1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
2
|
Gwin JC, Rangnekar N, Murray GP, Byerly S, Fleming AM, Easterday TS, Kerwin AJ, Howley IW. O blood type is not associated with worse coagulopathy or outcome in exsanguinating trauma. Am J Surg 2024; 234:117-121. [PMID: 38553336 DOI: 10.1016/j.amjsurg.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Despite improving understanding of trauma-induced coagulopathy (TIC), mortality and morbidity due to exsanguinating trauma remain high. Increased complications due to hemorrhage have been reported in blood group O, possibly due to reduced levels of von Willebrand factor (vWF). METHODS An urban level 1 adult trauma center registry was retrospectively queried. Patients receiving ≥6 units of pRBC within 4 h of presentation were included. Patient demographics, admission labs and outcomes were obtained. Univariate and multiple logistic regression analyses were performed. RESULTS 562 patients were identified. There were no significant differences in demographics, admission labs, or outcome between different ABO groups. After adjustment, Type A patients were more likely to be hypocoagulable compared to Type O patients (p = 0.014). No mortality differences were seen between ABO types in multiple regression analysis. CONCLUSIONS No outcome or mortality differences were seen between ABO types, therefore factors other than vWF expression should be considered to explain coagulopathy in trauma patients.
Collapse
Affiliation(s)
- J Cole Gwin
- College of Medicine, University of Tennessee Health Science Center, Memphis, USA.
| | - Niyati Rangnekar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Temple University, Philadelphia, PA, USA
| | - Glenn P Murray
- College of Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Saskya Byerly
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - Andrew M Fleming
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - Thomas S Easterday
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - Andrew J Kerwin
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| | - Isaac W Howley
- Department of Surgery, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
3
|
Moore HB, Barrett CD, Moore EE, Pieracci FM, Sauaia A. Differentiating Pathologic from Physiologic Fibrinolysis: Not as Simple as Conventional Thrombelastography. J Am Coll Surg 2024; 239:30-41. [PMID: 38299576 DOI: 10.1097/xcs.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Conventional rapid thrombelastography (rTEG) cannot differentiate fibrinolysis shutdown from hypofibrinolysis, as both of these patient populations have low fibrinolytic activity. Tissue plasminogen activator (tPA) TEG can identify depletion of fibrinolytic inhibitors, and its use in combination with rTEG has the potential to differentiate all 3 pathologic fibrinolytic phenotypes after trauma. We hypothesize tPA-TEG and rTEG in combination can further stratify fibrinolysis phenotypes postinjury to better stratify risk for mortality. STUDY DESIGN Adult trauma patients (981) with both rTEG and tPA-TEG performed less than 2 hours postinjury were included. rTEG lysis at 30 minutes after maximum amplitude (LY30) was used to initially define fibrinolysis phenotypes (hyperfibrinolysis >3%, physiologic 0.9% to 3%, and shutdown <0.9%), with Youden Index then used to define pathologic extremes of tPA-TEG LY30 (tPA sensitive [depletion of fibrinolytic inhibitors] vs resistant) resulting in 9 groups that were assessed for risk of death. RESULTS The median New Injury Severity Score was 22, 21% were female, 45% had penetrating injury, and overall mortality was 13%. The tPA-TEG LY30 inflection point for increased mortality was >35.5% (tPA sensitive, odds ratio mortality 9.2, p < 0.001) and <0.3% (tPA resistance, odds ratio mortality 6.3, p = 0.04). Of the 9 potential fibrinolytic phenotypes, 5 were associated with increased mortality. Overall, the 9 phenotypes provided a significantly better prediction of mortality than rTEG or tPA-TEG alone (areas under the operating characteristics curves = 0.80 vs 0.63 and 0.75, respectively, p < 0.0001). These could be condensed to 3 pathologic phenotypes (true hyperfibrinolysis, early fibrinolysis shutdown, and hypofibrinolysis). CONCLUSIONS The combination of rTEG and tPA-TEG increases the ability to predict mortality and suggests patient-specific strategies for improved outcomes.
Collapse
Affiliation(s)
- Hunter B Moore
- From the Department of Surgery, Transplant Institution, AdventHealth at Porter Hospital, Denver, CO (HB Moore)
| | - Christopher D Barrett
- Department of Surgery, University of Nebraska School of Medicine, Omaha, NE (Barrett)
| | - Ernest E Moore
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO (EE Moore, Pieracci)
| | - Fredric M Pieracci
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO (EE Moore, Pieracci)
| | - Angela Sauaia
- Department of Public Health, University of Colorado School of Public Health, Aurora, CO (Sauaia)
| |
Collapse
|
4
|
Barrett CD, Moore PK, Moore EE, Moore HB, Chandler JG, Siddiqui H, Maginot ER, Sauaia A, Pérez-Calatayud AA, Buesing K, Wang J, Davila-Chapa C, Hershberger D, Douglas I, Pieracci FM, Yaffe MB. Neutrophil-mediated Inflammatory Plasminogen Degradation, Rather Than High Plasminogen-Activator Inhibitor-1, May Underly Failures and Inefficiencies of Intrapleural Fibrinolysis. Chest 2024:S0012-3692(24)00540-3. [PMID: 38710463 DOI: 10.1016/j.chest.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Complex pleural space infections often require treatment with multiple doses of intrapleural tissue plasminogen activator (tPA) and deoxyribonuclease, with treatment failure frequently necessitating surgery. Pleural infections are rich in neutrophils, and neutrophil elastase degrades plasminogen, the target substrate of tPA, that is required to generate fibrinolysis. We hypothesized that pleural fluid from patients with pleural space infection would show high elastase activity, evidence of inflammatory plasminogen degradation, and low fibrinolytic potential in response to tPA that could be rescued with plasminogen supplementation. RESEARCH QUESTION Does neutrophil elastase degradation of plasminogen contribute to intrapleural fibrinolytic failure? STUDY DESIGN AND METHODS We obtained infected pleural fluid and circulating plasma from hospitalized adults (n = 10) with institutional review board approval from a randomized trial evaluating intrapleural fibrinolytics vs surgery for initial management of pleural space infection. Samples were collected before the intervention and on days 1, 2, and 3 after the intervention. Activity assays, enzyme-linked immunosorbent assays, and Western blot analysis were performed, and turbidimetric measurements of fibrinolysis were obtained from pleural fluid with and without exogenous plasminogen supplementation. Results are reported as median (interquartile range) or number (percentage) as appropriate, with an α value of .05. RESULTS Pleural fluid elastase activity was more than fourfold higher (P = .02) and plasminogen antigen levels were more than threefold lower (P = .04) than their corresponding plasma values. Pleural fluid Western blot analysis demonstrated abundant plasminogen degradation fragments consistent with elastase degradation patterns. We found that plasminogen activator inhibitor 1 (PAI-1), the native tPA inhibitor, showed high antigen levels before the intervention, but the overwhelming majority of this PAI-1 (82%) was not active (P = .003), and all PAI-1 activity was lost by day 2 after the intervention in patients receiving intrapleural tPA and deoxyribonuclease. Finally, using turbidity clot lysis assays, we found that the pleural fluid of 9 of 10 patients was unable to generate a significant fibrinolytic response when challenged with tPA and that plasminogen supplementation rescued fibrinolysis in all patients. INTERPRETATION Our findings suggest that inflammatory plasminogen deficiency, not high PAI-1 activity, is a significant contributor to intrapleural fibrinolytic failure. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03583931; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Christopher D Barrett
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Department of Cellular and Integrative Physiology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE.
