina induced by DM whether in vivo or in vitro. Dapagliflozin did not affect the glucose uptake while mitigated intracellular arachidonic acid in HRMECs. Dapagliflozin alleviated HRMECs apoptosis induced by high glucose through ERK/1/2/cPLA2/AA/ROS pathway.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyu Meng
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
16
|
Wang WY, Liu X, Gao XQ, Li X, Fang ZZ. Relationship Between Acylcarnitine and the Risk of Retinopathy in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:834205. [PMID: 35370967 PMCID: PMC8964487 DOI: 10.3389/fendo.2022.834205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Diabetic retinopathy is a common complication of type 2 diabetes mellitus (T2DM). Due to the limited effectiveness of current prevention and treatment methods, new biomarkers are urgently needed for the prevention and diagnosis of DR. This study aimed to explore the relationships between plasma acylcarnitine with DR in T2DM. METHODS From May 2015 to August 2016, data of 1032 T2DM patients were extracted from tertiary hospitals. Potential non-linear associations were tested by binary logistic regression models, and ORs and 95% CIs of the research variables were obtained. Correlation heat map was used to analyze the correlation between variables. The change of predictive ability was judged by the area under the receiver operating characteristic curve. RESULTS Of the 1032 patients with T2DM, 162 suffered from DR. After adjusting for several confounding variables, C2 (OR:0.55, 95%CI:0.39-0.76), C14DC (OR:0.64, 95%CI:0.49-0.84), C16 (OR:0.64, 95%CI:0.49-0.84), C18:1OH (OR:0.51, 95%CI:0.36-0.71) and C18:1 (OR:0.60, 95%CI:0.44-0.83) were negatively correlated with DR. The area under the curve increased from 0.794 (95% CI 0.745 to 0.842) to 0.840 (95% CI 0.797 to 0.833) when C2, C14DC, C18:1OH and C18:1 added to the traditional risk factor model. CONCLUSION There was a negative correlation between C2, C14DC, C16, C18:1OH, and C18:1 and the risk of retinopathy in patients with T2DM. C2, C14DC, C18:1OH, and C18:1 may be new predictors and diagnostic markers of DR.
Collapse
|
17
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
18
|
Dao D, Xie B, Nadeem U, Xiao J, Movahedan A, D’Souza M, Leone V, Hariprasad SM, Chang EB, Sulakhe D, Skondra D. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells 2021; 10:cells10082119. [PMID: 34440888 PMCID: PMC8392173 DOI: 10.3390/cells10082119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Collapse
Affiliation(s)
- David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Bingqing Xie
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Jason Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Asad Movahedan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA;
| | - Mark D’Souza
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA;
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Eugene B. Chang
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dinanath Sulakhe
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
- Correspondence:
| |
Collapse
|
19
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Eskandarpour M, Nunn MA, Weston-Davies W, Calder VL. Immune-Mediated Retinal Vasculitis in Posterior Uveitis and Experimental Models: The Leukotriene (LT)B4-VEGF Axis. Cells 2021; 10:cells10020396. [PMID: 33671954 PMCID: PMC7919050 DOI: 10.3390/cells10020396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal vascular diseases have distinct, complex and multifactorial pathogeneses yet share several key pathophysiological aspects including inflammation, vascular permeability and neovascularisation. In non-infectious posterior uveitis (NIU), retinal vasculitis involves vessel leakage leading to retinal enlargement, exudation, and macular oedema. Neovascularisation is not a common feature in NIU, however, detection of the major angiogenic factor—vascular endothelial growth factor A (VEGF-A)—in intraocular fluids in animal models of uveitis may be an indication for a role for this cytokine in a highly inflammatory condition. Suppression of VEGF-A by directly targeting the leukotriene B4 (LTB4) receptor (BLT1) pathway indicates a connection between leukotrienes (LTs), which have prominent roles in initiating and propagating inflammatory responses, and VEGF-A in retinal inflammatory diseases. Further research is needed to understand how LTs interact with intraocular cytokines in retinal inflammatory diseases to guide the development of novel therapeutic approaches targeting both inflammatory mediator pathways.
