1
|
Madbouly NA, Kamal SM, El-Amir AM. Chronic artificial light exposure in daytime and reversed light: Dark cycle inhibit anti-apoptotic cytokines and defect Bcl-2 in peripheral lymphoid tissues during acute systemic inflammatory response to lipopolysaccharide. Int Immunopharmacol 2025; 145:113768. [PMID: 39672023 DOI: 10.1016/j.intimp.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
AIMS The disturbed light: dark (LD) cycle has been associated with critical complications, including obesity, diabetes and cancer. In the present study, we investigated the chronic effects of artificial light at daytime (AL) and light at night (RAL) after intraperitoneal (i.p.) injection of saline and 0.5 mg/kg lipopolysaccharide (LPS) in male Wistar rats. METHODS Liver and kidney parameters, fasting blood glucose (FBG), melatonin level, immunohistochemical examinations of B-cell lymphoma-2 (Bcl-2) in spleen and mesenteric lymph and serum antiapoptotic cytokines [interleukin (IL-) 2, 7 and 1]. KEY FINDINGS After 16 weeks of a daily disturbed LD cycle, RAL increased body weight, upgraded FBG and altered liver and kidney functions with surprisingly increased daytime plasma melatonin. AL + LPS and RAL + LPS rats suffered significantly higher oxidative-nitrosative stress compared to NL + LPS. Oxidative-nitrosative stress was associated with multi-organ inflammation in hepatic, renal, pancreatic, splenic and mesenteric lymph node tissues due to LPS-induced endotoxemia. Anti-apoptotic Bcl-2 activity in peripheral lymphoid organs (spleen and mesenteric lymph node) was lowered due to AL and RAL regimens. At the same pattern, lowering of antiapoptotic serum levels of IL-2, IL-7 and IL-15 indicate alteration of cell cycle and the shifted ability of cells to undergo apoptosis due to abnormal light pollution. SIGNIFICANCE Here, the increased lymphocyte apoptosis in lymphoid tissues due to disturbed LD cycle defects the host defense, dysregulates the inflammatory immune response and dysregulates the immune tolerance during acute systemic inflammation due to LPS.
Collapse
|
2
|
Yakushina Y. Light pollution regulations and where to find them. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123757. [PMID: 39700929 DOI: 10.1016/j.jenvman.2024.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The growing concerns about the adverse impacts of light pollution on astronomy, the environment, biodiversity, human health, and energy use have brought increased attention to the issue on legal and political agendas. Various international frameworks and governments at different levels have taken action to mitigate the impacts of nighttime lighting. This article provides an overview of regulatory instruments adopted to protect the nocturnal environment, explaining triggers for regulatory changes, using an interdisciplinary perspective. It proposes a classification of these instruments based on their nature: (1) law or policy, (2) binding or non-binding, and by their (3) levels and (4) areas of implementation, supported by specific examples. The article identifies current shortcomings and recommends future regulatory changes to address light pollution effectively. This interdisciplinary research aims to provide a better understanding of light pollution as an environmental concern and explains the development of light pollution regulations, helping to foster interdisciplinary communication and the adoption of more adequate regulatory measures to address light pollution. Additionally, this study intends to fill the gap in legal and policy research related to light pollution.
Collapse
|
3
|
Foppen K, Pinxten R, Meijdam M, Eens M. Artificial Light at Night Advances the Onset of Vocal Activity in Both Male and Female Great Tits During the Breeding Season, While Noise Pollution Has Less Impact and Only in Females. Animals (Basel) 2024; 14:3199. [PMID: 39595252 PMCID: PMC11590875 DOI: 10.3390/ani14223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial light at night (ALAN) and noise pollution are two important stressors associated with urbanisation that can have a profound impact on animal behaviour and physiology, potentially disrupting biological rhythms. Although the influence of ALAN and noise pollution on daily activity patterns of songbirds has been clearly demonstrated, studies often focus on males, and the few that examined females have not included the potential influence of males on female activity patterns. Using free-living pairs of great tits (Parus major) as a model, we examined for the first time the effects of ALAN and noise pollution and their interaction on the onset of (vocal) activity in both members of a pair. We focused on the egg-laying phase, when both sexes are most vocally active. The onset of male dawn song, female emergence time from the nest box and the onset of female calling in the nest box were measured and used as a proxy for the chronotype. The repeatabilities for all chronotype proxies were high, with higher repeatabilities for males. Consistent with previous studies, ALAN advanced the onset of male dawn song, while it did not elicit a strong response in female emergence time. Additionally, our results suggest an indirect effect of ALAN on the onset of female vocal activity via acoustic interaction with the male. Noise pollution advanced the emergence time in females, while an interaction between ALAN and noise pollution was found for the onset of female calling. In agreement with previous studies, several covariables were shown to have an influence on the activity onset. Taking several proxies for chronotype into account, this study has provided robust evidence of effects of ALAN on male and female cavity-nesting songbirds during the egg-laying period.
Collapse
Affiliation(s)
- Kim Foppen
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| | | | | | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| |
Collapse
|
4
|
Liu Y, Huang Y, Liu Y. Global risk assessment of river pollution stress based on nighttime light remote sensing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175146. [PMID: 39084386 DOI: 10.1016/j.scitotenv.2024.175146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Rivers play a crucial role in the development of human civilization, and river pollution is a significant environmental issue that accompanies with intensified human activity. However, the evaluation of river pollution at a global scale is difficult because of the limitations of long-term pollution-related datasets. As human activities are the main factor causing river pollution, nighttime light (NTL) remote sensing data can be used as an alternative indicator of the risk of river pollution stress(RPS), which is closely related to human activities and refers to the amount of pollutants within the confluence range of river reaches. In this study, we propose a river pollution pressure index (PI) to indicate risk of RPS by considering the accumulation effect of water flow. Then we calculated PI of over 0.67 million reaches global with annual total flow >100 million m3/s from 2000 to 2022, which was validated using water quality data of >2000 river sections in China. The results show that, from 2000 to 2022, the spatial variations of the risk of RPS are uneven, with a migration trend from west to east. The risk of RPS continues to increase globally, especially rapidly after 2010. Central Asia, Southeast Asia, East Asia, and eastern China are the regions with the fastest growth rates. In most developed countries, developing countries, and underdeveloped countries, the risk of RPS is high and increasing slowly, moderate and increasing rapidly, and low and increasing slowly, respectively. However, in some special cases, such as Japan, the risk of RPS continues to decrease. These spatiotemporal variations of the risk of RPS correlate with global events, such as quantitative easing of global economy after 2008, China's "Belt and Road Initiative", and COVID-19. This study demonstrates that NTL data can be applied to evaluate the global risk of RPS.
Collapse
Affiliation(s)
- Yesen Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China
| | - Yaohuan Huang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China
| |
Collapse
|
5
|
Fabusova M, Gaston KJ, Troscianko J. Pulsed artificial light at night alters moth flight behaviour. Biol Lett 2024; 20:20240403. [PMID: 39532146 PMCID: PMC11557245 DOI: 10.1098/rsbl.2024.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Vehicle headlights create pulsed artificial light at night (pALAN) that is unpredictable, intense and extends into previously dark areas. Nocturnal insects often have remarkable low-light vision, but their slow pupillary light responses may leave them vulnerable to pALAN, which has important ecological consequences. To test this, we exposed nocturnal moths-important pollinators and prey-to four pALAN treatments. These comprised 'cool' and 'warm' lights, either emitted from phosphor-coated light-emitting diodes (LEDs) or RGB (red-green-blue) LEDs, matched in colour (CCT) and intensity to human vision. We assessed the initial behavioural response, likely crucial to the survival of an organism, of 428 wild-caught moths comprising 64 species. We found that exposure to a cool phosphor-coated LED light pulse increased instances of erratic flight and flight-to-light that are likely detrimental as they increase the risks of impact with a vehicle, predation or excess energy expenditure. Our findings suggest that pALAN can cause a wide range of behavioural responses in nocturnal moths, but that the most harmful effects could be minimized by reversing the current shift towards high CCT (cool) phosphor-coated LED car headlights. Lower CCT or RGB alternatives are likely to provide benefits for road safety while reducing ecological harm.