| | - Peter K Moore
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Ernest E Moore
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora; Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO
| | | | - James G Chandler
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO
| | - Halima Siddiqui
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Elizabeth R Maginot
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Angela Sauaia
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora; Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora
| | | | - Keely Buesing
- Division of Acute Care Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Department of Cellular and Integrative Physiology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jiashan Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Cesar Davila-Chapa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Daniel Hershberger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Ivor Douglas
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver Health Medical Center, Denver, CO
| | - Fredric M Pieracci
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora; Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO
| | - Michael B Yaffe
- Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston; Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
5
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
6
|
Mathis BJ, Kato H, Matsuishi Y, Hiramatsu Y. Endogenous and exogenous protection from surgically induced reactive oxygen and nitrogen species. Surg Today 2024; 54:1-13. [PMID: 36348164 DOI: 10.1007/s00595-022-02612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Surgical intervention creates reactive oxygen species through diverse molecular mechanisms, including direct stimulation of immune-mediated inflammation necessary for wound healing. However, dysregulation of redox homeostasis in surgical patients overwhelms the endogenous defense system, slowing the healing process and damaging organs. We broadly surveyed reactive oxygen species that result from surgical interventions and the endogenous and/or exogenous antioxidants that control them. This study assimilates current reports on surgical sources of reactive oxygen and nitrogen species along with literature reports on the effects of endogenous and exogenous antioxidants in human, animal, and clinical settings. Although exogenous antioxidants are generally beneficial, endogenous antioxidant systems account for over 80% of total activity, varying based on patient age, sex, and health or co-morbidity status, especially in smokers, the diabetic, and the obese. Supplementation of exogenous compounds for support in surgical patients is thus theoretically beneficial, but a lack of persuasive clinical evidence has left this potential patient support strategy without clear guidelines. A more thorough understanding of the mechanisms of exogenous antioxidants in patients with compromised health statuses and pharmacokinetic profiling may increase the utility of such support in both the operating and recovery rooms.
Collapse
Affiliation(s)
- Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, 2-1-1 Amakubo, Tsukuba, 305-8576, Ibaraki, Japan.
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yujiro Matsuishi
- Department of Neuroscience Nursing, St. Luke's International University, Tokyo, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Zhang S, Wang X, Chen H, Cao H, Zhang H, Yang M, Zhu Y, Qin Q, Liu X, Wang J, Zhang G. Clinical efficacy and safety of two different hematoporphyrin monomethyl ether-mediated photodynamic therapy regimen in Chinese children with port-wine stain. Exp Dermatol 2023; 32:1371-1382. [PMID: 37157235 DOI: 10.1111/exd.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Hematoporphyrin monomethyl ether-photodynamic therapy (HMME-PDT) has achieved encouraging clinical outcomes in adult port-wine stain (PWS). Optimal treatment option for children with PWS was minimal. To compare whether the clinical effectiveness of HMME-PDT with the 5-min (fast) administration treatment regimen (FATR) was better than the 20-min (slow) administration treatment regimen (SATR) for PWS of children in vivo and in vitro. Thirty-four children with PWS were divided into two groups including FATR and SATR. The two groups received three times HMME-PDT, respectively. Treatment efficacy and safety were evaluated in vivo and in vitro. Erythema index (EI) was used to evaluate the clinical outcomes. Both FATR and SATR were effective and safe in children with PWS after HMME-PDT. There were significance differences between the two groups in reductions of EI after the second treatment (p < 0.001) and the third treatment (p < 0.001) with HMME-PDT. The serum HMME concentration reach the peak level at short time compare with SATR group. A significance increased superoxide levels were observed in FATR group compare to SATR groups in vitro (p < 0.05). Our study suggested that HMME-PDT was effective and safe for children with PWS, the therapy regimen with FATR was better in clinical efficacy than that of the SATR.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Hongguang Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Huina Cao
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Hongli Zhang
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Ming Yang
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Yun Zhu
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Qin Qin
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Gaolei Zhang
- Department of Dermatology and Venereology, Capital Institute of Pediatrics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
8
|
Liu A, Luo P, Huang H. New insight of complement system in the process of vascular calcification. J Cell Mol Med 2023; 27:1168-1178. [PMID: 37002701 PMCID: PMC10148053 DOI: 10.1111/jcmm.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The complement system defences against pathogenic microbes and modulates immune homeostasis by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement system contributes to the pathogenesis of some autoimmune diseases and cardiovascular diseases (CVD). Vascular calcification is the pivotal pathological basis of CVD, and contributes to the high morbidity and mortality of CVD. Increasing evidences indicate that the complement system plays a key role in chronic kidney diseases, atherosclerosis, diabetes mellitus and aging-related diseases, which are closely related with vascular calcification. However, the effect of complement system on vascular calcification is still unclear. In this review, we summarize current evidences about the activation of complement system in vascular calcification. We also describe the complex network of complement system and vascular smooth muscle cells osteogenic transdifferentiation, systemic inflammation, endoplasmic reticulum stress, extracellular matrix remodelling, oxidative stress, apoptosis in vascular calcification. Hence, providing a better understanding of the potential relationship between complement system and vascular calcification, so as to provide a direction for slowing the progression of this burgeoning health concern.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines Macau University of Science and Technology Macau China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Sun Yat‐sen University Shenzhen China
| |
Collapse
|
9
|
Riça IG, Joughin BA, Teke ME, Emmons TR, Griffith A, Cahill LA, Banner-Goodspeed V, Robson SC, Hernandez JM, Segal BH, Otterbein LE, Hauser CJ, Lederer JA, Yaffe MB. Neutrophil heterogeneity and emergence of a distinct population of CD11b/CD18-activated low-density neutrophils after trauma. J Trauma Acute Care Surg 2023; 94:187-196. [PMID: 36694330 PMCID: PMC9881754 DOI: 10.1097/ta.0000000000003823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Multiple large clinical trauma trials have documented an increased susceptibility to infection after injury. Although neutrophils (polymorphonuclear leukocytes [PMNs]) were historically considered a homogeneous cell type, we hypothesized that injury could alter neutrophil heterogeneity and predispose to dysfunction. To explore whether trauma modifies PMN heterogeneity, we performed an observational mass-spectrometry-based cytometry study on total leukocytes and low-density PMNs found in the peripheral blood mononuclear cell fraction of leukocytes from healthy controls and trauma patients. METHODS A total of 74 samples from 12 trauma patients, each sampled at 1 or more time points, and matched controls were fractionated and profiled by mass-spectrometry-based cytometry using a panel of 44 distinct markers. After deconvolution and conservative gating on neutrophils, data were analyzed using Seurat, followed by clustering of principal components. RESULTS Eleven distinct neutrophil populations were resolved in control and trauma neutrophils based on differential protein surface marker expression. Trauma markedly altered the basal heterogeneity of neutrophil subgroups seen in the control samples, with loss of a dominant population of resting neutrophils marked by high expression of C3AR and low levels of CD63, CD64, and CD177 (cluster 1), and expansion of two alternative neutrophil populations, one of which is marked by high expression of CD177 with suppression of CD10, CD16, C3AR, CD63, and CD64 (cluster 6). Remarkably, following trauma, a substantially larger percentage of neutrophils sediment in the monocyte fraction. These low-density neutrophils bear markers of functional exhaustion and form a unique trauma-induced population (cluster 9) with markedly upregulated expression of active surface adhesion molecules (activated CD11b/CD18), with suppression of nearly all other surface markers, including receptors for formyl peptides, leukotrienes, chemokines, and complement. CONCLUSION Circulating neutrophils demonstrate considerable evidence of functional heterogeneity that is markedly altered by trauma. Trauma induces evolution of a novel, exhausted, low-density neutrophil population with immunosuppressive features.
