1
|
Zhang B, Xu C, Zhang Z, Hu C, Zhong C, Chen S, Hu G. Elevational patterns of soil organic carbon and its fractions in tropical seasonal rainforests in karst peak-cluster depression region. FRONTIERS IN PLANT SCIENCE 2024; 15:1424891. [PMID: 39439516 PMCID: PMC11493711 DOI: 10.3389/fpls.2024.1424891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Karst ecosystems, especially tropical karst forests, are crucial to the global carbon cycle. In mountainous and hilly areas, elevation-related changes in environment and vegetation often lead to shifts in the accumulation and decomposition of soil organic carbon (SOC). However, the elevational patterns and influencing variables of SOC and its fractions in tropical karst forest ecosystems remain largely unexplored. Here, we analyzed the elevational patterns of SOC and its fractions in the topsoil and subsoil in the tropical seasonal rainforests within typical peak-cluster depression region of Southwest China. Our results indicated that the SOC content was highest at 400 m asl, which was significantly higher than that at 200 m asl (p < 0.05). Overall, SOC content demonstrated an increasing trend with rising elevation. Additionally, SOC content was significantly higher in the topsoil compared to the subsoil (p < 0.05). The majority of SOC fractions exhibited an increase with elevation but decrease with soil depth. Notably, only water-soluble organic carbon (WSOC) displayed a decrease with elevation. Meanwhile, recalcitrant organic carbon (ROC, 54.27%), particulate organic carbon (POC, 30.19%), and easily oxidizable organic carbon (EOC, 16.95%) were the main SOC fractions. Labile organic carbon (LOC) in the karst forest soil was predominantly composed of EOC and POC. Correlation analysis unveiled significant positive correlations between SOC and certain fractions with elevation, soil total nitrogen, and exchangeable magnesium. Conversely, significant negative correlations were observed with soil bulk density (SBD), soil total phosphorus, and litter phosphorus (Litter P). Redundancy analysis indicated that elevation, SBD, and Litter P were the main environmental variables influencing shifts in SOC and its fractions. Structural equation models showed that SOC was primarily directly impacted by soil properties but indirectly impacted by elevation. ROC was mainly associated with the direct effects of soil properties and litterfall, although elevation exerted a substantial impact through indirect pathways. Moreover, LOC was predominantly influenced by the direct impact of soil properties. Therefore, this study demonstrates that SOC and its fractions are strongly influenced by elevation in karst peak-cluster depression regions and have important implications for forest management and sustainable ecosystem development in these regions.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
- School of Geography and Planning, Nanning Normal University, Nanning, China
| | - Chaohao Xu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
| | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
- School of Geography and Planning, Nanning Normal University, Nanning, China
| | - Cong Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
| | - Chaofang Zhong
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
| | - Siyu Chen
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
| | - Gang Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, Nanning Normal University, Nanning, China
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| |
Collapse
|
2
|
Lin Y, Xiang Y, Wei S, Zhang Q, Liu Y, Zhang Z, Tang S. Genetic diversity and population structure of an insect-pollinated and bird-dispersed dioecious tree Magnolia kwangsiensis in a fragmented karst forest landscape. Ecol Evol 2024; 14:e70094. [PMID: 39091326 PMCID: PMC11291554 DOI: 10.1002/ece3.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
This study combined population genetics and parentage analysis to obtain foundational data for the conservation of Magnolia kwangsiensis. M. kwangsiensis is a Class I tree species that occurs in two disjunct regions in a biodiversity hotspot in southwest China. We assessed the genetic diversity and structure of this species across its distribution range to support its conservation management. Genetic diversity and population structure of 529 individuals sampled from 14 populations were investigated using seven nuclear simple sequence repeat (nSSR) markers and three chloroplast DNA (cpDNA) fragments. Parentage analysis was used to evaluate the pollen and seed dispersal distances. The nSSR marker analysis revealed a high genetic diversity in M. kwangsiensis, with an average observed (Ho) and expected heterozygosities (He) of 0.726 and 0.687, respectively. The mean and maximum pollen and seed dispersal distances were 66.4 and 95.7 m and 535.4 and 553.8 m, respectively. Our data revealed two distinct genetic groups, consistent with the disjunct geographical distribution of the M. kwangsiensis populations. Both pollen and seed dispersal movements help maintain genetic connectivity among M. kwangsiensis populations, contributing to high levels of genetic diversity. Both genetically differentiated groups corresponding to the two disjunct regions should be recognized as separate conservation units.
Collapse
Affiliation(s)
- Yanfang Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
- Wuzhou No. 18 Middle SchoolWuzhouChina
| | - Yingying Xiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Sujian Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Yanhua Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Zhiyong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| |
Collapse
|
3
|
Jing J, Li R, Xiao L, Shu D, Yang P. Interpreting and modelling the daily extreme sediment events in karst mountain watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171956. [PMID: 38547966 DOI: 10.1016/j.scitotenv.2024.171956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Increasingly frequent extreme rainfall as a result of climate change is strongly damaging the global soil and water environment. However, few studies have focused on daily extreme sediment events (DESE) in heterogeneous karst watersheds based on long-term in-situ observations. This study quantitatively assessed the time effect of DESE on rainfall response, decoupled the impact of environmental factors on DESE by using structural equation modelling, and finally explored the modelling scheme of DESE based on the hybrid model. The results showed that DESE had the highest frequency of occurrence in May-July, with dispersed distribution in the value domain. Rainfall with a time lag of 1 day and a time accumulation of 2 or 3 days was an important contribution to DESE (P < 0.01, R = 0.47-0.68). Combined effects of environmental factors explained 53.6 %-64.1 % of the variation in DESE. Runoff and vegetation exerted the strongest direct and indirect effects on DESE, respectively (β = 0.66/-0.727). Vegetation was the dominant driver of DESE in Dabanghe and Yejihe (β = -0.725/-0.758), while the dominant driver in Tongzhihe was climate (β = 0.743). In the future, the risk of extreme sediments should be prevented and resolved through the comprehensive regulation of multiple paths, such as runoff and vegetation. Hybrid models significantly improved the modelling performance of machine learning models. Generalized additive model-Extreme gradient boost had the best performance, while Partial least squares regression-Extreme gradient boost was the most valuable when considering performance and input data cost. Two methods can be used as recommended solutions for DESE modelling. This study provides new and in-depth insights into DESE in karst watersheds and helps the region develop forward-looking soil and water management models to cope with future extreme erosion hazards.
