1
|
Chen X, Lin N, Liu H, Lin J, Gao N, Liu Z, de Paiva CS, Pflugfelder SC, Li DQ. Destructive and protective effects and therapeutic targets of IL-36 family cytokines in dry eye disease. Ocul Surf 2025; 36:83-93. [PMID: 39800261 DOI: 10.1016/j.jtos.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
PURPOSE To explore the destructive and protective effects and therapeutic targets of IL-36 cytokines in dry eye disease using a murine dry eye model. METHODS A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated mice as controls. A topical challenge model was performed in normal mice with exogenous rmIL-36α, rhIL-38 and 2 % ectoine, or PBS vehicle. IL-36 cytokine expression was assessed by RT-qPCR and immunofluorescent (IF) staining. Corneal epithelial damage was evaluated by corneal smoothness score, Oregon Green Dextran (OGD) fluorescent staining, and tight junction barrier. RESULTS All members of the IL-36 family were expressed by murine ocular surface epithelium. The expression of IL-36α and IL-36γ was upregulated while IL-38 and IL-36RN were down regulated in ocular surface of dry eye mice. A topical challenge of rmIL-36α directly destructed corneal surface with distorted smoothness, increased OGD uptake and IF intensity, and disrupted tight junction proteins ZO-1 and occludin. Co-application with rhIL-38 prevented all these corneal damages by rmIL-36α. Ectoine treatment reversed the pathological expression pattern of IL-36 cytokines, protected corneal epithelium from defects, and restored the tight junction barrier in DS mice, and even prevented corneal damage by rmIL-36α. CONCLUSIONS Our findings demonstrate the upregulated pro-inflammatory agonists IL-36α and IL-36γ with downregulated antagonists IL-38 and IL-36RA in dry eye model, which provides a previously unknown mechanism and therapeutic targets in dry eye disease. The therapeutic efficacy of ectoine may be through reversing the pathological alteration of IL-36 cytokines in dry eye mice.
Collapse
Affiliation(s)
- Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haixia Liu
- Allergan, An AbbVie Company, Irvine, CA, United States
| | - Jing Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Ning Gao
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States.
| |
Collapse
|
2
|
Yang Y, Wang L, Yu L, Chang C, Zhang H, Hu L, Liu J, Zhang Y, Han H, Zhang H, Zhou Y, Wang J. Monocytes Expressing IL-36G Play a Crucial Role in Atopic Dermatitis. J Cell Mol Med 2025; 29:e70503. [PMID: 40159643 PMCID: PMC11955416 DOI: 10.1111/jcmm.70503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Atopic dermatitis (ad) is a chronic inflammatory skin disease, with recent studies indicating that immune cells, such as monocytes and inflammatory cytokines, play a crucial role. By retrieving datasets from public databases and analysing immune cell infiltration in lesional skin using CIBERSORT, we found that monocytes and M2 macrophages were significantly upregulated in atopic dermatitis. Differentially expressed gene (DEG) functional enrichment analysis revealed that cytokine-cytokine receptor interaction was the most significantly enriched pathway. Further analysis of cytokines and their receptors, along with their correlation with infiltrating immune cells, identified IL36G-expressing monocytes as a key target in atopic dermatitis. We compared immune cell infiltration and cytokine-related targets in similar inflammatory skin diseases, such as psoriasis and urticaria, to evaluate similarities and differences among these three skin conditions. The analysis revealed that IL36G-expressing monocytes were also highly expressed in psoriasis but did not play a pivotal role in urticaria. Finally, we used molecular docking to predict and validate drugs targeting IL36G. Our study highlights IL36G-expressing monocytes as a common key target in atopic dermatitis and psoriasis, offering novel insights and therapeutic strategies for these related diseases.
Collapse
Affiliation(s)
- Yitao Yang
- School of MedicineShanghai UniversityShanghaiChina
| | - Lei Wang
- Hubei Shizhen LaboratoryHubei University of Chinese MedicineWuhanChina
| | - Longmei Yu
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Chenxi Chang
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Honglei Zhang
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Linhan Hu
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Juntong Liu
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Yihang Zhang
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Hui Han
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Haiyun Zhang
- School of MedicineShanghai UniversityShanghaiChina
| | - Yumei Zhou
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| | - Ji Wang
- National Institute of TCM Constitution and Preventive MedicineBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Li S, Ying S, Fang H, Qiao J. Gasdermin D-dependent neutrophil extracellular traps exacerbate cytokine storm contributing to pyoderma gangrenosum pathogenesis. iScience 2025; 28:111925. [PMID: 40034857 PMCID: PMC11872606 DOI: 10.1016/j.isci.2025.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Pyoderma gangrenosum (PG) is characterized by the agonizing necrotizing ulcers with non-infectious neutrophil infiltration. Neutrophil extracellular traps (NETs) represent one of the mechanisms of neutrophils activation, and gasdermin D (GSDMD) plays a regulatory role in NETs. In this study, we discovered that the serum levels of NETs were elevated in PG patients compared to healthy controls. Injection of serum from PG patients into the dorsal skin of wild-type mice led to the formation of localized cutaneous ulcers. Furthermore, subsequent modeling demonstrated a significant increase of NETs and GSDMD in skin lesions and peripheral blood serum of wild-type mice. In GSDMD -/- mice, the severity of skin ulcers after modeling was significantly diminished. Overall, our findings shed light on the role of GSDMD in regulating the production of NETs by neutrophils and the release of inflammatory factors in the pathogenesis of PG and establish an animal model for studying PG.
Collapse
Affiliation(s)
- Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Huynh TNM, Yamazaki F, Konrad RJ, Nishikawa Y, Tanaka A, Son Y, Ozaki Y, Takehana K, Tanizaki H. Circulating CD31 and resistin levels reflect different stages of coronary atherosclerosis in patients with psoriasis. J Dermatol 2025; 52:67-78. [PMID: 39436026 DOI: 10.1111/1346-8138.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024]
Abstract
Psoriasis is a skin disease with a complicated pathophysiology that includes an extensive inflammatory cytokine network. Nevertheless, the relationship between psoriasis severity, cytokine levels, and coronary artery atherosclerosis remains poorly understood. Our aim was to find serum markers as potential candidates for cardiovascular disease (CVD) risk monitoring in patients with psoriasis. Therefore, we examined coronary artery atherosclerosis via coronary computed tomography angiography (CCTA), serum cytokine levels via multiple immunoassays, and the patients' psoriasis state. Our findings reveal for the first time that the mainstream psoriasis cytokines interleukin 17A (IL-17A), IL-19, and IL-36 in the sera of Japanese patients with psoriasis showed a linear regression association with the Psoriasis Area and Severity Index score. Furthermore, the serum level of IL-19 was remarkably correlated to Th2-related serum cytokines such as IL-4 and IL-17E. When we investigated potential markers to monitor CVD in patients with psoriasis, circulating cluster of differentiation 31 (CD31) and resistin, but not psoriasis-related cytokines, were expressed differently at each stage of coronary atherosclerosis by CCTA. CD31 and resistin levels rose dramatically in individuals with psoriasis vulgaris (PV) and noncalcified atherosclerosis. In contrast, CD31 was negatively correlated with the coronary artery calcification score (CACS) in patients with PV, whereas resistin was inversely correlated with CACS in patients with psoriatic arthritis. In conclusion, the axis of IL-17A, IL-19, and IL-36 remains associated with the severity of psoriasis during the chronic phase of the disease, regardless of the application of topical or systemic treatment. Monitoring the levels of these cytokines can accurately determine the severity of skin inflammation. Resistin and CD31 are linked to coronary artery lesions and might be good candidates for tracking the progression of coronary atherosclerosis in patients with psoriasis.
Collapse
Affiliation(s)
| | - Fumikazu Yamazaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Department of Dermatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Yumiko Nishikawa
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K, Hyogo, Japan
| | - Akihiro Tanaka
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yonsu Son
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Yoshio Ozaki
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Rheumatology, Department of Medicine I, Kansai Medical University, Osaka, Japan
| | - Kazuya Takehana
- Psoriasis Center, Kansai Medical University, Osaka, Japan
- Division of Cardiology, Department of Medicine II, Kansai Medical University, Osaka, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
- Psoriasis Center, Kansai Medical University, Osaka, Japan
| |
Collapse
|
5
|
Becker SL, Vague M, Ortega-Loayza AG. Insights into the Pathogenesis of Pyoderma Gangrenosum. J Invest Dermatol 2024:S0022-202X(24)02960-9. [PMID: 39718519 DOI: 10.1016/j.jid.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 12/25/2024]
Abstract
Pyoderma gangrenosum (PG) is a neutrophilic dermatosis of unclear etiology. Numerous theories of its underlying pathogenesis have been proposed, including external triggers, neutrophilic dysfunction, complement activation, and autoimmunity, as well as a possible component of underlying genetic susceptibility. This review seeks to synthesize current understanding of the pathogenesis of PG and integrate interactions between the multitude of implicated host immune pathways to guide and inform future directions into the treatment of PG.
