1
|
Huang J, White AA. Biologics in Aspirin-Exacerbated Respiratory Disease and Allergic Bronchopulmonary Aspergillosis. Immunol Allergy Clin North Am 2024; 44:673-692. [PMID: 39389717 DOI: 10.1016/j.iac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biologic medications have dramatically altered the landscape for treatment of allergic conditions including aspirin-exacerbated respiratory disease (AERD) and allergic bronchopulmonary aspergillosis (ABPA). Biologics should be considered for patients who are refractory to first line therapies for ABPA. Biologics should be discussed with patients with AERD. Variable responses to different biologics indicate that there may be various endotypes of AERD and ABPA, similar to asthma. Alternative biologics may be considered in patients who fail to respond to initial treatment.
Collapse
Affiliation(s)
- Jenny Huang
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, 3811 Valley Centre Drive, S99, San Diego, CA 92130, USA
| | - Andrew A White
- Aspirin Exacerbated Respiratory Disease Clinic, Division of Allergy, Asthma, and Immunology, Scripps Clinic, 3811 Valley Centre Drive, S99, San Diego, CA 92130, USA.
| |
Collapse
|
2
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
3
|
Chen X, Zhi H, Wang X, Zhou Z, Luo H, Li J, Sehmi R, O'Byrne PM, Chen R. Efficacy of Biologics in Patients with Allergic Bronchopulmonary Aspergillosis: A Systematic Review and Meta-Analysis. Lung 2024; 202:367-383. [PMID: 38898129 DOI: 10.1007/s00408-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Treatment of allergic bronchopulmonary aspergillosis (ABPA) is challenging. Biological therapies have been reported as adjunctive treatments for ABPA, primarily in case series or case reports. This study aimed to analyze the efficacy of biologics for managing ABPA both qualitatively and quantitatively. METHODS All articles on APBA published in October 2023 were searched in PubMed, Web of Science, ClinicalTrials.gov, and Embase databases. The effects of interest were the mean changes from baseline for outcomes, including exacerbation rates, oral corticosteroids usage (OCS), and total immunoglobulin E (IgE) levels. Reported outcomes were quantitatively synthesized by usual or individual patient data (IPD) meta-analyses. PROSPERO registration number: CRD42022373396. RESULTS A total of 86 studies were included in the systematic review including 346 patients. Sixteen studies on omalizumab were pooled for the usual meta-analysis. Omalizumab therapy significantly reduced exacerbation rates (- 2.29 [95%CI - 3.32, - 1.26]), OCS dosage (- 10.91 mg [95%CI - 18.98, - 2.85]), and total IgE levels (- 273.07 IU/mL [95%CI - 379.30, - 166.84]), meanwhile improving FEV1% predicted (10.09% [95%CI 6.62, 13.55]). Thirty-one studies on dupilumab, mepolizumab, or benralizumab were pooled to perform an IPD meta-analysis, retrospectively. Both dupilumab and mepolizumab significantly reduced exacerbation rates, OCS, and total IgE levels. Benralizumab showed a similar trend, but it was not statistically significant. Tezepelumab showed weak evidence of its effects on ABPA. All five biologics led to milder clinical symptoms (e.g., cough, wheezing) with serious adverse effects that happened once in omalizumab treatment. CONCLUSION These results indicate the clinical benefit of omalizumab, dupilumab, and mepolizumab in patients with ABPA. Further randomized, controlled studies with a larger sample size and longer follow-up are needed to confirm these findings.
Collapse
Affiliation(s)
- Xiaoying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haopeng Zhi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaohu Wang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Zicong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Huiting Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Roma Sehmi
- Department of Medicine, Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Department of Medicine, Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Joint International Research Laboratory of Respiratory Health, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
- Guangzhou National Lab, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Okada N, Yamamoto Y, Oguma T, Tanaka J, Tomomatsu K, Shiraishi Y, Matsuse H, Shimoda T, Kimura H, Watai K, Harada T, Fujita Y, Obase Y, Suzukawa M, Suzuki J, Takayanagi N, Ishiguro T, Masaki K, Fukunaga K, Asano K. Allergic bronchopulmonary aspergillosis with atopic, nonatopic, and sans asthma-Factor analysis. Allergy 2023; 78:2933-2943. [PMID: 37458287 DOI: 10.1111/all.15820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 11/11/2023]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) develops in the presence or absence of asthma, either atopic or nonatopic. We have tried to explore the essential components in the pathogenesis of the disease, which are either consistent and variable according to the presence and type of asthma. METHODS Non-cystic fibrosis ABPA cases satisfying Asano's criteria were extracted from a prospective registry of ABPA and related diseases in Japan between 2013 and 2023. According to the type of preceding asthma, ABPA was classified into three groups: ABPA sans asthma (no preceding asthma), ABPA with atopic asthma, and ABPA with nonatopic asthma. Exploratory and confirmatory factor analyses were performed to identify the components that determined the clinical characteristics of ABPA. RESULTS Among 106 cases of ABPA, 25 patients (24%) had ABPA sans asthma, whereas 57 (54%) and 24 (23%) had ABPA with atopic and nonatopic asthma, respectively. Factor analysis identified three components: allergic, eosinophilic, and fungal. Patients with atopic asthma showed the highest scores for the allergic component (p < .001), defined by total and allergen-specific IgE titers and lung opacities, and the lowest scores for the fungal component defined by the presence of specific precipitin/IgG or positive culture for A. fumigatus. Eosinophilic components, including peripheral blood eosinophil counts and presence of mucus plugs/high attenuation mucus in the bronchi, were consistent among the three groups. CONCLUSION The eosinophilic component of ABPA is considered as the cardinal feature of ABPA regardless of the presence of preceding asthma or atopic predisposition.
Collapse
Affiliation(s)
- Naoki Okada
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiro Yamamoto
- Department of Mathematics, School of Science, Tokai University, Kanagawa, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jun Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Katsuyoshi Tomomatsu
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiki Shiraishi
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroto Matsuse
- Division of Respiratory Medicine, Department of Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Terufumi Shimoda
- Department of Allergy, Clinical Research Center, National Hospital Organization Fukuoka Hospital, Fukuoka, Japan
| | - Hirokazu Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Watai
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
- Center for Immunology and Allergy, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, Japan Community Healthcare Organization Hokkaido Hospital, Sapporo, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Junko Suzuki
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Noboru Takayanagi
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
8
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
9
|
Schwarz C, Eschenhagen P, Schmidt H, Hohnstein T, Iwert C, Grehn C, Roehmel J, Steinke E, Stahl M, Lozza L, Tikhonova E, Rosati E, Stervbo U, Babel N, Mainz JG, Wisplinghoff H, Ebel F, Jia LJ, Blango MG, Hortschansky P, Brunke S, Hube B, Brakhage AA, Kniemeyer O, Scheffold A, Bacher P. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J Clin Invest 2023; 133:161593. [PMID: 36701198 PMCID: PMC9974102 DOI: 10.1172/jci161593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDThe fungus Aspergillus fumigatus causes a variety of clinical phenotypes in patients with cystic fibrosis (pwCF). Th cells orchestrate immune responses against fungi, but the types of A. fumigatus-specific Th cells in pwCF and their contribution to protective immunity or inflammation remain poorly characterized.METHODSWe used antigen-reactive T cell enrichment (ARTE) to investigate fungus-reactive Th cells in peripheral blood of pwCF and healthy controls.RESULTSWe show that clonally expanded, high-avidity A. fumigatus-specific effector Th cells, which were absent in healthy donors, developed in pwCF. Individual patients were characterized by distinct Th1-, Th2-, or Th17-dominated responses that remained stable over several years. These different Th subsets target different A. fumigatus proteins, indicating that differential antigen uptake and presentation directs Th cell subset development. Patients with allergic bronchopulmonary aspergillosis (ABPA) are characterized by high frequencies of Th2 cells that cross-recognize various filamentous fungi.CONCLUSIONOur data highlight the development of heterogenous Th responses targeting different protein fractions of a single fungal pathogen and identify the development of multispecies cross-reactive Th2 cells as a potential risk factor for ABPA.FUNDINGGerman Research Foundation (DFG), under Germany's Excellence Strategy (EXC 2167-390884018 "Precision Medicine in Chronic Inflammation" and EXC 2051-390713860 "Balance of the Microverse"); Oskar Helene Heim Stiftung; Christiane Herzog Stiftung; Mukoviszidose Institut gGmb; German Cystic Fibrosis Association Mukoviszidose e.V; German Federal Ministry of Education and Science (BMBF) InfectControl 2020 Projects AnDiPath (BMBF 03ZZ0838A+B).