Collapse
Affiliation(s)
- Madeleine Fabusova
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, PenrynTR10 9FE, UK
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
6
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Zúñiga-Cueto N, Miranda-Benabarre C, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. The impacts of artificial light at night (ALAN) spectral composition on key behavioral traits of a sandy beach isopod. MARINE POLLUTION BULLETIN 2024; 208:116924. [PMID: 39278176 DOI: 10.1016/j.marpolbul.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Artificial light at night (ALAN) is a widespread human-induced disturbance, whose effects have been documented in many ecosystems. However, limited attention has been given to the source of the lights behind ALAN, so this study examined three of them: High-Pressure Sodium (HPS) lamps and warm and cool white Light-Emitting Diodes (LEDs). Laboratory experiments compared the effects of each type of light to natural day/night conditions, upon the activity, feeding behavior and growth of the isopod Tylos spinulosus. Tanks equipped with actographs monitored locomotor activity, while separate tanks were utilized to assess food consumption and growth under natural and ALAN conditions. Our results show that all ALAN sources disrupt and reduce isopods' activity and feeding behavior, with cool and warm LEDs being the most severe and mildest, respectively. Instead, ALAN had only minor effects on isopod growth. Our findings suggest that warm LEDs may be preferable for ALAN mitigation purposes.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicol Zúñiga-Cueto
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda-Benabarre
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
7
|
Shi D, Dang J, Chen H, Yang D, Yu Z, Guo L, Dong Y, Li J, Li X, Li X, Li X, Song Y. Assessment of indoor light-at-night exposure in children and adolescents during schooldays and weekends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124689. [PMID: 39116920 DOI: 10.1016/j.envpol.2024.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Light-At-Night (LAN) is increasingly recognized and may has adverse health effects on children and adolescents, yet few studies have reported objective indoor LAN exposure levels for children and adolescents. In this study, we measured the indoor LAN exposure levels and duration among 897 children and adolescents aged 6-14 in Beijing, China, using portable photometers during both school days and weekends. Results indicate that the median indoor LAN exposure from 9:00 p.m. to 7:00 a.m. was 5.1 lx, with 31.8% of the subjects experiencing an average exposure above 10 lx. Additionally, from the perspective of cumulative high exposure duration, children and adolescents were exposed to more than 10 lx for approximately 64 min from 9:00 p.m. to 7:00 a.m. During the entire nighttime (from self-reported bedtime to wake-up time), the median exposure was 2.1 lx, with 16.6% averaging exposures above 10 lx. Exposure levels were significantly higher on weekends than on schooldays. Both girls and upper-grade students had higher levels of exposure and longer durations of high exposure. Girls in grade 7 (OR:2.56, 95%CI: 1.68-3.88) experienced the highest LAN exposure in our subjects compared to boys in grade 1-4. Our findings underscore the importance of promoting healthy light exposure behaviors among children and adolescents and reducing their light exposure environments to mitigate the potential health impacts of LAN.
Collapse
Affiliation(s)
- Di Shi
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jiajia Dang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Haihua Chen
- Dongcheng Primary and Secondary School Health Care Center, Beijing, China.
| | - Dongmei Yang
- Tongzhou District Center for Disease Control and Prevention, Beijing, China.
| | - Zhaocang Yu
- Beijing Tongzhou District Primary and Secondary School Health Care Institute, Beijing, China.
| | - Lipo Guo
- Changping Health Education Center for Primary and Secondary Schools, Beijing, China.
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Xiaochuan Li
- Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Xue Li
- Institute of Earthquake Forecasting of the China Earthquake Administration, Wuhan, China.
| | - Xi Li
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China.
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
8
|
Salvador RB, Tomotani BM. Clocks at a snail pace: biological rhythms in terrestrial gastropods. PeerJ 2024; 12:e18318. [PMID: 39494278 PMCID: PMC11529600 DOI: 10.7717/peerj.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Biological rhythms are ubiquitous across the tree of life. Organisms must allocate their activities into moments of the day and of the season that will increase their probability of surviving and reproducing, which is done in the form of daily and annual rhythms. So far, the vast majority of studies on biological rhythms have focused on classical laboratory model species. Still, the use of non-model species is gaining traction, as part of an effort to achieve a more holistic understanding of clock/calendar mechanisms in the "real world" but this requires species that can be studied in both the lab and in nature. Terrestrial gastropods, i.e., land snails and slugs, have the potential to be exciting models for the study of biological rhythms in nature. Therefore, we provide a review of the research on biological rhythms in terrestrial gastropods, with a focus on ecology and evolution. We present the state of the art in the field while giving a historical perspective of the studies, exploring each of the main lineages of terrestrial gastropods. We also point out some interesting directions that future studies could take to fill some of the more urgent gaps in current knowledge. We hope that our contribution will renew interest in this area and spark novel projects.
Collapse
Affiliation(s)
- Rodrigo Brincalepe Salvador
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
- Finnish Museum of Natural History, University of Helsinki, University of Helsinki, Helsinki, Finland
| | - Barbara Mizumo Tomotani
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Caley A, Marzinelli EM, Byrne M, Mayer‐Pinto M. Antagonistic Effects of Light Pollution and Warming on Habitat-Forming Seaweeds. Ecol Evol 2024; 14:e70420. [PMID: 39421325 PMCID: PMC11483544 DOI: 10.1002/ece3.70420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Artificial Light at Night (ALAN) is an emerging global stressor that is likely to interact with other stressors such as warming, affecting habitat-forming species and ecological functions. Seaweeds are dominant habitat-forming species in temperate marine ecosystems, where they support primary productivity and diverse ecological communities. Warming is a major stressor affecting seaweed forests, but effects of ALAN on seaweeds are largely unknown. We manipulated ALAN (0 lx vs. 25 lx at night) and temperature (ambient vs. +1.54°C warming) to test their independent and interactive effects on the survival, growth (biomass, total-, blade- and stipe-length) and function (photosynthesis, primary productivity and respiration) on the juveniles of two habitat-forming seaweeds, the kelp Ecklonia radiata and the fucoid Sargassum sp. Warming significantly increased Ecklonia mortality; however, ALAN did not affect mortality. ALAN had positive effects on Ecklonia biomass, total and blade growth rates and gross primary productivity; however, warming largely counterbalanced these effects. We found no significant effects of warming or ALAN on Ecklonia photosynthetic yield, stipe length, net primary productivity or respiration rates. We found no effects of ALAN or warming on Sargassum for any of the measured variables. Synthesis. Our findings indicate that ALAN can have positive effects on seaweed growth and functioning, but such effects are likely species-specific and can be counterbalanced by warming, suggesting an antagonistic interaction between these global stressors. These findings can help us to predict and manage the effects of these stressors on seaweeds, which underpin coastal biodiversity.
Collapse
Affiliation(s)
- Amelia Caley
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Maria Byrne
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Mariana Mayer‐Pinto
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
11
|
Isaksson C, Ziegler AK, Powell D, Gudmundsson A, Andersson MN, Rissler J. Transcriptome analysis of avian livers reveals different molecular changes to three urban pollutants: Soot, artificial light at night and noise. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124461. [PMID: 38964643 DOI: 10.1016/j.envpol.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.
Collapse
Affiliation(s)
- C Isaksson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - A-K Ziegler
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - D Powell
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - A Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| | - M N Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
12
|
Cao M, Xu T, Song Y, Wei S, Wang H, Guo X, Yin D. Brominated Flame Retardant HBCD and Artificial Light at Night Synergically Caused Visual Disorder and Sleep Difficulty in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17247-17258. [PMID: 39291437 DOI: 10.1021/acs.est.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Sleep difficulty is a widespread health concern exacerbated by factors such as light and chemical pollution. Artificial light at night (ALAN) can disrupt natural sleep-wake cycles, whereas chemical pollutants can impair sleep-related processes. The prevalence of ALAN increases the health risk of coexposure, yet it has not gained sufficient attention. Meanwhile, visual inputs are important for sleep regulation, especially the non-image-forming circadian visual system centered around melanopsin. This study evaluated the light perception ability and sleep performance of zebrafish larvae exposed to flame retardant hexabromocyclododecanes (HBCDs) at environmentally relevant concentrations (2.5 and 25 μg/L) and to cotreatment of HBCD and ALAN. HBCD induced a longer sleep latency of 34.59 min under 25 μg/L (p < 0.01) versus control (26.04 min). The situation was intensified by coexposure with low-level ALAN (10 lx) to 48.04 min. Similar synergic effects were observed for upregulations of Xenopus-related melanopsin genes and downregulations of the melatonin synthesis gene aanat2, suggesting a melanopsin-aanat2-sleep retina-brain pathway. Image-forming opsins (opn1sw1 and opn1sw2) were also activated by HBCD to 1.29-1.53-fold (p < 0.05), together with elevated retina glutamate, but without synergic effects. Collectively, we found that HBCD and ALAN coexposure caused synergic effects on the non-image-forming visual system and caused sleep difficulty in zebrafish larvae.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
13
|
Zeng Y, Xiao X, Yang F, Li T, Huang Y, Shi X, Lai C. Progress towards understanding the effects of artificial light on the transmission of vector-borne diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116780. [PMID: 39126816 DOI: 10.1016/j.ecoenv.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Artificial light at night (ALAN) is a common form of light pollution worldwide, and the intensity, timing, duration, and wavelength of light exposure can affect biological rhythms, which can lead to metabolic, reproductive, and immune dysfunctions and consequently, host-pathogen interactions. Insect vector-borne diseases are a global problem that needs to be addressed, and ALAN plays an important role in disease transmission by affecting the habits and physiological functions of vector organisms. In this work, we describe the mechanisms by which ALAN affects host physiology and biochemistry, host-parasite interactions, and vector-borne viruses and propose preventive measures for related infectious diseases to minimize the effects of artificial light on vector-borne diseases.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Tong Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chongde Lai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, and School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory for Excavation and Utilization of Agricultural Microorganisms, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
14
|
Burke LM, Davies TW, Wilcockson D, Jenkins S, Ellison A. Artificial light and cloud cover interact to disrupt celestial migrations at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173790. [PMID: 38851339 DOI: 10.1016/j.scitotenv.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species. Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lx can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species.
