1
|
Sun M, Chen ZR, Ding HJ, Feng J. Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets. Acta Pharmacol Sin 2024:10.1038/s41401-024-01400-x. [PMID: 39424975 DOI: 10.1038/s41401-024-01400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Itch is an uncomfortable feeling that evokes a desire to scratch. This protective reflex can effectively eliminate parasites that invade the skin. When itchy skin becomes severe or lasts for more than six weeks, it has deleterious effects on both quality of life and productivity. Despite decades of research, the complete molecular and cellular coding of chronic itch remains elusive. This persistent condition often defies treatment, including with antihistamines, and poses a significant societal challenge. Obtaining pathophysiological insights into the generation of chronic itch is essential for understanding its mechanisms and the development of innovative anti-itch medications. In this review we provide a systematic overview of the recent advancement in itch research, alongside the progress made in drug discovery within this field. We have examined the diversity and complexity of the classification and mechanisms underlying the complex sensation of itch. We have also delved into recent advancements in the field of itch mechanism research and how these findings hold potential for the development of new itch treatment medications. But the treatment of clinical itch symptoms still faces significant challenges. Future research needs to continue to delve deeper, not only to discover more itch-related pathways but also to explore how to improve treatment efficacy through multitarget or combination therapy.
Collapse
Affiliation(s)
- Meng Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen-Ru Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang B, Xie B, Xu W, Wei D, Zhang L, Sun J, Shi Y, Feng J, Yang F, Zhang H, Song X. Inhibition of transient receptor potential vanilloid 3 channels by antimalarial hydroxychloroquine alleviates TRPV3-dependent dermatitis. J Biol Chem 2024; 300:107733. [PMID: 39233228 PMCID: PMC11460631 DOI: 10.1016/j.jbc.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Transient receptor potential vanilloid 3 channel (TRPV3) is closely associated with skin inflammation, but there is a lack of effective and specific inhibitors for clinical use. In this study, we identified antimalarial hydroxychloroquine (HCQ) as a selective TRPV3 inhibitor following the prediction by network pharmacology data analysis. In whole-cell patch-clamp recordings, HCQ inhibited the current of the TRPV3 channel, with an IC50 of 51.69 ± 4.78 μM. At the single-channel level, HCQ reduced the open probability of TRPV3 and decreased single-channel conductance. Molecular docking and site-directed mutagenesis confirmed that residues in the pore domain were critical for the activity of HCQ. In vivo, HCQ effectively reduced carvacrol-induced epidermal thickening, erythema, and desquamation. Additionally, the serum immunoglobulin E and inflammatory factors such as tumor necrosis factor-α and interleukin-6 were markedly decreased in the dorsal skin tissues in the HCQ treatment group, as compared to the model group. Our results suggested the antimalarial HCQ may represent a potential alleviator for treating skin inflammation by inhibiting TRPV3 channels.
Collapse
Affiliation(s)
- Beilei Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfan Wei
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yetan Shi
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangfeng Feng
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Heng Zhang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Zhang G, Wang L, Qu Y, Mo S, Sun X, Wang K. Inhibition of Cutaneous TRPV3 Channels by Natural Caffeic Acid for the Alleviation of Skin Inflammation. Molecules 2024; 29:3728. [PMID: 39202808 PMCID: PMC11357638 DOI: 10.3390/molecules29163728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Natural caffeic acid (CA) and its analogues have been studied for their potential applications in the treatment of various inflammatory and infectious skin diseases. However, the molecular mechanism underlying the effects of the CA remains largely unknown. Here, we report that CA and its two analogues, caffeic acid phenethyl ester (CAPE) and caffeic acid methyl caffeate (CAMC), inhibit TRPV3 currents in their concentration- and structure-dependent manners with IC50 values ranging from 102 to 410 μM. At the single-channel level, CA reduces the channel open probability and open frequency without alteration of unitary conductance. CA selectively inhibits TRPV3 relative to other subtypes of thermo-TRPs, such as TRPA1, TRPV1, TRPV4, and TRPM8. Molecular docking combined with site-specific mutagenesis reveals that a residue T636 in the Pore-loop is critical for CA binding to TRPV3. Further in vivo evaluation shows that CA significantly reverses TRPV3-mediated skin inflammation induced by skin sensitizer carvacrol. Altogether, our findings demonstrate that CA exerts its anti-inflammatory effects by selectively inhibiting TRPV3 through binding to the pocket formed by the Pore-loop and the S6. CA may serve as a lead for further modification and identification of specific TRPV3 channel inhibitors.
