1
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
3
|
van der Burg N, Stenberg H, Ekstedt S, Diamant Z, Bornesund D, Ankerst J, Kumlien Georén S, Cardell LO, Bjermer L, Erjefält J, Tufvesson E. Neutrophil phenotypes in bronchial airways differentiate single from dual responding allergic asthmatics. Clin Exp Allergy 2023; 53:65-77. [PMID: 35437872 PMCID: PMC10083921 DOI: 10.1111/cea.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Allergic asthmatics with both an early (EAR) and a late allergic reaction (LAR) following allergen exposure are termed 'dual responders' (DR), while 'single responders' (SR) only have an EAR. Mechanisms that differentiate DR from SR are largely unknown, particularly regarding the role and phenotypes of neutrophils. Therefore, we aimed to study neutrophils in DR and SR asthmatics. METHODS Thirty-four allergic asthmatics underwent an inhaled allergen challenge, samples were collected before and up to 24 h post-challenge. Cell differentials were counted from bronchial lavage, alveolar lavage and blood; and tissue neutrophils were quantified in immune-stained bronchial biopsies. Lavage neutrophil nuclei lobe segmentation was used to classify active (1-4 lobes) from suppressive neutrophils (≥5 lobes). Levels of transmigration markers: soluble (s)CD62L and interleukin-1Ra, and activity markers: neutrophil elastase (NE), DNA-histone complex and dsDNA were measured in lavage fluid and plasma. RESULTS Compared with SR at baseline, DR had more neutrophils in their bronchial airways at baseline, both in the lavage (p = .0031) and biopsies (p = .026) and elevated bronchial neutrophils correlated with less antitransmigratory IL-1Ra levels (r = -0.64). DR airways had less suppressive neutrophils and more 3-lobed (active) neutrophils (p = .029) that correlated with more bronchial lavage histone (p = .020) and more plasma NE (p = .0016). Post-challenge, DR released neutrophil extracellular trap factors in the blood earlier and had less pro-transmigratory sCD62L during the late phase (p = .0076) than in SR. CONCLUSION DR have a more active airway neutrophil phenotype at baseline and a distinct neutrophil response to allergen challenge that may contribute to the development of an LAR. Therefore, neutrophil activity should be considered during targeted diagnosis and bio-therapeutic development for DR.
Collapse
Affiliation(s)
- Nicole van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Henning Stenberg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium.,Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Daisy Bornesund
- Department of Experimental Medical Science, Cell and Tissue biology, Lund University, Lund, Sweden
| | - Jaro Ankerst
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Otorhinolaryngology, Head & Neck Surgery, Institute of Clinical Sciences, Skane University Hospital, Lund, Sweden
| | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Department of Experimental Medical Science, Cell and Tissue biology, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Using induced sputum method in clinical practice in patients with bronchial asthma. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article presents an overview of modern statements of the induced sputum method; detailed description of the methods and protocols for taking sputum in adults and children, methods for processing the obtained substance. The paper describes in detail the features of the cellular composition of induced sputum in healthy individuals and in patients with bronchial asthma, emphasizes the importance of the eosinophilia level as a prognostic and diagnostic criterion of asthma and also determines the functions of other induced sputum cells such as neutrophils, macrophages, basophils. The article is illustrated with photographs of sputum microscopy. In addition to sputum cytology, we give accent to the possibility of using other research methods such as an identification of viral and bacterial pathogens, genomics, proteomics, lipidomics, metabolomics, determination of the concentration of various mediators in the sputum supernatant. The paper presents the ideas on biochemical inflammatory markers and remodelling of the respiratory tract in asthma, which can be determined in sputum (C3a anaphylatoxin, clusterin, periostin, eosinophil-derived neurotoxin, folliculin). In addition, we summarize the information on inflammatory phenotypes of bronchial asthma, emphasize their variability and modification depending on the period of the disease, prescribed treatment, intercurrent respiratory infections, and smoking. The article also presents detailed characteristics of eosinophilic, neutrophilic, mixed and small granulocyte phenotypes of bronchial asthma, and describes the most frequent correlations of phenotypes with the severity and course of the disease, with lung function parameters and other indicators. The paper gives an account of the possibilities of using the induced sputum method for a comprehensive assessment of the course, asthma controllability and the effectiveness of drug therapy, as well as for a personalized selection of an antiinflammatory drug considering the inflammatory phenotype.