Collapse
Affiliation(s)
- Sarah L Becker
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Morgan Vague
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Alex G Ortega-Loayza
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
6
|
Abdul-Huseen SD, Alabassi HM. Estimate the relationship between CXCR4-SDF-1 axis and inhibitory molecules (CTLA4 and PD-1) in patients with colon cancer. NARRA J 2024; 4:e992. [PMID: 39816054 PMCID: PMC11731802 DOI: 10.52225/narra.v4i3.992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
Colon neoplasia is one of the major malignancies in industrialized countries due to their Western-style food habits. It accounts for more than 50% of the population developing adenomatous polyps by the age of 70 years, but 10% of cancers in developed countries. The aim of this study was to evaluate the pathological role of the C-X-C chemokine receptor type 4/stromal-derived factor 1 axis (CXCR4-SDF-1 axis), and the inhibitory molecules PD-1 and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) in postoperative colon cancer patients undergoing treatment with chemotherapy (oxaliplatin and capecitabine) and estimate the correlation between these studied factors to deeply understand the basic mechanisms and potential diagnostic or therapeutic effects. The study involved 90 patients, including 50 colon cancer patients (male and female, aged 35-65) diagnosed by oncologists at Al-Ramadi Hospital, Ramadi, Iraq. All patients underwent surgical resection and received four cycles of chemotherapy with oxaliplatin (85 mg every 21 days) and capecitabine (6 grams daily for 21 days). Additionally, 40 age- and sex-matched individuals served as the control group. For each participant, CXCR4 and SDF-1 levels were measured using ELISA and the gene expression of CTLA-4 and PD-1 were measured using RT-PCR. The colon cancer patient group showed significantly lower levels of CXCR4 and SDF-1 compared to control groups (0.163±0.012 vs 0.376±0.025 pg/mL and 0.376±0.025 vs 0.699±0.110 pg/mL, respectively, both had p=0.001). Moreover, the colon cancer patient group had significantly lower expression of PD-1 and CTLA4 compared to control group (0.102±0.029-fold vs 1.199±0.391-fold, p=0.02; and 0.302±0.140-fold vs 1.441±0.334-fold, p=0.008, respectively). In conclusion, the results suggest that CXCR4 and SDF-1 appear promising as diagnostic markers for distinguishing colon cancer patients from healthy conditions.
Collapse
Affiliation(s)
- Suhad D Abdul-Huseen
- Department of Biology, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Hazima M Alabassi
- Department of Biology, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Xu Y, Zhang X, Liu S, Qu N, Gao Y, Lu C, Zhai J, Zhu J. The role of Interleukin-38 in modulating T cells in chronic Colitis: A mouse model study. Cytokine 2024; 184:156769. [PMID: 39342821 DOI: 10.1016/j.cyto.2024.156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Interleukin (IL)-38 belongs to the IL-36 subfamily within the IL-1 family. Patients with inflammatory bowel diseases (IBD) exhibit higher levels of IL-38 in their intestinal tissue compared to healthy controls, suggesting that IL-38 may play a role in the pathogenesis of IBD. However, IL-38's impact on T cell-mediated immune responses in gastrointestinal inflammation has not been investigated. Therefore, the objective of this work was to elucidate the role of IL-38 in modulating T cells in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. METHODS Recombinant IL-38 (rIL-38) was administered intraperitoneally (i.p.) to mice with chronic colitis induced by DSS. Clinical symptoms, length of colon, and histologic alterations were assessed. Cytokine production was quantified using ELISA, and helper T (Th) cell subsets were evaluated via flow cytometry. RESULTS Administration of recombinant IL-38 (rIL-38) alleviated DSS-induced chronic colitis. In addition, animals with chronic colitis treated with rIL-38 exhibited a significant decrease in the spontaneous production of inflammatory cytokines by neutrophils in the lamina propria. Furthermore, rIL-38 treatment increased the absolute numbers and percentages of regulatory T cells (Tregs) but decreased the absolute numbers and percentages of Th1 and Th17 cells. Moreover, rIL-38 treatment also decreased IL-17A-producing γδT cells substantially. CONCLUSION This study's results show that IL-38 reduces the effects of chronic colitis caused by DSS by boosting Treg reactions and reducing Th1/Th17 reactions and IL-17A-producing γδT cells in LPL. Therefore, we propose that IL-38 has the potential to be utilized as a biological therapy agent for IBD.
Collapse
Affiliation(s)
- Ying Xu
- Office of Drug Clinical Trials, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xuan Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Shanshan Liu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yi Gao
- General Surgery I Department, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Changlong Lu
- Institute of Immunology, China Medical University, Shenyang 110122, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu Universiry, Tongliao 028000, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
8
|
Hoffmann MC, Fadle N, Regitz E, Kos IA, Cetin O, Lesan V, Preuss KD, Zaks M, Stöger E, Zimmer V, Klemm P, Assmann G, Pfeifer J, Bittenbring JT, Bewarder M, Vogt T, Pföhler C, Thurner B, Kessel C, Thurner L. Autoantibody mediated deficiency of IL-36-receptor antagonist in a subset of patients with psoriasis and psoriatic arthritis. Immunol Lett 2024; 270:106926. [PMID: 39265919 DOI: 10.1016/j.imlet.2024.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Psoriatic arthritis (PsA) is known as a seronegative form of spondylarthropathy. The interleukin-36 cytokine family may have a major role in disease pathogenesis and particularly the related cutaneous manifestations. In light of our recent observations on (transient) autoantibody phenotypes neutralizing endogenous anti-inflammatory receptor antagonists (progranulin, IL-1Ra) in different inflammatory conditions, we set out to investigate the potential role of such antibodies targeting IL-36 cytokine family members in PsA and psoriasis without arthritic manifestations (Pso). METHODS In the present study we screened for hypothetic autoantibodies against the anti-inflammatory mediators IL-36 receptor antagonist (IL-36Ra) and anti-inflammatory IL-38 in PsA, Pso and inflammatory and healthy controls. Serum samples of patients with PsA (n = 254), Pso (n = 100), systemic lupus erythematosus (SLE, n = 50), rheumatoid arthritis (RA, n = 100), ulcerative colitis (UC, n = 50), Crohn´s disease (CD, n = 50), and healthy controls (n = 237) were screened for autoantibodies against IL-36Ra and IL-38 as well as IL-36Ra levels by ELISA. Biochemical analysis for immune complexes and atypic protein isoforms as well as IL-36 signaling reporter assays were performed. RESULTS Anti-IL-36Ra antibodies were detected in five out of 100 (5.0 %) patients with Pso, in 12 of 254 (4.72 %) patients with PsA and in one of 50 (2 %) patients with CD, but in none of the other investigated inflammatory or healthy controls. The IL-36Ra autoantibodies belonged to the IgG1 subclass and their titers ranged between 1:200 to 1:1600. They resulted in immune-complex formation, depletion of serum IL-36Ra levels and were functional in terms of facilitating unrestricted IL-36 signaling. CONCLUSION IL-36Ra autoantibodies were found in subgroups of patients with Pso and PsA and may drive respective pathology.
Collapse
Affiliation(s)
- Marie-Christin Hoffmann
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Natalie Fadle
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Evi Regitz
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Igor Age Kos
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Onur Cetin
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Vadim Lesan
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Klaus-Dieter Preuss
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Marina Zaks
- Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Campus Virchow Clinic, Berlin, Germany
| | - Elisabeth Stöger
- Evangelische Kliniken Essen-Mitte gGmbH, Evangelische Huyssens-Stiftung Essen-Huttrop, Essen, Germany
| | - Vincent Zimmer
- Department of Medicine, Knappschaftsklinikum Saar, Püttlingen, Germany; Department of Medicine II, Saarland University Medical School, Homburg, Saar, Germany
| | - Philipp Klemm
- Campus Kerckhoff of Justus Liebig University Giessen, Bad Nauheim, Germany
| | - Gunter Assmann
- Center of Rheumatology and Clinical Immunology, RUB-University Hospital Minden JWK, Minden, Germany
| | - Jochen Pfeifer
- Department of Pediatric Cardiology, University Medical School, Homburg, Saar, Germany
| | - Joerg Thomas Bittenbring
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Moritz Bewarder
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical School, Homburg, Saar, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg, Saar, Germany
| | | | - Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, University Children's Hospital Münster, Münster, Germany
| | - Lorenz Thurner
- José Carreras Center for Immuno- and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg, Saar, Germany.
| |
Collapse
|
9
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
10
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
11
|
Zheng D, Xu Q, Liu Y. Atopic disease and inflammatory bowel disease: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40143. [PMID: 39432625 PMCID: PMC11495711 DOI: 10.1097/md.0000000000040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Observational studies have reported associations between atopic diseases, including allergic rhinitis (AR), asthma, atopic dermatitis (AD), and inflammatory bowel disease (IBD), but the causal relationship remains unknown. We utilized pooled data from genome-wide association studies, qualified instrumental variables were screened according to the 3 hypotheses of MR, and bidirectional causality between atopic diseases and IBD was assessed using 2-sample Mendelian randomization analysis (2SMR). The results of our study suggest that AR increased the risk of Crohn disease (CD) (IVW OR = 1.19, 95% CI = 1.02-1.39, P = .026), ulcerative colitis (UC) (IVW OR = 1.14, 95% CI = 1.01-1.29, P = .031) and overall IBD (IVW OR = 1.15, 95% CI = 1.03-1.28, P = .015); Asthma increased the risk of CD (IVW OR = 7.66, 95% CI = 1.58-37.20, P = .012), UC (IVW OR = 3.81, 95% CI = 1.09-13.32, P = .036) and overall IBD (IVW OR = 5.13, 95% CI = 1.48-17.70, P = .010); AD increased the risk of CD (IVW OR = 1.19, 95% CI = 1.02-1.39, P = .023) and overall IBD (IVW OR = 1.14, 95% CI = 1.03-1.28, P = .015) risk. In reverse causality, only CD increased the risk of AR (IVW OR = 1.02, 95% CI = 1.00-1.05, P = .031). This study shows that atopic diseases of AR and asthma are causally related to IBD and its subtypes, and AD is causally related to IBD (which may be attributed to CD). Of the reverse causality, only CD was causally related to AR.