Collapse
Affiliation(s)
- Jun Jing
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, PR China; State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, PR China
| | - Rui Li
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, PR China; State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, PR China.
| | - Linlv Xiao
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, PR China; State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, PR China
| | - Dongcai Shu
- Guizhou Provincial Bureau of Hydrology and Water Resources, Guiyang, Guizhou, PR China
| | - Pingping Yang
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou, PR China; State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, PR China
| |
Collapse
|
4
|
Luo J, Luo WX, Liu JT, Wang YJ, Li ZF, Tao JP, Liu JC. Karst fissures mitigate the negative effects of drought on plant growth and photosynthetic physiology. Oecologia 2024; 205:69-80. [PMID: 38683388 DOI: 10.1007/s00442-024-05556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Hard limestone substrates, which are extensively distributed, are believed to exacerbate drought and increase the difficulty of restoration in vulnerable karst regions. Fissures in such substrates may alleviate the negative effect of drought on plants, but the underlying mechanisms remain poorly understood. In a two-way factorial block design, the growth and photosynthesis of 2-year-old Phoebe zhennan seedlings were investigated in two water availabilities (high versus low) and three stimulated fissure habitat groups (soil, soil-filled fissure and non-soil-filled fissure). Moreover, the fissure treatments included both small and big fissures. Compared to the soil group, the non-soil-filled fissure group had decreased the total biomass, root biomass, total root length, and the root length of fine roots in the soil layer at both water availabilities, but increased net photosynthetic rate (Pn) and retained stable water use efficiency (WUE) at low water availability. However, there were no significant differences between the soil-filled fissure group and soil group in the biomass accumulation and allocation as well as Pn. Nevertheless, the SF group decreased the root distribution in total and in the soil layer, and also increased WUE at low water availability. Across all treatments, fissure size had no effect on plant growth or photosynthesis. Karst fissures filled with soil can alleviate drought impacts on plant root growth, which involves adjusting root distribution strategies and increasing water use efficiency. These results suggest that rock fissures can be involved in long-term plant responses to drought stress and vegetation restoration in rocky mountain environments under global climate change.
Collapse
Affiliation(s)
- Jie Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei-Xue Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China
| | - Jun-Ting Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zong-Feng Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian-Ping Tao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China.
- Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jin-Chun Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, 400715, China.
- Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
5
|
Liu Y, Lian J, Chen H. Assessment of the restoration potential for ecological sustainability in the Xijiang River basin, Southwest China: A comparative analysis of karst and non-karst areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168929. [PMID: 38042184 DOI: 10.1016/j.scitotenv.2023.168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Vegetation restoration is an eco-friendly strategy for countering land degradation and biodiversity loss. Since 2000-2001, large-scale restoration projects have been performed in Southwest China, with the net primary productivity (NPP) increasing over the past two decades. However, negative ecohydrological impacts, including streamflow decline and soil moisture deficit, have been reported following afforestation. Current understanding of the permissible NPP capacity (NPPcap) and NPP potential (NPPpot) under karst and non-karst areas or planted and natural vegetations constrained by environmental factors remains unclear. Here multiple environmental drivers characterizing the heterogeneous landscape in the Xijiang River Basin (Southwest China) were employed to predict the NPPcap using a random forest model. Results showed that 85% of the area exhibited an increasing trend in NPPcap during 2001-2018. Overall, 3.50% of the area has exceeded the NPPcap, implying an excessive plantation and potential water deficit in these areas. Excluding agriculture activities, urban areas, and water bodies, we found there is room for an average extra 22.85% of NPP enhancement. The NPPpot was spatially imbalanced, with high NPPpot located in the northeast, indicating these areas as a target area for future vegetation restoration. Moreover, the NPPpot reduction in karst areas (1.12 g C m-2 a-1) was more pronounced than in non-karst areas (0.26 g C m-2 a-1), highlighting a stronger negative impact on NPPpot in karst areas. Furthermore, significant NPPpot differences were found between planted vegetation and natural vegetation for both karst and non-karst areas. According to the findings, we identified four separate restoration sub-zones and proposed tailored strategies to guide the implementation of future restoration efforts. Our study highlights restoration potential and where land is available for reforestation but also the urgent need for future restoration activities towards ecosystem sustainability.
Collapse
Affiliation(s)
- Yeye Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin 12587, Germany
| | - Jinjiao Lian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Hongsong Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| |
Collapse
|
6
|
Liu YY, Chao L, Li ZG, Ma L, Hu BQ, Zhu SD, Cao KF. Water storage capacity is inversely associated with xylem embolism resistance in tropical karst tree species. TREE PHYSIOLOGY 2024; 44:tpae017. [PMID: 38281245 DOI: 10.1093/treephys/tpae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Lin Chao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Zhong-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
| | - Lin Ma
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Bao-Qing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
7
|
Hu G, Zhang Z, Wu H, Li L. Factors influencing the distribution of woody plants in tropical karst hills, south China. PeerJ 2023; 11:e16331. [PMID: 37908415 PMCID: PMC10615033 DOI: 10.7717/peerj.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/30/2023] [Indexed: 11/02/2023] Open
Abstract
The seasonal rainforests distributed across the tropical karst hills of south China are of high biodiversity conservation value and serve many important ecosystem functions. However, knowledge surrounding distribution patterns of woody plants in tropical karst hills remains limited. In this study, we surveyed the distribution of families, genera and species of woody flora at four slope positions (depression, lower slope, middle slope, and upper slope), and analyzed the influence of topographic and soil variables on the distribution of woody plants in the tropical karst hills of south China. Forty forest plots (each 20 m × 20 m) contained 306 species of woody plants with a diameter at breast height (DBH) ≥1 cm, representing 187 genera and 66 families. As slope increased, the number of families increased slowly, and the number of genera and species followed a concave-shaped trend, with the lowest number of genera and species in the lower slope position. Differences in species composition were significantly stronger between slope positions than within slope positions. The topographic and soil variables explained 22.4% and 19.6%, respectively, of the distribution of woody plants, with slope position, slope degree, soil potassium and soil water content as the most significant variables. The results of generalized linear mixed model analysis showed that total R2 of fixed effects on variation of woody species richness was 0.498, and rock outcrop rate and soil total phosphorus were the best fitting effects. Our results help to explain the community assembly mechanism and to inform management and protection strategies for species-rich seasonal rainforests in the karst area.
