1
|
Li X, Xu Z, Zhang S, Gao W, Dong Q, Guo F, Zhu Z, Yang W, Yang Z. Eutrophication-Driven Changes in Plankton Trophic Interactions: Insights from Trade-Offs in Functional Traits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:744-755. [PMID: 39652070 DOI: 10.1021/acs.est.4c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Understanding how plankton trophic interactions, particularly phytoplankton nutrient uptake and zooplankton grazing, respond to eutrophication is important for maintaining aquatic ecosystem functions and developing effective mitigation strategies. Phytoplankton exhibit trade-offs in functional traits between growth rate and antipredation defense, thereby regulating these trophic interactions. However, the combined effects of eutrophication and such trait-based regulation on plankton communities and interactions remain poorly understood. In the present study, we investigated these effects by integrating trait-based mechanistic modeling and field observations in China's eutrophic Pearl River Estuary. Our model predicted that the species with the weakest defensive capacities dominated under nutrient-poor conditions. As eutrophication increased, a concave growth-defense trade-off favored species with high growth rates and strong defense capacities, whereas a convex trade-off curve favored species that were either the least or the most well-defended. High grazing pressure accelerated these shifts. In the estuary, similar patterns emerged in the relative abundance of different phytoplankton species along a gradient of the nitrogen to phosphorus ratio (N:P), indicating changes from high nutrient uptake and low grazing under oligotrophic conditions to eutrophic conditions, in which some phytoplankton face considerable grazing pressure despite high nutrient uptake, whereas others grow slowly with less grazing pressure. These results enhance our understanding of trait-based plankton interactions in eutrophic bodies of water and provide support for more effective conservation and management strategies.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weilun Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Dong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenchang Zhu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
2
|
Kiørboe T. Organismal trade-offs and the pace of planktonic life. Biol Rev Camb Philos Soc 2024; 99:1992-2002. [PMID: 38855937 DOI: 10.1111/brv.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
No one is perfect, and organisms that perform well in some habitat or with respect to some tasks, do so at the cost of performance in others: there are inescapable trade-offs. Organismal trade-offs govern the structure and function of ecosystems and attempts to demonstrate and quantify trade-offs have therefore been an important goal for ecologists. In addition, trade-offs are a key component in trait-based ecosystem models. Here, I synthesise evidence of trade-offs in plankton organisms, from bacteria to zooplankton, and show how a slow-fast gradient in life histories emerges. I focus on trade-offs related to the main components of an organism's Darwinian fitness, that is resource acquisition, survival, and propagation. All consumers need to balance the need to eat without being eaten, and diurnal vertical migration, where zooplankton hide at depth during the day to avoid visual predators but at the cost of missed feeding opportunities in the productive surface layer, is probably the best documented result of this trade-off. However, there are many other more subtle but equally important behaviours that similarly are the result of an optimisation of these trade-offs. Most plankton groups have also developed more explicit defence mechanisms, such as toxin production or evasive behaviours that are harnessed in the presence of their predators; the costs of these have often proved difficult to quantify or even demonstrate, partly because they only materialise under natural conditions. Finally, all multicellular organisms must allocate time and resources among growth, reproduction, and maintenance (e.g. protein turnover and DNA repair), and mate finding may compromise both survival and feeding. The combined effects of all these trade-offs is the emergence of a slow-fast gradient in the pace-of-life, likely the most fundamental principle for the organisation of organismal life histories. This crystallisation of trade-offs may offer a path to further simplification of trait-based models of marine ecosystems.
Collapse
Affiliation(s)
- Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, 2800 Kgs, Kemitorvet, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Liang X, Raven JA, Beardall J, Overmans S, Xia J, Jin P. The trade-offs associated with the adaptions of marine microalgae to high CO 2 and warming. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106853. [PMID: 39577375 DOI: 10.1016/j.marenvres.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Trade-offs play vital roles in evolutionary theory, linking organism performance to changing environments in the context of global change. Marine microalgae, as one of the most important groups of primary producers in the biosphere, exhibit significant trade-offs across multiple traits in response to environmental changes, such as elevated CO2 (and consequent ocean acidification) and warming. In this review, we synthesize recent findings on the trade-offs associated with both short-term phenotypic acclimation and long-term genotypic adaptation of marine microalgae. Specifically, we discuss distinct classes of trade-offs (i.e., allocation trade-offs, acquisition trade-offs and specialist-generalist trade-offs) between multiple traits, such as growth rate, photosynthesis, nutrient acquisition, and stress tolerance. We also explored the underlying mechanisms driving these trade-offs. Finally, we discuss the broader ecological consequences of these trade-offs, such as potential shifts in species composition and ecosystem functions, and outline key research directions to better predict marine ecosystem responses to future global change scenarios.
Collapse
Affiliation(s)
- Xiao Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia; State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361105, China
| | - Sebastian Overmans
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Sha Y, Zhang S, Dong J, Gao X, Yuan H, Zhang J, Gao Y, Li X. Effects of Toxic and Non-Toxic Microcystis aeruginosa on the Defense System of Ceratophyllum demersum- Scenedesmus obliquus. Microorganisms 2024; 12:2261. [PMID: 39597650 PMCID: PMC11596601 DOI: 10.3390/microorganisms12112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The effects of toxic and non-toxic Microcystis aeruginosa on the Ceratophyllum demersum-Scenedesmus obliquus system were simulated in the laboratory, and some parameters in relation to these organisms were measured. In this experiment, C. demersum increased the biomass of S. obliquus, and both toxic and non-toxic M. aeruginosa significantly inhibited the colony formation of S. obliquus and inhibited the promotion of S. obliquus biomass. On the 14th day, the soluble polysaccharide content of C. demersum decreased when it was coexisted with S. obliquus, but it rose again because of M. aeruginosa, which significantly increased the protein content of C. demersum. The species composition and diversity of epiphytic microorganisms also vary with different treatments. Proteobacteria is dominant in all the groups, especially in the Toxic_SMC group. In addition, bacteria that can degrade organic pollutants are more abundant in Toxic_SMC group. This study focuses on the defense response of S. obliquus induced by C. demersum under the pressure of toxic or non-toxic M. aeruginosa and evaluates the changes to C. demersum and its epiphytic microorganisms, which provides insights for the study of aquatic plant-algae integrated action systems in eutrophic or cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuanpu Sha
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Shuwen Zhang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jing Dong
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xiaofei Gao
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Huatao Yuan
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jingxiao Zhang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Yunni Gao
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| |
Collapse
|
5
|
Zhang J, Ryderheim F, Selander E, Wünsch U, Kiørboe T. Predator-induced defense decreases growth rate and photoprotective capacity in a nitrogen-limited dinoflagellate, Alexandrium minutum. HARMFUL ALGAE 2024; 139:102734. [PMID: 39567071 DOI: 10.1016/j.hal.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Some dinoflagellates produce toxic secondary metabolites that correlate with increased resistance to grazers. The allocation costs of toxin production have been repeatedly addressed, but with conflicting results. Few studies have considered the potential costs of this defense to the photosystem, even though defense toxins (e.g., karlotoxins and brevetoxins) are closely linked to the photoprotective process. Here, we used chemical cues from copepods to induce paralytic shellfish toxin (PST) production in resource-limited Alexandrium minutum and quantitatively determined the growth rate and potential trade-offs with the photosystem process. The results show that grazer-induced, more toxic A. minutum had larger cell volume, lower cell division rate, and lower pigment content under nitrogen-limited conditions than control cells. In addition, predator cues led to a lower relative abundance of photoprotective xanthophylls and a reduced de-epoxidation efficiency of the xanthophyll cycle under high light conditions, reducing the ability of the cells to resist photodamage. Decreased photoprotective capacity may reflect an overlooked defense cost of toxin production.
Collapse
Affiliation(s)
- Jingjing Zhang
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, PR China; Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark.
| | - Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Erik Selander
- Functional Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | - Urban Wünsch
- Section for Oceans and Arctic, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Paul P, Patil JS. Delineating morphological traits of oceanic micro-phytoplankton as potential ecological indicators. MARINE POLLUTION BULLETIN 2024; 208:116952. [PMID: 39353371 DOI: 10.1016/j.marpolbul.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
The micro-phytoplankton (>20 μm) adaptations and resilience were assessed using morphological traits (shape, surface-to-volume ratio; S:V, and greatest-axial-linear-dimension; GALD) from sea-surface and different SCML-depths (shallow:20-50 m, intermediate:50-100 m, and deep:100-140 m) across different bioregions of Indian Ocean. The dominant simple elongated phytoplankton-geometric-shapes (PGSs) and morphological traits showed distinct north-south distribution and varied with light and nutrient availability. Further, SCML and corresponding sea-surface PGS will be similar or dissimilar if the former is located within or deeper than mixed-layer depth. Also, simple and complex PGS contribution gradually decreases and increases with increasing depth. Additionally, shallow SCML-PGS showed low-S:V and high-GALD while vice-versa for intermediate/deep SCML-PGS due to phenotypic plasticity behavior. Overall, only simple-PGS (cylinder, elliptic-prism, and prism-on-parallelogram) showed strong adaptive behavior through phenotypic plasticity and were highlighted as potential ecological tracers to address ecological impact of oceanographic processes (including coastal eutrophication, and aerosol deposition) linked to nutrient and light availability in predicted ocean change scenarios.