Collapse
Affiliation(s)
- Guoji Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Liqin Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Shilun Mo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
| | - Xiaoying Sun
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, 1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
4
|
Lei J, Tominaga M. Unlocking the therapeutic potential of TRPV3: Insights into thermosensation, channel modulation, and skin homeostasis involving TRPV3. Bioessays 2024; 46:e2400047. [PMID: 38769699 DOI: 10.1002/bies.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent insights reveal the significant role of TRPV3 in warmth sensation. A novel finding elucidated how thermosensation is affected by TRPV3 membrane abundance that is modulated by the transmembrane protein TMEM79. TRPV3 is a warmth-sensitive ion channel predominantly expressed in epithelial cells, particularly skin keratinocytes. Multiple studies investigated the roles of TRPV3 in cutaneous physiology and pathophysiology. TRPV3 activation by innocuous warm temperatures in keratinocytes highlights its significance in temperature sensation, but whether TRPV3 directly contributes to warmth sensations in vivo remains controversial. This review explores the electrophysiological and structural properties of TRPV3 and how modulators affect its intricate regulatory mechanisms. Moreover, we discuss the multifaceted involvement of TRPV3 in skin physiology and pathology, including barrier formation, hair growth, inflammation, and itching. Finally, we examine the potential of TRPV3 as a therapeutic target for skin diseases and highlight its diverse role in maintaining skin homeostasis.
Collapse
Affiliation(s)
- Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Xu Y, Qu Y, Zhang C, Niu C, Tang X, Sun X, Wang K. Selective inhibition of overactive warmth-sensitive Ca 2+-permeable TRPV3 channels by antispasmodic agent flopropione for alleviation of skin inflammation. J Biol Chem 2024; 300:105595. [PMID: 38154600 PMCID: PMC10828444 DOI: 10.1016/j.jbc.2023.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
The temperature-sensitive Ca2+-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC50 value of 17.8 ± 3.5 μM. At the single-channel level, flopropione inhibits TRPV3 channel open probability without alteration of its unitary conductance. In an in vivo mouse model of skin inflammation induced by the skin sensitizer DNFB, flopropione also alleviates dorsal skin lesions and ear skin swelling. Further molecular docking combined with site-directed mutagenesis reveals that two residues E501 and I505 in the channel S2-helix are critical for flopropione-mediated inhibition of TRPV3. Taken together, our findings demonstrate that the spasmolytic drug flopropione as a selective inhibitor of TRPV3 channel not only provides a valuable tool molecule for understanding of TRPV3 channel pharmacology but also holds repurposing potential for therapy of skin disorders, such as dermatitis and pruritus.
Collapse
Affiliation(s)
- Yimei Xu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Yaxuan Qu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Congxiao Zhang
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China.
| | - Canyang Niu
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaowen Tang
- Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China; Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy, Qingdao University Medical College, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Go EJ, Lee JY, Kim YH, Park CK. Site-Specific Transient Receptor Potential Channel Mechanisms and Their Characteristics for Targeted Chronic Itch Treatment. Biomolecules 2024; 14:107. [PMID: 38254707 PMCID: PMC10813675 DOI: 10.3390/biom14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic itch is a debilitating condition with limited treatment options, severely affecting quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic potential of TRP channels in the context of itch. In this regard, we provided a comprehensive overview of the site-specific expression of TRP channels and their associated functions in response to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP channels have been developed and have demonstrated efficacy in various chronic itch conditions through experimental means, a more thorough understanding of the potential for adverse effects or interactions with other TRP channels or GPCRs is necessary to develop novel and selective therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the aim of suggesting specific therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea;
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea;
| |
Collapse
|
7
|
Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals (Basel) 2023; 16:1707. [PMID: 38139833 PMCID: PMC10748146 DOI: 10.3390/ph16121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Itch (pruritus) is a sensation in the skin that provokes the desire to scratch. The sensation of itch is mediated through a subclass of primary afferent sensory neurons, termed pruriceptors, which express molecular receptors that are activated by itch-evoking ligands. Also expressed in pruriceptors are several types of Transient Receptor Potential (TRP) channels. TRP channels are a diverse class of cation channels that are responsive to various somatosensory stimuli like touch, pain, itch, and temperature. In pruriceptors, TRP channels can be activated through intracellular signaling cascades initiated by pruritogen receptors and underly neuronal activation. In this review, we discuss the role of TRP channels TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPC3/4 in acute and chronic pruritus. Since these channels often mediate itch in association with pruritogen receptors, we also discuss Mas-related G-protein-coupled receptors (Mrgprs) and protease-activated receptors (PARs). Additionally, we cover the exciting therapeutic targets amongst the TRP family, as well as Mrgprs and PARs for the treatment of pruritus.