Collapse
Affiliation(s)
- Gang Hu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Hongping Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
8
|
Molina-Paniagua ME, Alves de Melo PH, Ramírez-Barahona S, Monro AK, Burelo-Ramos CM, Gómez-Domínguez H, Ortiz-Rodriguez AE. How diverse are the mountain karst forests of Mexico? PLoS One 2023; 18:e0292352. [PMID: 37792775 PMCID: PMC10550121 DOI: 10.1371/journal.pone.0292352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Tropical forests on karstic relief (tropical karst forest) are among the most species-rich biomes. These forests play pivotal roles as global climate regulators and for human wellbeing. Their long-term conservation could be central to global climate mitigation and biodiversity conservation. In Mexico, karst landscapes occupy 20% of the total land surface and are distributed mainly in the southeast of the country, along the eastern slope, and in the Yucatan Peninsula. Within each of these areas, the following types of karst occur: coastal karst, plain karst, hill karst, and mountain karst (low, medium, high). Mountain karst cover 2.07% of Mexico's land surface and are covered by tropical rainforests, montane cloud forests, and tropical deciduous forests. These are probably one of the most diverse biomes in Mexico. However, the mountain karst forests of Mexico have received little attention, and very little is known about their diversity. Here, we evaluated the vascular plant species richness within the mountain karst forests of Mexico. We assembled the first, largest, and most comprehensive datasets of Mexican mountain karst forest species, from different public databases (CONABIO, GBIF, IBdata-UNAM), which included a critical review of all data. We compiled a list of the families, genera, and species present within the mountain karst forests of Mexico. Taxa that best characterize these forests were identified based on their spatial correlation with this biome. We explored biodiversity patterns, identifying areas with the highest species richness, endemism centers, and areas of relatively low sampling intensity. We found that within the mountain karst forests of Mexico there are representatives of 11,771 vascular plant species (253 families and 2,254 genera), ca. 50% of the Mexican flora. We identified 372 species endemic to these forests. According to preliminary IUCN red list criteria, 2,477 species are under some category of conservation risk, of which 456 (3.8%) are endangered. Most of the Mexican mountain karst forests have been extensively explored and six allopatric, species-rich areas were identified. Compared to other regions in the world, the mountain karst forests of Mexico are one of the most diverse biomes. They contain more species than some entire montane systems in Mexico such as Sierra Madre Oriental, and Sierra Madre del Sur. Also, the mountain karst forests of Mexico are most diverse than similar forests of South America and Asia, even if considering the effect of different sampling areas. The fact that mountain karst forests are embedded in areas of high biotic diversity, probably contributes to their great floristic diversity. Thus, the mountain karst forests of Mexico are an important source of diversity and shelters a large percentage of the Mexican flora.
Collapse
Affiliation(s)
- María Eugenia Molina-Paniagua
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
- Departamento de Botánica, Instituto de Biología, UNAM, Ciudad Universitaria, Ciudad de México, México
| | | | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, UNAM, Ciudad Universitaria, Ciudad de México, México
| | | | - Carlos Manuel Burelo-Ramos
- Herbario UJAT, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | | | | |
Collapse
|
9
|
Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. TREE PHYSIOLOGY 2023; 43:1307-1318. [PMID: 37067918 DOI: 10.1093/treephys/tpad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.
Collapse
Affiliation(s)
- Amy N A Aritsara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
- College of Life Sciences and Technology, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Ming-Yuan Ni
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, No. 100 Daxuedonglu Road, Nanning 530004, Guangxi, China
| |
Collapse
|
10
|
Song HQ, Wang YQ, Yan CL, Zeng WH, Chen YJ, Zhang JL, Liu H, Zhang QM, Zhu SD. Can leaf drought tolerance predict species abundance and its changes in tropical-subtropical forests? TREE PHYSIOLOGY 2023; 43:1319-1325. [PMID: 37154549 DOI: 10.1093/treephys/tpad058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Climate change has resulted in an increase in drought severity in the species-rich tropical and subtropical forests of southern China. Exploring the spatiotemporal relationship between drought-tolerance trait and tree abundance provides a means to elucidate the impact of droughts on community assembly and dynamics. In this study, we measured the leaf turgor loss point (πtlp) for 399 tree species from three tropical forest plots and three subtropical forest plots. The plot area was 1 ha and tree abundance was calculated as total basal area per hectare according to the nearest community census data. The first aim of this study was to explore πtlp abundance relationships in the six plots across a range of precipitation seasonality. Additionally, three of the six plots (two tropical forests and one subtropical forest) had consecutive community censuses data (12-22 years) and the mortality ratios and abundance year slope of tree species were analyzed. The second aim was to examine whether πtlp is a predictor of tree mortality and abundance changes. Our results showed that tree species with lower (more negative) πtlp were more abundant in the tropical forests with relative high seasonality. However, πtlp was not related to tree abundance in the subtropical forests with low seasonality. Moreover, πtlp was not a good predictor of tree mortality and abundance changes in both humid and dry forests. This study reveals the restricted role of πtlp in predicting the response of forests to increasing droughts under climate change.
Collapse
Affiliation(s)
- Hui-Qing Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Chao-Long Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
- Dinghushan Forest Ecosystem Research Station, South China Botanical Garden, Chinese Academy of Sciences, Zhaoqing 526070, Guangdong, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
11
|
Cao Y, Almeida-Silva F, Zhang WP, Ding YM, Bai D, Bai WN, Zhang BW, Van de Peer Y, Zhang DY. Genomic Insights into Adaptation to Karst Limestone and Incipient Speciation in East Asian Platycarya spp. (Juglandaceae). Mol Biol Evol 2023; 40:msad121. [PMID: 37216901 PMCID: PMC10257982 DOI: 10.1093/molbev/msad121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
When challenged by similar environmental conditions, phylogenetically distant taxa often independently evolve similar traits (convergent evolution). Meanwhile, adaptation to extreme habitats might lead to divergence between taxa that are otherwise closely related. These processes have long existed in the conceptual sphere, yet molecular evidence, especially for woody perennials, is scarce. The karst endemic Platycarya longipes and its only congeneric species, Platycarya strobilacea, which is widely distributed in the mountains in East Asia, provide an ideal model for examining the molecular basis of both convergent evolution and speciation. Using chromosome-level genome assemblies of both species, and whole-genome resequencing data from 207 individuals spanning their entire distribution range, we demonstrate that P. longipes and P. strobilacea form two species-specific clades, which diverged around 2.09 million years ago. We find an excess of genomic regions exhibiting extreme interspecific differentiation, potentially due to long-term selection in P. longipes, likely contributing to the incipient speciation of the genus Platycarya. Interestingly, our results unveil underlying karst adaptation in both copies of the calcium influx channel gene TPC1 in P. longipes. TPC1 has previously been identified as a selective target in certain karst-endemic herbs, indicating a convergent adaptation to high calcium stress among karst-endemic species. Our study reveals the genic convergence of TPC1 among karst endemics and the driving forces underneath the incipient speciation of the two Platycarya lineages.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dan Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Wang D, Wang S, Li LX, Wang YS, Ling-Hu KN, Chen JX. Contrasting effects of experiencing temporally heterogeneous light availability versus homogenous shading on plant subsequent responses to light conditions. BMC PLANT BIOLOGY 2023; 23:232. [PMID: 37131187 PMCID: PMC10155447 DOI: 10.1186/s12870-023-04229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Temporally heterogeneous environments is hypothesized to correlate with greater plasticity of plants, which has rarely been supported by direct evidence. To address this issue, we subjected three species from different ranges of habitats to a first round of alternating full light and heavy shading (temporally heterogeneous light experience), constant moderate shading and full light conditions (temporally homogeneous light experiences, control) and a second round of light-gradient treatments. We measured plant performance in a series of morphological, biomass, physiological and biochemical traits at the end of each round. Compared to constant full light experience, temporally heterogeneous light conditions induced immediate active biochemical responses (in the first round) with improved late growth in biomass (during the second round); constant moderate shading experience increased photosynthetic physiological and biomass performances of plants in early response, and decreased their late growth in biomass. The karst endemic species of Kmeria septentrionalis showed greater improvement in late growth of biomass and lower decrease in biochemical performance, due to early heterogeneous experience, compared to the non-karst species of Lithocarpus glaber and the karst adaptable species of Celtis sinensis. Results suggested plants will prefer to produce morphological and physiological responses that are less reversible and more costly in the face of more reliable environmental cues at early stage in spite of decreased future growth potential, but to produce immediate biochemical responses for higher late growth potential when early environmental cues are less reliable, to avoid the loss of high costs and low profits. Typical karst species should be more able to benefit from early temporally heterogeneous experience, due to long-term adaptation to karst habitats of high environmental heterogeneity and low resource availability.