Collapse
Affiliation(s)
- Pranoy Paul
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau 403 206, Goa, India
| | - Jagadish S Patil
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India.
| |
Collapse
|
7
|
Réveillon T, Becks L. Trade-offs between defense and competitive traits in a planktonic predator-prey system. Ecology 2024:e4456. [PMID: 39468750 DOI: 10.1002/ecy.4456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 10/30/2024]
Abstract
Predator-prey interactions are crucial components of populations and communities. Their dynamics depend on the covariation of traits of the interacting organisms, and there is increasing evidence that intraspecific trade-off relationships between defense and competitive traits are important drivers of trophic interactions. However, quantifying the relevant traits forming defense-competitiveness trade-offs and how these traits determine prey and predator fitness remains a major challenge. Here, we conducted feeding and growth experiments to assess multiple traits related to defense and competitiveness in six different strains of the green alga Chlamydomonas reinhardtii exposed to predation by the rotifer Brachionus calyciflorus. We found large differences in defense and competitive traits among prey strains and negative relationships between these traits for multiple trait combinations. Because we compared trait differences among strains whose ancestors evolved previously in controlled environments where selection favored either defense or competitiveness, these negative correlations suggest the presence of a trade-off between defense and competitiveness. These differences in traits and trade-offs translated into differences in prey and predator fitness, demonstrating the importance of intraspecific trade-offs in predicting the outcome of predator-prey interactions.
Collapse
Affiliation(s)
- Tom Réveillon
- Aquatic Ecology and Evolution Group, Limnological Institute, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution Group, Limnological Institute, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Vu P, Becks L. Community Trait Variation Drives Selection on Species Diversity Through Feedback With Predator Density. Ecol Evol 2024; 14:e70477. [PMID: 39450152 PMCID: PMC11499210 DOI: 10.1002/ece3.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Identifying the processes underlying community assembly and dynamics remains a central goal in ecology. Although much research has been devoted to analyzing how environments affect species diversity, fewer studies have resolved the link between the fundamental process of ecological selection and species diversity. It has been suggested that identifying ecological selection by estimating changes in community-weighted variance (CWV) and mean (CWM) of functional traits may help to identify more general rules of community assembly. Here, we asked whether and how selection by predation and competition affect species diversity, and how this is determined by the initial CWV and CWM for traits governing species interactions, as in our case: Competitiveness and defense against a predator. We tracked experimental five-species phytoplankton communities in the presence and absence of a rotifer predator over time. We manipulated the initial community composition so that communities shared at least three of the five species but differed in CWV and CWM for defense against predation. We found that species diversity was highest with higher initial trait distributions and that temporal changes in diversity correlated with trait selection. The initial distributions determined the form of selection over time, with directional selection for defense and competitiveness, followed by reduced selection and an increase in niche availability when the initial trait distribution was low or high. For intermediate initial trait distributions, we observed directional selection in only one trait, followed by stabilizing selection. Differences and changes in selection for defense, competitiveness, and species diversity correlated with the changes in predator density over time. This suggests that the initial trait distribution determined species diversity through a feedback loop with changes in selection on traits and predator density. Overall, our study shows that identifying ecological selection on functional traits can provide a mechanistic understanding of community assembly.
Collapse
Affiliation(s)
- Phuong‐Anh Vu
- Aquatic Ecology and EvolutionUniversity of KonstanzKonstanzGermany
| | - Lutz Becks
- Aquatic Ecology and EvolutionUniversity of KonstanzKonstanzGermany
| |
Collapse
|
9
|
Nam G, An G, Na J, Jung J. Control of Microcystis aeruginosa by Daphnia: Experimental evidence and identification of involved infochemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124144. [PMID: 38735459 DOI: 10.1016/j.envpol.2024.124144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Infochemicals refer to chemicals responsible for information exchange between organisms. We evaluated the effects of Daphnia magna and Daphnia galeata infochemicals on Microcystis aeruginosa for 15d. The Daphnia infochemicals were obtained from spent medium after culturing Daphnia in Elendt M4 medium for 48 h. Both Daphnia infochemicals significantly increased (p < 0.05) the intracellular reactive oxygen species level and microcystin-LR concentration in M. aeruginosa. This cellular effect increased colony formation of M. aeruginosa, thereby inhibiting the growth of M. aeruginosa. D. galeata infochemicals provoked significantly greater (p < 0.05) adverse effects on M. aeruginosa than those of D. magna infochemicals, which were further exaggerated by pre-exposure of Daphnia to M. aeruginosa. This result seems to be related to the different compositions and concentrations of Daphnia infochemicals. Several Daphnia infochemicals, such as methyl ferulate, cyclohexanone, 3, 5-dimethyl, hexanedioic acid, and bis(2-ethylhexyl) ester, showed a high correlation with M. aeruginosa cell concentration (|r | >0.6), suggesting that they may play a key role in controlling harmful cyanobacteria. Additionally, pre-exposure of D. magna and D. galeata to M. aeruginosa produced oleic acid, methyl ester, and n-hexadecanoic acid, with a highly correlation with M. aeruginosa cell concentration (|r | >0.6). p-tolyl acetate and linoleic acid were detected only in the pre-exposed D. galeata infochemicals. These findings suggest that some of Daphnia infochemicals identified in this study can be a promising tool to control M. aeruginosa growth. However, further studies are required to verify the specific actions of these infochemicals against cyanobacteria.
Collapse
Affiliation(s)
- Gwiwoong Nam
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
11
|
Pan Y, Jia X, Ding R, Xia S, Zhu X. Interference of two typical polycyclic aromatic hydrocarbons on the induced anti-grazing defense of Tetradesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116263. [PMID: 38547727 DOI: 10.1016/j.ecoenv.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) cause severe ecological impacts by contaminating natural water bodies, affecting various biological groups, and altering interspecies relationships and ecological functions. This study examined the effects of two typical PAHs, phenanthrene (Phe) and naphthalene (Nap), on the anti-grazing defense mechanisms of Tetradesmus obliquus, a primary producer in freshwater food chains. Four non-lethal concentrations (0.01, 0.1, 1, and 10 mg L-1) of Phe and Nap were tested and the population growth, photosynthetic capacity, pigment content, and morphological defense of T. obliquus were analyzed. The results indicated that Phe and Nap inhibited both the growth rate and formation of defensive colonies of T. obliquus induced by Daphnia grazing cues, and the inhibition ratio increased with concentration. Phe and Nap significantly shortened the defense colony formation time of T. obliquus. Phe and Nap significantly suppressed photosynthesis in the early stages; however, the photosynthetic efficiency recovered over time. These findings highlight the high sensitivity of grazing-induced colony formation in T. obliquus to Phe and Nap at non-lethal concentrations, which could affect the interactions between phytoplankton and zooplankton in aquatic ecosystems. Our study underscores the influence of Phe and Nap on the defense mechanisms of phytoplankton and the consequential effects on ecological interactions within freshwater ecosystems, providing insight into the complex impacts of pollutants on phytoplankton-zooplankton relationships. Therefore, it is necessary to consider interspecific interactions when assessing the potential negative effects of environmental pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Ruowen Ding
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Siyu Xia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuexia Zhu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China.
| |
Collapse
|
12
|
Zhang S, Zheng T, Zhou M, Niu B, Li Y. Exposure to the mixotrophic dinoflagellate Lepidodinium sp. and its cues increase toxin production of Pseudo-nitzschia multiseries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169812. [PMID: 38181942 DOI: 10.1016/j.scitotenv.2023.169812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The present study examined the defense responses of toxigenic Pseudo-nitzschia species (P. multiseries) to a mixotrophic dinoflagellate, Lepidodinium sp., and its associated cues. We evaluated their responses to different predation risks, including direct physical contact and indirect interactions facilitated by cues from Lepidodinium sp. during active feeding on heterospecific prey (Rhodonomas salina), limited feeding on conspecific prey (P. multiseries) and non-feeding (autotrophic growth in f/2 medium) states. This study is the first investigation of these trophic interactions. Our results demonstrated a significant increase in cellular domoic acid (cDA) in P. multiseries when exposed to Lepidodinium sp. and its associated cues, which was 1.38 to 2.42 times higher than the non-induced group. Notably, this increase was observed regardless of Lepidodinium sp. feeding on this toxic diatom and nutritional modes. However, the most significant increase occurred when they directly interacted. These findings suggest that P. multiseries evaluates predation risk and increases cDA production as a defensive strategy against potential grazing threats. No morphological changes were observed in P. multiseries in response to Lepidodinium sp. or its cues. P. multiseries cultured in flasks of Group L+P-P showed a decrease in growth, but Group L-P and Group L+R-P did not exhibit any decrease. These results suggest a lack of consistent trade-offs between the defense response and growth, thus an increase in cDA production may be a sustainable and efficient defense strategy for P. multiseries. Furthermore, our findings indicate that P. multiseries had no significant impact on the fitness (cell size, growth and/or grazing) of Lepidodinium sp. and R. salina, which suggests no evident toxic or allelopathic impacts on these two phytoplankton species. This study enhances our understanding of the trophic interactions between toxic diatoms and mixotrophic dinoflagellates and helps elucidate the dynamics of Harmful Algal Blooms, toxin transmission, and their impact on ecosystem health.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Tingting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Muyao Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Biaobiao Niu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
13
|
Hardikar R, Haridevi CK, Deshbhratar S. Trait-based classification and environmental drivers of phytoplankton functional structure from anthropogenically altered tropical creek, Thane Creek India. MARINE POLLUTION BULLETIN 2024; 198:115767. [PMID: 38000261 DOI: 10.1016/j.marpolbul.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
The present study on variability in phytoplankton functional structure through a trait-based approach described the species-trait-environmental relationship and its possible impact on ecosystem functioning. Based on trait similarities 102 phytoplankton species were clubbed into 14 distinct functional groups. Among others, FGs-XI and XII (small size, chain-forming species with medium to high SA:V ratio and space between cells in chain) were the most dominant due to their competitive advantage in resource utilization and avoidance of loss processes. The morphological traits space between cells and cellular protrusion along with temperature and ammonia played a decisive role in their seasonal succession. Eutrophication in Thane Creek favors the dominance of anti-grazing traits which increases the phytoplankton biomass through efficient resource acquisition but can encumber the energy transfer efficiency. The dominance of HAB species impedes ecosystem functioning which raises public health concerns. The strong correlation of environmental variables with phytoplankton functional structure reinforces the practical implementation of a trait-based approach for understanding phytoplankton community dynamics under varying environmental conditions.