Collapse
Affiliation(s)
- Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Henrijette Schmidt
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Thordis Hohnstein
- Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Translational Immunology, Berlin, Germany
| | - Claudia Grehn
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany
| | - Eva Steinke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Mirjam Stahl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Laura Lozza
- Cell Biology Laboratory, Precision for Medicine GmbH, Berlin, Germany
| | - Ekaterina Tikhonova
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Nina Babel
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Jochen G. Mainz
- Brandenburg Medical School/Medizinische Hochschule Brandenburg (MHB), University, Pediatric Pulmonology/Cystic Fibrosis, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Hilmar Wisplinghoff
- Labor Dr. Wisplinghoff, Cologne, Germany.,Institute for Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
10
|
Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60:1-24. [PMID: 35968577 DOI: 10.1080/10408363.2022.2101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
Collapse
Affiliation(s)
- Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Chen H, Zhang X, Zhu L, An N, Jiang Q, Yang Y, Ma D, Yang L, Zhu R. Clinical and immunological characteristics of Aspergillus fumigatus-sensitized asthma and allergic bronchopulmonary aspergillosis. Front Immunol 2022; 13:939127. [PMID: 35983066 PMCID: PMC9379317 DOI: 10.3389/fimmu.2022.939127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Aspergillus fumigatus (A.f) is a common airborne allergen that contributes to allergic asthma. In some patients, A.f can colonize in the airway and lead to allergic bronchopulmonary aspergillosis (ABPA). However, our understanding of the pathogenesis of A.f-sensitized asthma and ABPA remains inadequate. Objective We aimed to investigate the clinical and immunological characteristics of A.f-sensitized asthma and ABPA. Methods A total of 64 ABPA and 57 A.f-sensitized asthma patients were enrolled in the study, and 33 non-A.f-sensitized asthma patients served as the control group. The clinical and immunological parameters included lung function, fractional exhaled nitric oxide (FeNO), induced sputum and blood cell analysis, specific IgE/IgG/IgA of A.f and its components, cytokines (IL-33, IL-25, and TSLP) and CD4+T cell subsets. Results The eosinophils in blood, induced sputum, and FeNO were significantly higher in ABPA patients compared to that in A.f-sensitized patients. The combination of FeNO and eosinophils (EO) parameters presented good diagnostic efficiency in differentiating A.f (+) asthma from ABPA, with a sensitivity of 80% and a specificity of 100%. Specific IgE, IgG, and IgA against A.f also increased in ABPA patients. However, serum IL-25, IL-33, and TSLP showed no significant differences between the two groups. Cell analysis showed an increase in IFN-γ+Th1 cells in the ABPA patients. FlowSOM analysis further confirmed that the frequency of CD3+CD4+PD-1+CD127+IFN-γ+T cells was higher in ABPA patients. Conclusion Our findings suggest the distinct humoral and cell immunological responses in A.f-sensitized asthma and ABPA patients. ABPA patients have more severe eosinophilic inflammation and enhanced Th1 responses compared with A.f-sensitized asthma patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nairui An
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Jiang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rongfei Zhu, ; Lin Yang,
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rongfei Zhu, ; Lin Yang,
| |
Collapse
|
12
|
Verburg K, van Neer J, Duca M, de Cock H. Novel Treatment Approach for Aspergilloses by Targeting Germination. J Fungi (Basel) 2022; 8:758. [PMID: 35893126 PMCID: PMC9331470 DOI: 10.3390/jof8080758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Germination of conidia is an essential process within the Aspergillus life cycle and plays a major role during the infection of hosts. Conidia are able to avoid detection by the majority of leukocytes when dormant. Germination can cause severe health problems, specifically in immunocompromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles can be very effective to combat a variety of fungal infections. However, resistance against current azoles has emerged and has been increasing since 1998. As a consequence, patients infected with resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alternative. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few common denominators. By specifically targeting conidial germination with novel antifungals, early intervention might be possible. In this review, we propose several morphotypes to disrupt conidial germination, as well as potential targets. Hopefully, new antifungals against such targets could contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased fungal burden on patients.
Collapse
Affiliation(s)
- Kim Verburg
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Jacq van Neer
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Hans de Cock
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.V.); (J.v.N.)
| |
Collapse
|
13
|
Serum Cytokines Usefulness for Understanding the Pathology in Allergic Bronchopulmonary Aspergillosis and Chronic Pulmonary Aspergillosis. J Fungi (Basel) 2022; 8:jof8050436. [PMID: 35628692 PMCID: PMC9147526 DOI: 10.3390/jof8050436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA) are important fungal infections caused by Aspergillus species. An overlap of ABPA and CPA has been reported; therefore, it is critical to determine whether the main pathology is ABPA or CPA and whether antifungals are required. In this study, we investigated whether the serum cytokine profile is useful for understanding the pathology and for differentiating between these diseases. We compared the various serum cytokine levels among healthy subjects and patients diagnosed with asthma, ABPA, or CPA at Nagasaki University Hospital between January 2003 and December 2018. In total, 14 healthy subjects, 19 patients with asthma, 11 with ABPA, and 10 with CPA were enrolled. Interleukin (IL) -5 levels were significantly higher in patients with ABPA than in those with CPA, and IL-33 and tumor necrosis factor (TNF) levels were significantly higher in patients with CPA than in those with asthma (p < 0.05, Dunn’s multiple comparison test). The sensitivity and specificity of the IL-10/IL-5 ratio (cutoff index 2.47) for diagnosing CPA were 70% and 100%, respectively. The serum cytokine profile is useful in understanding the pathology of ABPA and CPA, and the IL-10/IL-5 ratio may be a novel supplemental biomarker for indicating the pathology of CPA.