Collapse
Affiliation(s)
- Deng Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Shu Wang
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China.
| | - Li-Xia Li
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Ye-She Wang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422000, China
| | - Ke-Nian Ling-Hu
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| | - Jia-Xing Chen
- College of Forestry, Forest Ecology Research Center, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
13
|
Wei S, Zhang Q, Tang S, Liao W. Genetic and ecophysiological evidence that hybridization facilitated lineage diversification in yellow Camellia (Theaceae) species: a case study of natural hybridization between C. micrantha and C. flavida. BMC PLANT BIOLOGY 2023; 23:154. [PMID: 36944951 PMCID: PMC10031943 DOI: 10.1186/s12870-023-04164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hybridization is generally considered an important creative evolutionary force, yet this evolutionary process is still poorly characterized in karst plants. In this study, we focus on natural hybridization in yellow Camellia species, a group of habitat specialists confined to karst/non-karst habitats in southwestern China. RESULTS Based on population genome data obtain from double digest restriction-site associated DNA (ddRAD) sequencing, we found evidence for natural hybridization and introgression between C. micrantha and C. flavida, and specifically confirmed their hybrid population, C. "ptilosperma". Ecophysiological results suggested that extreme hydraulic traits were fixed in C. "ptilosperma", these being consistent with its distinct ecological niche, which lies outside its parental ranges. CONCLUSION The identified hybridization event is expected to have played a role in generating novel variation during, in which the hybrid population displays different phenological characteristics and novel ecophysiological traits associated with the colonization of a new niche in limestone karst.
Collapse
Affiliation(s)
- Sujuan Wei
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China.
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
He S, Xiong K, Song S, Chi Y, Fang J, He C. Research Progress of Grassland Ecosystem Structure and Stability and Inspiration for Improving Its Service Capacity in the Karst Desertification Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:770. [PMID: 36840118 PMCID: PMC9959505 DOI: 10.3390/plants12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The structure and stability of grassland ecosystems have a significant impact on biodiversity, material cycling and productivity for ecosystem services. However, the issue of the structure and stability of grassland ecosystems has not been systematically reviewed. Based on the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases, we used the systematic-review method and screened 133 papers to describe and analyze the frontiers of research into the structure and stability of grassland ecosystems. The research results showed that: (1) The number of articles about the structure and stability of grassland ecosystems is gradually increasing, and the research themes are becoming increasingly diverse. (2) There is a high degree of consistency between the study area and the spatial distribution of grassland. (3) Based on the changes in ecosystem patterns and their interrelationships with ecosystem processes, we reviewed the research progress and landmark results on the structure, stability, structure-stability relationship and their influencing factors of grassland ecosystems; among them, the study of structure is the main research focus (51.12%), followed by the study of the influencing factors of structure and stability (37.57%). (4) Key scientific questions on structural optimization, stability enhancement and harmonizing the relationship between structure and stability are explored. (5) Based on the background of karst desertification control (KDC) and its geographical characteristics, three insights are proposed to optimize the spatial allocation, enhance the stability of grassland for rocky desertification control and coordinate the regulation mechanism of grassland structure and stability. This study provided some references for grassland managers and relevant policy makers to optimize the structure and enhance the stability of grassland ecosystems. It also provided important insights to enhance the service capacity of grassland ecosystems in KDC.
Collapse
Affiliation(s)
- Shuyu He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Jinzhong Fang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Chen He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
15
|
Aritsara ANA, Wang S, Li BN, Jiang X, Qie YD, Tan FS, Zhang QW, Cao KF. Divergent leaf and fine root "pressure-volume relationships" across habitats with varying water availability. PLANT PHYSIOLOGY 2022; 190:2246-2259. [PMID: 36047846 PMCID: PMC9706427 DOI: 10.1093/plphys/kiac403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Fine roots and leaves, the direct interfaces of plants with their external environment along the soil-plant-atmosphere continuum, are at the front line to ensure plant adaptation to their growing habitat. This study aimed to compare the vulnerability to water deficit of fine roots and leaves of woody species from karst and mangrove forests-two water-stressed habitats-against that of timber and ornamental woody species grown in a well-watered common garden. Thus, pressure-volume curves in both organs of 37 species (about 12 species from each habitat) were constructed. Fine roots wilted at a less negative water potential than leaves in 32 species and before branch xylem lost 50% of its hydraulic conductivity in the 17 species with available data on branch xylem embolism resistance. Thus, turgor loss in fine roots can act as a hydraulic fuse mechanism against water stress. Mangroves had higher leaf resistance against wilting and lower leaf-specific area than the karst and common garden plants. Their fine roots had high specific root lengths (SRL) and high capacitance to buffer water stress. Karst species had high leaf bulk modulus, low leaf capacitance, and delayed fine root wilting. This study showed the general contribution of fine roots to the protection of the whole plant against underground water stress. Our findings highlight the importance of water storage in the leaves and fine roots of mangrove species and high tolerance to water deficit in the leaves of mangrove species and the fine roots of some karst species.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuang Wang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bei-Ni Li
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Department of Ecology, State Key Laboratory of Biocontrol and School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Jiang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Office of Scientific Research and Development, Sichuan University, Chengdu 610065, China
| | - Ya-Dong Qie
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Feng-Sen Tan
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Qi-Wei Zhang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
16
|
Wang J, Wang XY, Pan W, Li JY, Xue L, Li S. Seed germination traits and dormancy classification of 27 species from a degraded karst mountain in central Yunnan-Guizhou Plateau: seed mass and moisture content correlate with germination capacity. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1043-1056. [PMID: 35793164 DOI: 10.1111/plb.13451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In degraded karst ecosystem, vegetation restoration efforts almost exclusively rely on planted seedlings, but this is not effective to maintain community diversity and resilience. As seed functional traits, seed dormancy and germination are key to community assembly. Unfortunately, these elements are commonly overlooked in restoring degraded ecosystems. This work classifies seed dormancy of 27 species with different life forms that are common on a degraded karst mountain. We examined the effects of temperature regime and light conditions on percentage germination and assessed the relationships between seed traits and germination index using a partial least squares regression (PLSR). Approximately 48% of the investigated species had physiological dormancy, 37% were non-dormant, 7% had morphophysiological dormancy, 4% had morphological dormancy and 4% had physical dormancy. We found that 94% (15 out of 16) species had maximum germination in warm temperature regimes (20/13 and 25/18 °C), while the remaining species required cool temperatures (10/4 °C). PLSR analysis indicated a significant positive correlation between seed mass and T50m (time to 50% final germination), and a negative correlation between seed moisture content and percentage germination. Our findings indicate that seed traits are important factors in seed-based restoration practice. F. esculentum, O. opipara, P. fortuneana and S. salicifolia are recommended for direct seeding during the early rainy season to restore seriously degraded lands in subtropical karst regions.