Collapse
Affiliation(s)
- Revati Hardikar
- CSIR-National Institute of Oceanography, regional centre-Mumbai, Lokhandwala Road, Andheri, India; Bhavan's, Hazarimal Somani College, Mumbai, India
| | - C K Haridevi
- CSIR-National Institute of Oceanography, regional centre-Mumbai, Lokhandwala Road, Andheri, India.
| | | |
Collapse
|
14
|
Dawydiak W, Gobler CJ. Transcription of biochemical defenses by the harmful brown tide pelagophyte, Aureococcus anophagefferens, in response to the protozoan grazer, Oxyrrhis marina. Front Microbiol 2023; 14:1295160. [PMID: 38163083 PMCID: PMC10756674 DOI: 10.3389/fmicb.2023.1295160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Aureococcus anophagefferens is a small marine pelagophyte that forms recurrent harmful brown tides blooms with adverse ecological and economic impacts. During blooms, A. anophagefferens experiences lower zooplankton grazing mortality than other phytoplankton potentially due to the synthesis of anti-predator compounds including extracellular polysaccharides. This study characterized the transcriptomic response of A. anophagefferens when exposed to the protozooplankton, Oxyrrhis marina, and assessed whether this response involved chemical cues. Transcriptomes were generated from A. anophagefferens populations grown at high (1×106 cells mL-1) and low (5×105 cells mL-1) cell densities incubated directly with O. marina or receiving only filtrate from co-cultures of A. anophagefferens and O. marina to evaluate the role of chemical cues. There were a greater number of genes differentially expressed in response to grazing in the lower concentration of A. anophagefferens compared to the high concentration treatment and in response to direct grazing compared to filtrate. KEGG pathway analysis revealed that direct grazer exposure led to a significant increase in transcripts of genes encoding secondary metabolite production (p < 0.001). There was broad transcriptional evidence indicating the induction of biosynthetic pathways for polyketides and sterols in response to zooplankton grazers, compounds associated with damage to marine organisms. In addition, exposure to O. marina elicited changes in the abundance of transcripts associated with carbohydrate metabolism that could support the formation of an extracellular polysaccharide matrix including genes related to glycoprotein synthesis and carbohydrate transport. Collectively, these findings support the hypothesis that A. anophagefferens can induce biochemical pathways that reduce grazing mortality and support blooms.
Collapse
Affiliation(s)
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
15
|
van Velzen E. High importance of indirect evolutionary rescue in a small food web. Ecol Lett 2023; 26:2110-2121. [PMID: 37807971 DOI: 10.1111/ele.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Evolutionary rescue may allow species to survive environmental change, but how this mechanism operates in food webs is poorly understood. Here, the evolutionary rescue was investigated in a small model food web, systematically allowing the evolution of each single species in order to reveal how its adaptation affects the persistence of itself and others. The impact of evolution was highly species-specific and not necessarily positive: only one species, the specialist predator, consistently had a positive impact on overall persistence. Most strikingly, evolution overwhelmingly affected other species: rescue of others (indirect rescue) was far more frequent than self-rescue, and negative effects were nearly always indirect. This demonstrates that evolutionary rescue in food webs is inextricably bound up with species interactions, as the effects of evolution in one species ripple through the entire community. It is therefore critically important to consider the food web context in efforts to understand how species may survive global change.
Collapse
Affiliation(s)
- Ellen van Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
16
|
Stenow R, Robertson EK, Whitehouse MJ, Ploug H. Single cell dynamics and nitrogen transformations in the chain forming diatom Chaetoceros affinis. THE ISME JOURNAL 2023; 17:2070-2078. [PMID: 37723340 PMCID: PMC10579250 DOI: 10.1038/s41396-023-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Colony formation in phytoplankton is often considered a disadvantage during nutrient limitation in aquatic systems. Using stable isotopic tracers combined with secondary ion mass spectrometry (SIMS), we unravel cell-specific activities of a chain-forming diatom and interactions with attached bacteria. The uptake of 13C-bicarbonate and15N-nitrate or 15N-ammonium was studied in Chaetoceros affinis during the stationary growth phase. Low cell-to-cell variance of 13C-bicarbonate and 15N-nitrate assimilation within diatom chains prevailed during the early stationary phase. Up to 5% of freshly assimilated 13C and 15N was detected in attached bacteria within 12 h and supported bacterial C- and N-growth rates up to 0.026 h-1. During the mid-stationary phase, diatom chain-length decreased and 13C and 15N-nitrate assimilation was significantly higher in solitary cells as compared to that in chain cells. During the late stationary phase, nitrate assimilation ceased and ammonium assimilation balanced C fixation. At this stage, we observed highly active cells neighboring inactive cells within the same chain. In N-limited regimes, bacterial remineralization of N and the short diffusion distance between neighbors in chains may support surviving cells. This combination of "microbial gardening" and nutrient transfer within diatom chains represents a strategy which challenges current paradigms of nutrient fluxes in plankton communities.
Collapse
Affiliation(s)
- Rickard Stenow
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden.
| | - Elizabeth K Robertson
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden
| | - Martin J Whitehouse
- Swedish Museum of Natural History, Box 50 007, SE, 104 05, Stockholm, Sweden
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Box 461, SE, 405 30, Gothenburg, Sweden
| |
Collapse
|
17
|
Machado MD, Soares EV. Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106732. [PMID: 37879199 DOI: 10.1016/j.aquatox.2023.106732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This work focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata (formerly known as Pseudokirchneriella subcapitata and Selenastrum capricornutum), when exposed to adverse conditions generated by the presence of organic [the antibiotic erythromycin (ERY) and the herbicide metolachlor (MET)] or inorganic [the heavy metals, cadmium (Cd) and zinc (Zn)] pollutants, at environmentally relevant concentrations. This alga in absence of stress or when exposed to ERY or Zn, up to 200 µg/L, essentially showed a single-nucleus state, although algal growth was reduced or stopped. R. subcapitata "switched" to a multinucleated state (palmelloid-like morphology) and accumulated energy-reserve compounds (neutral lipids) when stressed by 100-200 µg/L MET or 200 µg/L Cd; at these concentrations of pollutants, growth was arrested, however, the majority of the algal population (≥83 %) was alive. The formation of palmelloid-like phenotype, at sub-lethal concentrations of pollutants, was dependent on the pollutant, its concentration and exposure time. The multinucleated structure is a transitory phenotype since R. subcapitata population was able to revert to a single-nucleus state, with normal cell size, within 24-96 h (depending on the impact of the toxic in the alga), after being transferred to fresh OECD medium, without pollutants. The obtained results indicate that the formation of a palmelloid-like phenotype in R. subcapitata is dependent on the mode of action of toxics and their concentration, not constituting a generalized defense mechanism against stress. The observations here shown contribute to understanding the different strategies used by the unicellular alga R. subcapitata to cope with severe stress imposed by organic and inorganic pollutants.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP, Polytechnic of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
18
|
Harvey THP. Colonial green algae in the Cambrian plankton. Proc Biol Sci 2023; 290:20231882. [PMID: 37876191 PMCID: PMC10598416 DOI: 10.1098/rspb.2023.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
The fossil record indicates a major turnover in marine phytoplankton across the Ediacaran-Cambrian transition, coincident with the rise of animal-rich ecosystems. However, the diversity, affinities and ecologies of Cambrian phytoplankton are poorly understood, leaving unclear the role of animal interactions and the drivers of diversification. New exceptionally preserved acritarchs (problematic organic-walled microfossils) from the late early Cambrian (around 510 Ma) reveal colonial organization characterized by rings and plates of interconnected, geometrically arranged cells. The assemblage exhibits a wide but gradational variation in cell size, ornamentation and intercell connection, interpreted as representing one or more species with determinate (coenobial) colony formation via cell division, aggregation and growth by cell expansion. An equivalent strategy is known only among green algae, specifically chlorophycean chlorophytes. The fossils differ in detail from modern freshwater examples and apparently represent an earlier convergent radiation in marine settings. Known trade-offs between sinking risk and predator avoidance in colonial phytoplankton point to adaptations triggered by intensifying grazing pressure during a Cambrian metazoan invasion of the water column. The new fossils reveal that not all small acritarchs are unicellular resting cysts, and support an early Palaeozoic prominence of green algal phytoplankton as predicted by molecular biomarkers.