Collapse
Affiliation(s)
- Leo M Burke
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK.
| | - Thomas W Davies
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, UK
| | - David Wilcockson
- Aberystwyth University, Department of Life Sciences, Edward Llywd Building, Aberystwyth SY23 3DA, UK
| | - Stuart Jenkins
- Bangor University, School of Ocean Sciences, Menai Bridge LL59 5AB, UK
| | - Amy Ellison
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| |
Collapse
|
15
|
Willmott NJ, Black JR, McNamara KB, Wong BBM, Jones TM. The effects of artificial light at night on spider brains. Biol Lett 2024; 20:20240202. [PMID: 39226923 PMCID: PMC11371435 DOI: 10.1098/rsbl.2024.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 09/05/2024] Open
Abstract
Artificial light at night (ALAN) is an increasingly pervasive pollutant that alters animal behaviour and physiology, with cascading impacts on development and survival. Recent evidence links exposure to ALAN with neural damage, potentially due to its action on melatonin synthesis, a powerful antioxidant. However, these data are scarce and taxonomically limited. Here, we used micro-CT to test the effects of short-term ALAN exposure on brain volumes in the Australian garden orb-weaving spider (Hortophora biapicata), a species commonly found in urban areas and, specifically, around street lights. We found that short-term ALAN exposure was linked to reductions in the volumes of brain structures in the primary eye visual pathway, potentially as a consequence of oxidative stress or plastic shifts in neural investment. Although the effects of ALAN were subtle, they provided new insights into potential mechanisms underpinning the behavioural and physiological impacts of ALAN in this important urban predator.
Collapse
Affiliation(s)
- Nikolas J. Willmott
- School of BioSciences, The University of Melbourne, Melbourne, Victoria3010, Australia
| | - Jay R. Black
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria3010, Australia
- Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES) Platform, The University of Melbourne, Melbourne, Victoria3010, Australia
| | - Kathryn B. McNamara
- School of BioSciences, The University of Melbourne, Melbourne, Victoria3010, Australia
| | - Bob B. M. Wong
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Therésa M. Jones
- School of BioSciences, The University of Melbourne, Melbourne, Victoria3010, Australia
| |
Collapse
|
16
|
Hermans C, Litovska I, de Pastors M, Visser ME, Spoelstra K. Artificial light at night drives diel activity patterns of synanthropic pipistrelle bats and their prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173699. [PMID: 38830420 DOI: 10.1016/j.scitotenv.2024.173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The use of artificial light at night (ALAN) has increased drastically worldwide over the last decades. ALAN can have major effects on nocturnal communities, including insects and bats. Insects are attracted to street lights and few bat species take advantage of this by foraging on the attracted insects. ALAN potentially affects the temporal patterns of insect abundance and thereby bat foraging behaviour. In a natural dark environment, these patterns are usually bimodal, with an activity peak in the early evening and the morning. Little is known about how ALAN affects insect presence throughout the night, and whether the light spectrum plays a role. This is important, as these temporal changes may be a key driver of disturbances in bat-insect interactions. Here, we studied how white and red light affect insects' and bats' nightly activity patterns. The activity of insects and bats (Pipistrellus spp.) was recorded throughout the night at seven experimentally illuminated sites in a forest-edge ecosystem. ALAN disrupted activity patterns, with both insects and bats being more active throughout the night. ALAN facilitated all-night foraging in bats especially near white light, but these effects were attenuated near red light. The ability to forage throughout the night may be a key advantage causing synanthropic bats to dominate in illuminated environments, but this could also prove detrimental in the long term. As red light reduced disturbing effects of ALAN on insects and bats diel activity pattern, it opens the possibility of using spectral composition as a mitigation measure.
Collapse
Affiliation(s)
- Claire Hermans
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| | - Iryna Litovska
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Wageningen University and Research, Wageningen, the Netherlands
| | - Mélyssa de Pastors
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
17
|
Barragan RC, Meltzoff AN. Opportunity to view the starry night sky is linked to human emotion and behavioral interest in astronomy. Sci Rep 2024; 14:19314. [PMID: 39164331 PMCID: PMC11336222 DOI: 10.1038/s41598-024-69920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Prior to the modern era, the stars in the night sky were readily visible across the globe, but light pollution has created disparities in the opportunity to see these astronomical objects with the naked eye. This alteration may measurably impact human behavior. We hypothesize that light pollution is related to the development of people's interest in astronomy, which often serves as a "gateway" to science more broadly. In a state-by-state analysis, we used location information to examine astronomy interest data for millions of US residents. Results show that, among populations with low light pollution, a feeling of "wonder about the universe" is prevalent (r = 0.50). We found that this human emotion mediates the association between low light pollution and behavioral interest in astronomy. Although the effects of light pollution on astronomy, biology, ecology, and health are well-known, the present work demonstrates that light pollution is also relevant to human scientific behavior, with broad implications for science education and society.
Collapse
Affiliation(s)
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
19
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. Splitting light pollution: Wavelength effects on the activity of two sandy beach species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124317. [PMID: 38844041 DOI: 10.1016/j.envpol.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Artificial Light at Night (ALAN) threatens to disrupt most natural habitats and species, including those in coastal settings, where a growing number of studies have identified ALAN impacts. A careful examination of the light properties behind those impacts is important to better understand and manage the effects of this stressor. This study focused on ALAN monochromatic wavelengths and examined which types of light spectra altered the natural activity of two prominent coastal species from the Pacific southeast: the talitroid amphipod Orchestoidea tuberculata and the oniscoid isopod Tylos spinulosus. We compared the natural daylight/night activity of these organisms with the one they exhibit when exposed to five different ALAN wavelengths: lights in the violet, blue, green, amber, and red spectra. Our working hypothesis was that ALAN alters these species' activity at night, but the magnitude of such impact differs depending on light wavelengths. Measurements of activity over 24 h cycles for five consecutive days and in three separate experiments confirmed a natural circadian activity pattern in both species, with strong activity at night (∼90% of probability) and barely any activity during daylight. However, when exposed to ALAN, activity declined significantly in both species under all light wavelengths. Interestingly, amphipods exhibited moderate activity (∼40% of probability) when exposed to red lights at night, whereas isopods shifted some of their activity to daylight hours in two of the experiments when exposed to blue or amber lights, suggesting a possible alteration in this species circadian rhythm. Altogether, our results were consistent with our working hypothesis, and suggest that ALAN reduces night activity, and some wavelengths have differential effects on each species. Differences between amphipods and isopods are likely related to their distinct adaptations to natural low-light habitat conditions, and therefore distinct sensitivity to ALAN.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
20
|
Liu Q, Zhang HD, Xing D, Xie JW, Du YT, Wang M, Yin ZG, Jia N, Li CX, Zhao T, Jiang YT, Dong YD, Guo XX, Zhou XY, Zhao TY. The effect of artificial light at night (ALAN) on the characteristics of diapause of Aedes albopictus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171594. [PMID: 38461989 DOI: 10.1016/j.scitotenv.2024.171594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Recently, the effect of artificial light at night (ALAN) on the physiology and behavior of insects has gradually attracted the attention of researchers and has become a new research topic. Aedes albopictus is an important vector that poses a great public health risk. Further studies on the diapause of Ae. albopictus can provide a basis for new vector control, and it is also worth exploring whether the effect of ALAN on the diapause of Ae. albopictus will provide a reference for the prevention and control of infectious diseases mediated by Ae. albopictus. METHODS In this study, we experimentally studied the diapause characteristics of different geographical strains of Ae. albopictus under the interference of ALAN, explored the effect of ALAN on the diapause of Ae. albopictus and explored the molecular mechanism of ALAN on the diapause process through RNA-seq. RESULTS As seen from the diapause incidence, Ae. albopictus of the same geographic strain showed a lower diapause incidence when exposed to ALAN. The differentially expressed genes (DEGs) were mainly enriched in signaling and metabolism-related pathways in the parental females and diapause eggs of the ALAN group. CONCLUSIONS ALAN inhibits Ae. albopictus diapause. In the short photoperiod induced diapause of Ae. albopictus in temperate strain Beijing and subtropical strain Guangzhou, the disturbance of ALAN reduced the egg diapause rate and increased the egg hatching rate of Ae. albopictus, and the disturbance of ALAN also shortened the life cycle of Ae. albopictus eggs after hatching.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jing-Wen Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Tong Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Ge Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nan Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Ting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan-De Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Xia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xin-Yu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
21
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Artificial light at night alters the feeding activity and two molecular indicators in the plumose sea anemone Metridium senile (L.). MARINE POLLUTION BULLETIN 2024; 202:116352. [PMID: 38604080 DOI: 10.1016/j.marpolbul.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.