Collapse
Affiliation(s)
- J Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
- Observation and Research Station for Rock Desert Ecosystem, Puding, China
| | - X Y Wang
- Chun'an County Forestry Administration, Hangzhou, China
| | - W Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - J Y Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - L Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
- Observation and Research Station for Rock Desert Ecosystem, Puding, China
| | - S Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
- Observation and Research Station for Rock Desert Ecosystem, Puding, China
| |
Collapse
|
17
|
Qu R, Han G. Effects of high Ca and Mg stress on plants water use efficiency in a Karst ecosystem. PeerJ 2022; 10:e13925. [PMID: 35996669 PMCID: PMC9392448 DOI: 10.7717/peerj.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Karst ecosystems are widely distributed in the world, with one of the largest continuous Karst landforms in Southwest China. Karst regions are characterized by water shortage, high soil calcium (Ca) and magnesium (Mg) content, and soil nutrient leaching, resulting in drought stress and growth limitation of plants. Methods This study compared nitrogen (N), phosphorus (P), potassium (K), Ca, and Mg of herbaceous and woody plants in a small Karst ecosystem in Southwest China. The indexes of water use efficiency (WUE) were calculated to identify the drought stress of plants in this Karst ecosystem. Meanwhile, the relationship between Ca and Mg accumulation and WUE was evaluated in herbaceous and woody plants. Results Herbaceous plants showed a higher content of leaf N (13.4 to 40.1 g·kg-1), leaf P (2.2 to 4.8 g·kg-1) and leaf K (14.6 to 35.5 g·kg-1) than woody plants (N: 10.4 g to 22.4 g·kg-1; P: 0.4 to 2.3 g·kg-1; K: 5.7 to 15.5 g·kg-1). Herbaceous plants showed a significantly positive correlation between WUE and K:Ca ratio (R = 0.79), while WUE has a strongly positive correlation with K:Mg ratio in woody plants (R = 0.63). Conclusion Herbaceous plants suffered from nitrogen (N) limitation, and woody plants were constrained by P or N+P content. Herbaceous plants had higher leaf N, P, and K than woody plants, while Ca and Mg showed no significant differences, probably resulting from the Karst environment of high Ca and Mg contents. Under high Karst Ca and Mg stress, herbaceous and woody plants responded differently to Ca and Mg stress, respectively. WUE of herbaceous plants is more sensitive to Ca stress, while that of woody plants is more sensitive to Mg stress. These findings establish a link between plant nutrients and hydraulic processes in a unique Karst ecosystem, further facilitating studies of the nutrient-water cycling system in the ecosystem.
Collapse
|
18
|
Li J, Zhang L, Li Y. Exposed Rock Reduces Tree Size, but Not Diversity. FRONTIERS IN PLANT SCIENCE 2022; 13:851781. [PMID: 35747882 PMCID: PMC9210165 DOI: 10.3389/fpls.2022.851781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Karst made up of limestone is widely considered a "Noah's ark" of biodiversity. Rock and soil substrates comprise two different site types in karst terrain, although both can support dense forests. However, it is unclear whether and how the presence of exposed rock affects forest diversity and tree size. We established a 2.2 ha plot (200 × 110 m) in an old-growth oak forest (> 300 years) in karst terrain in southwestern China. We classified the plot into rock and soil components; we analyzed plant diversity and tree size in each component using species diversity indices (richness, number of individuals, Shannon-Wiener index, and Pielou evenness index), stand spatial structure parameters, diameter at breast height (DBH), tree height (TH), and tree basal area (BA). We also analyzed the distributional patterns of species at the sites using non-metric multidimensional scaling, then assessed the effects of abiotic environmental variables on diversity and tree size using redundancy analysis. Our results indicated that both site types (i.e., rock and soil) had similar overall species diversity; trees and shrubs were largely distributed at random within the study site. Tree size was evenly differentiated in the community, and trees were dominant, particularly on soil. Trees on rock were in a status of medium mixture, whereas shrubs on rock were highly mixed. The opposite trend was observed for trees and shrubs growing on soil. The DBH, TH, and BA were smaller in trees growing on rock than in trees growing on soil. Abiotic environmental variables had varying effects on the diversity and size of trees at the two site types; they only explained 21.76 and 14.30% of total variation, respectively. These results suggest that exposed rock has the effect of reducing tree size, but not diversity, thus highlighting the important role of rock in maintaining diversity; moreover, the results imply that karst microhabitats may mitigate the impacts of topography on tree diversity and growth. Greater attention should be focused on exposed rock in the conservation and management of karst forests and the restoration of degraded forest ecosystems.