Collapse
Affiliation(s)
- Merab G. Tsagareli
- Laboratory of Pain and Analgesia, Ivane Beritashvili Center for Experimental Biomedicine, 0160 Tbilisi, Georgia;
| | - Taylor Follansbee
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| |
Collapse
|
8
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
11
|
Dang TH, Kim JY, Kim HJ, Kim BJ, Kim WK, Nam JH. Alpha-Mangostin: A Potent Inhibitor of TRPV3 and Pro-Inflammatory Cytokine Secretion in Keratinocytes. Int J Mol Sci 2023; 24:12930. [PMID: 37629111 PMCID: PMC10455244 DOI: 10.3390/ijms241612930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The TRPV3 calcium ion channel is vital for maintaining skin health and has been associated with various skin-related disorders. Since TRPV3 is involved in the development of skin inflammation, inhibiting TRPV3 could be a potential treatment strategy. Alpha-mangostin isolated from Garcinia mangostana L. extract exhibits diverse positive effects on skin health; however, the underlying mechanisms remain obscure. This study investigated the TRPV3-inhibitory properties of alpha-mangostin on TRPV3 hyperactive mutants associated with Olmsted syndrome and its impact on TRPV3-induced cytokine secretion and cell death. Our findings demonstrate that alpha-mangostin effectively inhibits TRPV3, with an IC50 of 0.077 ± 0.013 μM, showing inhibitory effects on both wild-type and mutant TRPV3. TRPV3 inhibition with alpha-mangostin decreased calcium influx and cytokine release, protecting cells from TRPV3-induced death. These results indicate that alpha-mangostin reduced inflammation in TRPV3-activated skin keratinocytes, suggesting that alpha-mangostin could be potentially used for improving inflammatory skin conditions such as dermatitis.
Collapse
Affiliation(s)
- Thi Huyen Dang
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Ji Yeong Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Woo Kyung Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
12
|
Lei J, Yoshimoto RU, Matsui T, Amagai M, Kido MA, Tominaga M. Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice. Nat Commun 2023; 14:4104. [PMID: 37474531 PMCID: PMC10359276 DOI: 10.1038/s41467-023-39712-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
TRPV3, a non-selective cation transient receptor potential (TRP) ion channel, is activated by warm temperatures. It is predominantly expressed in skin keratinocytes, and participates in various somatic processes. Previous studies have reported that thermosensation in mice lacking TRPV3 was impaired. Here, we identified a transmembrane protein, TMEM79, that acts as a negative regulator of TRPV3. Heterologous expression of TMEM79 was capable of suppressing TRPV3-mediated currents in HEK293T cells. In addition, TMEM79 modulated TRPV3 translocalization and promoted its degradation in the lysosomes. TRPV3-mediated currents and Ca2+ influx were potentiated in primary mouse keratinocytes lacking TMEM79. Furthermore, TMEM79-deficient male mice preferred a higher temperature than did wild-type mice due to elevated TRPV3 function. Our study revealed unique interactions between TRPV3 and TMEM79, both in vitro and in vivo. These findings support roles for TMEM79 and TRPV3 in thermosensation.
Collapse
Affiliation(s)
- Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 849-8501, Saga, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, 230-0045, Yokohama, Japan
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, 192-0982, Tokyo, Japan
- Department of Dermatology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, 230-0045, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 849-8501, Saga, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan.
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585, Okazaki, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan.