Collapse
|
14
|
Agarwal R, Muthu V, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN. Allergic Bronchopulmonary Aspergillosis. Clin Chest Med 2022; 43:99-125. [DOI: 10.1016/j.ccm.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
17
|
Mikura S, Saraya T, Yoshida Y, Oda M, Ishida M, Honda K, Nakamoto K, Tamura M, Takata S, Shimoyamada H, Fujiwara M, Ishii H. Successful Treatment of Mepolizumab- and Prednisolone-resistant Allergic Bronchopulmonary Aspergillosis with Dupilumab. Intern Med 2021; 60:2839-2842. [PMID: 33642487 PMCID: PMC8479224 DOI: 10.2169/internalmedicine.6679-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 45-year-old man with allergic bronchopulmonary aspergillosis (ABPA) was treated with oral prednisolone (PSL) (30 mg/day), inhaled corticosteroids, and long-acting beta2-agonists. After confirmation of a PSL-dependent status (8 mg/day), subcutaneous injection with anti-interleukin (IL)-5 antibody (mepolizumab, 100 mg/month) was performed, and the PSL dose was tapered to 5 mg/day. However, ABPA recurred and proved refractory to oral itraconazole (200 mg/day). Alternative subcutaneous injection therapy with dupilumab (induction dose of 600 mg followed by a maintenance dose of 300 mg/2 weeks) enabled the successful withdrawal of oral PSL without clinical deterioration. This case demonstrates the potential utility of dupilumab for steroid-dependent ABPA via the synergistic suppression of IL-4 and IL-13 compared to monotherapy with anti-IL-5 antibody.
Collapse
Affiliation(s)
- Sunao Mikura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Yuki Yoshida
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Miku Oda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Manabu Ishida
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Masaki Tamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | - Saori Takata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| | | | | | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Japan
| |
Collapse
|
18
|
Lauruschkat CD, Etter S, Schnack E, Ebel F, Schäuble S, Page L, Rümens D, Dragan M, Schlegel N, Panagiotou G, Kniemeyer O, Brakhage AA, Einsele H, Wurster S, Loeffler J. Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. J Fungi (Basel) 2021; 7:jof7090698. [PMID: 34575736 PMCID: PMC8471116 DOI: 10.3390/jof7090698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.
Collapse
Affiliation(s)
- Chris D. Lauruschkat
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sonja Etter
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Elisabeth Schnack
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
| | - Lukas Page
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Dana Rümens
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Mariola Dragan
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
- Correspondence: ; Tel.: +49-931-201-36412
| |
Collapse
|
19
|
Suzuki Y, Takasaka N, Matsubayashi S, Kojima A, Shinfuku K, Hasegawa T, Yamada M, Fujisaki I, Seki A, Seki Y, Ishikawa T, Kuwano K. Allergic bronchopulmonary aspergillosis in a patient with ankylosing spondylitis treated with adalimumab. Respirol Case Rep 2021; 9:e00805. [PMID: 34194813 PMCID: PMC8222654 DOI: 10.1002/rcr2.805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
We herein report a case of allergic bronchopulmonary aspergillosis (ABPA) that occurred in a man treated with adalimumab for ankylosing spondylitis (AS). A 69-year-old man with a history of ankylosing spondylitis treated by adalimumab, an anti-tumour necrosis factor-α (TNF-α) antibody, developed cough and wheezing. Chest computed tomography showed obstruction of dilated left upper lobe bronchus by high attenuation mucus as well as central bronchiectasis. Both Aspergillus-specific immunoglobulin E (IgE) and Aspergillus precipitating antibody were positive and Aspergillus fumigatus was detected in a sputum culture. According to the new diagnostic criteria, the patient was diagnosed with ABPA. His condition rapidly improved after the withdrawal of adalimumab and initiation of prednisolone and itraconazole. Anti-TNF-α antibody might cause ABPA through both aggravation of the host's T-helper 2 immunological response and anti-fungal response.
Collapse
Affiliation(s)
- Yudai Suzuki
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Naoki Takasaka
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Sachi Matsubayashi
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Ayako Kojima
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Kyota Shinfuku
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Tsukasa Hasegawa
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Masami Yamada
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Ikumi Fujisaki
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Aya Seki
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Yoshitaka Seki
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Takeo Ishikawa
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University Daisan HospitalTokyoJapan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University HospitalTokyoJapan
| |
Collapse
|
20
|
Liu Y, Li Z, Wang S, Zhang C, Han L, Sun Q, Han X. Aspergillus fumigatus Induces the Release of IL-8 and MCP-1 by Activating Nuclear Transcription Through Dectin-1 and CR3 Receptors in Alveolar Epithelial Cells. Curr Microbiol 2021; 78:3474-3482. [PMID: 34272600 DOI: 10.1007/s00284-021-02534-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/03/2021] [Indexed: 01/18/2023]
Abstract
Invasive pulmonary aspergillosis induced by the pathogenic fungus Aspergillus fumigatus is one of the common fatal complications in immunocompromised patients. Lung epithelial cells play an important role in host immune defense against A. fumigatus. However, the interaction between lung epithelial cells and A. fumigatus conidia is not fully understood. In this study, we used the swollen conidia of A. fumigatus to stimulate the type II lung epithelial A549 cells. Results showed that swollen conidia could significantly increase RNA transcription and protein expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1), but not TNF-α in A549 cells in a time-dependent manner. Moreover, serum opsonization was able to improve the release of inflammatory factors induced by swollen conidia. Blocking of the dectin-1 or CR3 receptors, or both simultaneously, in the A549 cells could decrease the release of IL-8 and MCP-1. Additionally, blocking dectin-1 or CR3 could inhibit the transcription of nuclear factor NF-κB that was activated by swollen conidia. Here we reported for the first time that dectin-1 and CR3 receptors in A549 cells mediate the release of pro-inflammatory factors IL-8 and MCP-1 induced by A. fumigatus.
Collapse
Affiliation(s)
- Yanxi Liu
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.,Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Beijing, China.,Department of Clinical Laboratory of The 907 Hospital of PLA, Fujian, China
| | - Zhiqian Li
- Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Beijing, China.,Department of Clinical Laboratory of The 907 Hospital of PLA, Fujian, China
| | - Shuo Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai, China
| | - Changjian Zhang
- Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Li Han
- Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Xuelin Han
- Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Beijing, China.
| |
Collapse
|
21
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Development of a Simple and Robust Whole Blood Assay with Dual Co-Stimulation to Quantify the Release of T-Cellular Signature Cytokines in Response to Aspergillus fumigatus Antigens. J Fungi (Basel) 2021; 7:jof7060462. [PMID: 34201183 PMCID: PMC8230040 DOI: 10.3390/jof7060462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens.