Collapse
Affiliation(s)
- Jie Li
- College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | - Lianjin Zhang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Yuanfa Li
- College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Leaf Anatomical Plasticity of Phyllostachys glauca McClure in Limestone Mountains Was Associated with Both Soil Water and Soil Nutrients. FORESTS 2022. [DOI: 10.3390/f13040493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Little is known on how karst plants adapt to highly heterogeneous habitats via adjusting leaf anatomical structures. Phyllostachys glauca McClure is a dominant species that grow across different microhabitats in the limestone mountains of Jiangxi Province, China. We investigated the leaf anatomical structures, plant biomass, soil water content, soil total nitrogen (TN), and soil total phosphorus (TP) from three habitats characterized by different rock exposure, including high rock exposure (HRE), medium rock exposure (MRE) and low rock exposure (LRE), and aimed to discern the relationships between the leaf anatomical plasticity and edaphic factors. The leaves of P. glauca in different habitats showed significant anatomical plasticity in two aspects. First, the leaves adjusted cuticle thickness, papillae length, bulliform cell size and mesophyll thickness to lower water loss and then adapt to the water-deficient habitats (HRE). Second, the leaves enlarged vessels and vascular bundles (first-order and second-order parallel veins) to improve water and nutrient transportation and then enhance plant growth in nitrogen-rich habitats (HRE). Soil water and soil nutrients purely explained the total variation of leaf anatomical traits by 21.7% and 15.7%, respectively, and had a shared proportion of 15.8%. Our results indicated that the leaf anatomical variations in different habitats were associated with both soil water and soil nutrients. Moreover, we found that leaf anatomical structures were more affected by TN than TP. The present study advanced the current understanding of the strategies employed by karst plants to cope with highly heterogeneous habitats via leaf anatomical plasticity.
Collapse
|
20
|
Li C, Lou H, Yang S, Li X, Zhang J, Pan Z, Zhang Y, Yi Y, Gong J. Effect of human disturbances and hydrologic elements on the distribution of plant diversity within the Shamu watershed, Mt. Yuntai Nature Reserve, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114833. [PMID: 35287080 DOI: 10.1016/j.jenvman.2022.114833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/05/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
This paper explores how human disturbance and hydrologic elements affect the spatial distribution pattern of plant diversity in the watershed, taking Shamu watershed in the World Natural Heritage Site as a case study. Spatial analysis of multisource remote sensing and plant diversity plots data were conducted using linear mixed effects models and structural equation models. Results revealed that the distribution of plant diversity in the watershed is mainly affected by human disturbance. However, under similar human disturbance levels, hydrologic elements also affect the plant diversity within the watershed. The topographic undulation and surface runoff significantly promote plant diversity, while the river network density, the watershed shape factor, the river longitudinal gradient do not. The influence of topographic undulation is more obvious than that of runoff on plant diversity, but the effect of topographic undulation and runoff on plant diversity is getting weaker from upstream to downstream within the watershed. In addition, the impact of hydrologic elements on plant diversity is mainly regulated by environmental factors Pre and Tem. The findings clarify how human disturbance and hydrologic elements affect plant diversity distribution within the watershed, optimizing the conservation theory of plant diversity resources and scientifically guiding the region's sustainable development.
Collapse
Affiliation(s)
- Chaojun Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hezhen Lou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; College of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Xi Li
- College of Geography and Environmental Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Jun Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zihao Pan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yujia Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| |
Collapse
|
21
|
Zheng J, Jiang Y, Qian H, Mao Y, Zhang C, Tang X, Jin Y, Yi Y. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecol Evol 2022; 12:e8516. [PMID: 35136561 PMCID: PMC8809444 DOI: 10.1002/ece3.8516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Understanding the joint effects of plant development and environment on shifts of intraspecific leaf traits will advance the understandings of the causes of intraspecific trait variation. We address this question by focusing on a widespread species Clausena dunniana in a subtropical broad-leaved forest. METHODS We sampled 262 individuals of C. dunniana at two major topographic habitat types, the slope and hilltop, within the karst forests in Maolan Nature Reserve in southwestern China. We measured individual plant level leaf traits (i.e., specific leaf area (SLA), leaf area, leaf dry-matter content (LDMC), and leaf thickness) that are associated with plant resource-use strategies. We adopted a linear mixed-effects model in which the plant size (i.e., the first principal component of plant basal diameter and plant height) and environmental factors (i.e., topographic habitat, canopy height, and rock-bareness) were used as independent variables, to estimate their influences on the shifts of leaf traits. KEY RESULTS We found that (1) plant size and the environmental factors independently drove the intraspecific leaf trait shifts of C. dunniana, of which plant size explained less variances than environmental factors. (2) With increasing plant size, C. dunniana individuals had increasingly smaller SLA but larger sized leaves. (3) The most influential environmental factor was topographic habitat; it drove the shifts of all the four traits examined. Clausena dunniana individuals on hilltops had leaf traits representing more conservative resource-use strategies (e.g., smaller SLA, higher LDMC) than individuals on slopes. On top of that, local-scale environmental factors further modified leaf trait shifts. CONCLUSIONS Plant size and environment independently shaped the variations in intraspecific leaf traits of C. dunniana in the subtropical karst forest of Maolan. Compared with plant size, the environment played a more critical role in shaping intraspecific leaf trait variations, and potentially also the underlying individual-level plant resource-use strategies.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Ya Jiang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Hong Qian
- Research and Collections CenterIllinois State MuseumSpringfieldIllinoisUSA
| | - Yanjiao Mao
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Chao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- Key Laboratory of Plant Physiology and Developmental Regulation of Guizhou ProvinceGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
22
|
Martini F, Zou C, Song X, Goodale UM. Abiotic Drivers of Seedling Bank Diversity in Subtropical Forests of Southern China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.784036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abiotic factors are important to shape plant community composition and diversity through processes described as environmental filtering. Most studies on plant diversity in forests focus on adult trees, while the abiotic drivers of forest seedling community characteristics are less understood. Here, we studied seedling banks’ composition, richness, diversity, and abundance, and investigated their relationships with microsite abiotic conditions along a wide elevational gradient. We sampled seedling communities in 312 1-m2 quadrats, distributed in 13 one-ha plots in four subtropical forests in south China, covering an elevation gradient of 1500 m, for 2 years. We measured light availability, slope, and 11 soil nutrients for each seedling quadrat. We used analysis of similarities and multivariate analysis of variance to compare the composition and abiotic drivers of the four forests’ seedling communities. We then used mixed models and structural equation modeling to test the direct and indirect effects of abiotic factors on seedling species richness, diversity, and abundance. The differences in seedling community composition among these forests were mostly explained by differences in elevations and soil nutrients. Seedling diversity as Shannon and Simpson diversity index decreased with increasing elevation and increased with increasing slope, but seedling abundance and species richness did not. Elevation had an indirect effect on Simpson’s diversity index through modulating the direct effects of soil properties. Our findings show that soil properties play a prominent role in favoring differentiation in species composition among the four forests we studied and provide additional evidence to decreasing species diversity with elevation. However, this was reflected in decreasing Shannon and Simpson indices rather than species richness, which is more commonly studied. Whether and to what extent future environmental changes in climate and soil acidification will alter future forest composition and diversity needs to be investigated.