Collapse
|
5
|
Kim HJ, Park SO, Byeon HW, Eo JC, Choi JY, Tanveer M, Uyangaa E, Kim K, Eo SK. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors. Immunology 2022; 166:357-379. [PMID: 35404476 DOI: 10.1111/imm.13477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Asthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models. Here, using conditional KO (miR155ΔCD4 cKO) mice that have the specific deficiency of miR-155 in T cells, we found that the specific deficiency of miR-155 in T cells resulted in fully suppressed Th2-type eosinophilic airway inflammation following acute allergen exposure, as well as greatly attenuated the Th17-type neutrophilic airway inflammation induced by repeated allergen exposure. Furthermore, miR-155 in T cells appeared to regulate the expression of several different target genes in the functional activation of CD4+ Th2 and Th17 cells. To be more precise, the deficiency of miR-155 in T cells enhanced the expression of c-Maf, SOCS1, Fosl2, and Jarid2 in the course of CD4+ Th2 cell activation, while C/EBPβ was highly enhanced in CD4+ Th17 cell activation in the absence of miR-155 expression. Conclusively, our data revealed that miR-155 could promote Th2 and Th17-mediated airway inflammation via the regulation of several different target genes, depending on the context of asthmatic diseases. Therefore, these results provide valuable insights in actual understanding of specific cell-intrinsic role of miR-155 in eosinophilic and neutrophilic airway inflammation for the development of fine-tune therapeutic strategies.
Collapse
Affiliation(s)
- Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Maryum Tanveer
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
6
|
Whitehead GS, Thomas SY, Nakano K, Royer DJ, Burke CG, Nakano H, Cook DN. A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells. JCI Insight 2022; 7:150251. [PMID: 35191395 PMCID: PMC8876454 DOI: 10.1172/jci.insight.150251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The intensity and longevity of inflammatory responses to inhaled allergens is determined largely by the balance between effector and regulatory immune responses, but the mechanisms that determine the relative magnitudes of these opposing forces remain poorly understood. We have found that the type of adjuvant used during allergic sensitization has a profound effect on both the nature and longevity of the pulmonary inflammation triggered by subsequent reexposure to that same provoking allergen. TLR ligand adjuvants and house dust extracts primed immune responses characterized by a mixed neutrophilic and eosinophilic inflammation that was suppressed by multiple daily allergen challenges. During TLR ligand–mediated allergic sensitization, mice displayed transient airway neutrophilia, which triggered the release of TGF-β into the airway. This neutrophil-dependent production of TGF-β during sensitization had a delayed, suppressive effect on eosinophilic responses to subsequent allergen challenge. Neutrophil depletion during sensitization did not affect numbers of Foxp3+ Tregs but increased proportions of Gata3+CD4+ T cells, which, upon their transfer to recipient mice, triggered stronger eosinophilic inflammation. Thus, a neutrophil/TGF-β axis acts during TLR-mediated allergic sensitization to fine-tune the phenotype of developing allergen-specific CD4+ T cells and limit their pathogenicity, suggesting a novel immunotherapeutic approach to control eosinophilia in asthma.
Collapse
|
7
|
Stirpe E, Bardaro F. Alpha1-antitrypsin deficiency and asthma. Monaldi Arch Chest Dis 2022; 92. [PMID: 35225443 DOI: 10.4081/monaldi.2022.2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
α1-antitrypsin deficiency (AATD) is a genetically inherited autosomal-codominant disease with a variable clinical spectrum of lung-related diseases. Pulmonary involvement of α1-antitrypsin deficiency may also include emphysema with variable functional and radiological abnormalities, asthma, and bronchiectasis. Asthma and AATD are mutually exclusive disease entities, but the commonality of neutrophil inflammation across the diseases might suggest common underlying mechanisms of effect. The diseases share many clinical and functional features: patients with AATD commonly first present with asthma-like symptoms; functional alterations may be common to both, such as bronchial hyperresponsiveness or fixed obstruction after bronchial remodeling. It has been recognized that allergy and asthma often coexist with AATD, but the relationship between allergy, asthma and AATD is not clear. Distinguishing AATD from asthma based on presentation and clinical evaluation is not possible. The clinician must assess each of the elements in the context of the whole patient, any patient with difficult-to-manage asthma should be screened for AATD. From the clinician’s point of view, improving diagnosis in this population is fundamental to optimize clinical management. Genetic studies will probably be needed in the future to unequivocally establish the causal link between AATD and asthma.