Collapse
Affiliation(s)
- Thomas H. P. Harvey
- Centre for Palaeobiology and Biosphere Evolution, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
19
|
Park G, Norton L, Avery D, Dam HG. Grazers modify the dinoflagellate relationship between toxin production and cell growth. HARMFUL ALGAE 2023; 126:102439. [PMID: 37290888 DOI: 10.1016/j.hal.2023.102439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Although the typical framework for studies and models of bloom dynamics in toxigenic phytoplankton is predominantly based on abiotic determinants, there is mounting evidence of grazer control of toxin production. We tested for the effect of grazer control of toxin production and cell growth rate during a laboratory-simulated bloom of the dinoflagellate Alexandrium catenella. We measured cellular toxin content and net growth rate when cells were exposed to copepod grazers (direct exposure), copepod cues (indirect exposure), and no copepods (control) throughout the exponential, stationary, and declining phases of the bloom. During the simulated bloom, cellular toxin content plateaued after the stationary phase and there was a significantly positive relationship between growth rate and toxin production, predominantly in the exponential phase. Grazer-induced toxin production was evident throughout the bloom, but highest during the exponential phase. Induction was greater when cells were directly exposed to grazers rather than their cues alone. In the presence of grazers toxin production and cell growth rate were negatively related, indicating a defense-growth trade-off. Further, a fitness reduction associated with toxin production was more evident in the presence than the absence of grazers. Consequently, the relationship between toxin production and cell growth is fundamentally different between constitutive and inducible defense. This suggests that understanding and predicting bloom dynamics requires considering both constitutive and grazer-induced toxin production.
Collapse
Affiliation(s)
- Gihong Park
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - Lydia Norton
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - David Avery
- Maine Maritime Academy, 1 Pleasant Street, Castine, Maine 04420, USA.
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| |
Collapse
|
20
|
Kléparski L, Beaugrand G, Edwards M, Ostle C. Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100. GLOBAL CHANGE BIOLOGY 2023; 29:3833-3849. [PMID: 37026559 DOI: 10.1111/gcb.16709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/19/2022] [Accepted: 03/12/2023] [Indexed: 06/06/2023]
Abstract
Significant phenological shifts induced by climate change are projected within the phytoplankton community. However, projections from current Earth System Models (ESMs) understandably rely on simplified community responses that do not consider evolutionary strategies manifested as various phenotypes and trait groups. Here, we use a species-based modelling approach, combined with large-scale plankton observations, to investigate past, contemporary and future phenological shifts in diatoms (grouped by their morphological traits) and dinoflagellates in three key areas of the North Atlantic Ocean (North Sea, North-East Atlantic and Labrador Sea) from 1850 to 2100. Our study reveals that the three phytoplanktonic groups exhibit coherent and different shifts in phenology and abundance throughout the North Atlantic Ocean. The seasonal duration of large flattened (i.e. oblate) diatoms is predicted to shrink and their abundance to decline, whereas the phenology of slow-sinking elongated (i.e. prolate) diatoms and of dinoflagellates is expected to expand and their abundance to rise, which may alter carbon export in this important sink region. The increase in prolates and dinoflagellates, two groups currently not considered in ESMs, may alleviate the negative influence of global climate change on oblates, which are responsible of massive peaks of biomass and carbon export in spring. We suggest that including prolates and dinoflagellates in models may improve our understanding of the influence of global climate change on the biological carbon cycle in the oceans.
Collapse
Affiliation(s)
- Loïck Kléparski
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Wimereux, France
- Marine Biological Association, Plymouth, UK
| | - Grégory Beaugrand
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Wimereux, France
| | - Martin Edwards
- Plymouth Marine Laboratory, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
21
|
Jia X, Pan Y, Zhu X. Salinization and heavy metal cadmium impair growth but have contrasting effects on defensive colony formation of Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160693. [PMID: 36481135 DOI: 10.1016/j.scitotenv.2022.160693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Driven by anthropogenic activities, freshwater salinization has become an emerging global environmental issue. Recent studies indicate that salinization increases the mobility of heavy metals in soil and causes higher flux into surface waterbodies. The present study assessed the combined effects of salinization (0, 3, 6 PSU) and the heavy metal Cd2+ (0, 0.2, 0.4 mg L-1) on the anti-grazing colony formation and population growth of Scenedesmus obliquus, a common freshwater alga. The results showed that the increase in salinity promoted colony formation of S. obliquus with or without the presence of grazing cues and, in contrast, Cd2+ contamination depressed the defensive colony formation of S. obliquus to Daphnia filtrate. The increase in both salinity and Cd2+ concentration depressed the population growth of S. obliquus, including impaired photosynthesis and a decreased population growth rate. Salinization moderated the negative effects of Cd2+ on defensive colony formation of S. obliquus, suggesting increased absorption of Cd2+ ions by a thicker outer layer of the algal cell wall under saltier conditions. As a result, larger defensive colonies of S. obliquus under freshwater salinization may cause higher bioaccumulation of heavy metals by algal cells and heavier influence on zooplankton. This study provides evidence that freshwater salinization could interfere with plankton interactions by affecting algal defense and growth, which may lead to bottom-up cascading effects on freshwater food webs.
Collapse
Affiliation(s)
- Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Xuexia Zhu
- The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China; College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
22
|
Weigel B, Kotamäki N, Malve O, Vuorio K, Ovaskainen O. Macrosystem community change in lake phytoplankton and its implications for diversity and function. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:295-309. [PMID: 37081858 PMCID: PMC10107180 DOI: 10.1111/geb.13626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 05/03/2023]
Abstract
Aim We use lake phytoplankton community data to quantify the spatio-temporal and scale-dependent impacts of eutrophication, land-use and climate change on species niches and community assembly processes while accounting for species traits and phylogenetic constraints. Location Finland. Time period 1977-2017. Major taxa Phytoplankton. Methods We use hierarchical modelling of species communities (HMSC) to model metacommunity trajectories at 853 lakes over four decades of environmental change, including a hierarchical spatial structure to account for scale-dependent processes. Using a "region of common profile" approach, we evaluate compositional changes of species communities and trait profiles and investigate their temporal development. Results We demonstrate the emergence of novel and widespread community composition clusters in previously more compositionally homogeneous communities, with cluster-specific community trait profiles, indicating functional differences. A strong phylogenetic signal of species responses to the environment implies similar responses among closely related taxa. Community cluster-specific species prevalence indicates lower taxonomic dispersion within the current dominant clusters compared with the historically dominant cluster and an overall higher prevalence of smaller species sizes within communities. Our findings denote profound spatio-temporal structuring of species co-occurrence patterns and highlight functional differences of lake phytoplankton communities. Main conclusions Diverging community trajectories have led to a nationwide reshuffling of lake phytoplankton communities. At regional and national scales, lakes are not single entities but metacommunity hubs in an interconnected waterscape. The assembly mechanisms of phytoplankton communities are strongly structured by spatio-temporal dynamics, which have led to novel community types, but only a minor part of this reshuffling could be linked to temporal environmental change.
Collapse
Affiliation(s)
- Benjamin Weigel
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Olli Malve
- Finnish Environment InstituteHelsinkiFinland
| | | | - Otso Ovaskainen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
23
|
Elongation enhances encounter rates between phytoplankton in turbulence. Proc Natl Acad Sci U S A 2022; 119:e2203191119. [PMID: 35917347 PMCID: PMC9371716 DOI: 10.1073/pnas.2203191119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phytoplankton come in a stunning variety of shapes but elongated morphologies dominate-typically 50% of species have aspect ratio above 5, and bloom-forming species often form chains whose aspect ratios can exceed 100. How elongation affects encounter rates between phytoplankton in turbulence has remained unknown, yet encounters control the formation of marine snow in the ocean. Here, we present simulations of encounters among elongated phytoplankton in turbulence, showing that encounter rates between neutrally buoyant elongated cells are up to 10-fold higher than for spherical cells and even higher when cells sink. Consequently, we predict that elongation can significantly speed up the formation of marine snow compared to spherical cells. This unexpectedly large effect of morphology in driving encounter rates among plankton provides a potential mechanistic explanation for the rapid clearance of many phytoplankton blooms.
