1
|
Hirsch A, Adolf C, Stüfchen I, Beuschlein F, Brüdgam D, Bidlingmaier M, Reincke M, Quinkler M. NT-proBNP levels in patients with primary hyperaldosteronism and autonomous cortisol cosecretion. Eur J Endocrinol 2024; 191:444-456. [PMID: 39343731 DOI: 10.1093/ejendo/lvae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Patients with primary aldosteronism (PA) have higher cardiac comorbidities including more pronounced left ventricular hypertrophy than patients with essential hypertension. OBJECTIVE Autonomous cortisol cosecretion (ACS) is a common subtype in PA associated with a worse metabolic profile. HYPOTHESIS Autonomous cortisol cosecretion may affect myocardial parameters and result in a worse cardiac outcome compared to patients with PA and without ACS. METHODS Three hundred and sixty-seven patients with PA undergoing 1 mg dexamethasone suppression test (DST) and echocardiography at baseline from 2 centers of the German Conn's Registry were included. Follow-up for up to 3.8 years was available in 192 patients. RESULTS Patients with PA and ACS had higher NT-proBNP levels at baseline compared to patients with PA without ACS (114 vs 75.6 pg/mL, P = .02), but showed no difference in echocardiography values. NT-proBNP levels showed a significant positive correlation (r = 0.141, P = .011) with cortisol levels after DST at baseline. In response to therapy of PA, NT-proBNP levels decreased, but remained significantly higher in patients with ACS compared to patients without ACS. At follow-up, left ventricle end-diastolic dimension (LVEDD) decreased significantly only in patients without ACS. Left atrial diameter (LAD) decreased significantly in patients without ACS and in female patients with ACS but not in male patients. Left ventricular mass index (LVMI) significantly improved in female patients without ACS but remained unchanged in female patients with ACS as well as in male patients at follow-up. CONCLUSIONS In patients with PA, concomitant ACS is associated with a worse cardiac profile and only partial recovery even years after initiation of targeted PA therapy.
Collapse
Affiliation(s)
- Anna Hirsch
- Endocrinology in Charlottenburg, 10627 Berlin, Germany
- Clinical Endocrinology CCM, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Isabel Stüfchen
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), 8091 Zurich, Switzerland
- The LOOP Zurich - Medical Research Center, 8044 Zurich, Switzerland
| | - Denise Brüdgam
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | | |
Collapse
|
2
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Nanba K, Blinder AR, Udager AM, Hirokawa Y, Miura T, Okuno H, Moriyoshi K, Yamazaki Y, Sasano H, Yasoda A, Satoh-Asahara N, Rainey WE, Tagami T. Double somatic mutations in CTNNB1 and GNA11 in an aldosterone-producing adenoma. Front Endocrinol (Lausanne) 2024; 15:1286297. [PMID: 38505749 PMCID: PMC10948454 DOI: 10.3389/fendo.2024.1286297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Double somatic mutations in CTNNB1 and GNA11/Q have recently been identified in a small subset of aldosterone-producing adenomas (APAs). As a possible pathogenesis of APA due to these mutations, an association with pregnancy, menopause, or puberty has been proposed. However, because of its rarity, characteristics of APA with these mutations have not been well characterized. A 46-year-old Japanese woman presented with hypertension and hypokalemia. She had two pregnancies in the past but had no history of pregnancy-induced hypertension. She had regular menstrual cycle at presentation and was diagnosed as having primary aldosteronism after endocrinologic examinations. Computed tomography revealed a 2 cm right adrenal mass. Adrenal venous sampling demonstrated excess aldosterone production from the right adrenal gland. She underwent right laparoscopic adrenalectomy. The resected right adrenal tumor was histologically diagnosed as adrenocortical adenoma and subsequent immunohistochemistry (IHC) revealed diffuse immunoreactivity of aldosterone synthase (CYP11B2) and visinin like 1, a marker of the zona glomerulosa (ZG), whereas 11β-hydroxylase, a steroidogenic enzyme for cortisol biosynthesis, was mostly negative. CYP11B2 IHC-guided targeted next-generation sequencing identified somatic CTNNB1 (p.D32Y) and GNA11 (p.Q209H) mutations. Immunofluorescence staining of the tumor also revealed the presence of activated β-catenin, consistent with features of the normal ZG. The expression patterns of steroidogenic enzymes and related proteins indicated ZG features of the tumor cells. PA was clinically and biochemically cured after surgery. In conclusion, our study indicated that CTNNB1 and GNA11-mutated APA has characteristics of the ZG. The disease could occur in adults with no clear association with pregnancy or menopause.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Amy R. Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Aaron M. Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Yuusuke Hirokawa
- Department of Radiology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takayoshi Miura
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiroshi Okuno
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Tetsuya Tagami
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
4
|
Kitamoto T, Idé T, Tezuka Y, Wada N, Shibayama Y, Tsurutani Y, Takiguchi T, Inoue K, Suematsu S, Omata K, Ono Y, Morimoto R, Yamazaki Y, Saito J, Sasano H, Satoh F, Nishikawa T. Identifying primary aldosteronism patients who require adrenal venous sampling: a multi-center study. Sci Rep 2023; 13:21722. [PMID: 38081870 PMCID: PMC10713522 DOI: 10.1038/s41598-023-47967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Adrenal venous sampling (AVS) is crucial for subtyping primary aldosteronism (PA) to explore the possibility of curing hypertension. Because AVS availability is limited, efforts have been made to develop strategies to bypass it. However, it has so far proven unsuccessful in applying clinical practice, partly due to heterogeneity and missing values of the cohorts. For this purpose, we retrospectively assessed 210 PA cases from three institutions where segment-selective AVS, which is more accurate and sensitive for detecting PA cases with surgical indications, was available. A machine learning-based classification model featuring a new cross-center domain adaptation capability was developed. The model identified 102 patients with PA who benefited from surgery in the present cohort. A new data imputation technique was used to address cross-center heterogeneity, making a common prediction model applicable across multiple cohorts. Logistic regression demonstrated higher accuracy than Random Forest and Deep Learning [(0.89, 0.86) vs. (0.84, 0.84), (0.82, 0.84) for surgical or medical indications in terms of f-score]. A derived integrated flowchart revealed that 35.2% of PA cases required AVS with 94.1% accuracy. The present model enabled us to reduce the burden of AVS on patients who would benefit the most.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan.