Collapse
Affiliation(s)
- K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
22
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury. Exp Neurol 2024; 375:114725. [PMID: 38365132 PMCID: PMC10981559 DOI: 10.1016/j.expneurol.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin.
| |
Collapse
|
23
|
He Y, Ganguly A, Lindgren S, Quispe L, Suvanto C, Zhao K, Candolin U. Carry-over effect of artificial light at night on daytime mating activity in an ecologically important detritivore, the amphipod Gammarus pulex. J Exp Biol 2024; 227:jeb246682. [PMID: 38516876 DOI: 10.1242/jeb.246682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Artificial light at night (ALAN) is a growing environmental problem influencing the fitness of individuals through effects on their physiology and behaviour. Research on animals has primarily focused on effects on behaviour during the night, whereas less is known about effects transferred to daytime. Here, we investigated in the lab the impact of ALAN on the mating behaviour of an ecologically important freshwater amphipod, Gammarus pulex, during both daytime and nighttime. We manipulated the presence of ALAN and the intensity of male-male competition for access to females, and found the impact of ALAN on mating activity to be stronger during daytime than during nighttime, independent of male-male competition. At night, ALAN only reduced the probability of precopula pair formation, while during the daytime, it both decreased general activity and increased the probability of pair separation after pair formation. Thus, ALAN reduced mating success in G. pulex not only directly, through effects on mating behaviour at night, but also indirectly through a carry-over effect on daytime activity and the ability to remain in precopula. These results emphasise the importance of considering delayed effects of ALAN on organisms, including daytime activities that can be more important fitness determinants than nighttime activities.
Collapse
Affiliation(s)
- Yuhan He
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Anirban Ganguly
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Susan Lindgren
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Laura Quispe
- Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Corinne Suvanto
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
24
|
Ayalon I, Avisar D, Jechow A, Levy O. Corals nitrogen and carbon isotopic signatures alters under Artificial Light at Night (ALAN). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170513. [PMID: 38360314 DOI: 10.1016/j.scitotenv.2024.170513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
This study examines the impact of Artificial Light at Night (ALAN) on two coral species, Acropora eurystoma and Pocillopora damicornis, in the Gulf of Aqaba/Eilat Red Sea, assessing their natural isotopic responses to highlight changes in energy and nutrient sourcing due to sensory light pollution. Our findings indicate significant disturbances in photosynthetic processes in Acropora eurystoma, as evidenced by shifts in δ13C values under ALAN, pointing to alterations in carbon distribution or utilization. In Pocillopora damicornis, similar trends were observed, with changes in δ13C and δ15N values suggesting a disruption in its nitrogen cycle and feeding strategies. The study also uncovers species-specific variations in heterotrophic feeding, a crucial factor in coral resilience under environmental stress, contributing to the corals' fixed carbon budget. Light measurements across the Gulf demonstrated a gradient of light pollution which possess the potential of affecting marine biology in the region. ALAN was found to disrupt natural diurnal tentacle behaviors in both coral species, crucial for prey capture and nutrient acquisition, thereby impacting their isotopic composition and health. Echoing previous research, our study underscores the need to consider each species' ecological and physiological contexts when assessing the impacts of anthropogenic changes. The findings offer important insights into the complexities of marine ecosystems under environmental stress and highlight the urgency of developing effective mitigation strategies.
Collapse
Affiliation(s)
- Inbal Ayalon
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 39040, Israel; Israel The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, P.O. Box 469, Eilat 88103, Israel; Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Dror Avisar
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 39040, Israel
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany; Department of Engineering, Brandenburg University of Applied Sciences, 14770 Brandenburg an der Havel, Germany
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
25
|
Ślusarczyk M, Bednarska A, Zebrowski ML, Tałanda J. Artificial light at night bans Chaoborus from vital epilimnetic waters. Sci Rep 2024; 14:7995. [PMID: 38580701 PMCID: PMC10997633 DOI: 10.1038/s41598-024-58406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Artificial light at night (ALAN) is known to affect organisms in terrestrial ecosystems and adjacent litoral habitats. In the present study, we tested the effect of ALAN on the spatial distribution of organisms in open waters, using the insect larvae of Chaoborus flavicans as an example. During the day C. flavicans typically hide from visually hunting fish in deep, dark, anoxic waters. On safer nights, they forage in rich subsurface waters. Nighttime field tests revealed that light from an HPS street lamp mounted on a boat anchored in open water attracted planktivorous fish, but deterred planktonic Chaoborus from rich but risky surface waters. Chaoborus did not descend to the safest, anoxic hypolimnion, but remained in hypoxic mid-depth metalimnion, which does not appear to be a perfect refuge. Neither light gradient nor food distribution fully explained their mid-depth residence under ALAN conditions. A further laboratory test revealed a limited tolerance of C. flavicans to anoxia. Half of the test larvae died after 38 h at 9 °C in anoxic conditions. The trade-off between predation risk and oxygen demand may explain why Chaoborus did not hide in deep anoxic waters, but remained in the riskier metalimnion with residual oxygen under ALAN conditions.
Collapse
Affiliation(s)
- Mirosław Ślusarczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki I Wigury 101, 02-089, Warsaw, Poland
- Hydrobiological Station, Faculty of Biology, University of Warsaw, Pilchy 5, 12-200, Pisz, Poland
| | - Anna Bednarska
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki I Wigury 101, 02-089, Warsaw, Poland
| | - Marcin Lukasz Zebrowski
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki I Wigury 101, 02-089, Warsaw, Poland
| | - Joanna Tałanda
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki I Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
26
|
Breen AJ, Deffner D. Risk-sensitive learning is a winning strategy for leading an urban invasion. eLife 2024; 12:RP89315. [PMID: 38562050 PMCID: PMC10987091 DOI: 10.7554/elife.89315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles-a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male-versus female-grackles finish 'relearning' faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles' choice behaviour is governed more strongly by the 'weight' of relative differences in recent foraging payoffs-i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning-where we simulate 'birds' based on empirical estimates of our grackles' reinforcement learning-replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.
Collapse
Affiliation(s)
- Alexis J Breen
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Dominik Deffner
- Science of Intelligence Excellence Cluster, Technical University BerlinBerlinGermany
- Center for Adaptive Rationality, Max Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
27
|
Cox DTC, Gaston KJ. Cathemerality: a key temporal niche. Biol Rev Camb Philos Soc 2024; 99:329-347. [PMID: 37839797 DOI: 10.1111/brv.13024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Given the marked variation in abiotic and biotic conditions between day and night, many species specialise their physical activity to being diurnal or nocturnal, and it was long thought that these strategies were commonly fairly fixed and invariant. The term 'cathemeral', was coined in 1987, when Tattersall noted activity in a Madagascan primate during the hours of both daylight and darkness. Initially thought to be rare, cathemerality is now known to be a quite widespread form of time partitioning amongst arthropods, fish, birds, and mammals. Herein we provide a synthesis of present understanding of cathemeral behaviour, arguing that it should routinely be included alongside diurnal and nocturnal strategies in schemes that distinguish and categorise species across taxa according to temporal niche. This synthesis is particularly timely because (i) the study of animal activity patterns is being revolutionised by new and improved technologies; (ii) it is becoming apparent that cathemerality covers a diverse range of obligate to facultative forms, each with their own common sets of functional traits, geographic ranges and evolutionary history; (iii) daytime and nighttime activity likely plays an important but currently neglected role in temporal niche partitioning and ecosystem functioning; and (iv) cathemerality may have an important role in the ability of species to adapt to human-mediated pressures.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
28
|
Battisti C. Changes in bird assemblages following an outdoor music festival: A BACI (before-after-control-impact) monitoring from central Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123384. [PMID: 38242304 DOI: 10.1016/j.envpol.2024.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
An assessment of the short-term effects of an outdoor music festival (Jova Beach Party event; July 2019; central Italy) on bird assemblages has been carried out, adopting a BACI (Before-After-Control-Impact) survey design, and using the point counts method both in the impact site (Impact, I; where the concert was held) and in comparable Control site (C). In the I site, data have been stratified both for urban (U) and agro-mosaic (M) habitats. When comparing before and after the music event, in IU site, the species richness and the Hill diversity index decreased, differently from CU where species richness a species abundance increased. Diversity profiles highlighted the impoverishment of bird assemblages after the event, but only in the Impact urban habitats. After the musical event, individual rarefaction curves for richness were lower in IU after the concert, while, differently in CU curves are higher. These data suggest an impact in bird assemblages limited to the urban site, due to the stress mainly induced by high intensity noise pollution. Musical events may disrupt the structure of synanthropic bird assemblages, inducing a dispersal of individuals towards the surrounding landscape. Starling (Sturnus vulgaris) appeared a particularly sensitive bird. However, further efforts are necessary to study the effects of these events at species level.