Collapse
|
23
|
Blight BJ, Gill AS, Sumsion JS, Pollard CE, Ashby S, Oakley GM, Alt JA, Pulsipher A. Cell Adhesion Molecules are Upregulated and May Drive Inflammation in Chronic Rhinosinusitis with Nasal Polyposis. J Asthma Allergy 2021; 14:585-593. [PMID: 34079296 PMCID: PMC8166329 DOI: 10.2147/jaa.s307197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly characterized by eosinophil- and T helper 2 cell (Th2)-biased inflammation. Integrins and intercellular adhesion molecules (ICAMs) are superfamilies of cell adhesion molecules (CAMs) that facilitate the recruitment and trafficking of immune cells and have been implicated in coordinating eosinophil and Th2 cell adhesion and signaling in asthma. The roles of CAMs in CRSwNP, however, remain poorly understood. The purpose of this study was to characterize the systemic and local expression of CAMs and identify which CAMs are potentially involved in CRSwNP pathology. Materials and Methods A prospective observational study was conducted using peripheral blood and anterior ethmoid tissues of patients with CRSwNP (n=32) and controls (n=15). Multiplex gene analysis and Pearson correlations were performed to identify associations between systemically and locally expressed CAMs. Based on the gene expression results, immunohistochemical evaluation and quantification of cells expressing integrins ITGAM, ITGAX, and ITGB2, as well as ICAM-3 in sinonasal tissues were conducted to compare local protein expression patterns. Results Integrin and ICAM genes were significantly elevated in the blood (p<0.001 to p<0.05) and sinuses (p<0.0003 to p<0.05) of patients with CRSwNP compared to controls. Strong positive correlations of genes expressed in the blood (p<0.01 to p<0.05) and sinuses (p<0.01) were observed between ITGAM, ITGAX, ITGB2, and ICAM3. ITGAM-, ITGB2-, ICAM-3-, and ICAM-3/ITGB2-positive cell counts were significantly increased in CRSwNP compared to controls (p<0.0001 to p<0.04), and a positive correlation between ICAM-3/ITGB2- and ITGAM-positive cell counts was observed (p<0.02). Conclusion The systemic and local expression of ITGAM, ITGB2, and ICAM-3 is significantly upregulated in CRSwNP, suggesting that integrin complex ITGAM/ITGB2 and ICAM-3 serve a potential role in inflammation-mediated signaling in CRSwNP.
Collapse
Affiliation(s)
- Brennan J Blight
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amarbir S Gill
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jorgen S Sumsion
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chelsea E Pollard
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shaelene Ashby
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gretchen M Oakley
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeremiah A Alt
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Abigail Pulsipher
- Division of Otolaryngology-Head and Neck Surgery, Rhinology-Sinus and Skull Base Surgery Program, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Ali M, Green O. Dupilumab: a new contestant to corticosteroid in allergic bronchopulmonary aspergillosis. Oxf Med Case Reports 2021; 2021:omaa029. [PMID: 33948179 PMCID: PMC8081018 DOI: 10.1093/omcr/omaa029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 04/17/2020] [Indexed: 12/02/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a disease characterized by severe disability with recurrent wheezing and shortness of breath. The current recommended therapy is daily oral corticosteroids +/− oral antifungal therapy. Despite this, many patients continue to have severe symptoms, and others require fairly high daily oral corticosteroid dosing to achieve control, which in turn may induce the well-known effects of long term steroid use. The anti-interleukin drugs have been reported to help improve daily symptoms and reduce steroid requirements. Much of the literature highlights the benefit of omalizumab. We present a case of dupilumab as add-on therapy in a patient with ABPA, which allowed us to reduce daily steroid dosage.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Internal Medicine, Pulmonary and Critical Care Section, Baystate Medical Center - University of Massachusetts Medical School, Springfield, MA, USA
| | - O'Neil Green
- Department of Internal Medicine, Pulmonary and Critical Care Section, Baystate Medical Center - University of Massachusetts Medical School, Springfield, MA, USA
| |
Collapse
|
25
|
Bercusson A, Jarvis G, Shah A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021; 186:655-664. [PMID: 33813719 PMCID: PMC8536598 DOI: 10.1007/s11046-021-00541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Fungi are increasingly recognised to have a significant role in the progression of lung disease in Cystic fibrosis with Aspergillus fumigatus the most common fungus isolated during respiratory sampling. The emergence of novel CFTR modulators has, however, significantly changed the outlook of disease progression in CF. In this review we discuss what impact novel CFTR modulators will have on fungal lung disease and its management in CF. We discuss how CFTR modulators affect antifungal innate immunity and consider the impact of Ivacaftor on fungal disease in individuals with gating mutations. We further review the increasing complication of drug-drug interactions with concurrent use of azole antifungal medication and highlight key unknowns that require addressing to fully understand the impact of CFTR modulators on fungal disease.
Collapse
Affiliation(s)
- Amelia Bercusson
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Jarvis
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK. .,Department of Infectious Disease Epidemiology, MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
26
|
Agarwal R, Sehgal IS, Dhooria S, Muthu V, Prasad KT, Bal A, Aggarwal AN, Chakrabarti A. Allergic bronchopulmonary aspergillosis. Indian J Med Res 2021; 151:529-549. [PMID: 32719226 PMCID: PMC7602921 DOI: 10.4103/ijmr.ijmr_1187_19] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an inflammatory disease caused by immunologic reactions initiated against Aspergillus fumigatus colonizing the airways of patients with asthma and cystic fibrosis. The common manifestations include treatment-resistant asthma, transient and fleeting pulmonary opacities and bronchiectasis. It is believed that globally there are about five million cases of ABPA, with India alone accounting for about 1.4 million cases. The occurrence of ABPA among asthmatic patients in special clinics may be as high as 13 per cent. Thus, a high degree of suspicion for ABPA should be entertained while treating a patient with bronchial asthma, particularly in specialized clinics. Early diagnosis and appropriate treatment can delay (or even prevent) the onset of bronchiectasis, which suggests that all patients of bronchial asthma should be screened for ABPA, especially in chest clinics. The current review summarizes the recent advances in the pathogenesis, diagnosis and management of ABPA.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Inderpaul S Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kuruswamy T Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
27
|
Kozlova Y, Frolova E, Uchevatkina A, Filippova L, Aak O, Burygina E, Taraskina A, Vasilyeva N, Klimko N. Diagnostic markers of allergic bronchopulmonary aspergillosis in patients with severe asthma. Mycoses 2020; 63:596-603. [PMID: 32246509 DOI: 10.1111/myc.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Allergic bronchopulmonary aspergillosis (ABPA) is a lung disease in patients with asthma or cystic fibrosis (CF) caused by chronic allergic inflammation to Aspergillus spp. antigens. The role of different immunological mediators in the formation of chronic allergic inflammation in patients with ABPA is not sufficiently explored. OBJECTIVES This study aimed to investigate serum levels of thymic stromal lymphopoietin (TSLP), thymus and activated chemokine (TARC) as well as IL-8 in patients with ABPA, and to evaluate their diagnostic and monitoring value in the disease. PATIENTS/METHODS Prospective study included 21 patients with ABPA, 25 patients with severe asthma with fungal sensitisation (SAFS), 37 patients with severe asthma without fungal sensitisation (SAwFS), and 16 healthy people. In patients with ABPA, the serum levels of biomarkers were determined at baseline and after 12 weeks of itraconazole therapy. Serum levels of total IgE, Aspergillus-fumigatus-specific IgE, TSLP, TARC, IL-8 were analysed by enzyme-linked immunosorbent assay. RESULTS In patients with ABPA we established significantly higher serum levels of TARC, IL-8, total IgE, Aspergillus-fumigatus-specific IgE and peripheral blood eosinophil counts, compared to patients with SAwFS. There were no differences in TSLP levels between the examined groups of patients. Serum TARC levels were positively correlated to serum total IgE levels, A fumigatus-specific IgE levels and peripheral blood eosinophil counts and also negatively correlated to lung function (FEV1 ). Longitudinally, serum levels TARC, total IgE and peripheral blood eosinophil counts significant decreased after treatment of ABPA. CONCLUSION Thymus and activated chemokine is a useful test in diagnosing and monitoring response to the antifungal treatment of patients with ABPA.