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, 2608670, Japan.
| | - Tsuyoshi Idé
- IBM Research, T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Yuta Tezuka
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Norio Wada
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
| | - Yui Shibayama
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 0608648, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Tomoko Takiguchi
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, 6048135, Japan
| | - Sachiko Suematsu
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Ryo Morimoto
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| |
Collapse
|
5
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
6
|
Fernandes-Rosa FL, Boulkroun S, Fedlaoui B, Hureaux M, Travers-Allard S, Drossart T, Favier J, Zennaro MC. New advances in endocrine hypertension: from genes to biomarkers. Kidney Int 2023; 103:485-500. [PMID: 36646167 DOI: 10.1016/j.kint.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Hypertension (HT) is a major cardiovascular risk factor that affects 10% to 40% of the general population in an age-dependent manner. Detection of secondary forms of HT is particularly important because it allows the targeted management of the underlying disease. Among hypertensive patients, the prevalence of endocrine HT reaches up to 10%. Adrenal diseases are the most frequent cause of endocrine HT and are associated with excess production of mineralocorticoids (mainly primary aldosteronism), glucocorticoids (Cushing syndrome), and catecholamines (pheochromocytoma). In addition, a few rare diseases directly affecting the action of mineralocorticoids and glucocorticoids in the kidney also lead to endocrine HT. Over the past years, genomic and genetic studies have allowed improving our knowledge on the molecular mechanisms of endocrine HT. Those discoveries have opened new opportunities to transfer knowledge to clinical practice for better diagnosis and specific treatment of affected subjects. In this review, we describe the physiology of adrenal hormone biosynthesis and action, the clinical and biochemical characteristics of different forms of endocrine HT, and their underlying genetic defects. We discuss the impact of these discoveries on diagnosis and management of patients, as well as new perspectives related to the use of new biomarkers for improved patient care.
Collapse
Affiliation(s)
| | | | | | - Marguerite Hureaux
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Simon Travers-Allard
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Tom Drossart
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
7
|
Ortner NJ. CACNA1D-Related Channelopathies: From Hypertension to Autism. Handb Exp Pharmacol 2023. [PMID: 36592224 DOI: 10.1007/164_2022_626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Chang YY, Lee BC, Chen ZW, Tsai CH, Chang CC, Liao CW, Pan CT, Peng KY, Chou CH, Lu CC, Wu VC, Hung CS, Lin YH. Cardiovascular and metabolic characters of KCNJ5 somatic mutations in primary aldosteronism. Front Endocrinol (Lausanne) 2023; 14:1061704. [PMID: 36950676 PMCID: PMC10025475 DOI: 10.3389/fendo.2023.1061704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Primary aldosteronism (PA) is the leading cause of curable endocrine hypertension, which is associated with a higher risk of cardiovascular and metabolic insults compared to essential hypertension. Aldosterone-producing adenoma (APA) is a major cause of PA, which can be treated with adrenalectomy. Somatic mutations are the main pathogenesis of aldosterone overproduction in APA, of which KCNJ5 somatic mutations are most common, especially in Asian countries. This article aimed to review the literature on the impacts of KCNJ5 somatic mutations on systemic organ damage. EVIDENCE ACQUISITION PubMed literature research using keywords combination, including "aldosterone-producing adenoma," "somatic mutations," "KCNJ5," "organ damage," "cardiovascular," "diastolic function," "metabolic syndrome," "autonomous cortisol secretion," etc. RESULTS APA patients with KCNJ5 somatic mutations are generally younger, female, have higher aldosterone levels, lower potassium levels, larger tumor size, and higher hypertension cure rate after adrenalectomy. This review focuses on the cardiovascular and metabolic aspects of KCNJ5 somatic mutations in APA patients, including left ventricular remodeling and diastolic function, abdominal aortic thickness and calcification, arterial stiffness, metabolic syndrome, abdominal adipose tissue, and correlation with autonomous cortisol secretion. Furthermore, we discuss modalities to differentiate the types of mutations before surgery. CONCLUSION KCNJ5 somatic mutations in patients with APA had higher left ventricular mass (LVM), more impaired diastolic function, thicker aortic wall, lower incidence of metabolic syndrome, and possibly a lower incidence of concurrent autonomous cortisol secretion, but better improvement in LVM, diastolic function, arterial stiffness, and aortic wall thickness after adrenalectomy compared to patients without KCNJ5 mutations.