| |
Collapse
|
13
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
14
|
Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci 2023; 24:ijms24108601. [PMID: 37239947 DOI: 10.3390/ijms24108601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lyubov L Utkina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Yuliya V Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
15
|
Yang X, Na C, Wang Y. Angelica decursiva exerts antihypertensive activity by inhibiting L-type calcium channel. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116527. [PMID: 37088236 DOI: 10.1016/j.jep.2023.116527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica decursiva is a perennial herb that belongs to the Umbelliferae family. It is traditionally used to treat fever, upper respiratory tract infections, bleeding and hypertension. However, despite its extensive pharmacological potential, literature reports on its antihypertensive pharmacological properties are scarce. AIM OF THE STUDY In the study, crude extract from A. decursiva roots was examined for its antihypertensive activity and its molecular basis was explored. MATERIALS AND METHODS A. decursiva roots were extracted with ethanol, and isolated with silica gel normal-phase chromatography and reverse-phase high performance liquid chromatography. L-NAME-induced hypertensive mouse model was used to detect in vivo hypertensive activity. Thoracic aorta ring contraction activity and electrophysiology recordings were employed to evaluate in vitro antihypertensive activity and revealed an antihypertensive target, which was transiently expressed in HEK293T cells. RESULTS ADED exhibited significant antihypertensive effects in L-NAME-induced hypertension models and phenylephrine-induced vasoconstriction. Further screening revealed that demethylsuberosin is an essential component accounting for the antihypertension effects of A. decursiva. Voltage-gated calcium channel CaV1.2 is the likely target of A. decursiva for its antihypertension effects. CONCLUSION The study suggests that A. decursiva and demethylsuberosin may be effective antihypertensive agents in preclinical studies. It appears that A. decursiva and demethylsuberosin exert antihypertensive effects by inhibiting the CaV1.2 channel, which contributes to the vasodilatory effect. The present study provides experimental evidence that A. decursiva is an effective remedy for hypertension in folklore. Demethylsuberosin could be a lead molecule for antihypertension drug development.
Collapse
Affiliation(s)
- Xiaopei Yang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| | - Chen Na
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yan Wang
- Department of Pediatrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650000, China.
| |
Collapse
|
16
|
Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules 2023; 13:biom13030513. [PMID: 36979447 PMCID: PMC10046267 DOI: 10.3390/biom13030513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TRPV3 is a non-selective cation channel that is highly expressed in keratinocytes in the skin. Traditionally, keratinocytes-expressed TRPV3 is involved in multiple physiological and pathological functions of the skin, such as itching, heat pain, and hair development. Although the underlying mechanisms by which TRPV3 functions in vivo remain obscure, recent research studies suggest that several cytokines and EGFR signaling pathways may be involved. However, there have also been other studies with opposite results that question the role of TRPV3 in heat pain. In addition, an increasing number of studies have suggested a novel role of TRPV3 in promoting skin regeneration, indicating that TRPV3 may become a new potential target for regulating skin regeneration. This paper not only reviews the role of keratinocytes-expressed TRPV3 in the physiological and pathological processes of itching, heat pain, hair development, and skin regeneration, but also reviews the relationship between TRPV3 gene mutations and skin diseases such as atopic dermatitis (AD) and Olmsted syndrome (OS). This review will lay a foundation for further developing our understanding of the mechanisms by which TRPV3 is involved in itching, heat pain, and hair development, as well as the treatments for TRPV3-related skin diseases.
Collapse
|
17
|
Vander Does A, Ju T, Mohsin N, Chopra D, Yosipovitch G. How to get rid of itching. Pharmacol Ther 2023; 243:108355. [PMID: 36739914 DOI: 10.1016/j.pharmthera.2023.108355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Itch is an unpleasant sensation arising from a variety of dermatologic, neuropathic, systemic, and psychogenic etiologies. Various itch pathways are implicated according to the underlying etiology. A variety of pruritogens, or itch mediators, as well as receptors have been identified and provide potential therapeutic targets. Recent research has primarily focused on targeting inflammatory cytokines and Janus kinase signaling, protease-activated receptors, substance P and neurokinin, transient receptor potential-vanilloid ion channels, Mas-related G-protein-coupled receptors (MRGPRX2 and MRGPRX4), the endogenous opioid and cannabinoid balance, and phosphodiesterase 4. Periostin, a newly identified pruritogen, should be further explored with clinical trials. Drugs targeting neural sensitization including the gabergic system and P2X3 are other potential drugs for chronic itch. There is a need for more targeted therapies to improve clinical outcomes and reduce side effects.
Collapse
Affiliation(s)
- Ashley Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Teresa Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Noreen Mohsin
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Divya Chopra
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
20
|
Transient Receptor Potential Channels and Itch. Int J Mol Sci 2022; 24:ijms24010420. [PMID: 36613861 PMCID: PMC9820407 DOI: 10.3390/ijms24010420] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels are multifunctional sensory molecules that are abundant in the skin and are involved in the sensory pathways of itch, pain, and inflammation. In this review article, we explore the complex physiology of different TRP channels, their role in modulating itch sensation, and their contributions to the pathophysiology of acute and chronic itch conditions. We also cover small molecule and topical TRP channel agents that are emerging as potential anti-pruritic treatments; some of which have shown great promise, with a few treatments advancing into clinical trials-namely, TRPV1, TRPV3, TRPA1, and TRPM8 targets. Lastly, we touch on possible ethnic differences in TRP channel genetic polymorphisms and how this may affect treatment response to TRP channel targets. Further controlled studies on the safety and efficacy of these emerging treatments is needed before clinical use.