Collapse
Affiliation(s)
- Dongyuan Zheng
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinke Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingchao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Huang H, Zhou Y, Li Y, Zhao H, Wu X, Li M. The decreased serum levels of interleukin-38 in patients with gout and its clinical significance. Front Immunol 2024; 15:1434738. [PMID: 39483458 PMCID: PMC11524812 DOI: 10.3389/fimmu.2024.1434738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Interleukin (IL)-38 is a newly discovered anti-inflammatory cytokine. However, its concentration and clinical significance in patients with gout remain unclear. This study aimed to investigate the levels of IL-38 in patients with gout and evaluate their clinical significance. Methods Thirty-two patients with active gout, 27 patients with inactive gout, and 20 negative controls (NCs) were included in the study. Clinical parameters, including white blood cell count, C-reactive protein, serum amyloid A, erythrocyte sedimentation rate, uric acid, urea, creatinine, alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, and glycoserated serum protein, were obtained from laboratory tests of blood samples. The serum concentration of IL-38 was determined using enzyme-linked immunosorbent assay. Spearman's correlation analysis and receiver operating characteristic curve assessments were used to investigate the role and diagnostic value of IL-38 in gout. Results Patients with active and inactive gout exhibited significantly lower serum IL-38 levels than NCs. No significant differences were observed between the two gout groups. A negative correlation was observed between IL-38 and white blood cell counts, whereas a positive correlation was found between IL-38 and creatinine levels. Furthermore, IL-38, either alone or in combination with uric acid, demonstrated substantial diagnostic potential. Conclusion The findings suggest that the decreased serum levels of IL-38 in patients with gout compared to that in NCs indicates that IL-38 may have immunomodulatory effects on gout inflammation and possesses clinical application value.
Collapse
Affiliation(s)
- Hua Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yinxin Zhou
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yan Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Hui Zhao
- Department of Clinical Laboratory, Ningbo No.6 Hospital Affiliated to Ningbo University, Ningbo, China
| | - Xiudi Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Mingcai Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Sugiura K, Fujita H, Komine M, Yamanaka K, Akiyama M. The role of interleukin-36 in health and disease states. J Eur Acad Dermatol Venereol 2024; 38:1910-1925. [PMID: 38779986 DOI: 10.1111/jdv.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
The interleukin (IL)-1 superfamily upregulates immune responses and maintains homeostasis between the innate and adaptive immune systems. Within the IL-1 superfamily, IL-36 plays a pivotal role in both innate and adaptive immune responses. Of the four IL-36 isoforms, three have agonist activity (IL-36α, IL-36β, IL-36γ) and the fourth has antagonist activity (IL-36 receptor antagonist [IL-36Ra]). All IL-36 isoforms bind to the IL-36 receptor (IL-36R). Binding of IL-36α/β/γ to the IL-36R recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates downstream signalling pathways mediated by nuclear transcription factor kappa B and mitogen-activated protein kinase signalling pathways. Antagonist binding of IL-36Ra to IL-36R inhibits recruitment of IL-1RAcP, blocking downstream signalling pathways. Changes in the balance within the IL-36 cytokine family can lead to uncontrolled inflammatory responses throughout the body. As such, IL-36 has been implicated in numerous inflammatory diseases, notably a type of pustular psoriasis called generalized pustular psoriasis (GPP), a chronic, rare, potentially life-threatening, multisystemic skin disease characterised by recurrent fever and extensive sterile pustules. In GPP, IL-36 is central to disease pathogenesis, and the prevention of IL-36-mediated signalling can improve clinical outcomes. In this review, we summarize the literature describing the biological functions of the IL-36 pathway. We also consider the evidence for uncontrolled activation of the IL-36 pathway in a wide range of skin (e.g., plaque psoriasis, pustular psoriasis, hidradenitis suppurativa, acne, Netherton syndrome, atopic dermatitis and pyoderma gangrenosum), lung (e.g., idiopathic pulmonary fibrosis), gut (e.g., intestinal fibrosis, inflammatory bowel disease and Hirschsprung's disease), kidney (e.g., renal tubulointerstitial lesions) and infectious diseases caused by a variety of pathogens (e.g., COVID-19; Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pneumoniae infections), as well as in cancer. We also consider how targeting the IL-36 signalling pathway could be used in treating inflammatory disease states.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Fujita
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Maier JA, Castiglioni S, Petrelli A, Cannatelli R, Ferretti F, Pellegrino G, Sarzi Puttini P, Fiorina P, Ardizzone S. Immune-Mediated Inflammatory Diseases and Cancer - a dangerous liaison. Front Immunol 2024; 15:1436581. [PMID: 39359726 PMCID: PMC11445042 DOI: 10.3389/fimmu.2024.1436581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to have an elevated risk of developing cancer, but the exact causative factors remain subject to ongoing debate. This narrative review aims to present the available evidence concerning the intricate relationship between these two conditions. Environmental influences and genetic predisposition lead to a dysregulated immune response resulting in chronic inflammation, which is crucial in the pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the inflammatory microenvironment, aberrant intercellular communication due to abnormal cytokine levels, excessive reparative responses, and pathological angiogenesis are involved. The chronic immunosuppression resulting from IMIDs treatments further adds to the complexity of the pathogenic scenario. In conclusion, this review highlights critical gaps in the current literature, suggesting potential avenues for future research. The intricate interplay between IMIDs and cancer necessitates more investigation to deepen our understanding and improve patient management.
Collapse
Affiliation(s)
- Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Alessandra Petrelli
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | | | | | - Piercarlo Sarzi Puttini
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Paolo Fiorina
- Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Sandro Ardizzone
- Gastroenterology Unit, ASST Fatebenefratelli-Sacco, Milano, Italy
| |
Collapse
|
15
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
16
|
Huard A, Rodriguez E, Talabot-Ayer D, Weigert A, Palmer G. Interleukin-38 overexpression in keratinocytes limits desquamation but does not affect the global severity of imiquimod-induced skin inflammation in mice. Front Immunol 2024; 15:1387921. [PMID: 39119344 PMCID: PMC11306934 DOI: 10.3389/fimmu.2024.1387921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease that significantly impacts the patients' quality of life. Recent studies highlighted the function of the interleukin (IL)-1 family member IL-38 in skin homeostasis and suggested an anti-inflammatory role for this cytokine in psoriasis. In this study, we generated mice specifically overexpressing the IL-38 protein in epidermal keratinocytes. We confirmed IL-38 overexpression in the skin by Western blotting. We further detected the protein by ELISA in the plasma, as well as in conditioned media of skin explants isolated from IL-38 overexpressing mice, indicating that IL-38 produced in the epidermis is released from keratinocytes and can be found in the circulation. Unexpectedly, epidermal IL-38 overexpression did not impact the global severity of imiquimod (IMQ)-induced skin inflammation, Similarly, keratinocyte activation and differentiation in IMQ-treated skin were not affected by increased IL-38 expression and there was no global effect on local or systemic inflammatory responses. Nevertheless, we observed a selective inhibition of CXCL1 and IL-6 production in response to IMQ in IL-38 overexpressing skin, as well as reduced Ly6g mRNA levels, suggesting decreased neutrophil infiltration. Epidermal IL-38 overexpression also selectively affected the desquamation process during IMQ-induced psoriasis, as illustrated by reduced plaque formation. Taken together, our results validate the generation of a new mouse line allowing for tissue-specific IL-38 overexpression. Interestingly, epidermal IL-38 overexpression selectively affected specific disease-associated readouts during IMQ-induced psoriasis, suggesting a more complex role of IL-38 in the inflamed skin than previously recognized. In particular, our data highlight a potential involvement of IL-38 in the regulation of skin desquamation.
Collapse
Affiliation(s)
- Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
17
|
Meng S, Lu W, Li Z, Zhou Y, Shi S, Zhao H, Li M, Li Y. The Clinical Significance of Serum Interleukin-36α Levels in Patients with Gout. Immunol Invest 2024; 53:788-799. [PMID: 38638029 DOI: 10.1080/08820139.2024.2341233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
BACKGROUND Gout is a chronic inflammatory diseases caused by monosodium urate crystal deposition. However, the role of interleukin (IL)-36 in gout has not dbeen elucidated. METHODS We enrolled 75 subjects, including 20 healthy controls (HC), 30 patients with acute gout attack and 25 patients in remission. Baseline data were obtained through clinical interrogation and laboratory data were obtained through tests of blood samples. Serum levels of IL-36α were detected using enzyme-linked immunosorbent assay. Spearman correlation analysis was used to investigate the correlation of IL-36α with other parameters. The diagnostic value of IL-36α was demonstrated using a receiver operating characteristic curve. RESULTS The serum IL-36α level of gout patients in acute attack and remission stage was significantly higher than that of HC. Serum IL-36α was positively correlated with alanine transaminase (ALT) and aspartate transaminase (AST). Serum amyloid A (SAA) levels positively correlated with C-reactive protein levels and erythrocyte sedimentation rates. Glutamyl transpeptidase levels positively correlated with AST and ALT levels. CONCLUSION In conclusion, serum IL-36α levels were elevated in patients with gout and correlated with the clinical markers of inflammation. Our findings suggest that IL-36α may be a novel inflammatory indicator for gout.