Collapse
Affiliation(s)
- Yi-Yao Chang
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Che-Wei Liao
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Kang-Yung Peng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Yen-Hung Lin,
| | | |
Collapse
|
9
|
Parisien-La Salle S, Corbeil G, El-Haffaf Z, Duranceau C, Latour M, Karakiewicz PI, Lacroix A, Bourdeau I. Genetic Dissection of Primary Aldosteronism in a Patient With MEN1 and Ipsilateral Adrenocortical Carcinoma and Adenoma. J Clin Endocrinol Metab 2022; 108:26-32. [PMID: 36179244 DOI: 10.1210/clinem/dgac564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adrenal tumors are found in up to 40% of patients with multiple endocrine neoplasia type 1 (MEN1). However, adrenocortical carcinomas (ACC) and primary aldosteronism (PA) are rare in MEN1. CASE A 48-year-old woman known to have primary hyperparathyroidism and hypertension with hypokalemia was referred for a right complex 8-cm adrenal mass with a 38.1 SUVmax uptake on 18F-FDG PET/CT. PA was confirmed by saline suppression test (aldosterone 1948 pmol/L-1675 pmol/L; normal range [N]: <165 post saline infusion) and suppressed renin levels (<5 ng/L; N: 5-20). Catecholamines, androgens, 24-hour urinary cortisol, and pituitary panel were normal. A right open adrenalectomy revealed a concomitant 4-cm oncocytic ACC and a 2.3-cm adrenocortical adenoma. Immunohistochemistry showed high expression of aldosterone synthase protein in the adenoma but not in the ACC, supporting excess aldosterone production by the adenoma. GENETIC ANALYSIS After genetic counseling, the patient underwent genetic analysis of leucocyte and tumoral DNA. Sequencing of MEN1 revealed a heterozygous germline pathogenic variant in MEN1 (c.1556delC, p.Pro519Leufs*40). The wild-type MEN1 allele was lost in the tumoral DNA of both the resected adenoma and carcinoma. Sequencing analysis of driver genes in PA revealed a somatic pathogenic variant in exon 2 of the KCNJ5 gene (c.451G>A, p.Gly151Arg) only in the aldosteronoma. CONCLUSION To our knowledge, we describe the first case of adrenal collision tumors in a patient carrying a germline pathogenic variant of the MEN1 gene associated with MEN1 loss of heterozygosity in both oncocytic ACC and adenoma and a somatic KCNJ5 pathogenic variant leading to aldosterone-producing adenoma. This case gives new insights on adrenal tumorigenesis in MEN1 patients.
Collapse
Affiliation(s)
- Stéfanie Parisien-La Salle
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Gilles Corbeil
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Zaki El-Haffaf
- Division of Genetics, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Caroline Duranceau
- Division of Endocrinology, Department of Medicine, Chicoutimi Hospital, Université du Québec à Chicoutimi, Chicoutimi, QC, H2X 0C1, Canada
| | - Mathieu Latour
- Department of Pathology and Cellular Biology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Pierre I Karakiewicz
- Division of Urology, Department of Surgery, Centre Hospitalier de l'Université de Montréal, Montréal, QC, H2X 0C1, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
10
|
Pitsava G, Faucz FR, Stratakis CA, Hannah-Shmouni F. Update on the Genetics of Primary Aldosteronism and Aldosterone-Producing Adenomas. Curr Cardiol Rep 2022; 24:1189-1195. [PMID: 35841527 PMCID: PMC9667367 DOI: 10.1007/s11886-022-01735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Primary aldosteronism (PA) is the leading cause of secondary hypertension, accounting for over 10% of patients with high blood pressure. It is characterized by autonomous production of aldosterone from the adrenal glands leading to low-renin levels. The two most common forms arise from bilateral adrenocortical hyperplasia (BAH) and aldosterone-producing adenoma (APA). We discuss recent discoveries in the genetics of PA. RECENT FINDINGS Most APAs harbor variants in the KCNJ5, CACNA1D, ATP1A1, ATP2B3, and CTNNB1 genes. With the exception of β-catenin (CTNNB1), all other causative genes encode ion channels; pathogenic variants found in PA lead to altered ion transportation, cell membrane depolarization, and consequently aldosterone overproduction. Some of these genes are found mutated in the germline state (CYP11B2, CLCN2, KCNJ5, CACNA1H, and CACNA1D), leading then to familial hyperaldosteronism, and often BAH rather than single APAs. Several genetic defects in the germline or somatic state have been identified in PA. Understanding how these molecular abnormalities lead to excess aldosterone contributes significantly to the elucidation of the pathophysiology of low-renin hypertension. It may also lead to new and more effective therapies for this disease acting at the molecular level.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fabio R Faucz
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- ELPEN Pharmaceuticals, Pikermi, Athens, Greece
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece
| | - Fady Hannah-Shmouni