Collapse
Affiliation(s)
- Yana Kozlova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Ekaterina Frolova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Aleksandra Uchevatkina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Larisa Filippova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Oleg Aak
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Ekaterina Burygina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Anastasiya Taraskina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Natalia Vasilyeva
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Nikolay Klimko
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
28
|
Pfavayi LT, Sibanda EN, Mutapi F. The Pathogenesis of Fungal-Related Diseases and Allergies in the African Population: The State of the Evidence and Knowledge Gaps. Int Arch Allergy Immunol 2020; 181:257-269. [PMID: 32069461 DOI: 10.1159/000506009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
The prevalence of allergic diseases in the African continent has received limited attention with the allergic diseases due to fungal allergens being among the least studied. This lead to the opinion being that the prevalence of allergic disease is low in Africa. Recent reports from different African countries indicate that this is not the case as allergic conditions are common and some; particularly those due to fungal allergens are increasing in prevalence. Thus, there is need to understand both the aetiology and pathogenies of these diseases, particularly the neglected fungal allergic diseases. This review addresses currently available knowledge of fungal-induced allergy, disease pathogenesis comparing findings from human versus experimental mouse studies of fungal allergy. The review discusses the potential role of the gut mycobiome and the extent to which this is relevant to fungal allergy, diagnosis and human health.
Collapse
Affiliation(s)
- Lorraine Tsitsi Pfavayi
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Oxford, United Kingdom, .,Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom,
| | - Elopy Nimele Sibanda
- Asthma Allergy and Immunology Clinic, Twin Palms Medical Centre, Harare, Zimbabwe.,Department of Pathology, National University of Science and Technology Medical School, Bulawayo, Zimbabwe.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Muthu V, Agarwal R. Allergic Bronchopulmonary Aspergillosis. CLINICAL PRACTICE OF MEDICAL MYCOLOGY IN ASIA 2020:137-164. [DOI: 10.1007/978-981-13-9459-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
30
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
31
|
Godwin MS, Reeder KM, Garth JM, Blackburn JP, Jones M, Yu Z, Matalon S, Hastie AT, Meyers DA, Steele C. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight 2019; 4:129055. [PMID: 31550242 DOI: 10.1172/jci.insight.129055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1β are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1β, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.
Collapse
Affiliation(s)
- Matthew S Godwin
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kristen M Reeder
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Zhihong Yu
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
32
|
Successful treatment with mepolizumab in a case of allergic bronchopulmonary aspergillosis complicated with nontuberculous mycobacterial infection. Respir Med Case Rep 2019; 28:100875. [PMID: 31205860 PMCID: PMC6558237 DOI: 10.1016/j.rmcr.2019.100875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a complex hypersensitivity reaction that is associated with an allergic immunological response to Aspergillus species via Th2-related inflammation. The long-term use of a systemic corticosteroid is often needed for the treatment of ABPA. However, systemic corticosteroid treatment imposes a risk of the onset of a nontuberculous mycobacterial infection. Here we report the case of a patient with ABPA who required the long-term use of an oral corticosteroid because her repeated asthmatic attacks were successfully treated with mepolizumab, an anti-interleukin-5 monoclonal antibody. The patient, a 60-year-old Japanese female, had been treated with an oral corticoid and itraconazole. Despite the success of the initial treatment for ABPA, it was difficult to discontinue the use of the oral corticosteroid. In addition, Mycobacterium avium was detected from her bronchial lavage. We initiated mepolizumab treatment to taper the amount of corticosteroid and control the asthma condition. The patient's number of blood eosinophils, serum IgE level, fractional exhaled nitric oxide level, dosage of oral prednisolone, and need for inhaled budesonide/formoterol all improved, without an exacerbation of her asthma attacks. Although further research regarding mepolizumab treatment is needed, we believe that mepolizumab could be considered one of the agents for treating refractory ABPA.
Collapse
|
33
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
34
|
Duréault A, Tcherakian C, Poiree S, Catherinot E, Danion F, Jouvion G, Bougnoux ME, Mahlaoui N, Givel C, Castelle M, Picard C, Chansdesris MO, Lortholary O, Lanternier F. Spectrum of Pulmonary Aspergillosis in Hyper-IgE Syndrome with Autosomal-Dominant STAT3 Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1986-1995.e3. [PMID: 30878710 DOI: 10.1016/j.jaip.2019.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal-dominant signal transducer and activator of transcription 3 (STAT3) deficiency predisposes to recurrent bacterial pneumonia, complicated by bronchiectasis and cavitations. Aspergillosis is a major cause of morbidity in these patients. However, its diagnosis, classification, and treatment are challenging. OBJECTIVE We aimed to assess the prevalence and describe the clinical, mycological, and radiological presentation and related therapy and outcome of Aspergillus infections of the respiratory tract in the STAT3-deficient patients of the National French cohort. METHODS We performed a retrospective study of all pulmonary aspergillosis cases in STAT3-deficient patients (n = 74). Clinical and mycological data were collected up to October 2015 and imaging was centralized. RESULTS Twenty-one episodes of pulmonary aspergillosis in 13 (17.5%) STAT3-deficient patients were identified. The median age at first episode was 13 years (interquartile range, 10-26 years). Ninety percent of patients had previous bronchiectasis or cavitations. Infections were classified as follows: 5 single aspergilloma, 9 chronic cavity pulmonary aspergillosis, 5 allergic bronchopulmonary aspergillosis-like disease, and 2 mixed forms of concomitant allergic bronchopulmonary aspergillosis-like disease and chronic cavity pulmonary aspergillosis. No invasive aspergillosis cases were identified. Aspergillus species were isolated in 71% of episodes and anti-Aspergillus antibodies in 93%. Eleven episodes were breakthrough infections. Antifungal treatment was prolonged, with a median of 13 months, and 6 patients (7 episodes) required surgery, with a high rate of postsurgical complications. One patient died and 6 had a relapse. CONCLUSIONS Chronic and allergic forms of aspergillosis occurred in 17.5% of STAT3-deficient patients, mostly in lung cavities. Almost half had recurrences, despite prolonged antifungal treatment and/or surgery.