Collapse
|
8
|
Abstract
INTRODUCTION New targets are needed to enable more accurate diagnosis, monitoring and effective therapy in uncontrolled asthma and chronic obstructive pulmonary disease (COPD), two disorders characterized by pathogenic alterations in the innate immune response. Interestingly, the IL-10-related cytokine IL-26 has been found to be abundantly expressed in human airways and alterations in its expression have been linked to reduced lung function and markers of neutrophilic inflammation in patients with uncontrolled asthma or COPD. AREAS COVERED Literature search was conducted on PubMed to identify articles in the field of IL-26 immunology, as well as clinical studies on IL-26 in asthma and COPD, published between 2000 and 2021. We outline the main sources of IL-26 in human airways, as well as the effect of this cytokine on relevant immune and structural cells. Finally, we discuss the potential involvement of IL-26 in the pathophysiology of uncontrolled asthma and COPD. EXPERT OPINION IL-26 constitutes a potential target for diagnostic purposes and therapeutic modulation of the innate immune response in the airways of patients with asthma and COPD. It seems reasonable to expect more conclusive evidence of its clinical utility for personalized medicine within the coming 5-year period.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karlhans Fru Che
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jon R Konradsen
- Division of Clinical Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Center for Allergy Research, Karolinska Institute, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aihua Bao
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
9
|
Bush A, Fitzpatrick AM, Saglani S, Anderson WC, Szefler SJ. Difficult-to-Treat Asthma Management in School-Age Children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:359-375. [PMID: 34838706 DOI: 10.1016/j.jaip.2021.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
The World Health Organization divides severe asthma into three categories: untreated severe asthma; difficult-to-treat severe asthma; and severe, therapy-resistant asthma. The apparent frequency of severe asthma in the general population of asthmatic children is probably around 5%. Upon referral of these children, it is important to evaluate the diagnosis of asthma carefully before modifying management and applying a long-term monitoring plan. Identification of pathophysiologic phenotypes using objective biomarkers is essential in our routine assessments of severe asthma. Although conventional pharmacologic approaches should be attempted first, there is growing recognition that children with difficult-to-treat asthma may have unique clinical phenotypes that may necessitate alternative treatment approaches including asthma biologics. These new medications, especially those with effects on multiple pathologic features of asthma, raise the hope that new treatment strategies could induce remission. Besides introducing new medications, the opportunity for closer monitoring is feasible with advances in digital health. Therefore, we have the opportunity to improve response to medications, individualize treatment, and monitor response along with potential steps to prevent severe asthma.
Collapse
Affiliation(s)
- Andy Bush
- Director, Imperial Centre for Paediatrics and Child Health, Professor of Paediatrics and Paediatric Respirology, National Heart and Lung Institute, Imperial College, Consultant Paediatric Chest Physician, Royal Brompton Hospital, London, United Kingdom
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Children's Healthcare of Atlanta, Atlanta, Ga
| | - Sejal Saglani
- National Heart & Lung Institute, Imperial College London and Department of Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom
| | - William C Anderson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colo; Allergy and Immunology Section, Children's Hospital Colorado, Aurora, Colo
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colo; Breathing Institute, Children's Hospital Colorado, Aurora, Colo; University of Colorado Anschutz Medical Campus, Adult and Child Consortium for Outcomes Research and Delivery Science, Aurora, Colo.