Collapse
|
24
|
Grzesiuk M, Pietrzak B, Wacker A, Pijanowska J. Photosynthetic activity in both algae and cyanobacteria changes in response to cues of predation. FRONTIERS IN PLANT SCIENCE 2022; 13:907174. [PMID: 35958198 PMCID: PMC9358279 DOI: 10.3389/fpls.2022.907174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A plethora of adaptive responses to predation has been described in microscopic aquatic producers. Although the energetic costs of these responses are expected, with their consequences going far beyond an individual, their underlying molecular and metabolic mechanisms are not fully known. One, so far hardly considered, is if and how the photosynthetic efficiency of phytoplankton might change in response to the predation cues. Our main aim was to identify such responses in phytoplankton and to detect if they are taxon-specific. We exposed seven algae and seven cyanobacteria species to the chemical cues of an efficient consumer, Daphnia magna, which was fed either a green alga, Acutodesmus obliquus, or a cyanobacterium, Synechococcus elongatus (kairomone and alarm cues), or was not fed (kairomone alone). In most algal and cyanobacterial species studied, the quantum yield of photosystem II increased in response to predator fed cyanobacterium, whereas in most of these species the yield did not change in response to predator fed alga. Also, cyanobacteria tended not to respond to a non-feeding predator. The modal qualitative responses of the electron transport rate were similar to those of the quantum yield. To our best knowledge, the results presented here are the broadest scan of photosystem II responses in the predation context so far.
Collapse
Affiliation(s)
- Małgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Barbara Pietrzak
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| | - Alexander Wacker
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Animal Ecology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Joanna Pijanowska
- Department of Hydrobiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw Biological and Chemical Research Centre, Warszawa, Poland
| |
Collapse
|
25
|
Singh P, Grone N, Tewes LJ, Müller C. Chemical defense acquired via pharmacophagy can lead to protection from predation for conspecifics in a sawfly. Proc Biol Sci 2022; 289:20220176. [PMID: 35858054 PMCID: PMC9257289 DOI: 10.1098/rspb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemical defense is a widespread anti-predator strategy exhibited by organisms, with individuals either synthesizing or extrinsically acquiring defensive chemicals. In some species, such defences can also be transferred among conspecifics. Here, we tested the effects of pharmacophagy on the defense capability of the turnip sawfly, Athalia rosae, which can acquire neo-clerodane diterpenoids (clerodanoids) via pharmacophagy when having access to the plant Ajuga reptans. We show that clerodanoid access mediates protection against predation by mantids for the sawflies, both in a no-choice feeding assay and a microcosm setup. Even indirect access to clerodanoids, via nibbling on conspecifics that had access to the plant, resulted in protection against predation albeit to a lower degree than direct access. Furthermore, sawflies that had no direct access to clerodanoids were consumed less frequently by mantids when they were grouped with conspecifics that had direct access. Most, but not all, of such initially undefended sawflies could acquire clerodanoids from conspecifics that had direct access to the plant, although in low quantities. Together our results demonstrate that clerodanoids serve as a chemical defense that can also be transferred by interactions among conspecifics. Moreover, the presence of chemically defended individuals in a group can confer protection onto conspecifics that had no direct access to clerodanoids.
Collapse
Affiliation(s)
- Pragya Singh
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Neil Grone
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Lisa Johanna Tewes
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
26
|
McPeek MA, McPeek SJ, Fu F. Character displacement when natural selection pushes in only one direction. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mark A. McPeek
- Department of Biological Sciences Dartmouth College Hanover New Hampshire USA
| | | | - Feng Fu
- Department of Mathematics Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
27
|
Kath NJ, Gaedke U, van Velzen E. The double-edged sword of inducible defences: costs and benefits of maladaptive switching from the individual to the community level. Sci Rep 2022; 12:10344. [PMID: 35725738 PMCID: PMC9209413 DOI: 10.1038/s41598-022-13895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity can increase individual fitness when environmental conditions change over time. Inducible defences are a striking example, allowing species to react to fluctuating predation pressure by only expressing their costly defended phenotype under high predation risk. Previous theoretical investigations have focused on how this affects predator–prey dynamics, but the impact on competitive outcomes and broader community dynamics has received less attention. Here we use a small food web model, consisting of two competing plastic autotrophic species exploited by a shared consumer, to study how the speed of inducible defences across three trade-off constellations affects autotroph coexistence, biomasses across trophic levels, and temporal variability. Contrary to the intuitive idea that faster adaptation increases autotroph fitness, we found that higher switching rates reduced individual fitness as it consistently provoked more maladaptive switching towards undefended phenotypes under high predation pressure. This had an unexpected positive impact on the consumer, increasing consumer biomass and lowering total autotroph biomass. Additionally, maladaptive switching strongly reduced autotroph coexistence through an emerging source-sink dynamic between defended and undefended phenotypes. The striking impact of maladaptive switching on species and food web dynamics indicates that this mechanism may be of more critical importance than previously recognized.
Collapse
Affiliation(s)
- Nadja J Kath
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany.
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Ellen van Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany
| |
Collapse
|
28
|
Olesen AJ, Ryderheim F, Krock B, Lundholm N, Kiørboe T. Costs and benefits of predator-induced defence in a toxic diatom. Proc Biol Sci 2022; 289:20212735. [PMID: 35414232 DOI: 10.1098/rspb.2021.2735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytoplankton employ a variety of defence mechanisms against predation, including production of toxins. Domoic acid (DA) production by the diatom Pseudo-nitzschia spp. is induced by the presence of predators and is considered to provide defence benefits, but the evidence is circumstantial. We exposed eight different strains of P. seriata to chemical cues from copepods and examined the costs and the benefits of toxin production. The magnitude of the induced toxin response was highly variable among strains, while the costs in terms of growth reduction per DA cell quota were similar and the trade-off thus consistent. We found two components of the defence in induced cells: (i) a 'private good' in terms of elevated rejection of captured cells and (ii) a 'public good' facilitated by a reduction in copepod feeding activity. Induced cells were more frequently rejected by copepods and rejections were directly correlated with DA cell quota and independent of access to other food items. By contrast, the public-good effect was diminished by the presence of alternative prey suggesting that it does not play a major role in bloom formation and that its evolution is closely associated with the grazing-deterrent private good.
Collapse
Affiliation(s)
- Anna J Olesen
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Selective drivers of simple multicellularity. Curr Opin Microbiol 2022; 67:102141. [PMID: 35247708 DOI: 10.1016/j.mib.2022.102141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022]
Abstract
In order to understand the evolution of multicellularity, we must understand how and why selection favors the first steps in this process: the evolution of simple multicellular groups. Multicellularity has evolved many times in independent lineages with fundamentally different ecologies, yet no work has yet systematically examined these diverse selective drivers. Here we review recent developments in systematics, comparative biology, paleontology, synthetic biology, theory, and experimental evolution, highlighting ten selective drivers of simple multicellularity. Our survey highlights the many ecological opportunities available for simple multicellularity, and stresses the need for additional work examining how these first steps impact the subsequent evolution of complex multicellularity.
Collapse
|
30
|
Morpho-Functional Traits Reveal Differences in Size Fractionated Phytoplankton Communities but Do Not Significantly Affect Zooplankton Grazing. Microorganisms 2022; 10:microorganisms10010182. [PMID: 35056631 PMCID: PMC8779030 DOI: 10.3390/microorganisms10010182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
The recent emergence of approaches based on functional traits allows a more comprehensive evaluation of the role of functions and interactions within communities. As phytoplankton size and shape are the major determinants of its edibility to herbivores, alteration or loss of some morpho-functional phytoplankton traits should affect zooplankton grazing, fitness and population dynamics. Here, we investigated the response of altered phytoplankton morpho-functional trait distribution to grazing by zooplankton with contrasting food size preferences and feeding behaviors. To test this, we performed feeding trials in laboratory microcosms with size-fractionated freshwater phytoplankton (3 size classes, >30 µm; 5–30 µm and <5 µm) and two different consumer types: the cladoceran Daphnia longispina, (generalist unselective filter feeder) and the calanoid copepod Eudiaptomus sp. (selective feeder). We observed no significant changes in traits and composition between the controls and grazed phytoplankton communities. However, community composition and structure varied widely between the small and large size fractions, demonstrating the key role of size in structuring natural phytoplankton communities. Our findings also highlight the necessity to combine taxonomy and trait-based morpho-functional approaches when studying ecological dynamics in phytoplankton-zooplankton interactions.