- Section On Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Nanba K, Baker JE, Blinder AR, Bick NR, Liu CJ, Lim JS, Wachtel H, Cohen DL, Williams TA, Reincke M, Lyden ML, Bancos I, Young WF, Else T, Giordano TJ, Udager AM, Rainey WE. Histopathology and Genetic Causes of Primary Aldosteronism in Young Adults. J Clin Endocrinol Metab 2022; 107:2473-2482. [PMID: 35779252 PMCID: PMC9761569 DOI: 10.1210/clinem/dgac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Due to its rare incidence, molecular features of primary aldosteronism (PA) in young adults are largely unknown. Recently developed targeted mutational analysis identified aldosterone-driver somatic mutations in aldosterone-producing lesions, including aldosterone-producing adenomas (APAs), aldosterone-producing nodules (APNs), and aldosterone-producing micronodules, formerly known as aldosterone-producing cell clusters. OBJECTIVE To investigate histologic and genetic characteristics of lateralized PA in young adults. METHODS Formalin-fixed, paraffin-embedded adrenal tissue sections from 74 young patients with lateralized PA (<35 years old) were used for this study. Immunohistochemistry (IHC) for aldosterone synthase (CYP11B2) was performed to define the histopathologic diagnosis. Somatic mutations in aldosterone-producing lesions were further determined by CYP11B2 IHC-guided DNA sequencing. RESULTS Based on the CYP11B2 IHC results, histopathologic classification was made as follows: 48 APAs, 20 APNs, 2 multiple aldosterone-producing nodules (MAPN), 1 double APN, 1 APA with MAPN, and 2 nonfunctioning adenomas (NFAs). Of 45 APAs with successful sequencing, 43 (96%) had somatic mutations, with KCNJ5 mutations being the most common genetic cause of young-onset APA (35/45, 78%). Of 18 APNs with successful sequencing, all of them harbored somatic mutations, with CACNA1D mutations being the most frequent genetic alteration in young-onset APN (8/18, 44%). Multiple CYP11B2-expressing lesions in patients with MAPN showed several aldosterone-driver mutations. No somatic mutations were identified in NFAs. CONCLUSION APA is the most common histologic feature of lateralized PA in young adults. Somatic KCNJ5 mutations are common in APAs, whereas CACNA1D mutations are often seen in APNs in this young PA population.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Correspondence: Kazutaka Nanba, MD, Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| | - Jessica E Baker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nolan R Bick
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heather Wachtel
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debbie L Cohen
- Division of Renal, Electrolyte and Hypertension, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Melanie L Lyden
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William E Rainey
- Correspondence: William E. Rainey, PhD, Department of Molecular and Integrative Physiology, University of Michigan, 2558 MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Constantinescu G, Schulze M, Peitzsch M, Hofmockel T, Scholl UI, Williams TA, Lenders JW, Eisenhofer G. Integration of artificial intelligence and plasma steroidomics with laboratory information management systems: application to primary aldosteronism. Clin Chem Lab Med 2022; 60:1929-1937. [DOI: 10.1515/cclm-2022-0470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Mass spectrometry-based steroidomics combined with machine learning (ML) provides a potentially powerful approach in endocrine diagnostics, but is hampered by limitations in the conveyance of results and interpretations to clinicians. We address this shortcoming by integration of the two technologies with a laboratory information management systems (LIMS) model.
Methods
The approach involves integration of ML algorithm-derived models with commercially available mathematical programming software and a web-based LIMS prototype. To illustrate clinical utility, the process was applied to plasma steroidomics data from 22 patients tested for primary aldosteronism (PA).
Results
Once mass spectrometry data are uploaded into the system, automated processes enable generation of interpretations of steroid profiles from ML models. Generated reports include plasma concentrations of steroids in relation to age- and sex-specific reference intervals along with results of ML models and narrative interpretations that cover probabilities of PA. If PA is predicted, reports include probabilities of unilateral disease and mutations of KCNJ5 known to be associated with successful outcomes of adrenalectomy. Preliminary results, with no overlap in probabilities of disease among four patients with and 18 without PA and correct classification of all four patients with unilateral PA including three of four with KCNJ5 mutations, illustrate potential utility of the approach to guide diagnosis and subtyping of patients with PA.
Conclusions
The outlined process for integrating plasma steroidomics data and ML with LIMS may facilitate improved diagnostic-decision-making when based on higher-dimensional data otherwise difficult to interpret. The approach is relevant to other diagnostic applications involving ML.