| |
Collapse
|
10
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
11
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
12
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, Trudeau JB, Cook-Mills JM, Wenzel S, Milstien S, Spiegel S. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol 2021; 147:1936-1948.e9. [PMID: 33130063 PMCID: PMC8081742 DOI: 10.1016/j.jaci.2020.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Briana N James
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Ky
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Ky
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Joseph C Lownik
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - John B Trudeau
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana School of Medicine, Indianapolis, Ind
| | - Sally Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
13
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
14
|
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, Ferrara AL, De Ciuceis A, Scala S, Galdiero MR, Loffredo S. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol 2020; 109:621-631. [PMID: 32573828 DOI: 10.1002/jlb.3a0520-187r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB1 ) and -2 (CB2 ) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB1 and CB2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB1 and CB2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB1 and CB2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
Collapse
Affiliation(s)
- Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Italy.,Azienda Ospedaliera Ospedali dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Agnese De Ciuceis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Sara Scala
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| |
Collapse
|
15
|
Xu W, Wang Y, Ma Y, Yang J. MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir Res 2020; 21:116. [PMID: 32423405 PMCID: PMC7236263 DOI: 10.1186/s12931-020-01374-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neutrophilic subtype asthma occurs in approximately 15–25% of the asthma cases and is associated with severe airflow obstruction, corticosteroid resistance. MicroRNA plays a vital role in regulating many immune processes, but how miRNA circuits coordinate airway inflammation during neutrophilic asthma is unclear. Methods To investigate the molecular mechanism of miR-223 in regulation of neutrophilic airway inflammation, miR-223 knockout mice were used to the OVA/CFA-induced neutrophilic asthma or treated with NLRP3 inhibitor and IL-1β receptor antagonist. Based on the results obtained, wide-type mice were subsequently treated with miR-223 agomirs or negative control agomirs, and the effects on airway inflammation were assessed using morphometric techniques, quantitative RT-PCR, western blot, ELISA and other molecular approaches. Results The expression of miR-223 was upregulated in lung tissues of experimental mice model. Furthermore, miR-223−/− mice led to aggravated neutrophilic airway inflammation with heightened histopathological, inflammatory cells and cytokines readouts. Moreover, miR-223−/− mice also presented with enhanced NLRP3 inflammasome level with elevated IL-1β. Blocking NLRP3 or IL-1β diminished this phenotype. Finally, overexpression of miR-223 via treatment with miR-223 agomirs attenuated airway inflammation, NLRP3 levels and IL-1β release. Conclusions The findings of this study revealed a crucial role for miR-223 in regulating the immunoinflammatory responses by depressing the NLRP3/ IL-1β axis in neutrophilic asthma.
Collapse
Affiliation(s)
- Wenjuan Xu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yimin Wang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ying Ma
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The aim of this review is to emphasize the role of neutrophils in patients with occupational asthma. This review facilitates a better understanding, accurate diagnosis, and proper management of asthmatic reactions provoked at the workplace. RECENT FINDINGS Increased recruitment and infiltration of neutrophils are found in patients with occupational asthma. Activated neutrophils release several mediators including pro-inflammatory cytokines and extracellular traps, leading to stimulation of airway epithelium and other inflammatory cells. SUMMARY New insights into neutrophils in the pathogenesis of occupational asthma may provide a novel approach to the individual patient with occupational asthma.
Collapse
|
17
|
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020; 75:311-325. [PMID: 31309578 DOI: 10.1111/all.13985] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Non-T2 asthma is traditionally defined as asthma without features of T2 asthma. The definition is arbitrary and is generally based on the presence of neutrophils in sputum, or the absence (or normal levels) of eosinophils or other T2 markers in sputum (paucigranulocytic), airway biopsies or in blood. This definition may be imprecise as we gain more knowledge from applying transcriptomics and proteomics to blood and airway samples. The prevalence of non-T2 asthma is also difficult to estimate as most studies are cross-sectional and influenced by concomitant treatment with glucocorticosteroids, and by the presence of recognized or unrecognized airway infections. No specific therapies have shown any clinical benefits in patients with asthma that is associated with a non-T2 inflammatory process. It remains to be seen if such an endotype truly exists and to identify treatments to target that endotype. Meanwhile, identifying intense airway neutrophilia as an indicator of airway infection and airway hyperresponsiveness as an indicator of smooth muscle dysfunction, and treating them appropriately, and not increasing glucocorticosteroids in patients who do not have obvious T2 inflammation, seem reasonable.