Collapse
|
23
|
Long J, Zhang M, Li J, Liao H, Wang X. Soil macro‐ and mesofauna‐mediated litter decomposition in a subtropical karst forest. Biotropica 2021. [DOI: 10.1111/btp.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Long
- Guizhou Key Laboratory of Mountain Environment Guizhou Normal University Guiyang China
| | - Mingjiang Zhang
- Guizhou Key Laboratory of Mountain Environment Guizhou Normal University Guiyang China
| | - Juan Li
- Department of Geography and Environmental Science Guizhou Normal University Guiyang China
| | - Hongkai Liao
- Department of Geography and Environmental Science Guizhou Normal University Guiyang China
| | - Xian Wang
- Guizhou Key Laboratory of Mountain Environment Guizhou Normal University Guiyang China
| |
Collapse
|
24
|
Liu C, Huang Y, Wu F, Liu W, Ning Y, Huang Z, Tang S, Liang Y. Plant adaptability in karst regions. JOURNAL OF PLANT RESEARCH 2021; 134:889-906. [PMID: 34258691 DOI: 10.1007/s10265-021-01330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Karst ecosystems are formed by dissolution of soluble rocks, usually with conspicuous landscape features, such as sharp peaks, steep slopes and deep valleys. The plants in karst regions develop special adaptability. Here, we reviewed the research progresses on plant adaptability in karst regions, including drought, high temperature and light, high-calcium stresses responses and the strategies of water utilization for plants, soil nutrients impact, human interference and geographical traits on karst plants. Drought, high temperature and light change their physiological and morphological structures to adapt to karst environments. High-calcium and soil nutrients can transfer surplus nutrients to special parts of plants to avoid damage of high nutrient concentration. Therefore, karst plants can make better use of limited water. Human interference also affects geographical distribution of karst plants and their growing environment. All of these aspects may be analyzed to provide guidance and suggestions for related research on plant adaptability mechanisms.
Collapse
Affiliation(s)
- Chunni Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Feng Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Wenjing Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yiqiu Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Zhenrong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China.
| |
Collapse
|
25
|
Tang S, Liu J, Lambers H, Zhang L, Liu Z, Lin Y, Kuang Y. Increase in leaf organic acids to enhance adaptability of dominant plant species in karst habitats. Ecol Evol 2021; 11:10277-10289. [PMID: 34367574 PMCID: PMC8328463 DOI: 10.1002/ece3.7832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Estimation of leaf nutrient composition of dominant plant species from contrasting habitats (i.e., karst and nonkarst forests) provides an opportunity to understand how plants are adapted to karst habitats from the perspective of leaf traits. Here, we measured leaf traits-specific leaf area (SLA), concentrations of total carbon ([TC]), nitrogen ([TN]), phosphorus ([TP]), calcium ([Ca]), magnesium ([Mg]), manganese ([Mn]), minerals ([Min]), soluble sugars, soluble phenolics, lipids, and organic acids ([OA])-and calculated water-use efficiency (WUE), construction costs (CC), and N/P ratios, and searched for correlations between these traits of 18 abundant plant species in karst and nonkarst forests in southwestern China. Variation in leaf traits within and across the abundant species was both divergent and convergent. Leaf [TC], [Ca], [Min], [OA], and CC were habitat-dependent, while the others were not habitat- but species-specific. The correlations among [TN], [TP], SLA, [TC], CC, [Min], WUE, [OA], and CC were habitat-independent, and inherently associated with plant growth and carbon allocation; those between [CC] and [Lip], between [Ca] and [Mg], and between [Mg] and [WUE] were habitat-dependent. Habitat significantly affected leaf [Ca] and thus indirectly affected leaf [OA], [Min], and CC. Our results indicate that plants may regulate leaf [Ca] to moderate levels via adjusting leaf [OA] under both high and low soil Ca availability, and offer new insights into the abundance of common plant species in contrasting habitats.
Collapse
Affiliation(s)
- Songbo Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Heshan National Field Research Station of Forest EcosystemSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianfeng Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hans Lambers
- School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
- Department of Plant NutritionCollege of Resources and Environmental SciencesNational Academy of Agriculture Green DevelopmentKey Laboratory of Plant–Soil InteractionsMinistry of EducationChina Agricultural UniversityBeijingChina
| | - Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Heshan National Field Research Station of Forest EcosystemSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
| | - Yutong Lin
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Heshan National Field Research Station of Forest EcosystemSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuanwen Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Heshan National Field Research Station of Forest EcosystemSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
| |
Collapse
|
26
|
Shi W, Wang Y, Xiang W, Li X, Cao K. Environmental filtering and dispersal limitation jointly shaped the taxonomic and phylogenetic beta diversity of natural forests in southern China. Ecol Evol 2021; 11:8783-8794. [PMID: 34257928 PMCID: PMC8258218 DOI: 10.1002/ece3.7711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023] Open
Abstract
AIM The mechanisms underlying the maintenance of biodiversity remain to be elucidated. Taxonomic diversity alone remains an unresolved issue, especially in terms of the mechanisms of species co-existence. We hypothesized that phylogenetic information could help to elucidate the mechanism of community assembly and the services and functions of ecosystems. The aim of this study was to explore the mechanisms driving floral diversity in subtropical forests and evaluate the relative effects of these mechanisms on diversity variation, by combining taxonomic and phylogenetic information. LOCATION We examined 35 1-ha tree stem-mapped plots across eight national nature reserves in Guangxi Zhuang Autonomous Region, China. TAXON Trees. METHODS We quantified the taxonomic and phylogenetic β-diversity between each pair of plots using the (abundance-based) Rao's quadratic entropy and the (incidence-based) Sørensen dissimilarity indices. Using a null model approach, we compared the observed β-diversity with the expected diversity at random and calculated the standard effect size of the observed β-diversity deviation. Furthermore, we used distance-based redundancy analysis (dbRDA) to partition the variations in taxonomic and phylogenetic observed β-diversity and β-deviation into four parts to assess the environmental and spatial effects. RESULTS The taxonomic β-deviation was related to and higher than the phylogenetic β-deviation (r = .74). This indicated that the species turnover between pairwise plots was mainly the turnover of closely related species. Higher taxonomic and phylogenetic β-deviation were mainly concentrated in the pairwise karst and nonkarst forest plots, indicating that the species in karst forests and nonkarst forests were predominantly from distantly related clades. A large proportions of the variation in taxonomic and phylogenetic β-deviation were explained by the joint effect of environmental and spatial variables, while the contribution of environmental variables was greater than that of spatial variables, probably owing to the influence of the sampling scale dependence, integrality of sampling size and species pool, and the unique climatic and geomorphic characteristics. MAIN CONCLUSIONS Our study highlights the importance of phylogeny in biodiversity research. The incorporation of taxonomic and phylogenetic information provides a perspective to explore potential underlying mechanisms that have shaped species assemblages and phylogenetic patterns in biodiversity hotspots.