Collapse
Affiliation(s)
- Sicen Meng
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Wubing Lu
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhi Li
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yinxin Zhou
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Shanjun Shi
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Hui Zhao
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
- Department of Clinical Laboratory, Ningbo University, Ningbo, China
| | - Mingcai Li
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| | - Yan Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
- School of Basic Medical Sciences and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
19
|
Xu Y, Wang JY, Zou Y, Ma XW, Meng T. Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review. J Inflamm Res 2024; 17:4001-4016. [PMID: 38915806 PMCID: PMC11195677 DOI: 10.2147/jir.s474879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.
Collapse
Affiliation(s)
- Yuan Xu
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Jing-Yan Wang
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Yang Zou
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Xue-Wei Ma
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Tian Meng
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| |
Collapse
|
20
|
Tongmuang N, Cai KQ, An J, Novy M, Jensen LE. Floxed Il1rl2 Locus with mCherry Reporter Element Reveals Distinct Expression Patterns of the IL-36 Receptor in Barrier Tissues. Cells 2024; 13:787. [PMID: 38727323 PMCID: PMC11083296 DOI: 10.3390/cells13090787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
IL-36 cytokines are emerging as beneficial in immunity against pathogens and cancers but can also be detrimental when dysregulated in autoimmune and autoinflammatory conditions. Interest in targeting IL-36 activity for therapeutic purposes is rapidly growing, yet many unknowns about the functions of these cytokines remain. Thus, the availability of robust research tools is essential for both fundamental basic science and pre-clinical studies to fully access outcomes of any manipulation of the system. For this purpose, a floxed Il1rl2, the gene encoding the IL-36 receptor, mouse strain was developed to facilitate the generation of conditional knockout mice. The targeted locus was engineered to contain an inverted mCherry reporter sequence that upon Cre-mediated recombination will be flipped and expressed under the control of the endogenous Il1rl2 promoter. This feature can be used to confirm knockout in individual cells but also as a reporter to determine which cells express the IL-36 receptor IL-1RL2. The locus was confirmed to function as intended and further used to demonstrate the expression of IL-1RL2 in barrier tissues. Il1rl2 expression was detected in leukocytes in all barrier tissues. Interestingly, strong expression was observed in epithelial cells at locations in direct contact with the environment such as the skin, oral mucosa, the esophagus, and the upper airways, but almost absent from epithelial cells at more inward facing sites, including lung alveoli, the small intestine, and the colon. These findings suggest specialized functions of IL-1RL2 in outward facing epithelial tissues and cells. The generated mouse model should prove valuable in defining such functions and may also facilitate basic and translational research.
Collapse
Affiliation(s)
- Nopprarat Tongmuang
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Jiahui An
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Mariah Novy
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Liselotte E. Jensen
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| |
Collapse
|
21
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
22
|
Korkmaz H, Hatipoğlu M, Kayar NA. Interleukin-38: A crucial player in periodontitis. Oral Dis 2024; 30:2523-2532. [PMID: 37455397 DOI: 10.1111/odi.14657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The objective of this study was to compare the levels of gingival crevicular fluid (GCF), salivary, and serum matrix metalloproteinase-9, interleukin (IL)-17, IL-36γ, and IL-38 in individuals with healthy periodontium, gingivitis, and periodontitis and to evaluate their correlations with clinical periodontal parameters. MATERIALS AND METHODS Ninety systemically healthy and nonsmoking volunteers divided into a healthy (H) group (n = 30), a gingivitis (G) group (n = 30), and a periodontitis (P) group (n = 30) were included in this study. Clinical periodontal parameters of volunteers were recorded, and GCF, unstimulated saliva, and serum samples were collected. Data analysis was done with enzyme-linked immunosorbent assays. The Kruskal-Wallis test and Bonferroni correction were used for multiple comparisons and post hoc statistical analyses. RESULTS The group H had significantly lower clinical parameters than the group P (p < 0.001). GCF and salivary IL-36γ and IL-38 levels were significantly higher in the group P than in the H and G groups (p < 0.05). Positive correlations between biochemical findings and clinical periodontal parameters were observed. CONCLUSIONS IL-36γ and IL-38 levels in GCF, saliva, and serum correlate with clinical periodontal parameters and may play a role in determining the activity of periodontitis.
Collapse
Affiliation(s)
- Hilal Korkmaz
- Department of Periodontology, Faculty of Dentistry Akdeniz University, Antalya, Turkey
| | - Mükerrem Hatipoğlu
- Department of Periodontology, Faculty of Dentistry Akdeniz University, Antalya, Turkey
| | - Nezahat Arzu Kayar
- Department of Periodontology, Faculty of Dentistry Akdeniz University, Antalya, Turkey
| |
Collapse
|
23
|
Bani-Wais DFN, Ad'hiah AH. The 5' untranslated region variant rs3811050 C/T of the interleukin-38 encoding gene is associated with susceptibility to rheumatoid arthritis in Iraqi women. Mol Biol Rep 2024; 51:589. [PMID: 38683405 DOI: 10.1007/s11033-024-09529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Interleukin (IL)-38, the latest member of the IL-1 cytokine family, is proposed to have a pathogenic role in rheumatoid arthritis (RA). It is encoded by the IL1F10 gene, which harbors single nucleotide polymorphisms (SNPs) that may predict the risk of autoimmune diseases. Among them are 5' untranslated region (UTR) SNPs, which play a key role in post-transcriptional control, but have not been studied in Iraqi RA patients. METHODS Two novel IL1F10 5'UTR SNPs (rs3811050 C/T and rs3811051 T/G) were explored in RA and control women (n = 120 and 110, respectively). SNPs were genotyped using TaqMan assay. An ELISA kit was used to measure serum IL-38 concentrations. RESULTS A reduced risk of RA was associated with rs3811050 T allele and CT genotype (corrected probability [pc] = 0.01 and < 0.001, respectively), while there was no significant association with rs3811051. Haplotype analysis demonstrated that C-T haplotype was associated with a 1.65-fold greater risk of RA, whereas a reduced risk was linked to T-G haplotype. IL-38 concentrations were higher in patients than in controls (p < 0.001). In addition, IL-38 showed acceptable performance in distinguishing between RA and control women (p < 0.001). When IL-38 concentrations were stratified according to SNP genotypes, no significant differences were found. CONCLUSIONS The rs3811050 variant was more likely to affect RA susceptibility in Iraqi women, and the T allele may play a role in reducing disease risk. IL-38 concentrations were elevated in RA patients, but were not affected by the rs3811050 and rs3811051 genotypes.
Collapse
Affiliation(s)
- Dhuha F N Bani-Wais
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Al-Karrada, Baghdad, 10070, Iraq.
| |
Collapse
|
24
|
Kanno T, Katano T, Shimura T, Tanaka M, Nishie H, Fukusada S, Ozeki K, Ogawa I, Iwao T, Matsunaga T, Kataoka H. Krüppel-like Factor-4-Mediated Macrophage Polarization and Phenotypic Transitions Drive Intestinal Fibrosis in THP-1 Monocyte Models In Vitro. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:713. [PMID: 38792896 PMCID: PMC11122781 DOI: 10.3390/medicina60050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well as the interplay of KLF4 with various gut components. Materials and Methods: This study examined macrophage subtypes, their KLF4 expression, and the effects of KLF4 knockdown on macrophage polarization and cytokine expression using THP-1 monocyte models. Co-culture experiments with stromal myofibroblasts and a conditioned medium from macrophage subtype cultures were conducted to study the role of these cells in intestinal fibrosis. Human-induced pluripotent stem cell-derived small intestinal organoids were used to confirm inflammatory and fibrotic responses in the human small intestinal epithelium. Results: Each macrophage subtype exhibited distinct phenotypes and KLF4 expression. Knockdown of KLF4 induced inflammatory cytokine expression in M0, M2a, and M2c cells. M2b exerted anti-fibrotic effects via interleukin (IL)-10. M0 and M2b cells showed a high migratory capacity toward activated stromal myofibroblasts. M0 cells interacting with activated stromal myofibroblasts transformed into inflammatory macrophages, thereby increasing pro-inflammatory cytokine expression. The expression of IL-36α, linked to fibrosis, was upregulated. Conclusions: This study elucidated the role of KLF4 in macrophage polarization and the intricate interactions between macrophages, stromal myofibroblasts, and cytokines in experimental in vitro models of intestinal fibrosis. The obtained results may suggest the mechanism of fibrosis formation in clinical IBD.