Collapse
Affiliation(s)
- Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Correspondence:
| | - Miles A. Nunn
- Akari Therapeutics Plc, London EC1V 9EL, UK; (M.A.N.); (W.W.-D.)
| | | | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| |
Collapse
|
22
|
Alzahrani S, Ajwah SM, Alsharif SY, Said E, El-Sherbiny M, Zaitone SA, Al-Shabrawey M, Elsherbiny NM. Isoliquiritigenin downregulates miR-195 and attenuates oxidative stress and inflammation in STZ-induced retinal injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2375-2385. [PMID: 32699958 DOI: 10.1007/s00210-020-01948-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus that leads to significant vision loss. Isoliquiritigenin (ISL) is a bioactive flavonoid found in the root of licorice with reported anti-oxidant and anti-inflammatory activities. In the present study, we evaluated the effect of ISL administration on diabetes-induced retinal injury. Diabetes was induced in male Sprague-Dawley rats using single intraperitoneal streptozotocin (STZ, 50 mg/kg) injection. Diabetic rats showed up-regulated retinal miR-195, reduced retinal levels of SIRT-1, and increased levels of oxidative stress, nuclear factor-κB (NF-κB), inflammatory cytokines, and endothelin-1. Moreover, histopathological and electron microscopy studies revealed distorted retinal layers and reduced number of ganglion cells. Oral administration of ISL (20 mg/kg/day) to diabetic rats for 8 weeks improved diabetes-induced retinal injury via down-regulation of miR-195, restoration of retinal SIRT-1 level, attenuation of oxidative stress, inflammation, and endothelial damage as well as preservation of retinal normal histology and ultrastructure. In conclusion, our results showed that ISL could be a promising therapeutic intervention to prevent the development and progression of DR. It also suggested that the miR-195/SIRT-1/NF-κB pathway may contribute to ISL treatment-induced beneficial effects.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadeem M Ajwah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
- College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Department of Ophthalmology, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA, USA
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
23
|
Eicosanoids and Oxidative Stress in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9060520. [PMID: 32545552 PMCID: PMC7346161 DOI: 10.3390/antiox9060520] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important factor to cause the pathogenesis of diabetic retinopathy (DR) because the retina has high vascularization and long-time light exposition. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes can convert arachidonic acid (AA) into eicosanoids, which are important lipid mediators to regulate DR development. COX-derived metabolites appear to be significant factors causative to oxidative stress and retinal microvascular dysfunction. Several elegant studies have unraveled the importance of LOX-derived eicosanoids, including LTs and HETEs, to oxidative stress and retinal microvascular dysfunction. The role of CYP eicosanoids in DR is yet to be explored. There is clear evidence that CYP-derived epoxyeicosatrienoic acids (EETs) have detrimental effects on the retina. Our recent study showed that the renin-angiotensin system (RAS) activation augments retinal soluble epoxide hydrolase (sEH), a crucial enzyme degrading EETs. Our findings suggest that EETs blockade can enhance the ability of RAS blockade to prevent or mitigate microvascular damage in DR. This review will focus on the critical information related the function of these eicosanoids in the retina, the interaction between eicosanoids and reactive oxygen species (ROS), and the involvement of eicosanoids in DR. We also identify potential targets for the treatment of DR.
Collapse
|
24
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Chistyakov DV, Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Tiulina VV, Baksheeva VE, Kotelin VI, Fedoseeva EV, Zamyatnin AA, Philippov PP, Kiseleva OA, Bessmertny AM, Senin II, Iomdina EN, Sergeeva MG, Zernii EY. Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits. Metabolomics 2020; 16:27. [PMID: 32052201 DOI: 10.1007/s11306-020-1650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular inflammation is a key pathogenic factor in most blindness-causing visual disorders. It can manifest in the aqueous humor (AH) and tear fluid (TF) as alterations in polyunsaturated fatty acids (PUFAs) and their metabolites, oxylipins, lipid mediators, which are biosynthesized via enzymatic pathways involving lipoxygenase, cyclooxygenase or cytochrome P450 monooxygenase and specifically regulate inflammation and resolution pathways. OBJECTIVES This study aimed to establish the baseline patterns of PUFAs and oxylipins in AH and TF by their comprehensive lipidomic identification and profiling in humans in the absence of ocular inflammation and comparatively analyze these compounds in the eye liquids of rabbits, the species often employed in investigative ophthalmology. METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for qualitative and quantitative characterization of lipid compounds in the analyzed samples. RESULTS A total of 28 lipid compounds were identified, including phospholipid derivatives and PUFAs, as well as 22 oxylipins. Whereas the PUFAs included arachidonic, docosahexaenoic and eicosapentaenoic acids, the oxylipins were derived mainly from arachidonic, linoleic and α-linolenic acids. Remarkably, although the concentration of oxylipins in AH was lower compared to TF, these liquids showed pronounced similarity in their lipid profiles, which additionally exhibited noticeable interspecies concordance. CONCLUSION The revealed correlations confirm the feasibility of rabbit models for investigating pathogenesis and trialing therapies of human eye disorders. The identified metabolite patterns suggest enzymatic mechanisms of oxylipin generation in AH and TF and might be used as a reference in ocular inflammation studies.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