Collapse
Affiliation(s)
- Georgiana Constantinescu
- Department of Internal Medicine III , University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
- Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania
| | - Manuel Schulze
- Department of Distributed and Data Intensive Computing , Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden , Dresden , Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
| | - Thomas Hofmockel
- Department of Radiology , University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
| | - Ute I. Scholl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics , Berlin , Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München , Munich , Germany
- Department of Medical Sciences, Division of Internal Medicine and Hypertension , University of Turin , Turin , Italy
| | - Jacques W.M. Lenders
- Department of Internal Medicine III , University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
- Department of Internal Medicine , Radboud University Medical Centre , Nijmegen , The Netherlands
| | - Graeme Eisenhofer
- Department of Internal Medicine III , University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital “Carl Gustav Carus”, Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
13
|
Santana LS, Guimaraes AG, Almeida MQ. Pathogenesis of Primary Aldosteronism: Impact on Clinical Outcome. Front Endocrinol (Lausanne) 2022; 13:927669. [PMID: 35813615 PMCID: PMC9261097 DOI: 10.3389/fendo.2022.927669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary arterial hypertension, with a prevalence of approximately 20% in patients with resistant hypertension. In the last decade, somatic pathogenic variants in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 genes, which are involved in maintaining intracellular ionic homeostasis and cell membrane potential, were described in aldosterone-producing adenomas (aldosteronomas). All variants in these genes lead to the activation of calcium signaling, the major trigger for aldosterone production. Genetic causes of familial hyperaldosteronism have been expanded through the report of germline pathogenic variants in KCNJ5, CACNA1H and CLCN2 genes. Moreover, PDE2A and PDE3B variants were associated with bilateral PA and increased the spectrum of genetic etiologies of PA. Of great importance, the genetic investigation of adrenal lesions guided by the CYP11B2 staining strongly changed the landscape of somatic genetic findings of PA. Furthermore, CYP11B2 staining allowed the better characterization of the aldosterone-producing adrenal lesions in unilateral PA. Aldosterone production may occur from multiple sources, such as solitary aldosteronoma or aldosterone-producing nodule (classical histopathology) or clusters of autonomous aldosterone-producing cells without apparent neoplasia denominated aldosterone-producing micronodules (non-classical histopathology). Interestingly, KCNJ5 mutational status and classical histopathology of unilateral PA (aldosteronoma) have emerged as relevant predictors of clinical and biochemical outcome, respectively. In this review, we summarize the most recent advances in the pathogenesis of PA and discuss their impact on clinical outcome.
Collapse
Affiliation(s)
- Lucas S. Santana
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Augusto G. Guimaraes
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Madson Q. Almeida
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Familial forms and molecular profile of primary hyperaldosteronism. HIPERTENSION Y RIESGO VASCULAR 2022; 39:167-173. [DOI: 10.1016/j.hipert.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
15
|
Chang CM, Peng KY, Chan CK, Lin YF, Liao HW, Chang JG, Wu MS, Wu VC, Chang WC. Divergent Characteristics of T-Cell Receptor Repertoire Between Essential Hypertension and Aldosterone-Producing Adenoma. Front Immunol 2022; 13:853403. [PMID: 35619691 PMCID: PMC9127864 DOI: 10.3389/fimmu.2022.853403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone-producing adenoma (APA) is a benign adrenal tumor that results in persistent hyperaldosteronism. As one major subtype of primary aldosteronism, APA leads to secondary hypertension that is associated with immune dysregulation. However, how the adaptive immune system, particularly the T-cell population, is altered in APA patients remains largely unknown. Here, we performed TCR sequencing to characterize the TCR repertoire between two age-matched groups of patients: one with APA and the other one with essential hypertension (EH). Strikingly, we found a significant reduction of TCR repertoire diversity in the APA group. Analyses on TCR clustering and antigen annotation further showed that the APA group possessed lower diversity in TCR clonotypes with non-common antigen-specific features, compared with the EH group. In addition, our results indicated that the strength of correlation between generation probabilities and frequencies of TCR clonotypes was significantly higher in the APA group than that in the EH group. Finally, we observed that clinical features, including plasma aldosterone level, aldosterone–renin ratio, and blood sodium level, were positively associated with the strength of correlation between generation and abundance of TCR clonotypes in the APA group. Our findings unveiled the correlation between T-cell immune repertoire and APA, suggesting a critical role of such adrenal adenoma in the T-cell immunity of patients with hypertension.