Collapse
Affiliation(s)
- Takuya Kanno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takahito Katano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Kajinoki Medical Clinic, 2340-1 Kawai, Kani, Gifu 509-0201, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
25
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Liang S, Chen L, Liang R, Ling J, Hou M, Gao S, Ou M, Yang M. Emerging Role of Interleukin-38 (IL-38) in the Development of Rheumatoid Arthritis. Rheumatol Ther 2024; 11:349-362. [PMID: 38315401 PMCID: PMC10920486 DOI: 10.1007/s40744-024-00640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an incurable autoimmune disease. The role of interleukin-38 (IL-38), an anti-inflammatory cytokine, in RA is not fully understood, and its clinical relevance in RA remains unclear. This study aims to investigate the correlation of IL-38 with disease activity and the clinical manifestation of RA. METHODS In this cross-sectional study, patients with treatment-naïve RA (n = 63) and healthy controls (HC) (n = 60) were consecutively enrolled over a 15-month period. Patients with RA were categorized into three subgroups-low disease activity (LDA), moderate disease activity (MDA) and high disease activity (HDA)-using the Disease Activity Score in 28 joints based on C-reactive protein (DAS28-CRP). Circulating levels of IL-38, tumour necrosis factor (TNF), IL-6, IL-17, IL-1β, and 25(OH)D were assessed using enzyme-linked immunosorbent assay (ELISA). Clinical data, including duration, tender joints count (TJC), swollen joints count (SJC), patient global assessment (PGA), evaluator global assessment (EGA), bone mineral density (BMD), clinical disease activity index (CDAI), simplified disease activity index (SDAI), DAS28-CRP, joint musculoskeletal ultrasound (MSUS), and serological indicators were recorded. We determined the correlation between IL-38 and disease activity, as well as clinical manifestation in RA. RESULTS At the macroscopic level, musculoskeletal ultrasonography of joints in different stages of disease activity in RA suggests that, as the disease progresses, arthritis in the hand becomes more severe, accompanied by synovial thickening and pronounced blood flow signals in the joint area. The expression of IL-38, TNF, IL-6, IL-17 and IL-1β significantly increased in patients with RA compared to HC. Noteworthy differences were observed in the blood flow signal score, synovial signal score, IL-38, TNF, IL-6, IL-17 and IL-1β among the three subgroups (LDA, MDA and HDA). As disease activity increased in patients with RA, the blood flow signal score, synovial signal score and expression of TNF, IL-6, IL-17 and IL-1β exhibited a gradual increase, while the expression of IL-38 showed the opposite pattern. Inverse correlations were identified between IL-38 and pro-inflammatory cytokines (IL-6, IL-17), as well as key clinical parameters, including disease duration, SJC, TJC and DAS28-CRP score. CONCLUSION IL-38, intricately linked to the pathogenesis of RA, emerges as a promising therapeutic target for the management of this debilitating disease.
Collapse
Affiliation(s)
- Shengxiang Liang
- Health Management Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Liting Chen
- Department of Rheumatology and Immunology, The First People's Hospital of Qinzhou, Qinzhou, 535000, China
| | - Ruilan Liang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jiayi Ling
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Minghui Hou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Song Gao
- Department of Ultrasound, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Min Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
27
|
Zhu Q, Zhao L, Ding H, Song J, Zhang Q, Yu S, Wang Y, Wang H. Interleukins and Psoriasis. J Cutan Med Surg 2024; 28:NP19-NP35. [PMID: 38314729 DOI: 10.1177/12034754241227623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease that affects 2% to 3% of the world's population. It is widely assumed that immune cells and cytokines acting together play a crucial part in the pathophysiology of psoriasis by promoting the excessive proliferation of skin keratinocytes and inflammatory infiltration. Interleukins (ILs), as a critical component of cytokines, have been closely associated with the pathogenesis and progression of psoriasis. This review summarizes the current contribution of ILs to psoriasis and describes the role each IL performs in psoriasis. Furthermore, the paper presents the therapeutic effects and application prospects of biologics developed for ILs in clinical treatment and experiments. The study aims to further the research on ILs in the treatment of psoriasis.
Collapse
Affiliation(s)
- Qi Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haining Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingna Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuhua Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
28
|
Łyko M, Ryguła A, Kowalski M, Karska J, Jankowska-Konsur A. The Pathophysiology and Treatment of Pyoderma Gangrenosum-Current Options and New Perspectives. Int J Mol Sci 2024; 25:2440. [PMID: 38397117 PMCID: PMC10889749 DOI: 10.3390/ijms25042440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Pyoderma gangrenosum (PG) is an uncommon inflammatory dermatological disorder characterized by painful ulcers that quickly spread peripherally. The pathophysiology of PG is not fully understood; however, it is most commonly considered a disease in the spectrum of neutrophilic dermatoses. The treatment of PG remains challenging due to the lack of generally accepted therapeutic guidelines. Existing therapeutic methods focus on limiting inflammation through the use of immunosuppressive and immunomodulatory therapies. Recently, several reports have indicated the successful use of biologic drugs and small molecules administered for coexisting diseases, resulting in ulcer healing. In this review, we summarize the discoveries regarding the pathophysiology of PG and present treatment options to raise awareness and improve the management of this rare entity.
Collapse
Affiliation(s)
- Magdalena Łyko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Anna Ryguła
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
| | - Michał Kowalski
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
| | - Julia Karska
- Student Research Group of Experimental Dermatology, Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.R.); (M.K.); (J.K.)
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Alina Jankowska-Konsur
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
29
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
30
|
Yang W, Yu T, Cong Y. Stromal Cell Regulation of Intestinal Inflammatory Fibrosis. Cell Mol Gastroenterol Hepatol 2024; 17:703-711. [PMID: 38246590 PMCID: PMC10958116 DOI: 10.1016/j.jcmgh.2024.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Intestinal inflammatory fibrosis is a severe consequence of inflammatory bowel diseases (IBDs). There is currently no cure for the treatment of intestinal fibrosis in IBD. Although inflammation is necessary for triggering fibrosis, the anti-inflammatory agents used to treat IBD are ineffective in preventing the progression of intestinal fibrosis and stricture formation once initiated, suggesting that inflammatory signals are not the sole drivers of fibrosis progression once it is established. Among multiple mechanisms involved in the initiation and progression of intestinal fibrosis in IBD, stromal cells play critical roles in mediating the process. In this review, we summarize recent progress on how stromal cells regulate intestinal fibrosis in IBD and how they are regulated by focusing on immune regulation and gut microbiota. We also outline the challenges moving forward in the field.
Collapse
Affiliation(s)
- Wenjing Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tianming Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Human Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
31
|
Fischer B, Kübelbeck T, Kolb A, Ringen J, Waisman A, Wittmann M, Karbach S, Kölsch SM, Kramer D. IL-17A-driven psoriasis is critically dependent on IL-36 signaling. Front Immunol 2023; 14:1256133. [PMID: 38162658 PMCID: PMC10754973 DOI: 10.3389/fimmu.2023.1256133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Plaque psoriasis is an autoinflammatory and autoimmune skin disease, affecting 1-3% of the population worldwide. Previously, high levels of IL-36 family cytokines were found in psoriatic skin lesions, thereby contributing to keratinocyte hyperproliferation and infiltration of immune cells such as neutrophils. While treatment with anti-IL36 receptor (IL36R) antibodies was recently approved for generalized pustular psoriasis (GPP), it remains unclear, if targeting the IL36R might also inhibit plaque psoriasis. Here we show that antibody-mediated inhibition of IL36R is sufficient to suppress imiquimod-induced psoriasis-like skin inflammation and represses the disease's development in a model that depends on IL-17A overexpression in the skin. Importantly, treatment with anti-IL36R antibodies inhibited skin inflammation and attenuated psoriasis-associated, systemic inflammation. This is possibly due to a widespread effect of IL36R inhibition, which not only suppresses pro-inflammatory gene expression in keratinocytes, but also the activation of other immune cells such as T-cells or dendritic cells. In conclusion, we propose that inhibition of the IL-36 signaling pathway might constitute an attractive, alternative approach for treating IL-17A-driven psoriasis and psoriasis-linked comorbidities.
Collapse
Affiliation(s)
- Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julia Ringen
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Miriam Wittmann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) – Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Marcus Kölsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Medical Affairs, Ingelheim am Rhein, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
32
|
Calabrese L, Ney F, Aoki R, Moltrasio C, Marzano AV, Kerl K, Stadler PC, Satoh TK, French LE. Characterisation of IL-1 family members in Sweet syndrome highlights the overexpression of IL-1β and IL-1R3 as possible therapeutic targets. Exp Dermatol 2023; 32:1915-1923. [PMID: 37724787 DOI: 10.1111/exd.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Sweet syndrome (SS) as a prototypic neutrophilic dermatosis (NDs) shares certain clinical and histologic features with monogenic auto-inflammatory disorders in which interleukin (IL)-1 cytokine family members play an important role. This has led to the proposal that NDs are polygenic auto-inflammatory diseases and has fuelled research to further understand the role of IL-1 family members in the pathogenesis of NDs. The aim of this study was to characterise the expression of the IL-1 family members IL-1β, IL-36γ, IL-33 and IL-1R3 (IL-1RaP) in SS. The expression profile of IL-1β, IL-33, IL-36γ and their common co-receptor IL-1R3 was analysed by immunohistochemistry, in situ hybridisation and double immunofluorescence (IF) in healthy control skin (HC) and lesional skin samples of SS. Marked overexpression of IL-1β in the dermis of SS (p < 0.001), and a non-significant increase in dermal (p = 0.087) and epidermal (p = 0.345) IL-36γ expression compared to HC was observed. Significantly increased IL-1R3 expression within the dermal infiltrate of SS skin samples (p = 0.02) was also observed, whereas no difference in IL-33 expression was found between SS and HC (p = 0.7139). In situ hybridisation revealed a good correlation between gene expression levels and the above protein expression levels. Double IF identifies neutrophils and macrophages as the predominant sources of IL-1β. This study shows that IL-1β produced by macrophages and neutrophils and IL-1R3 are significantly overexpressed in SS, thereby indicating a potential pathogenic role for this cytokine and receptor in SS.