Collapse
Affiliation(s)
- Eric Sze
- New Territories West Cluster Tuen Mun Hospital Tuen Mun Hong Kong
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Anurag Bhalla
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Parameswaran Nair
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| |
Collapse
|
18
|
Patel DF, Peiró T, Bruno N, Vuononvirta J, Akthar S, Puttur F, Pyle CJ, Suveizdytė K, Walker SA, Singanayagam A, Carlin LM, Gregory LG, Lloyd CM, Snelgrove RJ. Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation. Sci Immunol 2019; 4:eaax7006. [PMID: 31704734 PMCID: PMC7613621 DOI: 10.1126/sciimmunol.aax7006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Neutrophil mobilization, recruitment, and clearance must be tightly regulated as overexuberant neutrophilic inflammation is implicated in the pathology of chronic diseases, including asthma. Efforts to target neutrophils therapeutically have failed to consider their pleiotropic functions and the implications of disrupting fundamental regulatory pathways that govern their turnover during homeostasis and inflammation. Using the house dust mite (HDM) model of allergic airway disease, we demonstrate that neutrophil depletion unexpectedly resulted in exacerbated T helper 2 (TH2) inflammation, epithelial remodeling, and airway resistance. Mechanistically, this was attributable to a marked increase in systemic granulocyte colony-stimulating factor (G-CSF) concentrations, which are ordinarily negatively regulated in the periphery by transmigrated lung neutrophils. Intriguingly, we found that increased G-CSF augmented allergic sensitization in HDM-exposed animals by directly acting on airway type 2 innate lymphoid cells (ILC2s) to elicit cytokine production. Moreover, increased systemic G-CSF promoted expansion of bone marrow monocyte progenitor populations, which resulted in enhanced antigen presentation by an augmented peripheral monocyte-derived dendritic cell pool. By modeling the effects of neutrophil depletion, our studies have uncovered previously unappreciated roles for G-CSF in modulating ILC2 function and antigen presentation. More broadly, they highlight an unexpected regulatory role for neutrophils in limiting TH2 allergic airway inflammation.
Collapse
Affiliation(s)
- Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Teresa Peiró
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Departamento de Enfermería, Universidad de Valencia, Valencia 46010, Spain
| | - Nicoletta Bruno
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Juho Vuononvirta
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Franz Puttur
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Chloe J Pyle
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Kornelija Suveizdytė
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Aran Singanayagam
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Lisa G Gregory
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
19
|
Gibson PG, Foster PS. Neutrophilic asthma: welcome back! Eur Respir J 2019; 54:54/5/1901846. [PMID: 31699782 DOI: 10.1183/13993003.01846-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Peter G Gibson
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, Australia .,Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
20
|
Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Netw 2019; 19:e31. [PMID: 31720042 PMCID: PMC6829071 DOI: 10.4110/in.2019.19.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
21
|
Liu L, Zhang X, Liu Y, Zhang L, Zheng J, Wang J, Hansbro PM, Wang L, Wang G, Hsu ACY. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir Res 2019; 20:95. [PMID: 31113430 PMCID: PMC6530174 DOI: 10.1186/s12931-019-1051-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
Background Asthma is a heterogeneous chronic airway disease, which may be classified into different phenotypes. YKL-40 is a chitin-binding glycoprotein with unclear functions, but its expression is associated with inflammation and tissue remodeling. However, few studies have explored whether YKL-40 is associated with inflammatory phenotypes of asthma. Methods The study had two parts. Study I (n = 115) was a one-year prospective cohort designed to explore the relationship of serum YKL-40 levels with inflammatory phenotypes of asthma at baseline, and during exacerbations. Study II (n = 62) was a four-week prospective cohort designed to define whether serum YKL-40 levels could predict responses to a fixed anti-asthma regimen. YKL-40, IL-6 and CCL22 levels were detected using ELISA, and a sputum inflammatory panel (including IL-1β, IL-5, IL-8 and TNF-α) was assessed using Luminex-based MILLIPLEX assay. Results Study I: Serum YKL-40 levels in non-eosinophilic asthma (NEA) i.e. neutrophilic (47.77 [29.59, 74.97] ng/mL, n = 40) and paucigranulocytic (47.36 [28.81, 61.68] ng/mL, n = 31) were significantly elevated compared with eosinophilic asthma (31.05 [22.41, 51.10] ng/mL, n = 44) (P = 0.015). Serum YKL-40levels positively correlated with blood neutrophils, sputum IL-1β and plasma IL-6 but negatively correlated with serum IgE and blood eosinophils (all P ≤ 0.05). Baseline YKL-40 levels predicted moderate to severe exacerbations within a one-year period (aOR = 4.13, 95% CI = [1.08, 15.83]). Study II: Serum YKL-40 was an independent biomarker of negative responses to anti-asthma regimens (adjusted Odds Ratio [aOR] = 0.82, 95% CI = [0.71, 0.96]. Conclusions These studies show that YKL-40 is a non-type 2 inflammatory signature for NEA, which could predict responsiveness or insensitivity to anti-asthma medications and more exacerbations. Further studies are needed to assess whether monitoring YKL-40 levels could provide potential implications for clinical relevance. Electronic supplementary material The online version of this article (10.1186/s12931-019-1051-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA.,Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Liu