Collapse
Affiliation(s)
- Amélie Duréault
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Colas Tcherakian
- Service de Pneumologie, Hôpital Foch, Suresnes, France; Faculté des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France; National Referral Center for Hypereosinophilic (CEREO)
| | - Sylvain Poiree
- Service de Radiologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Emilie Catherinot
- Service de Pneumologie, Hôpital Foch, Suresnes, France; Faculté des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - François Danion
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France
| | - Grégory Jouvion
- Unité de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Département de Génétique Médicale, Hôpital Trousseau, Sorbonne Université, APHP, Paris, France
| | | | - Nizar Mahlaoui
- Centre d'Etude des Déficits Immunitaires (CEDI), Hôpital Necker-Enfants Malades, APHP, Paris, France; CEREDIH, Centre de Référence des Déficits Immunitaires Héréditaires, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France; Service Immunologie-Hématologie Pédiatrique, Hôpital Necker-Enfants Malades, APHP, Paris, France; Imagine Institut INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Claire Givel
- Service de Pneumologie, Hôpital Foch, Suresnes, France; Faculté des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Martin Castelle
- Service d'Hématologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Capucine Picard
- Centre d'Etude des Déficits Immunitaires (CEDI), Hôpital Necker-Enfants Malades, APHP, Paris, France; CEREDIH, Centre de Référence des Déficits Immunitaires Héréditaires, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France; Service Immunologie-Hématologie Pédiatrique, Hôpital Necker-Enfants Malades, APHP, Paris, France; Imagine Institut INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France; Institut Pasteur, CNRS, Centre National de Référence Mycoses Invasives et Antifongiques, Unité de Mycologie Moléculaire, Paris, France
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Descartes, Paris, France; Institut Pasteur, CNRS, Centre National de Référence Mycoses Invasives et Antifongiques, Unité de Mycologie Moléculaire, Paris, France.
| | | |
Collapse
|
35
|
Toor A, Culibrk L, Singhera GK, Moon KM, Prudova A, Foster LJ, Moore MM, Dorscheid DR, Tebbutt SJ. Transcriptomic and proteomic host response to Aspergillus fumigatus conidia in an air-liquid interface model of human bronchial epithelium. PLoS One 2018; 13:e0209652. [PMID: 30589860 PMCID: PMC6307744 DOI: 10.1371/journal.pone.0209652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a wide-spread fungus that is a potent allergen in hypersensitive individuals but also an opportunistic pathogen in immunocompromised patients. It reproduces asexually by releasing airborne conidiospores (conidia). Upon inhalation, fungal conidia are capable of reaching the airway epithelial cells (AECs) in bronchial and alveolar tissues. Previous studies have predominantly used submerged monolayer cultures for studying this host-pathogen interaction; however, these cultures do not recapitulate the mucocililary differentiation phenotype of the in vivo epithelium in the respiratory tract. Thus, the aim of this study was to use well-differentiated primary human bronchial epithelial cells (HBECs) grown at the air-liquid interface (ALI) to determine their transcriptomic and proteomic responses following interaction with A. fumigatus conidia. We visualized conidial interaction with HBECs using confocal laser scanning microscopy (CLSM), and applied NanoString nCounter and shotgun proteomics to assess gene expression changes in the human cells upon interaction with A. fumigatus conidia. Western blot analysis was used to assess the expression of top three differentially expressed proteins, CALR, SET and NUCB2. CLSM showed that, unlike submerged monolayer cultures, well-differentiated ALI cultures of primary HBECs were estimated to internalize less than 1% of bound conidia. Nevertheless, transcriptomic and proteomic analyses revealed numerous differentially expressed host genes; these were enriched for pathways including apoptosis/autophagy, translation, unfolded protein response and cell cycle (up-regulated); complement and coagulation pathways, iron homeostasis, nonsense mediated decay and rRNA binding (down-regulated). CALR and SET were confirmed to be up-regulated in ALI cultures of primary HBECs upon exposure to A. fumigatus via western blot analysis. Therefore, using transcriptomics and proteomics approaches, ALI models recapitulating the bronchial epithelial barrier in the conductive zone of the respiratory tract can provide novel insights to the molecular response of bronchial epithelial cells upon exposure to A. fumigatus conidia.
Collapse
Affiliation(s)
- Amreen Toor
- Experimental Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Luka Culibrk
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Anna Prudova
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
| |
Collapse
|
36
|
Piao H, Choi YH, Li H, Wang C, Xian Z, Ogasawara M, Jiang J, Li L, Yamauchi K, Yan G. Recombinant pyrin domain protein attenuates allergic inflammation by suppressing NF-κB pathway in asthmatic mice. Scand J Immunol 2018; 89:e12720. [PMID: 30589094 DOI: 10.1111/sji.12720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Pyrin domain (PYD), a subclass of protein motif known as the death fold, is frequently involved in inflammation and immune responses. PYD modulates nuclear factor-kappa B (NF-κB) signalling pathway upon various stimuli. Herein, a novel recombinant pyrin domain protein (RPYD) was generated. Its role and mechanism in inflammatory response in an ovalbumin (OVA) induced asthma model was investigated. After OVA challenge, there was inflammatory cell infiltration in the lung, as well as airway hyper-responsiveness (AHR) to inhaled methacholine. In addition, eosinophils increased in the bronchoalveolar lavage fluids, alone with the elevated levels of Th-2 type cytokines [interleukin (IL)-4, IL-5 and IL-13], eotaxin, and adhesion molecules. However, the transnasal administration of RPYD before the OVA challenge significantly inhibited these asthmatic reactions. Moreover, RPYD markedly suppressed NF-κB translocation, reduced phosphorylation of p38 MAPK, and thus attenuated the expression of intercellular adhesion molecule 1 and IL-6 in the BEAS-2B cells stimulated by proinflammatory cytokines in vitro. These findings indicate that RPYD can protect asthma host from OVA-induced airway inflammation and AHR via down-regulation of NF-κB and p38 MAPK activities. RPYD may be used as a potential medicine for the treatment of asthma in clinic.
Collapse
Affiliation(s)
- Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, YanJi, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Hongmei Li
- Administration of Traditional Chinese Medicine of JiLin Province, Changchun, China
| | - Chongyang Wang
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi, Jilin, China
| | - Zhemin Xian
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, YanJi, Jilin, China
| | - Masahito Ogasawara
- Division of Pharmacology, Department of Integrated Life Science, Ehime University School of Medicine, Ehime, Japan
| | - Jingzhi Jiang
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi, Jilin, China
| | - Liangchang Li
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi, Jilin, China
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Guanghai Yan
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi, Jilin, China
| |
Collapse
|
37
|
Galdino NAL, Loures FV, de Araújo EF, da Costa TA, Preite NW, Calich VLG. Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17 immunity and prevents fatal disease outcome. Sci Rep 2018; 8:16544. [PMID: 30410119 PMCID: PMC6224548 DOI: 10.1038/s41598-018-35037-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the disease is already established, regulatory T cells (Treg) cells are associated with disease severity. Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel immunotherapeutic procedure.