Collapse
Affiliation(s)
- Ingred Goretti Riça
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha E. Teke
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany R. Emmons
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Laura A. Cahill
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Simon C. Robson
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brahm H. Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, University of Buffalo School of Medicine, Buffalo, NY14263 USA
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Carl J. Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
10
|
Yang Z, Nunn MA, Le TD, Simovic MO, Edsall PR, Liu B, Barr JL, Lund BJ, Hill-Pryor CD, Pusateri AE, Cancio LC, Li Y. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br J Pharmacol 2023; 180:422-440. [PMID: 36251578 PMCID: PMC10100417 DOI: 10.1111/bph.15970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 09/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic haemorrhage (TH) is the leading cause of potentially preventable deaths that occur during the prehospital phase of care. No effective pharmacological therapeutics are available for critical TH patients yet. Here, we identify terminal complement activation (TCA) as a therapeutic target in combat casualties and evaluate the efficacy of a TCA inhibitor (nomacopan) on organ damage and survival in vivo. EXPERIMENTAL APPROACH Complement activation products and cytokines were analysed in plasma from 54 combat casualties. The correlations between activated complement pathway(s) and the clinical outcomes in trauma patients were assessed. Nomacopan was administered to rats subjected to lethal TH (blast injury and haemorrhagic shock). Effects of nomacopan on TH were determined using survival rate, organ damage, physiological parameters, and laboratory profiles. KEY RESULTS Early TCA was associated with systemic inflammatory responses and clinical outcomes in this trauma cohort. Lethal TH in the untreated rats induced early TCA that correlated with the severity of tissue damage and mortality. The addition of nomacopan to a damage-control resuscitation (DCR) protocol significantly inhibited TCA, decreased local and systemic inflammatory responses, improved haemodynamics and metabolism, attenuated tissue and organ damage, and increased survival. CONCLUSION AND IMPLICATIONS Previous findings of our and other groups revealed that early TCA represents a rational therapeutic target for trauma patients. Nomacopan as a pro-survival and organ-protective drug, could emerge as a promising adjunct to DCR that may significantly reduce the morbidity and mortality in severe TH patients while awaiting transport to critical care facilities.
Collapse
Affiliation(s)
- Zhangsheng Yang
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Tuan D Le
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Milomir O Simovic
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Peter R Edsall
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Bin Liu
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Johnny L Barr
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Brian J Lund
- 59th Medical Wing Operational Medicine, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | | | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA
| | - Yansong Li
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
11
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
12
|
Lupu L, Horst K, Greven J, Mert Ü, Ludviksen JA, Pettersen K, Lau C, Li Y, Palmer A, Qin K, Zhang X, Mayer B, van Griensven M, Huber-Lang M, Hildebrand F, Mollnes TE. Simultaneous C5 and CD14 inhibition limits inflammation and organ dysfunction in pig polytrauma. Front Immunol 2022; 13:952267. [PMID: 36059503 PMCID: PMC9433645 DOI: 10.3389/fimmu.2022.952267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Dysfunctional complement activation and Toll-like receptor signaling immediately after trauma are associated with development of trauma-induced coagulopathy and multiple organ dysfunction syndrome. We assessed the efficacy of the combined inhibition therapy of complement factor C5 and the TLR co-receptor CD14 on thrombo-inflammation and organ damage in an exploratory 72-h polytrauma porcine model, conducted under standard surgical and intensive care management procedures. Twelve male pigs were subjected to polytrauma, followed by resuscitation (ATLS® guidelines) and operation of the femur fracture (intramedullary nailing technique). The pigs were allocated to combined C5 and CD14 inhibition therapy group (n=4) and control group (n=8). The therapy group received intravenously C5 inhibitor (RA101295) and anti-CD14 antibody (rMil2) 30 min post-trauma. Controls received saline. Combined C5 and CD14 inhibition reduced the blood levels of the terminal complement complex (TCC) by 70% (p=0.004), CRP by 28% (p=0.004), and IL-6 by 52% (p=0.048). The inhibition therapy prevented the platelet consumption by 18% and TAT formation by 77% (p=0.008). Moreover, the norepinephrine requirements in the treated group were reduced by 88%. The inhibition therapy limited the organ damage, thereby reducing the blood lipase values by 50% (p=0.028), LDH by 30% (p=0.004), AST by 33%, and NGAL by 30%. Immunofluorescent analysis of the lung tissue revealed C5b-9 deposition on blood vessels in five from the untreated, and in none of the treated animals. In kidney and liver, the C5b-9 deposition was similarly detected mainly the untreated as compared to the treated animals. Combined C5 and CD14 inhibition limited the inflammatory response, the organ damage, and reduced the catecholamine requirements after experimental polytrauma and might be a promising therapeutic approach.