Collapse
|
31
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
32
|
Hillebrand H, Acevedo‐Trejos E, Moorthi SD, Ryabov A, Striebel M, Thomas PK, Schneider M. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB] Oldenburg Germany
- Alfred Wegener Institute Helmholtz‐Centre for Polar and Marine Research [AWI] Bremerhaven Germany
| | - Esteban Acevedo‐Trejos
- Earth Surface Process Modelling Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany
| | - Stefanie D. Moorthi
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Alexey Ryabov
- Institute for Chemistry and Biology of Marine Environments [ICBM] Mathematical Modelling Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
- Institute of Forest Growth and Computer Science Technische Universität Dresden Tharandt Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Patrick K. Thomas
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| | - Marie‐Luise Schneider
- Institute for Chemistry and Biology of Marine Environments [ICBM] Plankton Ecology Lab Carl‐von‐Ossietzky University Oldenburg Wilhelmshaven Germany
| |
Collapse
|
33
|
Vilar MCP, da Costa Pena Rodrigues TF, da Silva Ferrão-Filho A, de Oliveira E Azevedo SMF. Grazer-Induced Chemical Defense in a Microcystin-Producing Microcystis aeruginosa (Cyanobacteria) Exposed to Daphnia gessneri Infochemicals. J Chem Ecol 2021; 47:847-858. [PMID: 34569003 DOI: 10.1007/s10886-021-01315-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that compose phytoplankton and therefore have a trophic relationship with zooplankton, which represent an important link for energy flux in aquatic food webs. Several species can form blooms and produce bioactive metabolites known as cyanotoxins. However, the ecological and adaptative role of these toxins are still under debate. Many studies have addressed the cyanotoxins' function in defense against herbivory when grazing pressure by zooplankton plays a role in phytoplankton top-down control. Thus, the present study evaluated the ecophysiological responses of the cyanobacterial strain Microcystis aeruginosa NPLJ-4 underlying the chemical induced defense against the cladoceran Daphnia gessneri. Exposure to predator infochemicals consisted of cultures established in ASM-1 medium prepared in a filtrate from a culture of adults of D. gessneri at an environmentally relevant density. Daphnia infochemicals promoted a significant increase in toxin production by M. aeruginosa. However, no differences in growth were observed, despite a significant increase in both maximum photosynthetic efficiency and electron transport rate in response to zooplankton. Additionally, there was no significant variation in the production of exopolysaccharides. Overall, although a grazer-induced defense response was demonstrated, there were no effects on M. aeruginosa fitness, which maintained its growth in the presence of Daphnia alarm cues.
Collapse
Affiliation(s)
- Mauro Cesar Palmeira Vilar
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil.
| | - Thiago Ferreira da Costa Pena Rodrigues
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Aloysio da Silva Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Sandra Maria Feliciano de Oliveira E Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| |
Collapse
|
34
|
Ren X, Yu Z, Qiu L, Cao X, Song X. Effects of Modified Clay on Phaeocystis globosa Growth and Colony Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910163. [PMID: 34639465 PMCID: PMC8507688 DOI: 10.3390/ijerph181910163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Phaeocystis globosa is a globally distributed harmful algal blooms (HABs) species dominated by the colonial morphotype, which presents dramatic environmental hazards and poses a threat to human health. Modified clay (MC) can effectively flocculate HAB organisms and prevent their subsequent growth, but the effects of MC on colony-dominated P. globosa blooms remain uncertain. In this paper, a series of removal and incubation experiments were conducted to investigate the growth, colony formation and colony development of P. globosa cells after treatment with MC. The results show that the density of colonies was higher at MC concentrations below 0.2 g/L compared to those in the control, indicating the role of P. globosa colonies in resistance to environmental stress. Concentrations of MC greater than 0.2 g/L could reduce the density of solitary cells and colonies, and the colony diameter and extracellular polysaccharide (EPS) content were also decreased. The adsorption of MC to dissolved inorganic phosphorus (DIP) and the cell damage caused by collision may be the main mechanisms underlying this phenomenon. These results elucidate that the treatment with an appropriate concentration of MC may provide an effective mitigation strategy for P. globosa blooms by preventing their growth and colony formation.
Collapse
Affiliation(s)
- Xiangzheng Ren
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.R.); (L.Q.); (X.C.); (X.S.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.R.); (L.Q.); (X.C.); (X.S.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-82898587
| | - Lixia Qiu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.R.); (L.Q.); (X.C.); (X.S.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.R.); (L.Q.); (X.C.); (X.S.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.R.); (L.Q.); (X.C.); (X.S.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
35
|
Landolfi A, Prowe AEF, Pahlow M, Somes CJ, Chien CT, Schartau M, Koeve W, Oschlies A. Can Top-Down Controls Expand the Ecological Niche of Marine N 2 Fixers? Front Microbiol 2021; 12:690200. [PMID: 34489886 PMCID: PMC8416505 DOI: 10.3389/fmicb.2021.690200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100–200 Tg N/year and turning otherwise unavailable dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N2 are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We expand a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective mortality, mediated by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophs. Our simplified analysis predicts a larger importance of top-down control on competition patterns as resource levels increase. As grazing controls the faster growing phytoplankton, coexistence of the slower growing diazotrophs can be established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for patterns and rates of marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.
Collapse
Affiliation(s)
- Angela Landolfi
- Institute of Marine Sciences, National Research Council, Rome, Italy.,Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - A E Friederike Prowe
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Markus Pahlow
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Christopher J Somes
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Chia-Te Chien
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Markus Schartau
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Wolfgang Koeve
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Andreas Oschlies
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
36
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|
37
|
Ryderheim F, Selander E, Kiørboe T. Predator-induced defence in a dinoflagellate generates benefits without direct costs. THE ISME JOURNAL 2021; 15:2107-2116. [PMID: 33580210 PMCID: PMC8245491 DOI: 10.1038/s41396-021-00908-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
Inducible defences in phytoplankton are often assumed to come at a cost to the organism, but trade-offs have proven hard to establish experimentally. A reason for this may be that some trade-off costs only become evident under resource-limiting conditions. To explore the effect of nutrient limitation on trade-offs in toxin-producing dinoflagellates, we induced toxin production in Alexandrium minutum by chemical cues from copepods under different levels of nitrogen limitation. The effects were both nitrogen- and grazer-concentration dependent. Induced cells had higher cellular toxin content and a larger fraction of the cells was rejected by a copepod, demonstrating the clear benefits of toxin production. Induced cells also had a higher carbon and nitrogen content, despite up to 25% reduction in cell size. Unexpectedly, induced cells seemed to grow faster than controls, likely owing to a higher specific nutrient affinity due to reduced size. We thus found no clear trade-offs, rather the opposite. However, indirect ecological costs that do not manifest under laboratory conditions may be important. Inducing appropriate defence traits in response to threat-specific warning signals may also prevent larger cumulative costs from expressing several defensive traits simultaneously.
Collapse
Affiliation(s)
- Fredrik Ryderheim
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark.
| | - Erik Selander
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
38
|
Vilar MCP, Rodrigues TFCP, Silva LO, Pacheco ABF, Ferrão-Filho AS, Azevedo SMFO. Ecophysiological Aspects and sxt Genes Expression Underlying Induced Chemical Defense in STX-Producing Raphidiopsis raciborskii (Cyanobacteria) against the Zooplankter Daphnia gessneri. Toxins (Basel) 2021; 13:406. [PMID: 34200983 PMCID: PMC8230027 DOI: 10.3390/toxins13060406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria stand out among phytoplankton when they form massive blooms and produce toxins. Because cyanotoxin genes date to the origin of metazoans, the hypothesis that cyanotoxins function as a defense against herbivory is still debated. Although their primary cellular function might vary, these metabolites could have evolved as an anti-predator response. Here we evaluated the physiological and molecular responses of a saxitoxin-producing Raphidiopsis raciborskii to infochemicals released by the grazer Daphnia gessneri. Induced chemical defenses were evidenced in R. raciborskii as a significant increase in the transcription level of sxt genes, followed by an increase in saxitoxin content when exposed to predator cues. Moreover, cyanobacterial growth decreased, and no significant effects on photosynthesis or morphology were observed. Overall, the induced defense response was accompanied by a trade-off between toxin production and growth. These results shed light on the mechanisms underlying zooplankton-cyanobacteria interactions in aquatic food webs. The widespread occurrence of the cyanobacterium R. raciborskii in freshwater bodies has been attributed to its phenotypic plasticity. Assessing the potential of this species to thrive over interaction filters such as zooplankton grazing pressure can enhance our understanding of its adaptive success.
Collapse
Affiliation(s)
- Mauro C. P. Vilar
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Thiago F. C. P. Rodrigues
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Luan O. Silva
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| | - Ana Beatriz F. Pacheco
- Laboratory Biological Physics, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil;
| | - Aloysio S. Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | - Sandra M. F. O. Azevedo
- Laboratory Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (T.F.C.P.R.); (L.O.S.); (S.M.F.O.A.)