Collapse
|
21
|
Meng Z, Zhao R, Li X, Ma C, Xie C. Synthesis of acridones through the ring expansion of isatins with arynes oxidated by O2 in air. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
TRPV3 and Itch: The Role of TRPV3 in Chronic Pruritus according to Clinical and Experimental Evidence. Int J Mol Sci 2022; 23:ijms232314962. [PMID: 36499288 PMCID: PMC9737326 DOI: 10.3390/ijms232314962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Itching is a sensory phenomenon characterized by an unpleasant sensation that makes you want to scratch the skin, and chronic itching diminishes the quality of life. In recent studies, multiple transient receptor potential (TRP) channels present in keratinocytes or nerve endings have been shown to engage in the propagation of itch signals in chronic dermatological or pruritic conditions, such as atopic dermatitis (AD) and psoriasis (PS). TRPV3, a member of the TRP family, is highly expressed in the epidermal keratinocytes. Normal TRPV3 signaling is essential for maintaining epidermal barrier homeostasis. In recent decades, many studies have suggested that TRPV3 contributes to detecting pruritus signals. Gain-of-function mutations in TRPV3 in mice and humans are characterized by severe itching, hyperkeratosis, and elevated total IgE levels. These studies suggest that TRPV3 is an important channel for skin itching. Preclinical studies have provided evidence to support the development of TRPV3 antagonists for treating inflammatory skin conditions, itchiness, and pain. This review explores the role of TRPV3 in chronic pruritus, collating clinical and experimental evidence. We also discuss underlying cellular and molecular mechanisms and explore the potential of TRPV3 antagonists as therapeutic agents.
Collapse
|
23
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
24
|
Torres KV, Pantke S, Rudolf D, Eberhardt MM, Leffler A. The coumarin osthole is a non-electrophilic agonist of TRPA1. Neurosci Lett 2022; 789:136878. [PMID: 36115537 DOI: 10.1016/j.neulet.2022.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.
Collapse
Affiliation(s)
- Karen V Torres
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Pantke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Rudolf
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Mirjam M Eberhardt
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
25
|
Weng HJ, Pham QTT, Chang CW, Tsai TF. Druggable Targets and Compounds with Both Antinociceptive and Antipruritic Effects. Pharmaceuticals (Basel) 2022; 15:892. [PMID: 35890193 PMCID: PMC9318852 DOI: 10.3390/ph15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Pain and itch are both important manifestations of various disorders, such as herpes zoster, atopic dermatitis, and psoriasis. Growing evidence suggests that both sensations have shared mediators, overlapping neural circuitry, and similarities in sensitization processes. In fact, pain and itch coexist in some disorders. Determining pharmaceutical agents and targets for treating pain and itch concurrently is of scientific and clinical relevance. Here we review the neurobiology of pain and itch and discuss the pharmaceutical targets as well as novel compounds effective for the concurrent treatment of these sensations.