Collapse
Affiliation(s)
- Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Johannes Greven
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ümit Mert
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | | | - Corinna Lau
- Research Laboratory, Nordland Hospital Bodø, Bodø, Norway
| | - Yang Li
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Martijn van Griensven
- Department Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Bodø, Bodø, Norway
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Tom Eirik Mollnes,
| |
Collapse
|
13
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
14
|
Moore HB, Neal MD, Bertolet M, Joughin BA, Yaffe MB, Barrett CD, Bird MA, Tracy RP, Moore EE, Sperry JL, Zuckerbraun BS, Park MS, Cohen MJ, Wisniewski SR, Morrissey JH. Proteomics of Coagulopathy Following Injury Reveals Limitations of Using Laboratory Assessment to Define Trauma-Induced Coagulopathy to Predict Massive Transfusion. ANNALS OF SURGERY OPEN 2022; 3:e167. [PMID: 36177090 PMCID: PMC9514137 DOI: 10.1097/as9.0000000000000167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022] Open
Abstract
Objective Trauma-induced coagulopathy (TIC) is provoked by multiple mechanisms and is perceived to be one driver of massive transfusions (MT). Single laboratory values using prothrombin time (INR) or thrombelastography (TEG) are used to clinically define this complex process. We used a proteomics approach to test whether current definitions of TIC (INR, TEG, or clinical judgement) are sufficient to capture the majority of protein changes associated with MT. Methods Eight level-I trauma centers contributed blood samples from patients available early after injury. TIC was defined as INR >1.5 (INR-TIC), TEG maximum amplitude <50mm (TEG-TIC), or clinical judgement (Clin-TIC) by the trauma surgeon. MT was defined as > 10 units of red blood cells in 24 hours or > 4 units RBC/hour during the first 4 hr. SomaLogic proteomic analysis of 1,305 proteins was performed. Pathways associated with proteins dysregulated in patients with each TIC definition and MT were identified. Results Patients (n=211) had a mean injury severity score of 24, with a MT and mortality rate of 22% and 12%, respectively. We identified 578 SOMAscan analytes dysregulated among MT patients, of which INR-TIC, TEG-TIC, and Clin-TIC patients showed dysregulation only in 25%, 3%, and 4% of these, respectively. TIC definitions jointly failed to show changes in 73% of the protein levels associated with MT, and failed to identify 26% of patients that received a massive transfusion. INR-TIC and TEG-TIC patients showed dysregulation of proteins significantly associated with complement activity. Proteins dysregulated in Clin-TIC or massive transfusion patients were not significantly associated with any pathway. Conclusion These data indicate there are unexplored opportunities to identify patients at risk for massive bleeding. Only a small subset of proteins that are dysregulated in patients receiving MT are statistically significantly dysregulated among patients whose TIC is defined based solely on laboratory measurements or clinical assessment.
Collapse
Affiliation(s)
- Hunter B. Moore
- From the Department of Surgery, University of Colorado, Denver, CO
| | - Matthew D. Neal
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Marnie Bertolet
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Brian A. Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Center for Precision Cancer Medicine
| | - Michael B. Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Center for Precision Cancer Medicine
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, MA
| | - Christopher D. Barrett
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, MA
| | - Molly A. Bird
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Center for Precision Cancer Medicine
| | - Russell P. Tracy
- University of Vermont, Department of Biochemistry, Burlington, VT
| | - Ernest E Moore
- From the Department of Surgery, University of Colorado, Denver, CO
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO
| | - Jason L. Sperry
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Brian S. Zuckerbraun
- Department of Surgery, Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Myung S. Park
- Department of Surgery, Mayo Clinic Rochester, Rochester, MN
| | | | | | - James H. Morrissey
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
15
|
Zhu J, Li J, Chung CS, Lomas-Neira JL, Ayala A. Patho-Mechanisms for Hemorrhage/Sepsis-Induced Indirect Acute Respiratory Distress Syndrome: A Role for Lung TIE1 and Its Regulation by Neutrophils. Shock 2022; 57:608-615. [PMID: 34907117 PMCID: PMC8916968 DOI: 10.1097/shk.0000000000001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Severe hemorrhage (Hem) has been shown to be causal for the development of extra-pulmonary/indirect acute respiratory distress syndrome (iARDS) and is associated with severe endothelial cell (EC) injury. EC growth factors, Angiopoietin (Ang)-1 and -2, maintain vascular homeostasis via tightly regulated competitive interaction with the tyrosine kinase receptor, Tie2, expressed on ECs. OBJECTIVE Since it has been reported that the orphan receptor, Tie1, may be able to play a role in Ang:Tie2 signaling; we chose to examine Tie1's capacity to alter the lung Ang:Tie2 interaction in response to the sequential insults of shock/sepsis (cecal ligation and puncture [CLP]), culminating in iARDS. METHODS Male mice were subjected to Hem alone or sequential Hem followed 24 hours later by CLP that induces iARDS. Changes in lung and/or plasma levels of Tie1, Tie2, Ang-1, Ang-2, various systemic cytokine/chemokines and indices of lung injury/inflammation were then determined. The role of Tie1 was established by intravenous administration of Tie1 specific or control siRNA at 1 h post-Hem. Alternatively, the contribution of neutrophils was assessed by pre-treating mice with anti-neutrophil antibody depletion 48 h prior to Hem. RESULTS Lung tissue levels of Tie1 expression elevated over the first 6 to 24 h post-Hem alone. Subsequently, we found that treatment of Hem/CLP mice with Tie1-specific siRNA not only decreased Tie1 expression in lung tissue compared to control siRNA, but, suppressed the rise in lung inflammatory cytokines, lung MPO and the rise in lung protein leak. Finally, much as we have previously shown that neutrophil interaction with resident pulmonary vascular ECs contribute significantly to Ang-2 release and EC dysfunction, central to the development of iARDS. Here, we report that depletion of neutrophils also decreased lung tissue Tie1 expression and increased Tie2 activation in Hem/CLP mice. CONCLUSION Together, these data imply that shock-induced increased expression of Tie1 can contribute to EC activation by inhibiting Ang:Tie2 interaction, culminating in EC dysfunction and the development of iARDS.
Collapse
Affiliation(s)
- Jiali Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Joanne L. Lomas-Neira
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital & the Alpert School of Medicine at Brown University, Providence, RI 02830, USA
| |
Collapse
|
16
|
Ellson CD, Goretti Riça I, Kim JS, Huang YMM, Lim D, Mitra T, Hsu A, Wei EX, Barrett CD, Wahl M, Delbrück H, Heinemann U, Oschkinat H, Chang CEA, Yaffe MB. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434:167533. [DOI: 10.1016/j.jmb.2022.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
17
|
Kim HI, Park J, Konecna B, Huang W, Riça I, Gallo D, Otterbein LE, Itagaki K, Hauser CJ. Plasma and wound fluids from trauma patients suppress neutrophil extracellular respiratory burst. J Trauma Acute Care Surg 2022; 92:330-338. [PMID: 34789698 PMCID: PMC8792304 DOI: 10.1097/ta.0000000000003461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Trauma increases susceptibility to secondary bacterial infections. The events suppressing antimicrobial immunity are unclear. Polymorphonuclear neutrophils (PMNs) migrate toward bacteria using chemotaxis, trap them in extracellular neutrophil extracellular traps, and kill them using respiratory burst (RB). We hypothesized that plasma and wound fluids from trauma patients alter PMN function. METHODS Volunteer PMNs were incubated in plasma or wound fluids from trauma patients (days 0 and 1, days 2 and 3), and their functions were compared with PMNs incubated in volunteer plasma. Chemotaxis was assessed in transwells. Luminometry assessed total and intracellular RB responses to receptor-dependent and independent stimulants. Neutrophil extracellular trap formation was assessed using elastase assays. The role of tissue necrosis in creating functionally suppressive systemic PMN environments was assessed using a novel pig model where PMNs were incubated in uninjured pig plasma or plasma from pigs undergoing intraperitoneal instillation of liver slurry. RESULTS Both plasma and wound fluids from trauma patients markedly suppress total PMN RB. Intracellular RB is unchanged, implicating suppression of extracellular RB. Wound fluids are more suppressive than plasma. Biofluids suppressed RB maximally early after injury and their effects decayed with time. Chemotaxis and neutrophil extracellular trap formation were suppressed by biofluids similarly. Lastly, plasma from pigs undergoing abdominal liver slurry instillation suppressed PMN RB, paralleling suppression by human trauma biofluids. CONCLUSION Trauma plasma and wound fluids suppress RB and other key PMNs antimicrobial functions. Circulating suppressive signals can be derived from injured or necrotic tissue at wound sites, suggesting a key mechanism by which tissue injuries can put the host at risk for infection.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Jinbong Park
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
- Deparment of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ingred Riça
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Carl J. Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
18
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
19
|
Mossanen Parsi M, Duval C, Ariëns RAS. Vascular Dementia and Crosstalk Between the Complement and Coagulation Systems. Front Cardiovasc Med 2021; 8:803169. [PMID: 35004913 PMCID: PMC8733168 DOI: 10.3389/fcvm.2021.803169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to the brain tissue, resulting in infarction, and is the second most common type of dementia. The complement and coagulation systems are evolutionary host defence mechanisms activated by acute tissue injury to induce inflammation, clot formation and lysis; recent studies have revealed that these systems are closely interlinked. Overactivation of these systems has been recognised to play a key role in the pathogenesis of neurological disorders such as Alzheimer's disease and multiple sclerosis, however their role in VaD has not yet been extensively reviewed. This review aims to bridge the gap in knowledge by collating current understanding of VaD to enable identification of complement and coagulation components involved in the pathogenesis of this disorder that may have their effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil novel therapeutic targets or biomarkers that would improve current treatment strategies for VaD.