Collapse
Affiliation(s)
- Che-Mai Chang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Feng Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Wei Liao
- Chinru Clinic, Department of Nephrology, Taipei, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,TAIPAI, Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chiao Chang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Integrative Research Center for Critical Care, Department of Pharmacy, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
16
|
Pitsava G, Stratakis CA. Genetic Alterations in Benign Adrenal Tumors. Biomedicines 2022; 10:biomedicines10051041. [PMID: 35625779 PMCID: PMC9138431 DOI: 10.3390/biomedicines10051041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
The genetic basis of most types of adrenal adenomas has been elucidated over the past decade, leading to the association of adrenal gland pathologies with specific molecular defects. Various genetic studies have established links between variants affecting the protein kinase A (PKA) signaling pathway and benign cortisol-producing adrenal lesions. Specifically, genetic alterations in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B have been identified. The PKA signaling pathway was initially implicated in the pathogenesis of Cushing syndrome in studies aiming to understand the underlying genetic defects of the rare tumor predisposition syndromes, Carney complex, and McCune-Albright syndrome, both affected by the same pathway. In addition, germline variants in ARMC5 have been identified as a cause of primary bilateral macronodular adrenal hyperplasia. On the other hand, primary aldosteronism can be subclassified into aldosterone-producing adenomas and bilateral idiopathic hyperaldosteronism. Various genes have been reported as causative for benign aldosterone-producing adrenal lesions, including KCNJ5, CACNA1D, CACNA1H, CLCN2, ATP1A1, and ATP2B3. The majority of them encode ion channels or pumps, and genetic alterations lead to ion transport impairment and cell membrane depolarization which further increase aldosterone synthase transcription and aldosterone overproduction though activation of voltage-gated calcium channels and intracellular calcium signaling. In this work, we provide an overview of the genetic causes of benign adrenal tumors.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
- Human Genetics & Precision Medicine, IMBB, FORTH, 70013 Heraklion, Greece
- ELPEN Research Institute, ELPEN, 19009 Athens, Greece
| |
Collapse
|
17
|
Abstract
Primary aldosteronism is considered the commonest cause of secondary hypertension. In affected individuals, aldosterone is produced in an at least partially autonomous fashion in adrenal lesions (adenomas, [micro]nodules or diffuse hyperplasia). Over the past decade, next-generation sequencing studies have led to the insight that primary aldosteronism is largely a genetic disorder. Sporadic cases are due to somatic mutations, mostly in ion channels and pumps, and rare cases of familial hyperaldosteronism are caused by germline mutations in an overlapping set of genes. More than 90% of aldosterone-producing adenomas carry somatic mutations in K+ channel Kir3.4 (KCNJ5), Ca2+ channel CaV1.3 (CACNA1D), alpha-1 subunit of the Na+/K+ ATPase (ATP1A1), plasma membrane Ca2+ transporting ATPase 3 (ATP2B3), Ca2+ channel CaV3.2 (CACNA1H), Cl− channel ClC-2 (CLCN2), β-catenin (CTNNB1), and/or G-protein subunits alpha q/11 (GNAQ/11). Mutations in some of these genes have also been identified in aldosterone-producing (micro)nodules, suggesting a disease continuum from a single cell, acquiring a somatic mutation, via a nodule to adenoma formation, and from a healthy state to subclinical to overt primary aldosteronism. Individual glands can have multiple such lesions, and they can occur on both glands in bilateral disease. Familial hyperaldosteronism, typically with early onset, is caused by germline mutations in steroid 11-beta hydroxylase/ aldosterone synthase (CYP11B1/2), CLCN2, KCNJ5, CACNA1H, and CACNA1D.
Collapse
Affiliation(s)
- Ute I Scholl
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Germany
| |
Collapse
|
18
|
De Sousa K, Abdellatif AB, Giscos-Douriez I, Meatchi T, Amar L, Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Colocalization of Wnt/β-Catenin and ACTH Signaling Pathways and Paracrine Regulation in Aldosterone-producing Adenoma. J Clin Endocrinol Metab 2022; 107:419-434. [PMID: 34570225 DOI: 10.1210/clinem/dgab707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Aldosterone-producing adenomas (APAs) are a common cause of primary aldosteronism (PA). Despite the discovery of somatic mutations in APA and the characterization of multiple factors regulating adrenal differentiation and function, the sequence of events leading to APA formation remains to be determined. OBJECTIVE We investigated the role of Wnt/β-catenin and adrenocorticotropin signaling, as well as elements of paracrine regulation of aldosterone biosynthesis in adrenals with APA and their relationship to intratumoral heterogeneity and mutational status. METHODS We analyzed the expression of aldosterone-synthase (CYP11B2), CYP17A1, β-catenin, melanocortin type 2 receptor (MC2R), phosphorlyated cAMP response element-binding protein (pCREB), tryptase, S100, CD34 by multiplex immunofluorescence, and immunohistochemistry-guided reverse transcription-quantitative polymerase chain reaction. Eleven adrenals with APA and 1 with micronodular hyperplasia from patients with PA were analyzed. Main outcome measures included localization of CYP11B2, CYP17A1, β-catenin, MC2R, pCREB, tryptase, S100, CD34 in APA and aldosterone-producing cell clusters (APCCs). RESULTS Immunofluorescence revealed abundant mast cells and a dense vascular network in APA, independent of mutational status. Within APA, mast cells were localized in areas expressing CYP11B2 and were rarely colocalized with nerve fibers, suggesting that their degranulation is not controlled by innervation. In these same areas, ß-catenin was activated, suggesting a zona glomerulosa cell identity. In heterogeneous APA with KCNJ5 mutations, MC2R and vascular endothelial growth factor A expression was higher in areas expressing CYP11B2. A similar pattern was observed in APCC, with high expression of CYP11B2, activated β-catenin, and numerous mast cells. CONCLUSION Our results suggest that aldosterone-producing structures in adrenals with APA share common molecular characteristics and cellular environment, despite different mutation status, suggesting common developmental mechanisms.