Collapse
Affiliation(s)
- Laura Calabrese
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Francesca Ney
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Katrin Kerl
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | | | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital LMU, Munich, Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
33
|
Komaki R, Miyagaki T, Tanaka M, Nakajima K, Okano T, Takeuchi S, Kadono T. Increased Interleukin-36β Expression Promotes Angiogenesis in Japanese Atopic Dermatitis. Int J Mol Sci 2023; 24:11104. [PMID: 37446281 DOI: 10.3390/ijms241311104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
While atopic dermatitis (AD) is considered as a T helper 2 (Th2)-centered disease, an increase in other types of inflammatory cytokines is also noted in AD and they may also contribute to the development of the disease. Recently, the efficacy of an anti-IL-36 receptor antibody in AD was demonstrated in a clinical trial. Although there have been several reports on IL-36α and IL-36γ expression and function in AD, IL-36β has been barely studied. In this report, we examined IL-36β expression and function using clinical samples of AD and the epidermal keratinocyte cell line, HaCaT cells. We demonstrated that IL-36β expression in epidermal keratinocytes was increased in AD lesional skin compared to healthy skin. IL-36β promoted vascular endothelial growth factor A production in HaCaT keratinocytes through phosphorylation of extracellular signal-regulated kinases 1 and 2. In addition, IL-36β up-regulated placental growth factor mRNA expression in HaCaT keratinocytes. IL-36β expression levels in epidermal keratinocytes were correlated with the number of dermal vessels in AD skin. These results suggest that IL-36β may play an important role for angiogenesis in lesional skin of AD and that IL-36β can be a therapeutic target in AD.
Collapse
Affiliation(s)
- Reo Komaki
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Miho Tanaka
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Kaori Nakajima
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Tatsuro Okano
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Sora Takeuchi
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Takafumi Kadono
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
34
|
Li M, Jiang W, Wang Z, Lu Y, Zhang J. New insights on IL‑36 in intestinal inflammation and colorectal cancer (Review). Exp Ther Med 2023; 25:275. [PMID: 37206554 PMCID: PMC10189745 DOI: 10.3892/etm.2023.11974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Interleukin (IL)-36 is a member of the IL-1 superfamily, which includes three receptor agonists and one antagonist and exhibits a familial feature of inflammatory regulation. Distributed among various tissues, such as the skin, lung, gut and joints, the mechanism of IL-36 has been most completely investigated in the skin and has been used in clinical treatment of generalized pustular psoriasis. Meanwhile, the role of IL-36 in the intestine has also been under scrutiny and has been shown to be involved in the regulation of various intestinal diseases. Inflammatory bowel disease and colorectal cancer are the most predominant inflammatory and neoplastic diseases of the intestine, and multiple studies have identified a complex role for IL-36 in both of them. Indeed, inhibiting IL-36 signaling is currently regarded as a promising therapeutic approach. Therefore, the present review briefly describes the composition and expression of IL-36 and focuses on the role of IL-36 in intestinal inflammation and colorectal cancer. The targeted therapies that are currently being developed for the IL-36 receptor are also discussed.
Collapse
Affiliation(s)
- Minghui Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zehui Wang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yihan Lu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
- Correspondence to: Dr Jun Zhang, Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 8th Floor, 8th Building, 68 Changle Road, Qinhuai, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
35
|
Bettiol A, Fagni F, Mattioli I, Bagni G, Vitiello G, Grassi A, Della Bella C, Benagiano M, Troilo A, Holownia KS, Simon D, Argento FR, Sota J, Fabiani C, Becatti M, Fiorillo C, Schett G, Lopalco G, Cantarini L, Prisco D, Silvestri E, Emmi G, D'Elios MM. Serum Interleukin-36 α as a Candidate Biomarker to Distinguish Behçet's Syndrome and Psoriatic Arthritis. Int J Mol Sci 2023; 24:ijms24108817. [PMID: 37240162 DOI: 10.3390/ijms24108817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Behçet's syndrome (BS) is a rare systemic vasculitis characterized by different clinical manifestations. As no specific laboratory tests exist, the diagnosis relies on clinical criteria, and the differential diagnosis with other inflammatory diseases can be challenging. Indeed, in a relatively small proportion of patients, BS symptoms include only mucocutaneous, articular, gastrointestinal, and non-typical ocular manifestations, which are frequently found also in psoriatic arthritis (PsA). We investigate the ability of serum interleukin (IL)-36α-a pro-inflammatory cytokine involved in cutaneous and articular inflammatory diseases-to differentiate BS from PsA. A cross-sectional study was performed on 90 patients with BS, 80 with PsA and 80 healthy controls. Significantly lower IL-36α concentrations were found in patients with BS as compared to PsA, although in both groups IL-36α was significantly increased compared to healthy controls. An empirical cut-off of 420.6 pg/mL displayed a specificity of 0.93, with a sensitivity of 0.70 (AUC 0.82) in discriminating PsA from BS. This cut-off displayed a good diagnostic performance also in BS patients lacking highly specific BS manifestations. Our results indicate that IL-36α might be involved in the pathogenesis of both BS and PsA, and might be a candidate biomarker to support the differential diagnosis of BS.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Filippo Fagni
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Gianfranco Vitiello
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Alessia Grassi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | | | - David Simon
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, 50134 Firenze, Italy
| | - Jurgen Sota
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, 53100 Siena, Italy
| | - Claudia Fabiani
- Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, 50134 Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, 50134 Firenze, Italy
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Giuseppe Lopalco
- Rheumatology Unit, Department of Emergency and Organs Transplantation (DETO), University of Bari, 70124 Bari, Italy
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, 53100 Siena, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC 3168, Australia
| | - Mario Milco D'Elios
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
36
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
37
|
Huard A, Wilmes C, Kiprina A, Netzer C, Palmer G, Brüne B, Weigert A. Cell Intrinsic IL-38 Affects B Cell Differentiation and Antibody Production. Int J Mol Sci 2023; 24:ijms24065676. [PMID: 36982750 PMCID: PMC10053218 DOI: 10.3390/ijms24065676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
IL-38 is an IL-1 family receptor antagonist with an emerging role in chronic inflammatory diseases. IL-38 expression has been mainly observed not only in epithelia, but also in cells of the immune system, including macrophages and B cells. Given the association of both IL-38 and B cells with chronic inflammation, we explored if IL-38 affects B cell biology. IL-38-deficient mice showed higher amounts of plasma cells (PC) in lymphoid organs but, conversely, lower levels of plasmatic antibody titers. Exploring underlying mechanisms in human B cells revealed that exogenously added IL-38 did not significantly affect early B cell activation or differentiation into plasma cells, even though IL-38 suppressed upregulation of CD38. Instead, IL-38 mRNA expression was transiently upregulated during the differentiation of human B cells to plasma cells in vitro, and knocking down IL-38 during early B cell differentiation increased plasma cell generation, while reducing antibody production, thus reproducing the murine phenotype. Although this endogenous role of IL-38 in B cell differentiation and antibody production did not align with an immunosuppressive function, autoantibody production induced in mice by repeated IL-18 injections was enhanced in an IL-38-deficient background. Taken together, our data suggest that cell-intrinsic IL-38 promotes antibody production at baseline but suppresses the production of autoantibodies in an inflammatory context, which may partially explain its protective role during chronic inflammation.
Collapse
Affiliation(s)
- Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Christian Wilmes
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anastasiia Kiprina
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Christoph Netzer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-4593; Fax: +49-69-6301-420
| |
Collapse
|
38
|
Yi YH, Chen G, Gong S, Han LZ, Gong TL, Wang YX, Xu WH, Jin X. Injectable Temperature-Sensitive Hydrogel Loaded with IL-36Ra for the Relief of Osteoarthritis. ACS Biomater Sci Eng 2023; 9:1672-1681. [PMID: 36796355 DOI: 10.1021/acsbiomaterials.2c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Osteoarthritis (OA) is an inflammatory disease accompanied by synovial joint inflammation, and IL-36 plays an important role in this process. Local application of IL-36 receptor antagonist (IL-36Ra) can effectively control the inflammatory response, thereby protecting cartilage and slowing down the development of OA. However, its application is limited by the fact that it is rapidly metabolized locally. We designed and prepared a temperature-sensitive poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel (IL-36Ra@Gel) system carrying IL-36Ra and evaluated its basic physicochemical characteristics. The drug release curve of IL-36Ra@Gel indicated that this system could slowly release the drug over a longer period. Furthermore, degradation experiments showed that it could be largely degraded from the body within 1 month. The biocompatibility-related results showed that it had no significant effect on cell proliferation compared to the control group. In addition, the expression of MMP-13 and ADAMTS-5 was lower in IL-36Ra@Gel-treated chondrocytes than in the control group, and the opposite results appeared in aggrecan and collagen X. After 8 weeks of treatment with IL-36Ra@Gel by joint cavity injection, HE and Safranin O/Fast green staining showed that the degree of cartilage tissue destruction in the IL-36Ra@Gel-treated group was less than those in other groups. Meanwhile, the joints of mice in the IL-36Ra@Gel group had the most intact cartilage surface, the smallest thickness of cartilage erosion, and the lowest OARSI and Mankins score among all groups. Consequently, the combination of IL-36Ra and PLGA-PLEG-PLGA temperature-sensitive hydrogels can greatly improve the therapeutic effect and prolong the drug duration time, thus effectively delaying the progression of degenerative changes in OA, providing a new feasible nonsurgical treatment for OA.