Collapse
Affiliation(s)
| | | | - Robert A. S. Ariëns
- Discovery and Translational Science Department, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Agostinis C, Mangogna A, Balduit A, Aghamajidi A, Ricci G, Kishore U, Bulla R. COVID-19, Pre-Eclampsia, and Complement System. Front Immunol 2021; 12:775168. [PMID: 34868042 PMCID: PMC8635918 DOI: 10.3389/fimmu.2021.775168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is characterized by virus-induced injury leading to multi-organ failure, together with inflammatory reaction, endothelial cell (EC) injury, and prothrombotic coagulopathy with thrombotic events. Complement system (C) via its cross-talk with the contact and coagulation systems contributes significantly to the severity and pathological consequences due to SARS-CoV-2 infection. These immunopathological mechanisms overlap in COVID-19 and pre-eclampsia (PE). Thus, mothers contracting SARS-CoV-2 infection during pregnancy are more vulnerable to developing PE. SARS-CoV-2 infection of ECs, via its receptor ACE2 and co-receptor TMPRSS2, can provoke endothelial dysfunction and disruption of vascular integrity, causing hyperinflammation and hypercoagulability. This is aggravated by bradykinin increase due to inhibition of ACE2 activity by the virus. C is important for the progression of normal pregnancy, and its dysregulation can impact in the form of PE-like syndrome as a consequence of SARS-CoV-2 infection. Thus, there is also an overlap between treatment regimens of COVID-19 and PE. C inhibitors, especially those targeting C3 or MASP-2, are exciting options for treating COVID-19 and consequent PE. In this review, we examine the role of C, contact and coagulation systems as well as endothelial hyperactivation with respect to SARS-CoV-2 infection during pregnancy and likely development of PE.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
21
|
Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost 2021; 27:10760296211042940. [PMID: 34693754 PMCID: PMC8543709 DOI: 10.1177/10760296211042940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.
Collapse
Affiliation(s)
- Zahra Elyaspour
- 48435Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- 48435Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- 48435Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Cheng Q, Lai X, Yang L, Yang H, Luo Y. Serum CD5L predicts acute lung parenchymal injury and acute respiratory distress syndrome in trauma patients. Medicine (Baltimore) 2021; 100:e27219. [PMID: 34596119 PMCID: PMC8483880 DOI: 10.1097/md.0000000000027219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023] Open
Abstract
Cluster of differentiation 5 antigen-like (CD5L), derived from alveolar epithelial cells partly, is a secreted protein. It is shown that CD5L is associated with lung inflammation and systemic inflammatory diseases, but the relationship between CD5L and trauma-related acute lung parenchymal injury (PLI), acute lung injury or acute respiratory distress syndrome (ARDS) is unclear. This study aims to explore the value of serum CD5L levels in predicting trauma-associated PLI/ARDS and its potential clinical significance.This is a prospective observational study, and a total of 127 trauma patients were recruited from the emergency department (ED), and among them, 81 suffered from PLI/ARDS within 24 hours after trauma, and 46 suffered from trauma without PLI/ARDS. Fifty healthy subjects from the medical examination center were also recruited as controls for comparison. The serum CD5L level was measured within 24 hours of admission. The receiver operating characteristic analysis and logistic regression analysis were used to identify the correlation between high CD5L and trauma associated-PLI/ARDS within 24 hours following trauma.The trauma associated-PLI/ARDS subjects showed a significantly higher level of serum CD5L on emergency department admission within 24 hours after trauma compared with its level in non-trauma associated-PLI/ARDS subjects and healthy subjects. The initial CD5L concentration higher than 150.3 ng/mL was identified as indicating a high risk of PLI/ARDS within 24 hours following trauma (95% confidence interval: 0.674-0.878; P < .001). Moreover, CD5L was an independent risk factor for trauma associated-PLI/ARDS within 24 hours following trauma.CD5L could predict PLI/ARDS within 24 hours following trauma.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, Guangyuan Central Hospital, No. 16 Jingxiangzi Road, Lizhou District, Guangyuan City, Sichuan Province, China
| | - Huiqing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China
| | - Yan Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Friendship Road, Yuzhong District, Chongqing, China
| |
Collapse
|
23
|
Goswami J, MacArthur T, Bailey K, Spears G, Kozar RA, Auton M, Dong JF, Key NS, Heller S, Loomis E, Hall NW, Johnstone AL, Park MS. Neutrophil Extracellular Trap Formation and Syndecan-1 Shedding Are Increased After Trauma. Shock 2021; 56:433-439. [PMID: 33534396 PMCID: PMC8316482 DOI: 10.1097/shk.0000000000001741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Damage-associated molecular patterns (DAMPs) stimulate endothelial syndecan-1 shedding and neutrophil extracellular traps (NET) formation. The role of NETs in trauma and trauma-induced hypercoagulability is unknown. We hypothesized that trauma patients with accelerated thrombin generation would have increased NETosis and syndecan-1 levels. METHODS In this pilot study, we analyzed 50 citrated plasma samples from 30 trauma patients at 0 h (n = 22) and 6 h (n = 28) from time of injury (TOI) and 21 samples from healthy volunteers, for a total of 71 samples included in analysis. Thrombin generation was quantified using calibrated automated thrombogram (CAT) and reported as lag time (LT), peak height (PH), and time to peak (ttPeak). Nucleosome calibrated (H3NUC) and free histone standardized (H3Free) ELISAs were used to quantify NETs. Syndecan-1 levels were quantified by ELISA. Results are presented as median [interquartile range] and Spearman rank correlations. RESULTS Plasma levels of H3NUC were increased in trauma patients as compared with healthy volunteers both at 0 h (89.8 ng/mL [35.4, 180.3]; 18.1 ng/mL [7.8, 37.4], P = 0.002) and at 6 h (86.5 ng/mL [19.2, 612.6]; 18.1 ng/mL [7.8, 37.4], P = 0.003) from TOI. H3Free levels were increased in trauma patients at 0 h (5.74 ng/mL [3.19, 8.76]; 1.61 ng/mL [0.66, 3.50], P = 0.002) and 6 h (5.52 ng/mL [1.46, 11.37]; 1.61 ng/mL [0.66, 3.50], P = 0.006). Syndecan-1 levels were greater in trauma patients (4.53 ng/mL [3.28, 6.28]; 2.40 ng/mL [1.66, 3.20], P < 0.001) only at 6 h from TOI. H3Free and syndecan-1 levels positively correlated both at 0 h (0.376, P = 0.013) and 6 h (0.583, P < 0.001) from TOI. H3NUC levels and syndecan-1 levels were positively correlated at 6 h from TOI (0.293, P = 0.041). TtPeak correlated inversely to H3 NUC (-0.358, P = 0.012) and syndecan-1 levels (-0.298, P = 0.038) at 6 h from TOI. CONCLUSIONS Our pilot study demonstrates that trauma patients have increased NETosis, measured by H3NUC and H3Free levels, increased syndecan-1 shedding, and accelerated thrombin generation kinetics early after injury.