Collapse
Affiliation(s)
- Hao-Jui Weng
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Quoc Thao Trang Pham
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Chia-Wei Chang
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
26
|
Wang Y, Tan L, Jiao K, Xue C, Tang Q, Jiang S, Ren Y, Chen H, El-Aziz TMA, Abdelazeem KNM, Yu Y, Zhao F, Zhu MX, Cao Z. Scutellarein Attenuates Atopic Dermatitis by Selectively Inhibiting Transient Receptor Potential Vanilloid 3. Br J Pharmacol 2022; 179:4792-4808. [PMID: 35771623 DOI: 10.1111/bph.15913] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis (AD) is one of the most common chronic inflammatory cutaneous diseases with unmet clinical needs. As a common ingredient found in several medicinal herbs with efficacy on cutaneous inflammatory diseases, Scutellarein (Scu) has been shown to possess anti-inflammatory and anti-proliferative activities. We aimed to evaluate the therapeutic efficacy of Scu against AD and its underlying molecular mechanism. EXPERIMENTAL APPROACH Efficacy of Scu on AD was evaluated in 2,4-dinitrofluorobenzene (DNFB) and carvacrol-induced dermatitis mouse models. Cytokine mRNA and serum IgE levels were examined using qPCR and ELISA, respectively. Voltage clamp recordings were used to measure currents mediated by transient receptor potential (TRP) channels. In silico docking, site-direct mutagenesis, and covalent modification were used to explore the binding pocket of Scu on TRPV3. KEY RESULTS Subcutaneous administration of Scu efficaciously suppresses DNFB and carvacrol-induced pruritus, epidermal hyperplasia and skin inflammation in wild type mice but has no additional benefit in Trpv3 knockout mice in the carvacrol model. Scu is a potent and selective TRPV3 channel allosteric negative modulator with an apparent affinity of 1.18 μM. Molecular docking coupled with site-direct mutagenesis and covalent modification of incorporated cysteine residues demonstrate that Scu targets the cavity formed between the pore helix and transmembrane helix S6. Moreover, Scu attenuates endogenous TRPV3 activity in human keratinocytes and inhibits carvacrol-induced proliferative and proinflammatory responses. CONCLUSIONS AND IMPLICATIONS Collectively, these data demonstrate that Scu ameliorates carvacrol-induced skin inflammation by directly inhibiting TRPV3, and TRPV3 represents a viable therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Yujing Wang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liaoxi Tan
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejun Jiao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shan Jiang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | | | - Khalid N M Abdelazeem
- Radiation Biology Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ye Yu
- Department of Basic Medicine, School of Basic Medicine and Clinic Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Kamau PM, Li H, Yao Z, Han Y, Luo A, Zhang H, Boonyarat C, Yenjai C, Mwangi J, Zeng L, Yang S, Lai R, Luo L. Potent Ca V3.2 channel inhibitors exert analgesic effects in acute and chronic pain models. Biomed Pharmacother 2022; 153:113310. [PMID: 35728351 DOI: 10.1016/j.biopha.2022.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022] Open
Abstract
Pain is the most common presenting physical symptom and a primary reason for seeking medical care, which chronically affects people's mental health and social life. CaV3.2 channel plays an essential role in the peripheral processing maintenance of pain states. This study was designed to identify novel drug candidates targeting the CaV3.2 channel. Whole-cell patch-clamp, cellular thermal shift assay, FlexStation, in vivo and in vitro CaV3.2 knock-down, site-directed mutagenesis, and double-mutant cycle analysis were employed to explore the pain-related receptors and ligand-receptor direct interaction. We found that toddaculin efficiently inhibits the CaV3.2 channel and significantly reduced the excitability of dorsal root ganglion neurons and pain behaviors. The Carbonyl group of coumarins directly interacts with the pore domain of CaV3.2 via van der Waals (VDW) force. Docking with binding pockets further led us to identify glycycoumarin, which exhibited more potent inhibition on the CaV3.2 channel and better analgesic activity than the parent compound. Toddaculin and its analog showed beneficial therapeutic effects in pain models. Toddaculin binding pocket on CaV3.2 might be a promising docking site for the design of drugs.
Collapse
Affiliation(s)
- Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chantana Boonyarat
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Chavi Yenjai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, Yunnan, China.
| |
Collapse
|
28
|
Gao WY, Boonyarat C, Takomthong P, Plekratoke K, Hayakawa Y, Yenjai C, Kaewamatawong R, Chaiwiwatrakul S, Waiwut P. Acridone Derivatives from Atalantia monophyla Inhibited Cancer Cell Proliferation through ERK Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123865. [PMID: 35744993 PMCID: PMC9228231 DOI: 10.3390/molecules27123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate the effect of acridone alkaloids on cancer cell lines and elucidate the underlying molecular mechanisms. The ten acridone alkaloids from Atalantia monophyla were screened for cytotoxicity against LNCaP cell lines by a WST-8 assay. Then, the most potential acridone, buxifoliadine E, was evaluated on four types of cancer cells, namely prostate cancer (LNCaP), neuroblastoma (SH SY5Y), hepatoblastoma (HepG2), and colorectal cancer (HT29). The results showed that buxifoliadine E was able to significantly inhibit the proliferation of all four types of cancer cells, having the most potent cytotoxicity against the HepG2 cell line. Western blotting analysis was performed to assess the expression of signaling proteins in the cancer cells. In HepG2 cells, buxifoliadine E induced changes in the levels of Bid as well as cleaved caspase-3 and Bax through MAPKs, including Erk and p38. Moreover, the binding interaction between buxifoliadine E and Erk was investigated by using the Autodock 4.2.6 and Discovery Studio programs. The result showed that buxifoliadine E bound at the ATP-binding site, located at the interface between the N- and C-terminal lobes of Erk2. The results of this study indicate that buxifoliadine E suppressed cancer cell proliferation by inhibiting the Erk pathway.