| |
Collapse
|
39
|
Zhang L, Sun Y, Cheng J, Cui G, Huang Y, Yang Z. Warming mitigates the enhancement effect of elevated air CO 2 on anti-grazer morphological defense in Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145341. [PMID: 33517020 DOI: 10.1016/j.scitotenv.2021.145341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric CO2 and temperature are increasing, which will have substantial impacts on interactions among organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects on the interspecies interaction. In order to reveal how warming and elevated CO2 interact on the induced defense of phytoplankton, we investigated the combined influences of elevated CO2 (750 ppm vs 390 ppm) and high temperature (28 °C and 31 °C vs 25 °C) on grazer Daphnia-induced morphological defense in Scenedesmus obliquus. Results showed that S. obliquus formed big-sized colonies (e.g., four- and eight-celled colonies) as response to Daphnia infochemicals, resulting in an increase in the number of cells per particle. Elevated CO2 further decreased the proportion of unicells from >40% in the populations growing at 390 ppm CO2 without Daphnia filtrate to <7% in the populations growing at 750 ppm CO2 with Daphnia filtrate, with the formation of more than 90% colonies, thus enhancing this morphological defense in S. obliquus. However, under elevated CO2, increasing temperature up to 31 °C remarkably increased the four-celled colonies by at least 159% but decreased the eight-celled colonies by 37% compared with 25 °C. As a result, the maximum cells per particle were significantly decreased to the 390 ppm CO2-grown level at high temperature. The time to reach the maximum cells per particle was also shortened by high temperature under elevated CO2. These results suggest that high temperature has an overwhelming inhibitory effect on the enhanced anti-grazer defense by elevated CO2, which provides significant implications for forecasting the predator-prey interaction changes in freshwater ecosystem under future climate regimes.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiahui Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Guilian Cui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
40
|
Zhang S, Zheng T, Lundholm N, Huang X, Jiang X, Li A, Li Y. Chemical and morphological defenses of Pseudo-nitzschia multiseries in response to zooplankton grazing. HARMFUL ALGAE 2021; 104:102033. [PMID: 34023076 DOI: 10.1016/j.hal.2021.102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/13/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Pseudo-nitzschia species frequently blooms in coastal waters, and some species are able to produce the toxin domoic acid (DA), hereby causing harm to the marine ecosystem and humans. Laboratory studies were conducted to investigate the influence of different levels of grazing pressure on the morphological and chemical response (in terms of cellular DA production) of Pseudo-nitzschia. Subsequently, zooplankton grazer responses to these defenses were examined. The cellular DA content of P. multiseries ranged from 0.11-0.27 pg cell-1 without grazers, and increased up to 44% with the presence of grazers (Artemia nauplii) and with grazer concentration. Grazing also affected the density of P. multiseries chains and average chain length which became ~25% higher and ~8% longer, respectively, than without grazers. These effects could either be caused by size-dependent grazing or by grazer-cue-induced effects on chain formation. A negative correlation between cellular DA content in P. multiseries and clearance and/or ingestion rates of Artemia nauplii indicate that DA might have a negative effect on the grazing of Artemia nauplii. Such interaction might result in a decrease in grazing pressure on toxic blooming species, like P. multiseries, and hence potentially a prolonged bloom. This indicates that the interaction between toxic diatoms and grazers may have implications on aquatic food web structure and the progression of Pseudo-nitzschia blooms.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Tingting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Xiaofeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Xiaohang Jiang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, School of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou, 510631, PR China.
| |
Collapse
|
41
|
Gin KYH, Sim ZY, Goh KC, Kok JWK, Te SH, Tran NH, Li W, He Y. Novel cyanotoxin-producing Synechococcus in tropical lakes. WATER RESEARCH 2021; 192:116828. [PMID: 33508721 DOI: 10.1016/j.watres.2021.116828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Picocyanobacteria are small cyanobacteria, being about 0.8-1.5 µm in size. They are present in freshwater environments all over the world and are known to cause harmful algal blooms, although their effects are not well understood. Algal blooms are important to manage because they threaten freshwater resources, with potentially severe effects on ecological and human health. There is also increased urgency due to urbanization and climate change trends which are expected to exacerbate these bloom dynamics. These changes are expected to especially favour picocyanobacteria groups, emphasizing the need for better characterization of their effects in the environment. In this study, we report the discovery that Synechococcus sp. could produce cylindrospermopsin (CYN) and anatoxin-a (ATX). This ability had never been previously reported for this species. Their toxin genes were also partial compared to other major producers such as Raphidiopsis sp. and Anabaena sp., demonstrating potentially unique synthesis pathways that provides insight into the various mechanisms of genetic variation that drives toxin synthesis. The Synechococcus sp. strains were found to produce about 9.0 × 10-5-6.8 × 10-4 fg CYN cell-1 and 4.7 × 10-4-1.5 × 10-2 fg ATX cell-1. The potential for Synechococcus sp. to be toxic highlights a global concern due to its widespread distribution, and through environmental trends that increasingly favour its productivity within freshwater systems around the world.
Collapse
Affiliation(s)
- Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Jerome Wai Kit Kok
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shu Harn Te
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wenxuan Li
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Park G, Dam HG. Cell-growth gene expression reveals a direct fitness cost of grazer-induced toxin production in red tide dinoflagellate prey. Proc Biol Sci 2021; 288:20202480. [PMID: 33563117 DOI: 10.1098/rspb.2020.2480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induced prey defences against consumers are conspicuous in microbes, plants and animals. In toxigenic prey, a defence fitness cost should result in a trade-off between defence expression and individual growth. Yet, previous experimental work has failed to detect such induced defence cost in toxigenic phytoplankton. We measured a potential direct fitness cost of grazer-induced toxin production in a red tide dinoflagellate prey using relative gene expression (RGE) of a mitotic cyclin gene (cyc), a marker that correlates to cell growth. This approach disentangles the reduction in cell growth from the defence cost from the mortality by consumers. Treatments where the dinoflagellate Alexandrium catenella were exposed to copepod grazers significantly increased toxin production while decreasing RGE of cyc, indicating a defence-growth trade-off. The defence fitness cost represents a mean decrease of the cell growth rate of 32%. Simultaneously, we estimate that the traditional method to measure mortality loss by consumers is overestimated by 29%. The defence appears adaptive as the prey population persists in quasi steady state after the defence is induced. Our approach provides a novel framework to incorporate the fitness cost of defence in toxigenic prey-consumer interaction models.
Collapse
Affiliation(s)
- Gihong Park
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| |
Collapse
|
43
|
Pelusi A, De Luca P, Manfellotto F, Thamatrakoln K, Bidle KD, Montresor M. Virus-induced spore formation as a defense mechanism in marine diatoms. THE NEW PHYTOLOGIST 2021; 229:2251-2259. [PMID: 32978816 PMCID: PMC7894508 DOI: 10.1111/nph.16951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Algal viruses are important contributors to carbon cycling, recycling nutrients and organic material through host lysis. Although viral infection has been described as a primary mechanism of phytoplankton mortality, little is known about host defense responses. We show that viral infection of the bloom-forming, planktonic diatom Chaetoceros socialis induces the mass formation of resting spores, a heavily silicified life cycle stage associated with carbon export due to rapid sinking. Although viral RNA was detected within spores, mature virions were not observed. 'Infected' spores were capable of germinating, but did not propagate or transmit infectious viruses. These results demonstrate that diatom spore formation is an effective defense strategy against viral-mediated mortality. They provide a possible mechanistic link between viral infection, bloom termination, and mass carbon export events and highlight an unappreciated role of viruses in regulating diatom life cycle transitions and ecological success.
Collapse
Affiliation(s)
- Angela Pelusi
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Pasquale De Luca
- Research Infrastructures for Marine Biological ResourcesStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Francesco Manfellotto
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | | | - Kay D. Bidle
- Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickNJ08901‐8520USA
| | - Marina Montresor
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| |
Collapse
|
44
|
Jadrná I, Siver PA, Škaloud P. Morphological evolution of silica scales in the freshwater genus Synura (Stramenopiles). JOURNAL OF PHYCOLOGY 2021; 57:355-369. [PMID: 33135154 DOI: 10.1111/jpy.13093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
A high degree of morphological variability is expressed between the ornately sculptured siliceous scales formed by species in the chrysophycean genus, Synura. In this study, we aimed to uncover the general principles and trends underlying the evolution of scale morphology in this genus. We assessed the relationships among thirty extant Synura species using a robust molecular analysis that included six genes, coupled with morphological characterization of the species-specific scales. The analysis was further enriched with addition of morphological information from fossil specimens and by including the unique modern species, Synura punctulosa. We inferred the phylogenetic position of the morphologically unique S. punctulosa, to be an ancient Synura lineage related to S. splendida in the section Curtispinae. Some morphological traits, including development of a keel or a labyrinth ribbing pattern on the scale, appeared once in evolution, whereas other structures, such as a hexagonal meshwork pattern, originated independently several times over geologic time. We further uncovered numerous construction principles governing scale morphology and evolution, as follows: (i) scale roundness and pore diameter decreased during evolution; (ii) elongated scales became strengthened by a higher number of struts or ribs; (iii) as a consequence of scale biogenesis, scales with spines possessed smaller basal holes than scales with a keel and; and (iv) the keel area was proportional to scale area, indicating its potential value in strengthening the scale against breakage.
Collapse
Affiliation(s)
- Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Peter A Siver
- Department of Botany, Connecticut College, New Londo, 06320-4196, Connecticut, USA
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| |
Collapse
|
45
|
Ryabov A, Kerimoglu O, Litchman E, Olenina I, Roselli L, Basset A, Stanca E, Blasius B. Shape matters: the relationship between cell geometry and diversity in phytoplankton. Ecol Lett 2021; 24:847-861. [PMID: 33471443 DOI: 10.1111/ele.13680] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Size and shape profoundly influence an organism's ecophysiological performance and evolutionary fitness, suggesting a link between morphology and diversity. However, not much is known about how body shape is related to taxonomic richness, especially in microbes. Here we analyse global datasets of unicellular marine phytoplankton, a major group of primary producers with an exceptional diversity of cell sizes and shapes and, additionally, heterotrophic protists. Using two measures of cell shape elongation, we quantify taxonomic diversity as a function of cell size and shape. We find that cells of intermediate volume have the greatest shape variation, from oblate to extremely elongated forms, while small and large cells are mostly compact (e.g. spherical or cubic). Taxonomic diversity is strongly related to cell elongation and cell volume, together explaining up to 92% of total variance. Taxonomic diversity decays exponentially with cell elongation and displays a log-normal dependence on cell volume, peaking for intermediate-volume cells with compact shapes. These previously unreported broad patterns in phytoplankton diversity reveal selective pressures and ecophysiological constraints on the geometry of phytoplankton cells which may improve our understanding of marine ecology and the evolutionary rules of life.