Collapse
Affiliation(s)
| | | | | | - Tchao Meatchi
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomie Pathologique, 75015 Paris, France
| | - Laurence Amar
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, 75015 Paris, France
| | | | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, 75015 Paris, France
| |
Collapse
|
19
|
Tseng CS, Peng KY, Wang SM, Tsai YC, Huang KH, Lin WC, Hu YH, Wu VC, Chueh JS. A Novel Somatic Mutation of CACNA1H p.V1937M in Unilateral Primary Hyperaldosteronism. Front Endocrinol (Lausanne) 2022; 13:816476. [PMID: 35757409 PMCID: PMC9218183 DOI: 10.3389/fendo.2022.816476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Somatic mutations for excess aldosterone production have been frequently identified as important roles in the pathogenesis of unilateral primary hyperaldosteronism (uPA). Although CACNA1H mutation represents a minor etiology in primary aldosteronism, it plays a significant role in causing uPAs in sporadic cases. OBJECTIVE To identify novel somatic CACNA1H mutation in patients with uPA and investigate the pathophysiological, immunohistological, and clinical characteristics of the variant. METHODS We applied a customized and targeted gene panel next-generation sequencing approach to detect mutations from the uPA cohort in Taiwan Primary Aldosteronism Investigation study group. Information from pre-diagnostic to postoperative data was collected, including past history, medications, blood pressure readings, biochemical data, and image studies. The functional role of the variant was confirmed by in vitro studies, demonstrating aldosterone production in variant-transfected human adrenal cell lines. RESULTS We identified a novel somatic CACNA1H mutation c.5809G>A (p.Val1937Met) in a uPA case. The CACNA1H gene encodes the pore-forming alpha-1H subunit of the voltage-dependent T-type calcium channel Cav3.2. This somatic CACNA1H p.V1937M variant showed excellent clinical and biochemical outcomes after ipsilateral adrenalectomy. The functional effect of somatic CACNA1H p.V1937M variant results in increased CYP11B2 expression and aldosterone biosynthesis in HAC15 cells. A distinct heterogeneous foamy pattern of CYP11B2 and CYP17A1 expression was identified in immunohistological staining, supporting the pathological evidence of aldosterone synthesis. CONCLUSIONS The somatic mutation of CACNA1H p.V1937M might be a pathogenic driver in aldosterone overproduction. This study provides new insight into the molecular mechanism and disease outcomes of uPA.
Collapse
Affiliation(s)
- Chi-Shin Tseng
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yao-Chou Tsai
- Division of Urology, Department of Surgery, Taipei Tzuchi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Hui Hu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeff S. Chueh
- Department of Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- *Correspondence: Jeff S. Chueh,
| |
Collapse
|
20
|
Lee BC, Kang VJW, Pan CT, Huang JZ, Lin YL, Chang YY, Tsai CH, Chou CH, Chen ZW, Liao CW, Chiu YW, Wu VC, Hung CS, Chang CC, Lin YH. KCNJ5 Somatic Mutation Is Associated With Higher Aortic Wall Thickness and Less Calcification in Patients With Aldosterone-Producing Adenoma. Front Endocrinol (Lausanne) 2022; 13:830130. [PMID: 35311227 PMCID: PMC8924484 DOI: 10.3389/fendo.2022.830130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Primary aldosteronism (PA) is the most common type of secondary hypertension, and it is associated with a higher rate of cardiovascular complications. KCNJ5 somatic mutations have recently been identified in aldosterone-producing adenoma (APA), however their influence on vascular remodeling and injury is still unclear. The aim of this study was to investigate the association between KCNJ5 somatic mutation status and vascular status. METHODS We enrolled 179 APA patients who had undergone adrenalectomy from a prospectively maintained database, of whom 99 had KCNJ5 somatic mutations. Preoperative clinical, biochemical and imaging data of abdominal CT, including abdominal aortic calcification (AAC) score, aortic diameter and wall thickness at levels of superior (SMA) and inferior (IMA) mesenteric arteries were analyzed. RESULTS After propensity score matching for age, sex, body mass index, triglycerides and low-density lipoprotein, there were 48 patients in each KCNJ5 (+) and KCNJ5 (-) group. Mutation carriers had a lower AAC score (217.3 ± 562.2 vs. 605.6 ± 1359.1, P=0.018), higher aortic wall thickness (SMA level: 2.2 ± 0.6 mm vs. 1.8 ± 0.6 mm, P=0.006; IMA level: 2.4 ± 0.6 mm vs. 1.8 ± 0.7 mm, P<0.001) than non-carriers. In multivariate analysis, KCNJ5 mutations were independently associated with AAC score (P=0.014) and aortic wall thickness (SMA level: P<0.001; IMA level: P=0.004). After adrenalectomy, mutation carriers had less aortic wall thickness progression than non-carriers (Δthickness SMA: -0.1 ± 0.8 mm vs. 0.9 ± 0.6 mm, P=0.024; IMA: -0.1 ± 0.6 mm vs. 0.8 ± 0.7 mm, P=0.04). CONCLUSION KCNJ5 mutation carriers had less calcification burden of the aorta, thickened aortic wall, and less wall thickness progression than non-carriers.