Collapse
Affiliation(s)
- Wen-Yong Gao
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (R.K.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.B.); (P.T.); (K.P.)
| | - Pitchayakarn Takomthong
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.B.); (P.T.); (K.P.)
| | - Kusawadee Plekratoke
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.B.); (P.T.); (K.P.)
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Rawiwun Kaewamatawong
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (R.K.)
| | - Suchada Chaiwiwatrakul
- Department of English, Faculty of Humanities and Social Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand;
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; (W.-Y.G.); (R.K.)
- Correspondence: ; Tel.: +66-80-8955511; Fax: +66-45-353609
| |
Collapse
|
29
|
Qi H, Shi Y, Wu H, Niu C, Sun X, Wang K. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus. Acta Pharm Sin B 2022; 12:723-734. [PMID: 35256942 PMCID: PMC8897028 DOI: 10.1016/j.apsb.2021.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic gain-of-function mutations of warm temperature-sensitive transient receptor potential vanilloid 3 (TRPV3) channel cause Olmsted syndrome characterized by severe itching and keratoderma, indicating that pharmacological inhibition of TRPV3 may hold promise for therapy of chronic pruritus and skin diseases. However, currently available TRPV3 tool inhibitors are either nonselective or less potent, thus impeding the validation of TRPV3 as therapeutic target. Using whole-cell patch-clamp and single-channel recordings, we report the identification of two natural dicaffeoylquinic acid isomers isochlorogenic acid A (IAA) and isochlorogenic acid B (IAB) that selectively inhibit TRPV3 currents with IC50 values of 2.7 ± 1.3 and 0.9 ± 0.3 μmol/L, respectively, and reduce the channel open probability to 3.7 ± 1.2% and 3.2 ± 1.1% from 26.9 ± 5.5%, respectively. In vivo evaluation confirms that both IAA and IAB significantly reverse the ear swelling of dermatitis and chronic pruritus. Furthermore, the isomer IAB is able to rescue the keratinocyte death induced by TRPV3 agonist carvacrol. Molecular docking combined with site-directed mutations reveals two residues T636 and F666 critical for the binding of the two isomers. Taken together, our identification of isochlorogenic acids A and B that act as specific TRPV3 channel inhibitors and gating modifiers not only provides an essential pharmacological tool for further investigation of the channel pharmacology and pathology, but also holds developmental potential for treatment of dermatitis and chronic pruritus.
Collapse
Key Words
- 2-APB, 2-aminoethoxydiphenyl borate
- AITC, allyl isothiocyanate
- Chronic pruritus
- DMEM, Dulbecco's modified Eagle's medium
- Dermatitis
- Dicaffeoylquinic acid
- Ear swelling
- Gate modifier
- HEK293, human embryonic kidney 293
- HaCaT, human immortalized nontumorigenic keratinocyte
- IAA, isochlorogenic acid A
- IAB, isochlorogenic acid B
- OS, Olmsted syndrome
- Olmsted syndrome
- RR, ruthenium red
- TRP, transient receptor potential
- TRPV3
Collapse
|
30
|
Fatima M, Slade H, Horwitz L, Shi A, Liu J, McKinstry D, Villani T, Xu H, Duan B. Abnormal Somatosensory Behaviors Associated With a Gain-of-Function Mutation in TRPV3 Channels. Front Mol Neurosci 2022; 14:790435. [PMID: 35058747 PMCID: PMC8764439 DOI: 10.3389/fnmol.2021.790435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Thermosensitive transient receptor potential V3 (TRPV3) is a polymodal receptor implicated in nociceptive, thermoceptive, pruritoceptive, and inflammatory pathways. Reports focused on understanding the role of TRPV3 in thermoception or nociception are not conclusive. Previous studies also show that aberrant hyperactivity of TRPV3 channels results in spontaneous itch and dermatitis-like symptoms, but the resultant behavior is highly dependent on the background of the animal and the skin microbiome. To determine the function of hyperactive TRPV3 channels in somatosensory sensations, we tested different somatosensory behaviors using a genetic mouse model that carries a gain-of-function point mutation G573S in the Trpv3 gene (Trpv3G573S). Here we report that Trpv3G573S mutants show reduced perception of cold, acetone-induced cooling, punctate, and sharp mechanical pain. By contrast, locomotion, noxious heat, touch, and mechanical itch are unaffected in Trpv3G573S mice. We fail to observe any spontaneous itch responses and/or dermatitis in Trpv3G573S mutants under specific pathogen (Staphylococcus aureus)-free conditions. However, we find that the scratching events in response to various pruritogens are dramatically decreased in Trpv3G573S mice in comparison to wild-type littermates. Interestingly, we observe sensory hypoinnervation of the epidermis in Trpv3G573S mutants, which might contribute to the deficits in acute mechanical pain, cool, cold, and itch sensations.