Collapse
Affiliation(s)
- Alexey Ryabov
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Oldenburg, Germany
| | - Onur Kerimoglu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Insistute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Elena Litchman
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Irina Olenina
- Environmental Protection Agency, Klaipėda, Lithuania.,Marine Research Institute of the Klaipeda University, Klaipėda, Lithuania
| | - Leonilde Roselli
- Agency for the Environmental Prevention and Protection (ARPA Puglia), Lecce, Italy
| | - Alberto Basset
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy.,Institute of Research on Terrestrial Ecosystems, National Research Council, Lecce, Italy
| | - Elena Stanca
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Oldenburg, Germany
| |
Collapse
|
46
|
Blifernez-Klassen O, Klassen V, Wibberg D, Cebeci E, Henke C, Rückert C, Chaudhari S, Rupp O, Blom J, Winkler A, Al-Dilaimi A, Goesmann A, Sczyrba A, Kalinowski J, Bräutigam A, Kruse O. Phytoplankton consortia as a blueprint for mutually beneficial eukaryote-bacteria ecosystems based on the biocoenosis of Botryococcus consortia. Sci Rep 2021; 11:1726. [PMID: 33462312 PMCID: PMC7813871 DOI: 10.1038/s41598-021-81082-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Bacteria occupy all major ecosystems and maintain an intensive relationship to the eukaryotes, developing together into complex biomes (i.e., phycosphere and rhizosphere). Interactions between eukaryotes and bacteria range from cooperative to competitive, with the associated microorganisms affecting their host`s development, growth and health. Since the advent of non-culture dependent analytical techniques such as metagenome sequencing, consortia have been described at the phylogenetic level but rarely functionally. Multifaceted analysis of the microbial consortium of the ancient phytoplankton Botryococcus as an attractive model food web revealed that its all abundant bacterial members belong to a niche of biotin auxotrophs, essentially depending on the microalga. In addition, hydrocarbonoclastic bacteria without vitamin auxotrophies seem adversely to affect the algal cell morphology. Synthetic rearrangement of a minimal community consisting of an alga, a mutualistic and a parasitic bacteria underpins the model of a eukaryote that maintains its own mutualistic microbial community to control its surrounding biosphere. This model of coexistence, potentially useful for defense against invaders by a eukaryotic host could represent ecologically relevant interactions that cross species boundaries. Metabolic and system reconstruction is an opportunity to unravel the relationships within the consortia and provide a blueprint for the construction of mutually beneficial synthetic ecosystems.
Collapse
Affiliation(s)
- Olga Blifernez-Klassen
- grid.7491.b0000 0001 0944 9128Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Viktor Klassen
- grid.7491.b0000 0001 0944 9128Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Daniel Wibberg
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Enis Cebeci
- grid.7491.b0000 0001 0944 9128Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Christian Henke
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Computational Metagenomics, Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christian Rückert
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Swapnil Chaudhari
- grid.7491.b0000 0001 0944 9128Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Oliver Rupp
- grid.8664.c0000 0001 2165 8627Bioinformatics and Systems Biology, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Jochen Blom
- grid.8664.c0000 0001 2165 8627Bioinformatics and Systems Biology, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Anika Winkler
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Arwa Al-Dilaimi
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- grid.8664.c0000 0001 2165 8627Bioinformatics and Systems Biology, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Alexander Sczyrba
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Computational Metagenomics, Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Andrea Bräutigam
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Computational Biology, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- grid.7491.b0000 0001 0944 9128Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany ,grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
47
|
Kazama T, Urabe J, Yamamichi M, Tokita K, Yin X, Katano I, Doi H, Yoshida T, Hairston NG. A unified framework for herbivore-to-producer biomass ratio reveals the relative influence of four ecological factors. Commun Biol 2021; 4:49. [PMID: 33420411 PMCID: PMC7794211 DOI: 10.1038/s42003-020-01587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 12/04/2022] Open
Abstract
The biomass ratio of herbivores to primary producers reflects the structure of a community. Four primary factors have been proposed to affect this ratio, including production rate, defense traits and nutrient contents of producers, and predation by carnivores. However, identifying the joint effects of these factors across natural communities has been elusive, in part because of the lack of a framework for examining their effects simultaneously. Here, we develop a framework based on Lotka–Volterra equations for examining the effects of these factors on the biomass ratio. We then utilize it to test if these factors simultaneously affect the biomass ratio of freshwater plankton communities. We found that all four factors contributed significantly to the biomass ratio, with carnivore abundance having the greatest effect, followed by producer stoichiometric nutrient content. Thus, the present framework should be useful for examining the multiple factors shaping various types of communities, both aquatic and terrestrial. Takehiro Kazama et al. develop a framework based on Lotka–Volterra models to identify the relative influences of production rate, defense traits, nutrient contents of producers, and predation, in affecting the biomass ratio of herbivores to primary producers in a community. They apply this framework to freshwater plankton systems and find that while all factors affect the biomass ratio, carnivore abundance has the greatest relative influence.
Collapse
Affiliation(s)
- Takehiro Kazama
- Aquatic Ecology Laboratory, Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,Lake Biwa Branch Office, Center for Regional Environmental Research, National Institute for Environmental Studies, 5-34 Yanagasaki, Otsu, Shiga, 520-0022, Japan
| | - Jotaro Urabe
- Aquatic Ecology Laboratory, Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.,School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kotaro Tokita
- Aquatic Ecology Laboratory, Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Xuwang Yin
- Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Izumi Katano
- Graduate School of Humanities and Sciences, Nara Women's University, Kitanoya-nishimachi, Nara, 630-8506, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Kitanoya-nishimachi, Nara, 630-8506, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takehito Yoshida
- Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.,Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability. HARMFUL ALGAE 2020; 98:101850. [PMID: 33129462 DOI: 10.1016/j.hal.2020.101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Collapse
Affiliation(s)
- Kathleen D Cusick
- University of Maryland Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Edith A Widder
- Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States.
| |
Collapse
|
49
|
Affiliation(s)
- Josephine Grønning
- Centre for Ocean Life Technical University of DenmarkDTU Aqua Lyngby Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life Technical University of DenmarkDTU Aqua Lyngby Denmark
| |
Collapse
|
50
|
Rangel LM, Silva LHS, Faassen EJ, Lürling M, Ger KA. Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria. Toxins (Basel) 2020; 12:toxins12070465. [PMID: 32708114 PMCID: PMC7404970 DOI: 10.3390/toxins12070465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
Phytoplankton anti-grazer traits control zooplankton grazing and are associated with harmful blooms. Yet, how morphological versus chemical phytoplankton defenses regulate zooplankton grazing is poorly understood. We compared zooplankton grazing and prey selection by contrasting morphological (filament length: short vs. long) and chemical (saxitoxin: STX- vs. STX+) traits of a bloom-forming cyanobacterium (Raphidiopsis) offered at different concentrations in mixed diets with an edible phytoplankton to a copepod grazer. The copepod selectively grazed on the edible prey (avoidance of cyanobacteria) even when the cyanobacterium was dominant. Avoidance of the cyanobacterium was weakest for the “short STX-” filaments and strongest for the other three strains. Hence, filament size had an effect on cyanobacterial avoidance only in the STX- treatments, while toxin production significantly increased cyanobacterial avoidance regardless of filament size. Moreover, cyanobacterial dominance reduced grazing on the edible prey by almost 50%. Results emphasize that the dominance of filamentous cyanobacteria such as Raphidiopsis can interfere with copepod grazing in a trait specific manner. For cyanobacteria, toxin production may be more effective than filament size as an anti-grazer defense against selectively grazing zooplankton such as copepods. Our results highlight how multiple phytoplankton defensive traits interact to regulate the producer-consumer link in plankton ecosystems.
Collapse
Affiliation(s)
- Luciana M. Rangel
- Laboratório de Ficologia, Museu Nacional, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 20940-040 Rio de Janeiro, Brazil; (L.M.R.); (L.H.S.S.)
| | - Lúcia H. S. Silva
- Laboratório de Ficologia, Museu Nacional, Departamento de Botânica, Universidade Federal do Rio de Janeiro, 20940-040 Rio de Janeiro, Brazil; (L.M.R.); (L.H.S.S.)
| | - Elisabeth J. Faassen
- Wageningen Food Safety Research, Wageningen Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
- Correspondence: (M.L.); (K.A.G.)
| | - Kemal Ali Ger
- Center for Coastal Limnological and Marine Studies (CECLIMAR), Campus Litoral Norte, Universidade Federal de Rio Grande de Sul, 95625-000 Imbé, Brazil
- Correspondence: (M.L.); (K.A.G.)
| |
Collapse
|