Collapse
Affiliation(s)
- Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree Protette - Parchi Regionali, Viale G. Ribotta 41, 00144, Roma, Italy.
| |
Collapse
|
29
|
Baghoolizadeh M, Jasim DJ, Sajadi SM, Renani RR, Renani MR, Hekmatifar M. Using of artificial neural networks and different evolutionary algorithms to predict the viscosity and thermal conductivity of silica-alumina-MWCN/water nanofluid. Heliyon 2024; 10:e26279. [PMID: 38379995 PMCID: PMC10877415 DOI: 10.1016/j.heliyon.2024.e26279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
This study predicts the parameters such as viscosity and thermal conductivity in silica-alumina-MWCN/water nanofluid using the artificial intelligence method and using design variables such as solid volume fraction and temperature. In this study, 6 optimization algorithms were used to predict and numerically model the μnf and TC of silica-alumina-MWCNT/water-NF. In this study, six measurement criteria were used to evaluate the estimates obtained from the coupling process of GMDH ANN with each of these 6 optimization algorithms. The results reveal that the influence of the φ is notably higher on both μnf and TC with values of 0.83 for μnf and 0.92 for TC, while Temp has a relatively weaker impact with -0.5 for μnf and 0.38 for TC. Among various algorithms, the coupling of the evolutionary algorithm NSGA II with ANN and GMDH performs best in predicting μnf and TC for the NF, with a maximum margin of deviation of -0.108 and an R2 evaluation criterion of 0.99996 for μnf and 1 for TC, indicating exceptional model accuracy. In the subsequent phase, a meta-heuristic Genetic Algorithm minimizes μnf and TC values. Four points (A, B, C, and D) along the Pareto front are selected, with point A representing the optimal state characterized by low values of φ and Temp (0.0002 and 50.8772, respectively) and corresponding target function values of 0.9988 for μnf and 0.6344 for TC. In contrast, point D represents the highest values of φ and Temp (0.49986 and 59.9775, respectively) and yields target function values of 2.382 for μnf and 0.8517 for TC. This analysis aids in identifying the optimal operating conditions for maximizing NF performance.
Collapse
Affiliation(s)
| | - Dheyaa J. Jasim
- Department of Petroleum Engineering, Al-Amarah University College, Maysan, Iraq
| | | | | | | | - Maboud Hekmatifar
- Department of mechanical engineering, Khomeinishahr branch, Islamic Azad University, Khomeinishahr, Iran
| |
Collapse
|
30
|
Wang Y, Ma B, Shen S, Zhang Y, Ye C, Jiang H, Li S. Diel variability of carbon dioxide concentrations and emissions in a largest urban lake, Central China: Insights from continuous measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168987. [PMID: 38040357 DOI: 10.1016/j.scitotenv.2023.168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Accurately quantifying the carbon dioxide (CO2) emissions from lakes, especially in urban areas, remains challenging due to constrained temporal resolution in field monitoring. Current lake CO2 flux estimates primarily rely on daylight measurements, yet nighttime emissions is normally overlooked. In this study, a non-dispersive infrared CO2 sensor was applied to measure dissolved CO2 concentrations over a 24-h period in a largest urban lake (Tangxun Lake) in Wuhan City, Central China, yielding extensive data on diel variability of CO2 concentrations and emissions. We showed the practicality and efficiency of the sensor for real-time continuous measurements in lakes. Our findings revealed distinct diurnal variations in CO2 concentrations (Day: 38.58 ± 23.8 μmol L-1; Night: 42.01 ± 20.2 μmol L-1) and fluxes (Day: 7.68 ± 10.34 mmol m-2 d-1; Night: 9.68 ± 9.19 mmol m-2 d-1) in the Tangxun Lake. The balance of photosynthesis and respiration is of utmost importance in modulating diurnal CO2 dynamics and can be influenced by nutrient loadings and temperature. A diel variability correction factor of 1.14 was proposed, suggesting that daytime-only measurements could underestimate CO2 emissions in urban lakes. Our data suggested that samplings between 11:00 and 12:00 could better represent the average diel CO2 fluxes. This study offered valuable insights on the diel variability of CO2 fluxes, emphasizing the importance of in situ continuous measurements to accurately quantify CO2 emissions, facilitating selections of sampling strategies and formulation of management strategies for urban lakes.
Collapse
Affiliation(s)
- Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Bingjie Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuai Shen
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chen Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
31
|
Juvigny-Khenafou NPD, Burgazzi G, Steiner N, Harvey E, Terui A, Piggott J, Manfrin A, Feckler A, Leese F, Schäfer RB. Effects of flow reduction and artificial light at night (ALAN) on litter decomposition and invertebrate communities in streams: A flume experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168836. [PMID: 38016568 DOI: 10.1016/j.scitotenv.2023.168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.
Collapse
Affiliation(s)
- Noël P D Juvigny-Khenafou
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany.
| | - Gemma Burgazzi
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany
| | - Nikita Steiner
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany
| | - Eric Harvey
- Centre de Recherche sur les Interactions Bassins-Versants, Écosystèmes Aquatiques (RIVE) Université du Québec à Trois-Rivières, Canada
| | - Akira Terui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, USA
| | - Jeremy Piggott
- Trinity Centre for the Environment & Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Alessandro Manfrin
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany
| | - Alexander Feckler
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- iES, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
32
|
Nadal J, Sáez D, Volponi S, Serra L, Spina F, Margalida A. The effects of cities on quail (Coturnix coturnix) migration: a disturbing story of population connectivity, health, and ecography. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:266. [PMID: 38353774 PMCID: PMC10867070 DOI: 10.1007/s10661-023-12277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
The increasing impact of human activities on ecosystems is provoking a profound and dangerous effect, particularly in wildlife. Examining the historical migration patterns of quail (Coturnix coturnix) offers a compelling case study to demonstrate the repercussions of human actions on biodiversity. Urbanization trends, where people gravitate toward mega-urban areas, amplify this effect. The proliferation of artificial urban ecosystems extends its influence across every biome, as human reliance on infrastructure and food sources alters ecological dynamics extensively. We examine European quail migrations pre- and post-World War II and in the present day. Our study concentrates on the Italian peninsula, investigating the historical and contemporary recovery of ringed quail populations. To comprehend changes in quail migration, we utilize trajectory analysis, open statistical data, and linear generalized models. We found that while human population and economic growth have shown a linear increase, quail recovery rates exhibit a U-shaped trajectory, and cereal and legume production displays an inverse U-shaped pattern. Generalized linear models have unveiled the significant influence of several key factors-time periods, cereal and legume production, and human demographics-on quail recovery rates. These factors closely correlate with the levels of urbanization observed across these timeframes. These insights underscore the profound impact of expanding human populations and the rise of mega-urbanization on ecosystem dynamics and services. As our planet becomes more urbanized, the pressure on ecosystems intensifies, highlighting the urgent need for concerted efforts directed toward conserving and revitalizing ecosystem integrity. Simultaneously, manage the needs and demands of burgeoning mega-urban areas. Achieving this balance is pivotal to ensuring sustainable coexistence between urban improvement and the preservation of our natural environment.
Collapse
Affiliation(s)
- Jesús Nadal
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - David Sáez
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Stefano Volponi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Fernando Spina
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain
- Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| |
Collapse
|
33
|
Lei T, Hua H, Du H, Xia J, Xu D, Liu W, Wang Y, Yang T. Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance. Arch Toxicol 2024; 98:395-408. [PMID: 38103071 DOI: 10.1007/s00204-023-03647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Hui Hua
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Dandan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
34
|
Mittmannsgruber M, Kavassilas Z, Spangl B, Gruber E, Jagg E, Zaller JG. Artificial light at night reduces earthworm activity but increases growth of invasive ragweed. BMC Ecol Evol 2024; 24:10. [PMID: 38243160 PMCID: PMC10797752 DOI: 10.1186/s12862-024-02200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Artificial light at night, also referred to as light pollution (LP), has been shown to affect many organisms. However, little is known about the extent to which ecological interactions between earthworms and plants are altered by LP. We investigated the effects of LP on anecic earthworms (Lumbricus terrestris) that come to the surface at night to forage and mate, and on the germination and growth of the invasive and allergenic ragweed (Ambrosia artemisiifolia). In a full factorial pot experiment in the greenhouse, we tested four factors and their interactions: LP (5 lux vs. 0 lux at night), earthworms (two individuals vs. none), plant species (seeding of ragweed only vs. mixed with Phacelia seeds) and sowing depth (seed placed at the surface vs. in 5 cm depth). Data were analysed using Generalized Linear (Mixed) Models and multifactorial ANOVAs with soil parameters as covariates. RESULTS Light pollution reduced earthworm surface activity by 76% as measured by casting activity and toothpick index; 85% of mating earthworms were observed in the absence of LP. Light pollution in interaction with earthworms reduced ragweed germination by 33%. However, LP increased ragweed height growth by 104%. Earthworms reduced ragweed germination especially when seeds were placed on the soil surface, suggesting seed consumption by earthworms. CONCLUSIONS Our data suggest that anecic earthworms are negatively affected by LP because reduced surface activity limits their ability to forage and mate. The extent to which earthworm-induced ecosystem services or community interactions are also affected by LP remains to be investigated. If the increased height growth of ragweed leads to increased pollen and seed production, it is likely that the competition of ragweed with field crops and the risks to human health will also increase under LP.