Collapse
Affiliation(s)
- Yi-Hu Yi
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Zhi Han
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tian-Lun Gong
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Xiang Wang
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei-Hua Xu
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Jin
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily of cytokines. IL-36 cytokines are composed of three agonists (IL-36α, IL-36β, and IL-36γ) and two antagonists (IL-36 receptor antagonist [IL36Ra] and IL-38). These work in innate and acquired immunity and are known to contribute to host defense and to the pathogenesis of autoinflammatory diseases, autoimmune diseases, and infectious diseases. In the skin, IL-36α and IL-36γ are mainly expressed by keratinocytes in the epidermis, although they are also produced by dendritic cells, macrophages, endothelial cells, and dermal fibroblasts. IL-36 cytokines participate in the first-line defense of the skin against various exogenous assaults. IL-36 cytokines play significant roles in the host defense system and in the regulation of inflammatory pathways in the skin, collaborating with other cytokines/chemokines and immune-related molecules. Thus, numerous studies have shown IL-36 cytokines to play important roles in the pathogenesis of various skin diseases. In this context, the clinical efficacy and safety profiles of anti-IL-36 agents such as spesolimab and imsidolimab have been evaluated in patients with generalized pustular psoriasis, palmoplantar pustulosis, hidradenitis suppurativa, acne/acneiform eruptions, ichthyoses, and atopic dermatitis. This article comprehensively summarizes the roles played by IL-36 cytokines in the pathogenesis and pathophysiology of various skin diseases and summarizes the current state of research on therapeutic agents that target IL-36 cytokine pathways.
Collapse
|
40
|
Serum interleukin-38 and -41 levels as candidate biomarkers in male infertility. Immunol Lett 2023; 255:47-53. [PMID: 36870420 DOI: 10.1016/j.imlet.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Interleukin (IL)-38 and IL-41 are novel cytokines, but their role in male infertility (MI) is unknown. The purpose of this study was to measure the levels of serum IL-38 and IL-41 in patients with MI and correlate these levels with semen indexes. METHODS Eighty-two patients with MI and 45 healthy controls (HC) were recruited for this study. Semen parameters were detected using computer-aided sperm analysis, Papanicolaou staining, ELISA, flow cytometry, peroxidase staining and enzyme methods. Serum IL-38 and IL-41 levels were determined by ELISA. RESULTS Serum IL-38 levels were decreased (P < 0.01) in patients with MI compared with HC. Serum IL-41 levels were significantly higher in patients with MI than in HC (P < 0.0001). In patients with MI, serum IL-38 levels were positively correlated with semen white blood cell counts (r = 0.29, P = 0.009), and there was a positive correlation between semen white blood cell counts and sperm concentration (r = 0.28, P = 0.0100) and seminal plasma elastase (r = 0.67, P < 0.0001). Receiver operating characteristic curve analysis showed that the area under the curve of IL-38 for diagnosing MI was 0.5637 (P > 0.05), and the area under the curve of IL-41 for diagnosing MI was 0.7646 (P < 0.0001). CONCLUSIONS Serum IL-38 levels were significantly lower, and serum IL-41 levels were higher in patients with MI. These results suggest that IL-38 and IL-41 may be novel biomarkers for the diagnosis of MI.
Collapse
|
41
|
Zhang J, Shu J, Sun H, Zhai T, Li H, Li H, Sun Y, Huo R, Shen B, Sheng H. CCN1 upregulates IL-36 via AKT/NF-κB and ERK/CEBP β-mediated signaling pathways in psoriasis-like models. J Dermatol 2023; 50:337-348. [PMID: 36376243 DOI: 10.1111/1346-8138.16611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Abstract
Psoriasis is a chronic skin disorder characterized by epidermal keratinocyte hyperproliferation and inflammatory infiltration. CCN1 (also termed CYR61 or cysteine-rich angiogenic inducer 61) is an extracellular matrix-associated protein that is involved in multiple physiological functions. In psoriasis, we recently demonstrated that the overexpression of CCN1 promoted keratinocyte proliferation and activation. Furthermore, CCN1 was highly expressed in psoriatic skin lesions from psoriasis vulgaris patients. Here, we dissect the underlying molecular mechanism in imiquimod (IMQ) and interleukin (IL)-23-induced psoriasis-like models. Our results demonstrate that CCN1 can significantly upregulate IL-36 production in the murine skin of IMQ and IL-23-induced psoriasis-like models. Injection of CCN1-neutralizing antibody improved epidermal acanthosis and significantly reduced IL-36 production in vivo. These results suggest that CCN1 can be a critical upstream pro-inflammatory factor in psoriasis. In primary normal human epidermal keratinocytes, we demonstrated that CCN1 can selectively induced the production of IL-36α and IL-36γ through the activation of the protein kinase B (AKT)/nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and extracellular-regulated kinase (ERK)/CCAAT/enhancer binding protein β (CEBPβ) signaling pathways via integrin receptor α6β1 in vitro. Our results suggest that targeting CCN1 can be a potential therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Shu
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanxiao Sun
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhang Zhai
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidan Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongfen Huo
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baihua Shen
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiming Sheng
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Green EA, Garrick SP, Peterson B, Berger PJ, Galinsky R, Hunt RW, Cho SX, Bourke JE, Nold MF, Nold-Petry CA. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci 2023; 24:2795. [PMID: 36769133 PMCID: PMC9918069 DOI: 10.3390/ijms24032795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.
Collapse
Affiliation(s)
- Elys A. Green
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven P. Garrick
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Briana Peterson
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Philip J. Berger
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Robert Galinsky
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Rod W. Hunt
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Steven X. Cho
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3168, Australia
| | - Marcel F. Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Claudia A. Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
43
|
Zheng W, Hu X, Zou M, Hu N, Song W, Wang R, Liu Y, Hou Q, Liu Y, Chen X, Cheng Z. Plasma IL-36α and IL-36γ as Potential Biomarkers in Interstitial Lung Disease Associated with Rheumatoid Arthritis: a Pilot Study in the Chinese Population. Inflammation 2023; 46:285-296. [PMID: 36044099 DOI: 10.1007/s10753-022-01733-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Interstitial lung disease (ILD) is a frequent extra-articular manifestation of rheumatoid arthritis (RA) and increases mortality in patients with RA. Early identification of ILD, especially the usual interstitial pneumonia (UIP) pattern with a poor prognosis, is important for guiding treatment of RA-ILD and preventing damage resulting from a delay in diagnosis. Interleukin-36 (IL-36) cytokines are involved in connective tissue diseases. However, IL-36 expression in RA-ILD is unknown. In this study, the clinical relevance of plasma IL-36 cytokines was evaluated in 39 patients with RA-ILD and three other groups (30 healthy controls [HCs], 35 RA patients without ILD, and 27 patients with idiopathic pulmonary fibrosis [IPF]) in the Chinese population. Plasma IL-36α and IL-36γ concentrations were elevated in patients with RA-ILD compared with those in HCs and patients with RA. RA-ILD patients with UIP pattern had higher plasma IL-36γ concentrations than those with RA-ILD without UIP, but these were lower than those in patients with IPF. Receiver operating curve analysis suggested that IL-36α and IL-36γ were potential biomarkers for identifying ILD in patients with RA. Additionally, the optimal cutoff value of IL-36γ for distinguishing RA-ILD with the UIP pattern from RA-ILD without UIP was 555.40 pg/mL and that for distinguishing RA-ILD from IPF was 655.10 pg/mL. No significant difference in plasma IL-36β or IL-36Ra concentrations was found between patients with RA-ILD and the three other groups. We also found that the lungs originating from different types of patients with PF, including RA-ILD and IPF, and those from mice following bleomycin-induced PF were characterized by increased IL-36γ expression. Our findings suggest that using IL-36 cytokines to identify patients with RA for further ILD workups may provide additional diagnostic value to the current clinically available assays. Moreover, IL-36γ may help to identify the presence of the UIP pattern in patients with RA-ILD and to discriminate RA-ILD from IPF.