Collapse
Affiliation(s)
- Julie Goswami
- Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Taleen MacArthur
- Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Kent Bailey
- Clinical Statistics and Biostatistics, Department of Health Sciences Research, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Grant Spears
- Clinical Statistics and Biostatistics, Department of Health Sciences Research, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Rosemary A. Kozar
- Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201
| | - Matthew Auton
- Biochemistry and Molecular Biology, Department of Hematology, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Jing-Fei Dong
- Division of Hematology, University of Washington School of Medicine, Bloodworks Research Institute, 1551 Eastlake Avenue E, Seattle, WA, 98102
| | - Nigel S. Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, NC, 27514
| | - Stephanie Heller
- Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | - Erica Loomis
- Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| | | | | | - Myung S. Park
- Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1 St. SW, Rochester, MN, 55905
| |
Collapse
|
24
|
Wang G, Zhu Y, Zan X, Li M. Endowing Orthopedic Implants' Antibacterial, Antioxidation, and Osteogenesis Properties Through a Composite Coating of Nano-Hydroxyapatite, Tannic Acid, and Lysozyme. Front Bioeng Biotechnol 2021; 9:718255. [PMID: 34350164 PMCID: PMC8327088 DOI: 10.3389/fbioe.2021.718255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
There is a substantial global market for orthopedic implants, but these implants still face the problem of a high failure rate in the short and long term after implantation due to the complex physiological conditions in the body. The use of multifunctional coatings on orthopedic implants has been proposed as an effective way to overcome a range of difficulties. Here, a multifunctional (TA@HA/Lys)n coating composed of tannic acid (TA), hydroxyapatite (HA), and lysozyme (Lys) was fabricated in a layer-by-layer (LBL) manner, where TA deposited onto HA firmly stuck Lys and HA together. The deposition of TA onto HA, the growth of (TA@HA/Lys)n, and multiple related biofunctionalities were thoroughly investigated. Our data demonstrated that such a hybrid coating displayed antibacterial and antioxidant effects, and also facilitated the rapid attachment of cells [both mouse embryo osteoblast precursor cells (MC3T3-E1) and dental pulp stem cells (DPSCs)] in the early stage and their proliferation over a long period. This accelerated osteogenesis in vitro and promoted bone formation in vivo. We believe that our findings and the developed strategy here could pave the way for multifunctional coatings not only on orthopedic implants, but also for additional applications in catalysts, sensors, tissue engineering, etc.
Collapse
Affiliation(s)
- Guofeng Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yaxin Zhu
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingjie Zan
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Meng Li
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Zhang R, Qi J, Zhou M, Pan T, Zhang Z, Yao Y, Han H, Han Y. Upregulation of Nrf2 Attenuates Oxidative Stress-Induced, Complement Activation-Associated Endothelial Injury and Apoptosis in Transplant-Associated Thrombotic Microangiopathy. Transplant Cell Ther 2021; 27:758.e1-758.e8. [PMID: 34174470 DOI: 10.1016/j.jtct.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a serious and life-threatening complication after hematopoietic stem cell transplantation. Studies have reported that the main pathological manifestation of the disease is an endothelial injury associated with complement activation, but its molecular biological mechanisms remain unclear. Our previous studies have shown that oxidative stress may induce complement activation in TA-TMA. Nuclear factor erythroid 2-related factor 2 (Nrf2), a molecule that regulates oxidative stress, can inhibit endothelial stimulation by reactive oxygen species (ROS). We assessed Nrf2 expression in peripheral blood mononuclear cells (PBMCs) from patients with TA-TMA compared with healthy donors. Nrf2 expression, ROS accumulation, complement activation, and apoptosis were then assessed in human umbilical vein endothelial cells (HUVECs) incubated with TA-TMA plasma to identify whether complement-associated endothelial damage induced by oxidative stress occurs in TA-TMA. The protective effect of Nrf2 pathway activation on TA-TMA-induced endothelial injury was also investigated to explore a new avenue for TA-TMA prevention and treatment. In this study, peripheral blood was collected from six patients with TA-TMA, and healthy donors served as negative controls. We determined the expression of Nrf2 through in vitro and in vivo experiments and measured the level of apoptosis. We found increased expression of Nrf2 in PBMCs from patients with TA-TMA. HUVECs were then incubated with plasma from patients with TA-TMA or with plasma from healthy donors, and we found that complement 3 (C3) levels were increased in HUVECs treated with TA-TMA plasma. In contrast, total Nrf2 levels were decreased, and ROS production and apoptosis levels were increased. To determine whether complement activation and apoptosis were caused by oxidative stress, we added N-acetyl-L-cysteine to HUVECs incubated with TA-TMA plasma. As a result, ROS production, complement activation, and apoptosis levels were reduced. Finally, we upregulated Nrf2 in HUVECs by rescue experiments, and we found that activation of Nrf2 attenuated endothelial cell apoptosis and ROS production and reduced C3 and C5b-9 levels. These results suggest that oxidative stress-induced, complement activation-associated endothelial injury occurs in TA-TMA and that upregulation of Nrf2 protects endothelial cells from damage. Activation of the Nrf2 pathway may be a potential target for the treatment of complement activation-associated endothelial injury in TA-TMA.