Collapse
Affiliation(s)
- Marion Mittmannsgruber
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria
| | - Zenia Kavassilas
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria
| | - Bernhard Spangl
- Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria
| | - Edith Gruber
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria
| | - Elias Jagg
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria
| | - Johann G Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, 1180, Austria.
| |
Collapse
|
35
|
Zhao Y, Ma XM, Ren M, Liu H, Duan HL, Liu XL, Gao ZS, Ma YL. Central blockage of sympathetic nerves inhibits the abnormal vital signs and disturbance of the gut microbiota caused by continuous light exposure. Heliyon 2024; 10:e22742. [PMID: 38192835 PMCID: PMC10772574 DOI: 10.1016/j.heliyon.2023.e22742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Background Continuous light exposure increases sympathetic excitation in rats, leading to hypertension, left ventricular hypertrophy, and fibrosis. This study was aimed to investigate whether continuous light exposure causes destabilization of vital signs and gut microbiota (GM) in Sprague Dawley (SD) rats and whether clonidine hydrochloride (CH), a central sympathetic depressant drug, could prevent these changes. Methods Eight-week-old male SD rats were divided into three groups with different interventions for 14 weeks: control group (CG), 2-mL pure water gavaged daily while on a normal 12-h light/dark cycle; continuous illumination group (CI), 2-mL pure water gavaged daily while receiving continuous exposure to light (300 lx); and drug administration group (DA), CH (10 μg/kg) gavaged daily while receiving continuous exposure to light (300 lx). Results The results showed that blood pressure, heart rate, and body weight were significantly higher in the CI group than in the CG and DA groups (P < 0.05). Moreover, the Shannon index was higher in the DA group than in the CI group (P = 0.012). The beta diversity index in the CG group was significantly higher in the CI group (P = 0.039). The pairwise comparison results of the linear discriminant analysis effect size showed that Oscillospirales were enriched in the DA group, whereas the Prevotellaceae lineage (family level) > Prevotella (genus level) > Prevotellaceae_bacterium (species level) were enriched in the CI group. The Muribaculaceae family was more abundant in the CG group than in the CI group. Conclusion Sympathetic nerve inhibition restored the abnormal vital signs and GM changes under continuous light exposure.
Collapse
Affiliation(s)
- Yi Zhao
- Qinghai University, Xining 810001, China
| | - Xu-ming Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Ming Ren
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, China
| | - Huiqin Liu
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, China
| | | | | | | | - Yu-lan Ma
- Qinghai Cardio-Cerebrovascular Specialty Hospital, Qinghai High Altitude Medical Research Institute, Xining, 810012, China
| |
Collapse
|
36
|
Lu J, Zou R, Yang Y, Bai X, Wei W, Ding R, Hua X. Association between nocturnal light exposure and melatonin in humans: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3425-3434. [PMID: 38123771 DOI: 10.1007/s11356-023-31502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Night shift workers are more susceptible to circadian rhythm disturbances due to their prolonged exposure to nighttime light. This exposure during abnormal periods causes inappropriate suppression of melatonin synthesis and secretion in the pineal gland, thereby disrupting circadian rhythms. While it is believed that nocturnal light exposure is involved in suppressing melatonin secretion, research findings in this area have been inconsistent. METHODS Thirteen publications retrieved from PubMed and Web of Science databases were included to compare the differences between night shift workers and controls using aggregated mean differences (MD) and 95% confidence intervals (CI). RESULTS After a comprehensive review, 13 publications were included and data on urinary melatonin metabolite 6-sulfameoxymelatonin(aMT6s) were collected for meta-analysis. The results showed that the morning urinary aMT6s levels were significantly lower in the exposed group than in the non-exposed group (MD = -3.69, 95%CI = (-5.41, -1.98), P < 0.0001), with no significant heterogeneity among the original studies (I2 = 42%, P = 0.13). In addition, night shift workers had significantly lower mean levels of 24-h urinary aMT6s than day shift workers (MD = -3.38, 95%CI = (-4.27, -2.49), P < 0.00001, I2 = 0). Nocturnal light was correlated with nocturnal urine aMT6s secretion and inhibited nocturnal aMT6s secretion (MD = -11.68, 95%CI = (-15.70, -7.67), P < 0.00001, I2 = 0). Additionally, nocturnal light inhibited the secretion of melatonin in the blood, with no significant heterogeneity between studies (MD = -11.37, 95%CI = (-15.41, -7.33), P < 0.00001, I2 = 0). CONCLUSION The findings of this study indicate that exposure to nocturnal light among night shift workers leads to inhibition of melatonin secretion.
Collapse
Affiliation(s)
- Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Wei Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
37
|
Li Z, Lee CS, Chen S, He B, Chen X, Peng HY, Lin TB, Hsieh MC, Lai CY, Chou D. Blue light at night produces stress-evoked heightened aggression by enhancing brain-derived neurotrophic factor in the basolateral amygdala. Neurobiol Stress 2024; 28:100600. [PMID: 38187456 PMCID: PMC10767493 DOI: 10.1016/j.ynstr.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Light is an underappreciated mood manipulator. People are often exposed to electronic equipment, which results in nocturnal blue light exposure in modern society. Light pollution drastically shortens the night phase of the circadian rhythm. Preclinical and clinical studies have reported that nocturnal light exposure can influence mood, such as depressive-like phenotypes. However, the effects of blue light at night (BLAN) on other moods and how it alters mood remain unclear. Here, we explored the impact of BLAN on stress-provoked aggression in male Sprague‒Dawley rats, focusing on its influence on basolateral amygdala (BLA) activity. Resident-intruder tests, extracellular electrophysiological recordings, and enzyme-linked immunosorbent assays were performed. The results indicated that BLAN produces stress-induced heightened aggressive and anxiety-like phenotypes. Moreover, BLAN not only potentiates long-term potentiation and long-term depression in the BLA but also results in stress-induced elevation of brain-derived neurotrophic factor (BDNF), mature BDNF, and phosphorylation of tyrosine receptor kinase B expression in the BLA. Intra-BLA microinfusion of BDNF RNAi, BDNF neutralizing antibody, K252a, and rapamycin blocked stress-induced heightened aggressive behavior in BLAN rats. In addition, intra-BLA application of BDNF and 7,8-DHF caused stress-induced heightened aggressive behavior in naïve rats. Collectively, these results suggest that BLAN results in stress-evoked heightened aggressive phenotypes, which may work by enhancing BLA BDNF signaling and synaptic plasticity. This study reveals that nocturnal blue light exposure may have an impact on stress-provoked aggression. Moreover, this study provides novel insights into the BLA BDNF-dependent mechanism underlying the impact of the BLAN on mood.