Collapse
Affiliation(s)
- Nayane A L Galdino
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio V Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliseu F de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania A da Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nycolas W Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia G Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
38
|
Khosravi AR, Alheidary S, Nikaein D, Asghari N. Aspergillus fumigatus conidia stimulate lung epithelial cells (TC-1 JHU-1) to produce IL-12, IFNγ, IL-13 and IL-17 cytokines: Modulatory effect of propolis extract. J Mycol Med 2018; 28:594-598. [PMID: 30360945 DOI: 10.1016/j.mycmed.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Aspergillus fumigatus conidia are the most prevalent indoors fungal allergens. The interaction between Aspergillus antigens and lung epithelial cells (LECs) result in innate immune functions. The association between Aspergillus conidia and allergic reactions, like allergic bronchopulmonary aspergillosis (ABPA) and asthma have been repeatedly reported. Since conventional therapies for allergy and asthma are limited, finding new promising treatments are inevitable. This study was designed to evaluate the effect of A. fumigatus conidia on IL-12, IFNγ, IL-13 and IL-17 release from mouse LECs and to investigate the effect of propolis on cytokines modulation. Cells were divided to two groups, one was exposed to 3×104 conidia of Aspergillus fumigatus and another group was treated by propolis (25μg/mL) as well as exposed to A. fumigatus conidia. Cytokines IL-13, IL-12, IFNγ and IL-17 were measured at times 0, 6 and 12hours after exposure using ELISA assay. The results indicated that A. fumigatus could increase the release of the cytokines with IL-13 and IL-17 being the most affected ones whilst treatment with propolis decreased the effects of A. fumigatus on IL-13 and IL-17 production. The results showed that propolis has down regulatory effects on Th2 cytokine, IL-13, and IL-17 production, whereas it caused a significant induction of IL-12, as an important Th1 cytokines by LECs. With respect to the obtained results, propolis extract might be contributed to decrease Th2 responses in allergic asthma phenomenon. However more investigations must be done in future to fully understand its efficacy.
Collapse
Affiliation(s)
- A R Khosravi
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran.
| | - S Alheidary
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran
| | - D Nikaein
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran
| | - N Asghari
- Mycology research center, faculty of veterinary medicine, university of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Page L, Weis P, Müller T, Dittrich M, Lazariotou M, Dragan M, Waaga-Gasser AM, Helm J, Dandekar T, Einsele H, Löffler J, Ullmann AJ, Wurster S. Evaluation of Aspergillus and Mucorales specific T-cells and peripheral blood mononuclear cell cytokine signatures as biomarkers of environmental mold exposure. Int J Med Microbiol 2018; 308:1018-1026. [PMID: 30201279 DOI: 10.1016/j.ijmm.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022] Open
Abstract
Mold specific T-cells have been described as a supportive biomarker to monitor invasive mycoses and mold exposure. This study comparatively evaluated frequencies and cytokine profiles of Aspergillus fumigatus and Mucorales reactive T-cells depending on environmental mold exposure. Peripheral blood mononuclear cells (PBMCs) obtained from 35 healthy donors were stimulated with mycelial lysates of A. fumigatus and three human pathogenic Mucorales species. CD154+ specific T-cells were quantified by flow cytometry. In a second cohort of 20 additional donors, flow cytometry was complemented by 13-plex cytokine assays. Mold exposure of the subjects was determined using a previously established questionnaire. Highly exposed subjects exhibited significantly greater CD154+A. fumigatus and Mucorales specific naïve and memory T-helper cell frequencies. Significant correlation (r = 0.48 - 0.79) was found between A. fumigatus and Mucorales specific T-cell numbers. Logistic regression analyses revealed that combined analysis of mold specific T-cell frequencies and selected cytokine markers (A. fumigatus: IL-5 and TNF-α, R. arrhizus: IL-17A and IL-13) significantly improves classification performance, resulting in 75-90 % predictive power using 10-fold cross-validation. In conclusion, mold specific T-cell frequencies and their cytokine signatures offer promising potential in the assessment of environmental mold exposure. The cytokines identified in this pilot study should be validated in the clinical setting, e. g. in patients with hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Lukas Page
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Philipp Weis
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Tobias Müller
- University of Wuerzburg, Biocenter, Department of Bioinformatics, Am Hubland, 97074 Wuerzburg, Germany
| | - Marcus Dittrich
- University of Wuerzburg, Biocenter, Department of Bioinformatics, Am Hubland, 97074 Wuerzburg, Germany
| | - Maria Lazariotou
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Mariola Dragan
- University Hospital of Wuerzburg, Department of Surgery I, Oberduerrbacher Str. 6, 97080 Wuerzburg, Germany
| | - Ana Maria Waaga-Gasser
- University Hospital of Wuerzburg, Department of Surgery I, Oberduerrbacher Str. 6, 97080 Wuerzburg, Germany
| | - Johanna Helm
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Thomas Dandekar
- University of Wuerzburg, Biocenter, Department of Bioinformatics, Am Hubland, 97074 Wuerzburg, Germany
| | - Hermann Einsele
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Jürgen Löffler
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Andrew J Ullmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Sebastian Wurster
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany; The University of Texas MD Anderson Cancer Center, Department of Infectious Diseases, 1515 Holcombe Boulevard, Houston, Texas, 77030, United States.
| |
Collapse
|
40
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Fungi in Bronchiectasis: A Concise Review. Int J Mol Sci 2018; 19:ijms19010142. [PMID: 29300314 PMCID: PMC5796091 DOI: 10.3390/ijms19010142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022] Open
Abstract
Although the spectrum of fungal pathology has been studied extensively in immunosuppressed patients, little is known about the epidemiology, risk factors, and management of fungal infections in chronic pulmonary diseases like bronchiectasis. In bronchiectasis patients, deteriorated mucociliary clearance—generally due to prior colonization by bacterial pathogens—and thick mucosity propitiate, the persistence of fungal spores in the respiratory tract. The most prevalent fungi in these patients are Candida albicans and Aspergillus fumigatus; these are almost always isolated with bacterial pathogens like Haemophillus influenzae and Pseudomonas aeruginosa, making very difficult to define their clinical significance. Analysis of the mycobiome enables us to detect a greater diversity of microorganisms than with conventional cultures. The results have shown a reduced fungal diversity in most chronic respiratory diseases, and that this finding correlates with poorer lung function. Increased knowledge of both the mycobiome and the complex interactions between the fungal, viral, and bacterial microbiota, including mycobacteria, will further our understanding of the mycobiome’s relationship with the pathogeny of bronchiectasis and the development of innovative therapies to combat it.
Collapse
|
42
|
Kale SD, Ayubi T, Chung D, Tubau-Juni N, Leber A, Dang HX, Karyala S, Hontecillas R, Lawrence CB, Cramer RA, Bassaganya-Riera J. Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Sci Rep 2017; 7:17096. [PMID: 29213115 PMCID: PMC5719083 DOI: 10.1038/s41598-017-17000-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
Collapse
Affiliation(s)
- Shiv D Kale
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA.
| | - Tariq Ayubi
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- National Marine Biodiversity Institute of Korea, Seochun-gun, 33662, Republic of Korea
| | - Nuria Tubau-Juni
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Andrew Leber
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Ha X Dang
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
- McDonnell Genome Institute at Washington University, St. Louis, MO, 63108, USA
| | - Saikumar Karyala
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Raquel Hontecillas
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | | | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Josep Bassaganya-Riera
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| |
Collapse
|
43
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
44
|
Carsin A, Romain T, Ranque S, Reynaud‐Gaubert M, Dubus J, Mège J, Vitte J. Aspergillus fumigatus in cystic fibrosis: An update on immune interactions and molecular diagnostics in allergic bronchopulmonary aspergillosis. Allergy 2017; 72:1632-1642. [PMID: 28513848 DOI: 10.1111/all.13204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
A wide spectrum of pathological conditions may result from the interaction of Aspergillus fumigatus and the immune system of its human host. Allergic bronchopulmonary aspergillosis is one of the most severe A. fumigatus-related diseases due to possible evolution toward pleuropulmonary fibrosis and respiratory failure. Allergic bronchopulmonary aspergillosis occurs almost exclusively in cystic fibrosis or asthmatic patients. An estimated 8%-10% of patients with cystic fibrosis experience this condition. The diagnosis of allergic bronchopulmonary aspergillosis relies on criteria first established in 1977. Progress in the understanding of host-pathogen interactions in A. fumigatus and patients with cystic fibrosis and the ongoing validation of novel laboratory tools concur to update and improve the diagnosis of allergic bronchopulmonary aspergillosis.