Collapse
Affiliation(s)
- Rui Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Yifang Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Institute of Blood and Marrow Transplantation, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Emmons TR, Giridharan T, Singel KL, Khan ANH, Ricciuti J, Howard K, Silva-Del Toro SL, Debreceni IL, Aarts CEM, Brouwer MC, Suzuki S, Kuijpers TW, Jongerius I, Allen LAH, Ferreira VP, Schubart A, Sellner H, Eder J, Holland SM, Ram S, Lederer JA, Eng KH, Moysich KB, Odunsi K, Yaffe MB, Zsiros E, Segal BH. Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer. Cancer Immunol Res 2021; 9:790-810. [PMID: 33990375 DOI: 10.1158/2326-6066.cir-20-0922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
T-cell activation and expansion in the tumor microenvironment (TME) are critical for antitumor immunity. Neutrophils in the TME acquire a complement-dependent T-cell suppressor phenotype that is characterized by inhibition of T-cell proliferation and activation through mechanisms distinct from those of myeloid-derived suppressor cells. In this study, we used ascites fluid supernatants (ASC) from patients with ovarian cancer as an authentic component of the TME to evaluate the effects of ASC on neutrophil function and mechanisms for neutrophil-driven immune suppression. ASC prolonged neutrophil life span, decreased neutrophil density, and induced nuclear hypersegmentation. Mass cytometry analysis showed that ASC induced 15 distinct neutrophil clusters. ASC stimulated complement deposition and signaling in neutrophils, resulting in surface mobilization of granule constituents, including NADPH oxidase. NADPH oxidase activation and phosphatidylserine signaling were required for neutrophil suppressor function, although we did not observe a direct role of extracellular reactive oxygen species in inhibiting T-cell proliferation. Postoperative surgical drainage fluid also induced a complement-dependent neutrophil suppressor phenotype, pointing to this effect as a general response to injury. Like circulating lymphocytes, ASC-activated neutrophils caused complement-dependent suppression of tumor-associated lymphocytes. ASC-activated neutrophils adhered to T cells and caused trogocytosis of T-cell membranes. These injury and signaling cues resulted in T-cell immunoparalysis characterized by impaired NFAT translocation, IL2 production, glucose uptake, mitochondrial function, and mTOR activation. Our results demonstrate that complement-dependent priming of neutrophil effector functions in the TME induces a T-cell nonresponsiveness distinct from established checkpoint pathways and identify targets for immunotherapy.See related Spotlight by Cassatella, p. 725.
Collapse
Affiliation(s)
- Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kelly L Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jason Ricciuti
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kaitlyn Howard
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Ivy L Debreceni
- Inflammation Program and Immunology Graduate Training Program, University of Iowa, Iowa City, Iowa
| | - Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Lee-Ann H Allen
- Inflammation Program, Departments of Medicine and Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Anna Schubart
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Holger Sellner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin H Eng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Brahm H Segal
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
27
|
Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6639199. [PMID: 33708334 PMCID: PMC7932781 DOI: 10.1155/2021/6639199] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) released in cells are signaling molecules but can also modify signaling proteins. Red blood cells perform a major role in maintaining the balance of the redox in the blood. The main cytosolic protein of RBC is hemoglobin (Hb), which accounts for 95-97%. Most other proteins are involved in protecting the blood cell from oxidative stress. Hemoglobin is a major factor in initiating oxidative stress within the erythrocyte. RBCs can also be damaged by exogenous oxidants. Hb autoxidation leads to the generation of a superoxide radical, of which the catalyzed or spontaneous dismutation produces hydrogen peroxide. Both oxidants induce hemichrome formation, heme degradation, and release of free iron which is a catalyst for free radical reactions. To maintain the redox balance, appropriate antioxidants are present in the cytosol, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (PRDX2), as well as low molecular weight antioxidants: glutathione, ascorbic acid, lipoic acid, α-tocopherol, β-carotene, and others. Redox imbalance leads to oxidative stress and may be associated with overproduction of ROS and/or insufficient capacity of the antioxidant system. Oxidative stress performs a key role in CKD as evidenced by the high level of markers associated with oxidative damage to proteins, lipids, and DNA in vivo. In addition to the overproduction of ROS, a reduced antioxidant capacity is observed, associated with a decrease in the activity of SOD, GPx, PRDX2, and low molecular weight antioxidants. In addition, hemodialysis is accompanied by oxidative stress in which low-biocompatibility dialysis membranes activate phagocytic cells, especially neutrophils and monocytes, leading to a respiratory burst. This review shows the production of ROS under normal conditions and CKD and its impact on disease progression. Oxidative damage to red blood cells (RBCs) in CKD and their contribution to cardiovascular disease are also discussed.
Collapse
|
28
|
Zhang W, Zhang M, Kuang Z, Huang Z, Gao L, Zhu J. The risk factors for acute respiratory distress syndrome in patients with severe acute pancreatitis: A retrospective analysis. Medicine (Baltimore) 2021; 100:e23982. [PMID: 33466140 PMCID: PMC7808542 DOI: 10.1097/md.0000000000023982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is very common in patients with severe acute pancreatitis (SAP), the early interventions are essential to the prognosis of SAP patients. We aimed to evaluate the risk factors for ARDS in SAP patients, to provide insights into the management of SAP.SAP patients treated in our hospital from June 1, 2018 to May 31, 2020 were included. The characteristics and lab test results were collected and compared, and we conducted the logistic regression analyses were conducted to identify the potential risk factors for ARDS in patients with SAP.A total of 281 SAP patients were included finally, the incidence of ARDS in patients with SAP was 30.60%. There were significant differences on the respiratory rate, heart rate, APACHE II and Ranson score between 2 groups (all P < .05). And there were significant differences on the polymorphonuclear, procalcitonin, C-reactive protein, serum creatinine, albumin and PO2/FiO2 between 2 groups (all P < .05), and no significant differences on the K+, Na+, Ca+, white blood cell, neutrophils, urine and blood amylase, trypsin, lipase, alanine aminotransferase, aspartate aminotransferase, total bilirubin, triglyceride, total cholesterol, total bilirubin, fasting blood glucose, and pH were found (all P > .05). Respiratory rate >30/min (odds ratio [OR]: 2.405, 95% confidence interval[CI]: 1.163-4.642), APACHE II score >11 (OR: 1.639, 95% CI: 1.078-2.454), Ranson score >5 (OR: 1.473, 95% CI: 1.145-2.359), polymorphonuclear >14 × 109/L (OR: 1.316, 95% CI: 1.073-2.328), C-reactive protein >150 mg/L (OR: 1.127, 95% CI: 1.002-1.534), albumin ≤30 g/L (OR: 1.113, 95% CI: 1.005-1.489) were the independent risk factors for ARDS in patients with SAP (all P < .05).The incidence of ARDS in SAP patients is relatively high, and it is necessary to carry out targeted early prevention and treatment for the above risk factors.