Collapse
Affiliation(s)
- Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nie Hu
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiwei Song
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
44
|
Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023; 58:69-78. [PMID: 36376594 DOI: 10.1007/s00535-022-01936-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-33 (IL-33), IL-36, and IL-38 are members of the IL-1 cytokine family. The expression of each cytokine has been reported to be increased in the inflamed mucosa of patients with inflammatory bowel disease (IBD). IL-33 and IL-36 have been studied for pro- and anti-inflammatory functions, and IL-38 has been characterized as an anti-inflammatory cytokine by antagonizing the IL-36 receptor (IL-36R). IL-33 is a nuclear cytokine constitutively expressed by certain cell types such as epithelial, endothelial, and fibroblast-like cells and released on necrotic cell death. IL-33 mainly induces type 2 immune response through its receptor suppression tumorigenicity 2 (ST2) from Th2 cells and type 2 innate lymphoid cells (ILC2s), but also by stimulating Th1 cells, regulatory T cells, and CD8+ T cells. IL-36 cytokines consist of three agonists: IL-36α, IL-36β, and IL-36γ, and two receptor antagonists: IL-36R antagonist (IL-36Ra) and IL-38. All IL-36 cytokines bind to the IL-36R complex and exert various functions through NF-κB and mitogen-activated protein kinase (MAPK) pathways in inflammatory settings. IL-33 and IL-36 also play a crucial role in intestinal fibrosis characteristic manifestation of CD. In this review, we focused on the current understanding of the pro- and anti-inflammatory roles of IL-33, IL-36, and IL38 in experimental colitis and IBD patients.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
45
|
Purewal JS, Doshi GM. Deciphering the Function of New Therapeutic Targets and Prospective Biomarkers in the Management of Psoriasis. Curr Drug Targets 2023; 24:1224-1238. [PMID: 38037998 DOI: 10.2174/0113894501277656231128060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Psoriasis is an immune-mediated skin condition affecting people worldwide, presenting at any age, and leading to a substantial burden physically and mentally. The innate and adaptive immune systems interact intricately with the pathomechanisms that underlie disease. T cells can interact with keratinocytes, macrophages, and dendritic cells through the cytokines they secrete. According to recent research, psoriasis flare-ups can cause systemic inflammation and various other co-morbidities, including depression, psoriatic arthritis, and cardio-metabolic syndrome. Additionally, several auto-inflammatory and auto-immune illnesses may be linked to psoriasis. Although psoriasis has no proven treatment, care must strive by treating patients as soon as the disease surfaces, finding and preventing concurrent multimorbidity, recognising and reducing bodily and psychological distress, requiring behavioural modifications, and treating each patient individually. Biomarkers are traits that are assessed at any time along the clinical continuum, from the early stages of a disease through the beginning of treatment (the foundation of precision medicine) to the late stages of treatment (outcomes and endpoints). Systemic therapies that are frequently used to treat psoriasis provide a variety of outcomes. Targeted therapy selection, better patient outcomes, and more cost-effective healthcare would be made possible by biomarkers that reliably predict effectiveness and safety. This review is an attempt to understand the role of Antimicrobial peptides (AMP), Interleukin-38 (IL-38), autophagy 5 (ATG5) protein and squamous cell carcinoma antigen (SCCA) as biomarkers of psoriasis.
Collapse
Affiliation(s)
- Japneet Singh Purewal
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
46
|
Guo L, Zhang Q, Lv C, Ma X, Song X, Huang J, Chen W, Li C, Ding Q. A novel biomarker for pleural effusion diagnosis: Interleukin-36γ in pleural fluid. J Clin Lab Anal 2022; 37:e24799. [PMID: 36478612 PMCID: PMC9833963 DOI: 10.1002/jcla.24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Numerous studies have described the critical importance of interleukin (IL) -36γ in host defense against lung infections, but it is unknown whether it plays a role in infectious pleural effusion (IPE). This study aimed to examine the levels of IL-36γ in pleural effusions of different etiologies and evaluate the diagnostic accuracy of IL-36γ in the differential diagnosis of IPE. METHODS A total of 112 individuals was enrolled in this research. IL-36γ levels in pleural fluids of all 112 patients were measured by enzyme-linked immunosorbent assay (ELISA). We also characterized these markers' diagnostic values across various groups. RESULTS Patients with tuberculous pleural effusion (TPE) and parapneumonic effusion (PPE) had exhibited markedly higher IL-36γ levels in their pleural fluid than the malignant pleural effusion (MPE) and transudative effusion patients. Furthermore, the IL-36γ concentrations in TPE patients were evidently higher than in uncomplicated parapneumonic effusion (UPPE) patients but significantly lower than in complicated parapneumonic effusion (CPPE)/empyema patients. Pleural fluid IL-36γ is a useful marker to differentiate TPE from UPPE, at a cut-off value for 657.5 pg/ml (area under the curve = 0.904, p < 0.0001) with 70.0% sensitivity and 95.7% specificity. CONCLUSIONS The elevated IL-36γ in pleural effusion may be used as a novel biomarker for infectious pleural effusion diagnosis, particularly in patients with CPPE/empyema, and is a potentially promising biomarker to differentiate between TPE and UPPE.
Collapse
Affiliation(s)
- Lun Guo
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Qipan Zhang
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Chengna Lv
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Xudan Ma
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Xuxiang Song
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Jing Huang
- Department of Pharmacy, The Affiliated Hospital of Medical CollegeNingbo UniversityNingboChina
| | - Weili Chen
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Chaofen Li
- Department of laboratory medicineNingbo Ninth HospitalNingboChina
| | - Qunli Ding
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| |
Collapse
|
47
|
Understanding the Pathogenesis of Generalized Pustular Psoriasis Based on Molecular Genetics and Immunopathology. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2022. [DOI: 10.1097/jd9.0000000000000277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Mermoud L, Shutova M, Diaz‐Barreiro A, Talabot‐Ayer D, Drukala J, Wolnicki M, Kaya G, Boehncke W, Palmer G, Borowczyk J. IL-38 orchestrates proliferation and differentiation in human keratinocytes. Exp Dermatol 2022; 31:1699-1711. [PMID: 35833307 PMCID: PMC9796879 DOI: 10.1111/exd.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Interleukin (IL)-38 is a member of the IL-1 cytokine family with reported anti-inflammatory activity. The highest constitutive IL-38 expression is detected in the skin, where it is mainly produced by differentiating keratinocytes. However, little data are available regarding its biological functions. In this study, we investigated the role of IL-38 in skin physiology. We demonstrate here that dermal fibroblasts and epithelial cells of skin appendages, such as eccrine sweat glands and sebaceous glands, also express IL-38. Next, using two- and three-dimensional cell cultures, we show that endogenous expression of IL-38 correlates with keratinocyte differentiation and its ectopic overexpression inhibits keratinocyte proliferation and enhances differentiation. Accordingly, immunohistochemical analysis revealed downregulation of IL-38 in skin pathologies characterized by keratinocyte hyperproliferation, such as psoriasis and basal or squamous cell carcinoma. Finally, intracellular IL-38 can shuttle between the nucleus and the cytoplasm and its overexpression modulates the activity of the transcription regulators YAP and ID1. Our results indicate that IL-38 can act independently from immune system activation and suggest that it may affect the epidermis directly by decreasing proliferation and promoting differentiation of keratinocytes. These data suggest an important role of keratinocyte-derived IL-38 in skin homeostasis and pathologies characterized by epidermal alterations.
Collapse
Affiliation(s)
- Loïc Mermoud
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Shutova
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Alejandro Diaz‐Barreiro
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dominique Talabot‐Ayer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Michal Wolnicki
- Department of Pediatric UrologyJagiellonian University Medical CollegeCracowPoland
| | - Gürkan Kaya
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Clinical PathologyUniversity Hospital of GenevaGenevaSwitzerland
| | - Wolf‐Henning Boehncke
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Dermatology and VenereologyUniversity HospitalsGenevaSwitzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julia Borowczyk
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
49
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
50
|
Talabot-Ayer D, Diaz-Barreiro A, Modarressi A, Palmer G. Epigenetic remodeling of downstream enhancer regions is linked to selective expression of the IL1F10 gene in differentiated human keratinocytes. Gene 2022; 842:146800. [PMID: 35961432 DOI: 10.1016/j.gene.2022.146800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
Interleukin (IL)-38, encoded by the IL1F10 gene, is a member of the IL-1 family of cytokines. IL-38 is constitutively expressed in epithelia in healthy humans, and in particular in epidermal keratinocytes in the skin. IL-38 expression is closely correlated with keratinocyte differentiation. The aim of this study was to further characterize the regulation of IL1F10 expression and the mechanisms involved in its selective induction in differentiated human keratinocytes. We observed coordinated expression of two IL1F10 transcripts, transcribed from two different promoters, upon differentiation of primary human keratinocytes. Using ENCODE datasets and ChIP-qPCR on ex vivo isolated normal human epidermis, we identified regulatory regions located downstream of the IL1F10 gene, which displayed features of differentiated keratinocyte-specific enhancers. Expression of the IL1F10 gene was linked to changes in the epigenetic landscape at these downstream enhancer regions in human epidermis. Overexpression of the transcription factors KLF4 and TAp63β in an immortalized normal human keratinocyte (iNHK) cell line promoted the expression of mRNA encoding the differentiation markers keratin 10 and involucrin, and of IL1F10. ChIP-qPCR experiments indicated that KLF4 and TAp63β overexpression also modified the chromatin state of the proximal downstream enhancer region, suggesting a role for KLF4 and TAp63β in directly or indirectly regulating IL1F10 transcription. In conclusion, expression of the IL1F10 gene in differentiated keratinocytes in normal human epidermis involves coordinated transcription from two promoters and is linked to epigenetic remodeling of enhancer regions located downstream of the gene.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|