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ji Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, 2305, Australia
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
22
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
23
|
von Leden RE, Parker KN, Bates AA, Noble-Haeusslein LJ, Donovan MH. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol 2019; 317:144-154. [PMID: 30876905 DOI: 10.1016/j.expneurol.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
The innate immune response plays a critical role in traumatic brain injury (TBI), contributing to ongoing pathogenesis and worsening long-term outcomes. Here we focus on neutrophils, one of the "first responders" to TBI. These leukocytes are recruited to the injured brain where they release a host of toxic molecules including free radicals, proteases, and pro-inflammatory cytokines, all of which promote secondary tissue damage. There is mounting evidence that the developing brain is more vulnerable to injury that the adult brain. This vulnerability to greater damage from TBI is, in part, attributed to relatively low antioxidant reserves coupled with an early robust immune response. The latter is reflected in enhanced sensitivity to cytokines and a prolonged recruitment of neutrophils into both cortical and subcortical regions. This review considers the contribution of neutrophils to early secondary pathogenesis in the injured developing brain and raises the distinct possibility that these leukocytes, which exhibit phenotypic plasticity, may also be poised to support wound healing. We provide a basic review of the development, life cycle, and granular contents of neutrophils and evaluate their potential as therapeutic targets for early neuroprotection and functional recovery after injury at early age. While neutrophils have been broadly studied in neurotrauma, we are only beginning to appreciate their diverse roles in the developing brain and the extent to which their acute manipulation may result in enduring neurological recovery when TBI is superimposed upon brain development.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| | - Kaila N Parker
- Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA.
| | - Adrian A Bates
- Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA; Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Michael H Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| |
Collapse
|
24
|
Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol 2019; 10:47. [PMID: 30804927 PMCID: PMC6370641 DOI: 10.3389/fimmu.2019.00047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.
Collapse
Affiliation(s)
- Mohib Uddin
- Respiratory Global Medicines Development, AstraZeneca, Gothenburg, Sweden.,Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Anna Malmgren
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frauke Pedersen
- Pulmonary Research Institute at LungenClinic, Großhansdorf, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany.,LungenClinic, Großhansdorf, Germany
| |
Collapse
|
25
|
Scalerandi MV, Peinetti N, Leimgruber C, Cuello Rubio MM, Nicola JP, Menezes GB, Maldonado CA, Quintar AA. Inefficient N2-Like Neutrophils Are Promoted by Androgens During Infection. Front Immunol 2018; 9:1980. [PMID: 30233581 PMCID: PMC6129603 DOI: 10.3389/fimmu.2018.01980] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023] Open
Abstract
Neutrophils are major effectors of acute inflammation against infection and tissue damage, with ability to adapt their phenotype according to the microenvironment. Although sex hormones regulate adaptive immune cells, which explains sex differences in immunity and infection, little information is available about the effects of androgens on neutrophils. We therefore aimed to examine neutrophil recruitment and plasticity in androgen–dependent and –independent sites under androgen manipulation. By using a bacterial model of prostate inflammation, we showed that neutrophil recruitment was higher in testosterone-treated rats, with neutrophil accumulation being positively correlated to serum levels of testosterone and associated to stronger inflammatory signs and tissue damage. Testosterone also promoted LPS-induced neutrophil recruitment to the prostate, peritoneum, and liver sinusoids, as revealed by histopathology, flow cytometry, and intravital microscopy. Strikingly, neutrophils in presence of testosterone exhibited an impaired bactericidal ability and a reduced myeloperoxidase activity. This inefficient cellular profile was accompanied by high expression of the anti-inflammatory cytokines IL10 and TGFβ1, which is compatible with the “N2-like” neutrophil phenotype previously reported in the tumor microenvironment. These data reveal an intriguing role for testosterone promoting inefficient, anti-inflammatory neutrophils that prolong bacterial inflammation, generating a pathogenic environment for several conditions. However, these immunomodulatory properties might be beneficially exploited in autoimmune and other non-bacterial diseases.
Collapse
Affiliation(s)
- María V Scalerandi
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Nahuel Peinetti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Leimgruber
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mariana M Cuello Rubio
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan P Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|