Collapse
Affiliation(s)
- A. Carsin
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
| | - T. Romain
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| | - S. Ranque
- Aix‐Marseille Univ APHM Hôpital Timone Laboratoire de Parasitologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - M. Reynaud‐Gaubert
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
- Aix‐Marseille Univ APHM Hôpital Nord Centre de Ressources et de Compétences en Mucoviscidose Marseille France
| | - J.‐C. Dubus
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J.‐L. Mège
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J. Vitte
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| |
Collapse
|
45
|
Dewi IMW, van de Veerdonk FL, Gresnigt MS. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J Fungi (Basel) 2017; 3:E55. [PMID: 29371571 PMCID: PMC5753157 DOI: 10.3390/jof3040055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Collapse
Affiliation(s)
- Intan M W Dewi
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
- Faculty of Medicine Universitas Padjadjaran, Jl. Eijkman No. 38, Bandung 40161, Indonesia.
| | - Frank L van de Veerdonk
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Mark S Gresnigt
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
47
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
48
|
Latgé JP, Beauvais A, Chamilos G. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annu Rev Microbiol 2017; 71:99-116. [PMID: 28701066 DOI: 10.1146/annurev-micro-030117-020406] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; ,
| | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; ,
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University of Crete, Heraklion, Crete 74100, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Crete 70013, Greece;
| |
Collapse
|
49
|
Matheson MC, Reece JC, Kandane-Rathnayake RK, Tang MLK, Simpson JA, Feather IH, Southey MC, Tsimiklis H, Hopper JL, Morrison SC, Giles GG, Walters EH, Dharmage SC. Mould-sensitized adults have lower Th2 cytokines and a higher prevalence of asthma than those sensitized to other aeroallergens. Allergy 2016; 71:1701-1711. [PMID: 27333124 DOI: 10.1111/all.12964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Evidence suggests that specific allergen sensitizations are associated with different allergic diseases which may reflect different underlying immune profiles. We aimed to examine the cytokine profiles of individuals sensitized to eight common aeroallergens. METHODS We used data from the Tasmanian Longitudinal Health Study a population-based cohort study of 45-year-olds. Serum cytokines (IL-4, IL-5, IL-6, IL-8, IL-10, TNF-α) were measured in 1157 subjects using the LINCOplex assays. Participants underwent skin prick testing for house dust mite, cat, grasses and moulds. Multivariable linear regression was used to compare serum cytokine levels between sensitized and nonatopic subjects. RESULTS The prevalence of allergic sensitization to any aeroallergen was 51% (95% CI 47-54). Being sensitized to any aeroallergen was strongly associated with current asthma (OR = 3.7, 95% CI 2.6-5.3), and being sensitized to any moulds was associated with a very high risk of current asthma (OR = 6.40, 95% CI 4.06-10.1). The geometric mean (GM) levels of Th2 cytokines (IL-4, IL-5 and IL-6) for adults sensitized to Cladosporium were significantly lower than the levels for nonatopic individuals (IL-4 ratio of GMs = 0.25, 95% CI 0.10-0.62, P = 0.003; IL-5 GM = 0.55, 95% CI 0.30-0.99, P = 0.05; and IL-6 GM = 0.50, 95% CI 0.24-1.07, P = 0.07). Individuals sensitized to other aeroallergens all showed elevated Th2 cytokine levels. CONCLUSION Our study is the first large population-based study to demonstrate reduced Th2 cytokines levels in people sensitized to mould. Underlying biological mechanisms driving allergic inflammatory responses in adults sensitized to moulds may differ from those sensitized to other aeroallergens. These findings suggest that it may be necessary to tailor treatments in individuals sensitized to moulds compared with other aeroallergens in order to optimize outcomes.
Collapse
Affiliation(s)
- M. C. Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
- Murdoch Children's Research Institute; Royal Children's Hospital Melbourne; Melbourne Vic. Australia
| | - J. C. Reece
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
| | - R. K. Kandane-Rathnayake
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
| | - M. L. K. Tang
- Murdoch Children's Research Institute; Royal Children's Hospital Melbourne; Melbourne Vic. Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Vic. Australia
| | - J. A. Simpson
- Biostatistics Unit; Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
| | - I. H. Feather
- Gold Coast Hospital; Southport Qld Australia
- Bond University; Varsity Lakes Qld Australia
| | - M. C. Southey
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| | - H. Tsimiklis
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| | - J. L. Hopper
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
| | | | - G. G. Giles
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
- Cancer Epidemiology Centre; Cancer Council Victoria; Melbourne Vic. Australia
| | - E. H. Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
- Menzies Research Institute; Hobart Tas. Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics; Melbourne School of Population and Global Health; The University of Melbourne; Melbourne Vic. Australia
- Murdoch Children's Research Institute; Royal Children's Hospital Melbourne; Melbourne Vic. Australia
| |
Collapse
|
50
|
Agarwal R, Sehgal IS, Dhooria S, Aggarwal AN. Developments in the diagnosis and treatment of allergic bronchopulmonary aspergillosis. Expert Rev Respir Med 2016; 10:1317-1334. [PMID: 27744712 DOI: 10.1080/17476348.2016.1249853] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Allergic bronchopulmonary aspergillosis (ABPA) is a complex pulmonary disorder characterized by recurrent episodes of wheezing, fleeting pulmonary opacities and bronchiectasis. It is the most prevalent of the Aspergillus disorders with an estimated five million cases worldwide. Despite six decades of research, the pathogenesis, diagnosis and treatment of this condition remains controversial. The International Society for Human and Animal Mycology has formed a working group to resolve the controversies around this entity. In the year 2013, this group had proposed new criteria for diagnosis and staging, and suggested a treatment protocol for the management of this disorder. Since then, several pieces of new evidence have been published in the investigation and therapeutics of this condition. Areas covered: A non-systematic review of the available literature was performed. We summarize the current evidence in the evaluation and treatment of this enigmatic disorder. We suggest modifications to the existing criteria and propose a new scoring system for the diagnosis of ABPA. Expert commentary: All patients with asthma and cystic fibrosis should routinely be screened for ABPA using A. fumigatus-specific IgE levels. Glucocorticoids should be used as the first-line of therapy in ABPA, and itraconazole reserved in those with recurrent exacerbations and glucocorticoid-dependent disease.
Collapse
Affiliation(s)
- Ritesh Agarwal
- a Department of Pulmonary Medicine , Postgraduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | - Inderpaul S Sehgal
- a Department of Pulmonary Medicine , Postgraduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | - Sahajal Dhooria
- a Department of Pulmonary Medicine , Postgraduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | - Ashutosh N Aggarwal
- a Department of Pulmonary Medicine , Postgraduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| |
Collapse
|