Collapse
|
31
|
Yang X, Dai Y, Ji Z, Zhang X, Fu W, Han C, Xu Y. Allium macrostemon Bunge. exerts analgesic activity by inhibiting NaV1.7 channel. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114495. [PMID: 34364968 DOI: 10.1016/j.jep.2021.114495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium macrostemon Bunge. is an edible Chinese herb traditionally used for the treatment of thoracic pain, stenocardia, heart asthma and diarrhea. Although its biological potential has been extensively proven such as antioxidant activity, antiplatelet aggregation, vasodilation and antidepressant-like activity, there are no reports in the literature regarding its pharmacological analgesic activity. AIM OF THE STUDY The study was carried out to examine the anti-nociceptive activity of the crude extract of A. macrostemon bulbs and interpret its likely molecular target. MATERIALS AND METHODS The bulbs of A. macrostemon were gathered, dried-up, and extracted with water (AMWD). AMWD was subjected to activity testing, using chemical-induced (acetic acid and formalin test) and heat-induced (hot plate) pain models. To evaluate the likely mechanistic strategy involved in the analgesic effect of AMWD, whole-cell patch clamp recordings were conducted in acutely dissociated dorsal root ganglion (DRG) neurons and human embryonic kidney 293T (HEK293T) cells expressing pain-related receptors. Electrophysiological methods were employed to detect the action potentials of DRG neurons and potential targets of A. macrostemon. RESULTS AMWD showed significant palliative effect in all heat and chemical induced pain assays. Moreover, AMWD significantly reduces the excitability of dorsal root ganglion neurons by reducing the firing frequency of action potentials. Further analysis revealed that voltage-gated sodium channel Nav1.7 is the potential target of A. macrostemon for its analgesic activity. CONCLUSION This study has brought new scientific evidence of preclinical efficacy of A. macrostemon as an anti-nociceptive agent. Apparently, these effects are involved with the inhibition of the voltage-sensitive Nav1.7 channel contributing to the reduction of peripheral neuronal excitability. Our present study justifies the folkloric usage of A. macrostemon as a remedy for several pain states. Furthermore, A. macrostemon is a good resource for the development of analgesic drugs targeting Nav1.7 channel.
Collapse
Affiliation(s)
- Xiaopei Yang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| | - Yuwen Dai
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Zhilin Ji
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Xiangyi Zhang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Wei Fu
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Chaochi Han
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Yunsheng Xu
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| |
Collapse
|
32
|
Multi-Target Actions of Acridones from Atalantia monophylla towards Alzheimer's Pathogenesis and Their Pharmacokinetic Properties. Pharmaceuticals (Basel) 2021; 14:ph14090888. [PMID: 34577588 PMCID: PMC8470973 DOI: 10.3390/ph14090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Ten acridones isolated from Atalantia monophylla were evaluated for effects on Alzheimer’s disease pathogenesis including antioxidant effects, acetylcholinesterase (AChE) inhibition, prevention of beta-amyloid (Aβ) aggregation and neuroprotection. To understand the mechanism, the type of AChE inhibition was investigated in vitro and binding interactions between acridones and AChE or Aβ were explored in silico. Drug-likeness and ADMET parameters were predicted in silico using SwissADME and pKCSM programs, respectively. All acridones showed favorable drug-likeness and possessed multifunctional activities targeting AChE function, Aβ aggregation and oxidation. All acridones inhibited AChE in a mixed-type manner and bound AChE at both catalytic anionic and peripheral anionic sites. In silico analysis showed that acridones interfered with Aβ aggregation by interacting at the central hydrophobic core, C-terminal hydrophobic region, and the key residues 41 and 42. Citrusinine II showed potent multifunctional action with the best ADMET profile and could alleviate neuronal cell damage induced by hydrogen peroxide and Aβ1-42 toxicity.
Collapse
|