| | - Nadezhda V Azbukina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Vladislav I Kotelin
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Elena V Fedoseeva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Olga A Kiseleva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | | | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Elena N Iomdina
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| |
Collapse
|
26
|
Spencer BG, Estevez JJ, Liu E, Craig JE, Finnie JW. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology 2019; 28:697-709. [PMID: 31612299 DOI: 10.1007/s10787-019-00647-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes mellitus, and a common cause of vision impairment and blindness in these patients, yet many aspects of its pathogenesis remain unresolved. Furthermore, current treatments are not effective in all patients, are only indicated in advanced disease, and are associated with significant adverse effects. This review describes the microvascular features of DR, and how pericyte depletion and low-grade chronic inflammation contribute to the pathogenesis of this common ophthalmic disorder. Existing, novel and investigational pharmacological strategies aimed at modulating the inflammatory component of DR and ameliorating pericyte loss to potentially improve clinical outcomes for patients with diabetic retinopathy, are discussed.
Collapse
Affiliation(s)
- Benjamin G Spencer
- TMOU, Flinders Medical Centre, Southern Adelaide Local Health Network, SA Health, Flinders Drive, Bedford Park, SA, 5042, Australia.
| | - Jose J Estevez
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Ebony Liu
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Jamie E Craig
- Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - John W Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Elmarakby AA, Ibrahim AS, Katary MA, Elsherbiny NM, El-Shafey M, Abd-Elrazik AM, Abdelsayed RA, Maddipati KR, Al-Shabrawey M. A dual role of 12/15-lipoxygenase in LPS-induced acute renal inflammation and injury. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1669-1680. [PMID: 31349026 DOI: 10.1016/j.bbalip.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/17/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023]
Abstract
Recent studies suggest a potential role of bioactive lipids in acute kidney injury induced by lipopolysaccharide (LPS). The current study was designed to determine the profiling activities of various polyunsaturated fatty acid (PUFA) metabolizing enzymes, including lipoxygenases (LO), cyclooxygenase, and cytochrome P450 in the plasma of LPS-injected mice using LC-MS. Heat map analysis revealed that out of 126 bioactive lipids screened, only the 12/15-LO metabolite, 12-HETE, had a significant (2.24 ± 0.4) fold increase relative to control (P = 0.0001) after Bonferroni Correction (BCF α = 0.003). We then determined the role of the 12/15-LO in LPS-induced acute kidney injury using genetic and pharmacological approaches. Treatment of LPS injected mice with the 12/15-LO inhibitor, baicalein, significantly reduced levels of renal injury and inflammation markers including urinary thiobarbituric acid reactive substance (TBARs), urinary monocyte chemoattractant protein-1 (MCP-1), renal interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Similarly, knocking-out of 12/15-LO reduced levels of renal inflammation and injury markers elicited by LPS injection. Next, we tested whether exogenous supplementation with docosahexaenoic acid (DHA) as a substrate would divert the role of 12/15-LO from being pro-inflammatory to anti-inflammatory via increased production of the anti-inflammatory metabolite. DHA treatment restored the decreased in plasma level of resolvin D2 (RvD2) and reduced renal injury in LPS-injected mice whereas DHA treatment failed to provide any synergistic effects in reducing renal injury in LPS injected 12/15-LO knock-out mice. The ability of RvD2 to protect kidney against LPS-induced renal injury was further confirmed by exogenous RvD2 which significantly reduced the elevation in renal injury in LPS injected mice. These data suggest a double-edged sword role of 12/15-LO in LPS-induced acute renal inflammation and injury, depending on the type of substrate available for its activity.
Collapse
Affiliation(s)
- Ahmed A Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Wayne State University, Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Detroit, MI
| | - Mohamed A Katary
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Pharmacology, Faculty of Pharmacy, Damnhour University, Egypt
| | - Nehal M Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Shafey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M Abd-Elrazik
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Rafik A Abdelsayed
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | | | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA.
| |
Collapse
|
28
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
29
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|