Collapse
|
29
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
30
|
Lichota A, Szewczyk EM, Gwozdzinski K. Factors Affecting the Formation and Treatment of Thrombosis by Natural and Synthetic Compounds. Int J Mol Sci 2020; 21:E7975. [PMID: 33121005 PMCID: PMC7663413 DOI: 10.3390/ijms21217975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Venous thromboembolism (VTE) refers to deep vein thrombosis (DVT), whose consequence may be a pulmonary embolism (PE). Thrombosis is associated with significant morbidity and mortality and is the third most common cardiovascular disease after myocardial infarction and stroke. DVT is associated with the formation of a blood clot in a deep vein in the body. Thrombosis promotes slowed blood flow, hypoxia, cell activation, and the associated release of many active substances involved in blood clot formation. All thrombi which adhere to endothelium consist of fibrin, platelets, and trapped red and white blood cells. In this review, we summarise the impact of various factors affecting haemostatic disorders leading to blood clot formation. The paper discusses the causes of thrombosis, the mechanism of blood clot formation, and factors such as hypoxia, the involvement of endothelial cells (ECs), and the activation of platelets and neutrophils along with the effects of bacteria and reactive oxygen species (ROS). Mechanisms related to the action of anticoagulants affecting coagulation factors including antiplatelet drugs have also been discussed. However, many aspects related to the pathogenesis of thrombosis still need to be clarified. A review of the drugs used to treat and prevent thrombosis and natural anticoagulants that occur in the plant world and are traditionally used in Far Eastern medicine has also been carried out.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Eligia M. Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Faculty of Pharmacy, Medical University of Lodz, 90-235 Lodz, Poland; (A.L.); (E.M.S.)
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
31
|
Lupu L, Palmer A, Huber-Lang M. Inflammation, Thrombosis, and Destruction: The Three-Headed Cerberus of Trauma- and SARS-CoV-2-Induced ARDS. Front Immunol 2020; 11:584514. [PMID: 33101314 PMCID: PMC7546394 DOI: 10.3389/fimmu.2020.584514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023] Open
Abstract
Physical trauma can be considered an unrecognized "pandemic" because it can occur anywhere and affect anyone and represents a global burden. Following severe tissue trauma, patients frequently develop acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) despite modern surgical and intensive care concepts. The underlying complex pathophysiology of life-threatening ALI/ARDS has been intensively studied in experimental and clinical settings. However, currently, the coronavirus family has become the focus of ALI/ARDS research because it represents an emerging global public health threat. The clinical presentation of the infection is highly heterogeneous, varying from a lack of symptoms to multiple organ dysfunction and mortality. In a particular subset of patients, the primary infection progresses rapidly to ALI and ARDS. The pathophysiological mechanisms triggering and driving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ALI/ARDS are still poorly understood. Although it is also generally unknown whether insights from trauma-induced ARDS may be readily translated to SARS-CoV-2-associated ARDS, it was still recommended to treat coronavirus-positive patients with ALI/ARDS with standard protocols for ALI/ARDS. However, this strategy was questioned by clinical scientists, because it was documented that some severely hypoxic SARS-CoV-2-infected patients exhibited a normal respiratory system compliance, a phenomenon rarely observed in ARDS patients with another underlying etiology. Therefore, coronavirus-induced ARDS was defined as a specific ARDS phenotype, which accordingly requires an adjusted therapeutic approach. These suggestions reflect previous attempts of classifying ARDS into different phenotypes that might overall facilitate ARDS diagnosis and treatment. Based on the clinical data from ARDS patients, two major phenotypes have been proposed: hyper- and hypo-inflammatory. Here, we provide a comparative review of the pathophysiological pathway of trauma-/hemorrhagic shock-induced ARDS and coronavirus-induced ARDS, with an emphasis on the crucial key points in the pathogenesis of both these ARDS forms. Therefore, the manifold available data on trauma-/hemorrhagic shock-induced ARDS may help to better understand coronavirus-induced ARDS.
Collapse
Affiliation(s)
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
32
|
Marchetti M. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol 2020; 99:1701-1707. [PMID: 32583086 PMCID: PMC7312112 DOI: 10.1007/s00277-020-04138-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemia is a major health emergency causing hundreds of deaths worldwide. The high reported morbidity has been related to hypoxia and inflammation leading to endothelial dysfunction and aberrant coagulation in small and large vessels. This review addresses some of the pathways leading to endothelial derangement, such as complement, HIF-1α, and ABL tyrosine kinases. This review also highlights potential targets for prevention and therapy of COVID-19-related organ damage and discusses the role of marketed drugs, such as eculizumab and imatinib, as suitable candidates for clinical trials.
Collapse
Affiliation(s)
- Monia Marchetti
- Hematology Department, Az Osp SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| |
Collapse
|
33
|
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci 2020; 21:E1918. [PMID: 32168908 PMCID: PMC7139897 DOI: 10.3390/ijms21061918] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.
Collapse
Affiliation(s)
- Clemens Gutmann
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK;
| | - Richard Siow
- Vascular Biology & Inflammation Section, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, SE1 9NH, UK;
| | - Adam M. Gwozdz
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Prakash Saha
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Alberto Smith
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| |
Collapse
|
34
|
Chu C, Yang C, Wang X, Xie T, Sun S, Liu B, Wang K, Duan Z, Ding W, Li J. Early intravenous administration of tranexamic acid ameliorates intestinal barrier injury induced by neutrophil extracellular traps in a rat model of trauma/hemorrhagic shock. Surgery 2020; 167:340-351. [PMID: 31761396 DOI: 10.1016/j.surg.2019.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
|
35
|
Gavriilaki E, Anagnostopoulos A, Mastellos DC. Complement in Thrombotic Microangiopathies: Unraveling Ariadne's Thread Into the Labyrinth of Complement Therapeutics. Front Immunol 2019; 10:337. [PMID: 30891033 PMCID: PMC6413705 DOI: 10.3389/fimmu.2019.00337] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thrombotic microangiopathies (TMAs) are a heterogeneous group of syndromes presenting with a distinct clinical triad: microangiopathic hemolytic anemia, thrombocytopenia, and organ damage. We currently recognize two major entities with distinct pathophysiology: thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). Beyond them, differential diagnosis also includes TMAs associated with underlying conditions, such as drugs, malignancy, infections, scleroderma-associated renal crisis, systemic lupus erythematosus (SLE), malignant hypertension, transplantation, HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets), and disseminated intravascular coagulation (DIC). Since clinical presentation alone is not sufficient to differentiate between these entities, robust pathophysiological features need to be used for early diagnosis and appropriate treatment. Over the last decades, our understanding of the complement system has evolved rapidly leading to the characterization of diseases which are fueled by complement dysregulation. Among TMAs, complement-mediated HUS (CM-HUS) has long served as a disease model, in which mutations of complement-related genes represent the first hit of the disease and complement inhibition is an effective and safe strategy. Based on this knowledge, clinical conditions resembling CM-HUS in terms of phenotype and genotype have been recognized. As a result, the role of complement in TMAs is rapidly expanding in recent years based on genetic and functional studies. Herein we provide an updated overview of key pathophysiological processes underpinning complement activation and dysregulation in TMAs. We also discuss emerging clinical challenges in streamlining diagnostic algorithms and stratifying TMA patients that could benefit more from complement modulation. With the advent of next-generation complement therapeutics and suitable disease models, these translational perspectives could guide a more comprehensive, disease- and target-tailored complement intervention in these disorders.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- BMT Unit, Hematology Department, G. Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
36
|
Tranexamic acid mediates proinflammatory and anti-inflammatory signaling via complement C5a regulation in a plasminogen activator–dependent manner. J Trauma Acute Care Surg 2019; 86:101-107. [DOI: 10.1097/ta.0000000000002092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|