Collapse
Affiliation(s)
- Wei Shi
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of ForestryGuangxi UniversityNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangxi UniversityNanningChina
| | - Yong‐Qiang Wang
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of ForestryGuangxi UniversityNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangxi UniversityNanningChina
| | - Wu‐Sheng Xiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of BotanyChinese Academy of SciencesGuilinChina
| | - Xian‐Kun Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of BotanyChinese Academy of SciencesGuilinChina
| | - Kun‐Fang Cao
- Guangxi Key Laboratory of Forest Ecology and ConservationCollege of ForestryGuangxi UniversityNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangxi UniversityNanningChina
| |
Collapse
|
27
|
Ding Y, Nie Y, Chen H, Wang K, Querejeta JI. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. THE NEW PHYTOLOGIST 2021; 229:1339-1353. [PMID: 32989748 DOI: 10.1111/nph.16971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Root access to bedrock water storage or groundwater is an important trait allowing plant survival in seasonally dry environments. However, the degree of coordination between water uptake depth, leaf-level water-use efficiency (WUEi) and water potential in drought-prone plant communities is not well understood. We conducted a 135-d rainfall exclusion experiment in a subtropical karst ecosystem with thin skeletal soils to evaluate the responses of 11 co-occurring woody species of contrasting life forms and leaf habits to a severe drought during the wet growing season. Marked differences in xylem water isotopic composition during drought revealed distinct ecohydrological niche separation among species. The contrasting behaviour of leaf water potential in coexisting species during drought was largely explained by differences in root access to deeper, temporally stable water sources. Smaller-diameter species with shallower water uptake, more negative water potentials and lower WUEi showed extensive drought-induced canopy defoliation and/or mortality. By contrast, larger-diameter species with deeper water uptake, higher leaf-level WUEi and more isohydric behaviour survived drought with only moderate canopy defoliation. Severe water limitation imposes strong environmental filtering and/or selective pressures resulting in tight coordination between tree diameter, water uptake depth, iso/anisohydric behaviour, WUEi and drought vulnerability in karst plant communities.
Collapse
Affiliation(s)
- Yali Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Nie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Hongsong Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - José I Querejeta
- Soil and Water Conservation Department, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, E30100, Spain
| |
Collapse
|
28
|
Nardini A, Petruzzellis F, Marusig D, Tomasella M, Natale S, Altobelli A, Calligaris C, Floriddia G, Cucchi F, Forte E, Zini L. Water 'on the rocks': a summer drink for thirsty trees? THE NEW PHYTOLOGIST 2021; 229:199-212. [PMID: 32772381 DOI: 10.1111/nph.16859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Daniel Marusig
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italia
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Alfredo Altobelli
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Chiara Calligaris
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Gabriele Floriddia
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Franco Cucchi
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Emanuele Forte
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Luca Zini
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| |
Collapse
|
29
|
Zhang Q, Zhu S, Jansen S, Cao K. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qi‐Wei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
| | - Shi‐Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology Ulm University Ulm Germany
| | - Kun‐Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation College of Forestry Guangxi University Nanning China
| |
Collapse
|
30
|
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, Beenaerts N, Méndez-Santos IE, Orberá Ratón T, Cos P, Cuypers A. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants (Basel) 2020; 9:E1048. [PMID: 33121046 PMCID: PMC7693031 DOI: 10.3390/antiox9111048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies. These natural antioxidants can be valorized via plant-derived foods and products. Cuba contains an enormously rich plant biodiversity harboring a great antioxidant potential. Besides opening new avenues for the implementation of sustainable agroecological practices in crop production, it will also contribute to new strategies to preserve plant biodiversity and simultaneously improve nature management policies in Cuba. This review provides an overview on the beneficial properties of antioxidants for plant protection and human health and is directed to the valorization of these plant antioxidants, emphasizing the need for biodiversity conservation.
Collapse
Affiliation(s)
- Gabriel Llauradó Maury
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Daniel Méndez Rodríguez
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Julio César Escalona Arranz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Yilan Fung Boix
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Ania Ochoa Pacheco
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Jesús García Díaz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Humberto J. Morris-Quevedo
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Albys Ferrer Dubois
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Elizabeth Isaac Aleman
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Isidro E. Méndez-Santos
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
| | - Teresa Orberá Ratón
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| |
Collapse
|
31
|
Abstract
This article is a broad review focused on dragon trees—one of the most famous groups of trees in the world, well known from ancient times. These tertiary relicts are severely endangered in most of the area where they grow. The characteristic features of the dragon tree group are described and the species belonging to this group are listed. This review gathers together current knowledge regarding the taxonomy, evolution, anatomy and morphology, physiology, and ontogeny of arborescent dragon tree species. Attention is also paid to the composition, harvesting, medicinal, and ethnobotanical use of the resin (dragons’ blood). An evaluation of population structure, distribution, ecology, threats, and nature conservation forms the final part of the review. In the conclusions we recommend further avenues of research that will be needed to effectively protect all dragon tree species.
Collapse
|
32
|
Jiang M, Lin Y, Chan TO, Yao Y, Zheng G, Luo S, Zhang L, Liu D. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci Rep 2020; 10:1440. [PMID: 31996769 PMCID: PMC6989509 DOI: 10.1038/s41598-020-58550-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/01/2022] Open
Abstract
Rocky desertification (RD) is a special process of land deterioration in karst topography, with a view of bedrock exposure and an effect of ecological degradation. Among the three largest karst regions in the world, southwest China boasts the largest RD area and highest diversity of karst landscapes. However, inefficient field surveying tends to restrict earlier studies of RD to local areas, and the high complexity of karst geomorphology in southwest China further lead to the shortage of the knowledge about its macroecological pattern so far. To address this gap, this study innovatively took county as the unit to statistically explore the links between the 2008-censused distributions of county-level RD in southwest China and its potential impact factors of three kinds (geologic, climatic, and anthropogenic), all transformed into the same mapping frame. Spatial pattern analyses based on spatial statistics and artificial interpretation unveiled the macroscopic characteristics of RD spatial patterns, and attribution analyses based on correlation analysis and dominance analysis exposed the links of the impact factors to RD and their contributions in deciding the macroscopic pattern of RD. The results suggested that geologic factors play a first role in drawing the macroecological pattern of RD, also for the slight-, moderate-, and severe-level RD scenarios, in southwest China. Despite this inference somehow collides with the popular awareness that anthropogenic factors like human activities are leadingly responsible for the RD-relevant losses, the findings are of practical implications in guiding making the macroscopic policies for mitigating RD degradation and advancing its environmental restoration.
Collapse
Affiliation(s)
- Miao Jiang
- Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing, 101300, China
| | - Yi Lin
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Ting On Chan
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yunjun Yao
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Guang Zheng
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Shezhou Luo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Zhang
- School of Physics, Peking University, Beijing, 100871, China
| | - Daping Liu
- School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|