Collapse
Affiliation(s)
- Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Si Chen
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Benyu He
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xinya Chen
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| |
Collapse
|
38
|
Evans DM. Mitigating the impacts of street lighting on biodiversity and ecosystem functioning. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220355. [PMID: 37899015 PMCID: PMC10613540 DOI: 10.1098/rstb.2022.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 10/31/2023] Open
Abstract
Street lights are not only a major source of direct light pollution emissions, but stock has been transitioning to light-emitting diode (LED) technology in many parts of the world, resulting in increases in the blue part of the visible spectrum that is more harmful to biodiversity and human health. But LEDs can be modified more easily than conventional sodium lamps by adjusting their intensity, spectral output and other features of street light systems. In this Opinion piece, I provide an updated overview of street light mitigation strategies and contend that research in this area has been slow. I show how experimental lighting rigs that mimic real street lights can be used for mitigation testing, since invertebrate behaviour, abundances and interactions can respond quickly and measurably. I demonstrate how advances in network ecology that use species interaction data can provide much-needed assessments of the impacts of street lights on biodiversity and ecosystem functioning, and ultimately provide new tools and metrics for biomonitoring. I acknowledge the limitations of measuring local, short-term responses of biodiversity and identify promising avenues for collaborating with industry and government agencies in new or existing road lighting schemes, to minimize the negative long-term impacts at marginal cost. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, King's Road, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
39
|
Grenis K, Nufio C, Wimp GM, Murphy SM. Does artificial light at night alter moth community composition? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220365. [PMID: 37899018 PMCID: PMC10613536 DOI: 10.1098/rstb.2022.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/28/2023] [Indexed: 10/31/2023] Open
Abstract
Ecological studies investigating the effects of artificial light at night (ALAN) have primarily focused on single or a few species, and seldom on community-level dynamics. As ALAN is a potential cause of insect and biodiversity declines, community-level perspectives are essential. We empirically tested the hypothesis that moth species differentially respond to ALAN and that these responses can cause shifts in community composition. We sampled moths from prairie fragments in Colorado, USA. We tested whether local light sources, sky glow, site area and/or vegetation affected moth community diversity. We found that increased sky glow decreased moth abundance and species richness and shifted community composition. Increased sky glow shifted moth community composition when light and bait traps were combined; notably this result appears to be driven entirely by moths sampled at bait traps, which is an unbiased sampling technique. Our results show that ALAN has significant effects on moth communities and that local light sources have contrasting effects on moth community composition compared to sky glow. It is imperative that we better understand the contrasting effects of types of ALAN to comprehend the overall impacts of light pollution on biodiversity declines. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Kylee Grenis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - César Nufio
- University of Colorado Museum of Natural History, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioInteractive Department, Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Gina M. Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Shannon M. Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| |
Collapse
|
40
|
Barrientos R, Vickers W, Longcore T, Abelson ES, Dellinger J, Waetjen DP, Fandos G, Shilling FM. Nearby night lighting, rather than sky glow, is associated with habitat selection by a top predator in human-dominated landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220370. [PMID: 37899023 PMCID: PMC10613539 DOI: 10.1098/rstb.2022.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/21/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is increasing in extent and intensity across the globe. It has been shown to interfere with animal sensory systems, orientation and distribution, with the potential to cause significant ecological impacts. We analysed the locations of 102 mountain lions (Puma concolor) in a light-polluted region in California. We modelled their distribution relative to environmental and human-disturbance variables, including upward radiance (nearby lights), zenith brightness (sky glow) and natural illumination from moonlight. We found that mountain lion probability of presence was highly related to upward radiance, that is, related to lights within approximately 500 m. Despite a general pattern of avoidance of locations with high upward radiance, there were large differences in degree of avoidance among individuals. The amount of light from artificial sky glow was not influential when included together with upward radiance in the models, and illumination from moonlight was not influential at all. Our results suggest that changes in visibility associated with lunar cycles and sky glow are less important for mountain lions in their selection of light landscapes than avoiding potential interactions with humans represented by the presence of nearby lights on the ground. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Rafael Barrientos
- Road Ecology Lab, Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Winston Vickers
- Wildlife Health Center, University of California, 1089 Veterinary Medicine Dr, Davis, CA 95616, USA
| | - Travis Longcore
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eric S. Abelson
- Department of Integrative Biology, University of Texas Austin, Austin, TX 78705, USA
| | - Justin Dellinger
- Large Carnivore Section, Wyoming Game and Fish Department, 260 Buena Vista Dr., Lander, WY 82520, USA
| | - David P. Waetjen
- Road Ecology Center, Institute of Transportation Studies, University of California, Davis, CA 95616, USA
| | - Guillermo Fandos
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Fraser M. Shilling
- Road Ecology Center, Institute of Transportation Studies, University of California, Davis, CA 95616, USA
| |
Collapse
|
41
|
Seymoure B, Dell A, Hölker F, Kalinkat G. A framework for untangling the consequences of artificial light at night on species interactions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220356. [PMID: 37899016 PMCID: PMC10613547 DOI: 10.1098/rstb.2022.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Although much evidence exists showing organismal consequences from artificial light at night (ALAN), large knowledge gaps remain regarding ALAN affecting species interactions. Species interactions occur via shared spatio-temporal niches among species, which may be determined by natural light levels. We review how ALAN is altering these spatio-temporal niches through expanding twilight or full Moon conditions and constricting nocturnal conditions as well as creating patches of bright and dark. We review literature from a database to determine if ALAN is affecting species interactions via spatio-temporal dynamics. The literature indicates a growing interest in ALAN and species interactions: 58% of the studies we analysed have been published since 2020. Seventy-five of 79 studies found ALAN altered species interactions. Enhancements and reductions of species interactions were equally documented. Many studies revealed ALAN affecting species interactions spatially, but few revealed temporal alterations. There are biases regarding species interactions and ALAN-most studies investigated predator-prey interactions with vertebrates as predators and invertebrates as prey. Following this literature review, we suggest avenues, such as remote sensing and animal tracking, that can guide future research on the consequences of ALAN on species interactions across spatial and temporal axes. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Brett Seymoure
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anthony Dell
- National Great Rivers Research and Education Center, Alton, IL 62024, USA
- Department of Biology, WashingtonUniversity in St Louis, St Louis, MO 63130, USA
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 12587 Berlin, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
| |
Collapse
|
42
|
Bará S, Falchi F. Artificial light at night: a global disruptor of the night-time environment. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220352. [PMID: 37899010 PMCID: PMC10613534 DOI: 10.1098/rstb.2022.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution is the alteration of the natural levels of darkness by an increased concentration of light particles in the night-time environment, resulting from human activity. Light pollution is profoundly changing the night-time environmental conditions across wide areas of the planet, and is a relevant stressor whose effects on life are being unveiled by a compelling body of research. In this paper, we briefly review the basic aspects of artificial light at night as a pollutant, describing its character, magnitude and extent, its worldwide distribution, its temporal and spectral change trends, as well as its dependence on current light production technologies and prevailing social uses of light. It is shown that the overall effects of light pollution are not restricted to local disturbances, but give rise to a global, multiscale disruption of the night-time environment. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Salvador Bará
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
| | - Fabio Falchi
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
- ISTIL Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso–Light Pollution Science and Technology Institute, Via Roma, 13 - I 36016 Thiene, Italy
| |
Collapse
|
43
|
Hirt MR, Evans DM, Miller CR, Ryser R. Light pollution in complex ecological systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220351. [PMID: 37899008 PMCID: PMC10613538 DOI: 10.1098/rstb.2022.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution has emerged as a burgeoning area of scientific interest, receiving increasing attention in recent years. The resulting body of literature has revealed a diverse array of species-specific and context-dependent responses to artificial light at night (ALAN). Because predicting and generalizing community-level effects is difficult, our current comprehension of the ecological impacts of light pollution on complex ecological systems remains notably limited. It is critical to better understand ALAN's effects at higher levels of ecological organization in order to comprehend and mitigate the repercussions of ALAN on ecosystem functioning and stability amidst ongoing global change. This theme issue seeks to explore the effects of light pollution on complex ecological systems, by bridging various realms and scaling up from individual processes and functions to communities and networks. Through this integrated approach, this collection aims to shed light on the intricate interplay between light pollution, ecological dynamics and humans in a world increasingly impacted by anthropogenic lighting. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 4LB, UK
| | - Colleen R. Miller
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| |
Collapse
|
44
|
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220360. [PMID: 37899012 PMCID: PMC10613548 DOI: 10.1098/rstb.2022.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, 60325 Frankfurt Germany
- Department of BioSciences, Goethe-University, 60438 Frankfurt, Germany
| | - Mark O. Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, 10587 Berlin, Germany
| |
Collapse
|
45
|
Cesarz S, Eisenhauer N, Bucher SF, Ciobanu M, Hines J. Artificial light at night (ALAN) causes shifts in soil communities and functions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220366. [PMID: 37899014 PMCID: PMC10613544 DOI: 10.1098/rstb.2022.0366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is increasing worldwide, but its effects on the soil system have not yet been investigated. We tested the influence of experimental manipulation of ALAN on two taxa of soil communities (microorganisms and soil nematodes) and three aspects of soil functioning (soil basal respiration, soil microbial biomass and carbon use efficiency) over four and a half months in a highly controlled Ecotron facility. We show that during peak plant biomass, increasing ALAN reduced plant biomass and was also associated with decreased soil water content. This further reduced soil respiration under high ALAN at peak plant biomass, but microbial communities maintained stable biomass across different levels of ALAN and times, demonstrating higher microbial carbon use efficiency under high ALAN. While ALAN did not affect microbial community structure, the abundance of plant-feeding nematodes increased and there was homogenization of nematode communities under higher levels of ALAN, indicating that soil communities may be more vulnerable to additional disturbances at high ALAN. In summary, the effects of ALAN reach into the soil system by altering soil communities and ecosystem functions, and these effects are mediated by changes in plant productivity and soil water content at peak plant biomass. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig 04109, Germany
| |
Collapse
|
46
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
47
|
Joylin S, Mutalik S, Kalaivani M, Shenoy RP, Ghosh M, Nishitha, Kumar EOAM, Theruveethi N. Influence of different LED wavelengths on retinal melatonin levels - A rodent study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166665. [PMID: 37652369 DOI: 10.1016/j.scitotenv.2023.166665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Retinal melatonin is crucial for neuroprotection. Exposure to light-emitting diodes (LEDs) affects retinal neurons, possibly influencing retinal melatonin levels. Hence, we aimed to quantify the retinal melatonin level with different LED wavelengths. METHOD A total of 24 Sprague Dawley (SD) male rats were divided into four groups (n = 6 in each group) as normal controls (NC), blue light (BL), white light (WL), and yellow light (YL). The rats in the experimental groups were exposed to different wavelengths of LEDs for 28 days (12:12 h light-dark cycle) with uniform illumination of 450-500 lx. Following exposure, the rats were subjected to behavioral tests such as passive avoidance and elevated plus maze tests. Following the behavior tests, the rats were sacrificed, eyes were enucleated, and retinal tissue was stored at -80 °C. The homogenized retina was used for reactive oxygen species (ROS) and melatonin quantification using an enzyme-linked immunosorbent assay (ELISA) kit. RESULTS Passive avoidance test revealed a significant difference across the groups (p < 0.0004). The BL exposure group demonstrated increased latency to enter the dark compartment (DC) and impaired motor memory. The elevated plus maze test revealed a significant difference across all the groups (p < 0.012), where the time spent in the closed arm was greater in the BL exposure group. Comparison of ROS levels revealed a significant difference across the groups (p < 0.0001), with increased nitric oxide concentrations in the experimental groups. Melatonin levels were significantly decreased in the light exposure groups (p < 0.0001) compared to the NC group. CONCLUSION Cumulative exposure to different LED wavelengths resulted in increased anxiety with impaired motor activity. This was also complemented by the addition of oxidative stress leading to decreased melatonin levels in the retina, which might trigger retinal neuronal damage.
Collapse
Affiliation(s)
- Stelyna Joylin
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manokaran Kalaivani
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Revathi P Shenoy
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Mousumi Ghosh
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Nishitha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Elizebeth Olive Akansha Manoj Kumar
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India; College of Optometry, University of Houston, Houston, TX, USA
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
48
|
Zhang M, Gao X, Luo Q, Lin S, Lyu M, Luo X, Ke C, You W. Ecological benefits of artificial light at night (ALAN): Accelerating the development and metamorphosis of marine shellfish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166683. [PMID: 37652388 DOI: 10.1016/j.scitotenv.2023.166683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Urbanization has led to increasing use of artificial light at night (ALAN), which has rapidly become an important source of pollution in many cities. To identify the ALAN effects on the embryonic development of the Pacific abalone Haliotis discus hannai, we first exposed larvae to natural light with a light period of 12 L:12D (control, Group CTR). We then exposed larvae to three different light regimes. Larvae in Group NL were exposed to full spectrum artificial light from 18:00 to 00:00 to simulate the lighting condition at night, whereas Groups BL and YL were illuminated at the same time interval with 450 nm of short-wavelength blue light and 560 nm of long-wavelength orange light, respectively, to simulate billboard lighting at night. There were significantly higher hatching success and metamorphosis rates of larvae in Group BL than in Group YL or CTR (P < 0.05). The larvae in Group YL had the highest abnormality rate and took the longest time to complete metamorphosis. Transcriptomic studies revealed significantly higher expression levels of genes related to RNA transport, DNA replication, and protein processing in endoplasmic reticulum pathways in Group BL compared to the other groups. In the metabolomic analysis, we identified prostaglandin B1, tyramine, d-fructose 6-phosphate, L-adrenaline, leukotriene C4, and arachidonic acid as differential metabolic markers, as they play a vital part in helping larvae adapt to different ALAN conditions. Multi-omics correlation analysis of pairwise comparisons between all of the groups suggested that the biosynthesis of unsaturated fatty acids (FAs) and arachidonic acid metabolism pathways were significantly enriched (P < 0.05). Further quantitative analysis of the fatty acid (FA) contents revealed that 42 out of 50 FAs were down-regulated in Group BL and up-regulated in Group YL, which suggested that the synthesis, catabolism, and metabolism of FAs are crucial for the larval response to different spectral components of ALAN. For the first time, we report positive rather than negative effects of artificial blue light at night on the embryonic development of a benthic marine species. These results are significant for unbiased and full-scale assessment of the ecological effects of ALAN and for understanding the structural stability of the marine benthic community.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Qi Luo
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
49
|
Botero-Valencia J, Barrantes-Toro C, Marquez-Viloria D, Pearce JM. Low-cost air, noise, and light pollution measuring station with wireless communication and tinyML. HARDWAREX 2023; 16:e00477. [PMID: 37822753 PMCID: PMC10562912 DOI: 10.1016/j.ohx.2023.e00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Different types of environmental pollution cause negative consequences to ecosystems throughout the globe, which humanity is now trying to mitigate. It is necessary to know the level of pollution problems in the immediate environment, to evaluate the impact of human activities, and mitigation strategies necessary to ensure habitability. For this reason, in this work, a low-cost pollution measurement station for outdoor or indoor use is proposed and developed that measures air pollution (particulate matter and CO2 ), noise (level and direction), light pollution (power and multispectral), and also relative humidity and ambient temperature. The system stores the data in an SD memory or transmits data in real-time to the internet via WiFi. The purposes of the system are to be used in environmental studies, to deploy monitoring networks, or to ensure the habitability of a living or working space. The prototype integrates the measurement of the different sources of contamination in a single compact device at USD$ 628.12 without sacrificing measurement accuracy. The system is validated for each variable with reference equipment, obtaining an average error of approximately 2.67% in the measurement of all the variables measured. The system is easy to assemble and has an option for power supply using solar photovoltaic devices and an alternative for connection to 2G/3G mobile networks.
Collapse
Affiliation(s)
- J.S. Botero-Valencia
- Grupo de Sistemas de Control y Robótica, Engineering Faculty, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - C. Barrantes-Toro
- Grupo de Sistemas de Control y Robótica, Engineering Faculty, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - D. Marquez-Viloria
- Grupo de Sistemas de Control y Robótica, Engineering Faculty, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Joshua M. Pearce
- Department of Electrical & Computer Engineering, Ivey Business School, Western University, London, ON, Canada
| |
Collapse
|
50
|
Evens R, Lathouwers M, Pradervand JN, Jechow A, Kyba CCM, Shatwell T, Jacot A, Ulenaers E, Kempenaers B, Eens M. Skyglow relieves a crepuscular bird from visual constraints on being active. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165760. [PMID: 37506901 DOI: 10.1016/j.scitotenv.2023.165760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Artificial light at night significantly alters the predictability of the natural light cycles that most animals use as an essential Zeitgeber for daily activity. Direct light has well-documented local impacts on activity patterns of diurnal and nocturnal organisms. However, artificial light at night also contributes to an indirect illumination of the night sky, called skyglow, which is rapidly increasing. The consequences of this wide-spread form of artificial night light on the behaviour of animals remain poorly understood, with only a few studies performed under controlled (laboratory) conditions. Using animal-borne activity loggers, we investigated daily and seasonal flight activity of a free-living crepuscular bird species in response to nocturnal light conditions at sites differing dramatically in exposure to skyglow. We find that flight activity of European Nightjars (Caprimulgus europaeus) during moonless periods of the night is four times higher in Belgium (high skyglow exposure) than in sub-tropical Africa and two times higher than in Mongolia (near-pristine skies). Moreover, clouds darken the sky under natural conditions, but skyglow can strongly increase local sky brightness on overcast nights. As a result, we find that nightjars' response to cloud cover is reversed between Belgium and sub-tropical Africa and between Belgium and Mongolia. This supports the hypothesis that cloudy nights reduce individual flight activity in a pristine environment, but increase it when the sky is artificially lit. Our study shows that in the absence of direct light pollution, anthropogenic changes in sky brightness relieve nightjars from visual constraints on being active. Individuals adapt daily activities to artificial night-sky brightness, allowing them more time to fly than conspecifics living under natural light cycles. This modification of the nocturnal timescape likely affects behavioural processes of most crepuscular and nocturnal species, but its implications for population dynamics and interspecific interactions remain to be investigated.
Collapse
Affiliation(s)
- Ruben Evens
- Department of Biology, Behavioural Ecology and Ecophysiology group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Michiel Lathouwers
- Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; University of Namur, Department of Geography, Institute of Life, Earth and Environment (ILEE), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Jean-Nicolas Pradervand
- Swiss Ornithological Institute, Regional Office Valais, Rue du Rhône 11, 1950 Sion, Switzerland
| | - Andreas Jechow
- Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin
| | | | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Brückstr. 3a, 39114 Magdeburg, Germany
| | - Alain Jacot
- Swiss Ornithological Institute, Regional Office Valais, Rue du Rhône 11, 1950 Sion, Switzerland
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Herman Teirlinck Havenlaan 88 bus 75, 1000 Brussels, Belgium
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|