Collapse
Affiliation(s)
- Bo-Ching Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Medical Imaging, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Victor Jing-Wei Kang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Pan
- Departments of Internal Medicine, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Jia-Zheng Huang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Business Administration and Graduate School of Service Management, Chihlee University of Technology, New Taipei City, Taiwan
| | - Yi-Yao Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Hsuan Tsai
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Zheng-Wei Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Internal Medicine, National Taiwan University Hospital Yun-lin Branch, Douliu, Taiwan
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, HsinChu, Taiwan
| | - Yu-Wei Chiu
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Chin-Chen Chang,
| | - Yen-Hung Lin
- Department of Business Administration and Graduate School of Service Management, Chihlee University of Technology, New Taipei City, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Pitsava G, Maria AG, Faucz FR. Disorders of the adrenal cortex: Genetic and molecular aspects. Front Endocrinol (Lausanne) 2022; 13:931389. [PMID: 36105398 PMCID: PMC9465606 DOI: 10.3389/fendo.2022.931389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal androgens which are essential for life, supporting balance, immune response and sexual maturation. Adrenocortical tumors and hyperplasias are a heterogenous group of adrenal disorders and they can be either sporadic or familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is associated with poor prognosis. With the advance of next-generation sequencing technologies and improvement of genomic data analysis over the past decade, various genetic defects, either from germline or somatic origin, have been unraveled, improving diagnosis and treatment of numerous genetic disorders, including adrenocortical diseases. This review gives an overview of disorders associated with the adrenal cortex, the genetic factors of these disorders and their molecular implications.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- *Correspondence: Fabio R. Faucz,
| |
Collapse
|
22
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|
23
|
Transcriptomics, Epigenetics, and Metabolomics of Primary Aldosteronism. Cancers (Basel) 2021; 13:cancers13215582. [PMID: 34771744 PMCID: PMC8583505 DOI: 10.3390/cancers13215582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Primary aldosteronism (PA) is the most common cause of endocrine hypertension, mainly caused by aldosterone-producing adenomas or hyperplasia; understanding its pathophysiological background is important in order to provide ameliorative treatment strategies. Over the past several years, significant progress has been documented in this field, in particular in the clarification of the genetic and molecular mechanisms responsible for the pathogenesis of aldosterone-producing adenomas (APAs). METHODS Systematic searches of the PubMed and Cochrane databases were performed for all human studies applying transcriptomic, epigenetic or metabolomic analyses to PA subjects. Studies involving serial analysis of gene expression and microarray, epigenetic studies with methylome analyses and micro-RNA expression profiles, and metabolomic studies focused on improving understanding of the regulation of autonomous aldosterone production in PA were all included. RESULTS In this review we summarize the main findings in this area and analyze the interplay between primary aldosteronism and several signaling pathways with differential regulation of the RNA and protein expression of several factors involved in, among others, steroidogenesis, calcium signaling, and nuclear, membrane and G-coupled protein receptors. Distinct transcriptomic and metabolomic patterns are also presented herein, depending on the mutational status of APAs. In particular, two partially opposite transcriptional and steroidogenic profiles appear to distinguish APAs carrying a KCNJ5 mutation from all other APAs, which carry different mutations. CONCLUSIONS These findings can substantially contribute to the development of personalized treatment in patients with PA.
Collapse
|
24
|
Sun L, Jiang Y, Xie J, Zhu H, Wu L, Zhong X, Zhou W, Su T, Wang W. Immunohistochemical Analysis of CYP11B2, CYP11B1 and β-catenin Helps Subtyping and Relates With Clinical Characteristics of Unilateral Primary Aldosteronism. Front Mol Biosci 2021; 8:751770. [PMID: 34631800 PMCID: PMC8497787 DOI: 10.3389/fmolb.2021.751770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Primary aldosteronism is caused by aldosterone overproduction. While conventional hematoxylin-eosin staining can demonstrate morphological abnormality, it cannot provide any functional histopathological information. We aimed to identify the diagnostic, functional and prognostic value of CYP11B2, CYP11B1, and β-catenin immunostaining in unilateral hyperaldosteronism. Method: A total of 134 patients with unilateral hyperaldosteronism were recruited in our study. The expression of CYP11B2, CYP11B1, and β-catenin was evaluated semiquantitatively on 134 patients’ sections using immunohistochemistry technology and the relationship with clinical data was assessed. Results: Patients were classified into four subtypes based on CYP11B2 staining as below: (1)118 patients with unilateral single aldosterone-producing adenoma (APA), (2)11 with unilateral multiple APA, (3)four with aldosterone-producing cell cluster (APCC), and (4)one with an undefined source. Adjusted CYP11B2 H-score was correlated with serum aldosterone, aldosterone to renin ratio (ARR), and serum potassium. In the abnormal β-catenin staining group, hypertension duration, aldosterone, ARR, cortisol, tumor diameter, tumor area, and CYP11B2 H-score were significantly higher than those of the wild-type group. Serum potassium level was significantly lower in the abnormal β-catenin staining group. Age, gender, BMI, family history of hypertension, adjusted CYP11B2 and CYP11B1 H-scores differed significantly between complete clinical success and incomplete clinical success groups. Age, gender and family history of hypertension were independently associated with complete clinical success based on multivariate logistic regression analysis. Conclusion: CYP11B2 immunostaining could improve the differential diagnosis of unilateral hyperaldosteronism. Adjusted CYP11B2 H-score could be used as a histopathological marker to reflect the severity of unilateral APA. Dysregulation of Wnt/β-catenin signaling and impaired β-catenin degradation may provoke the proliferation and enhance the steroidogenic ability of APA tumor cells, indicating that the Wnt pathway might be a potential, actionable, therapeutic target in the treatment of hyperaldosteronism. Age, sex and family history of hypertension were independent predictors of clinical outcome after adrenalectomy for unilateral hyperaldosteronism.
Collapse
Affiliation(s)
- Luyan Sun
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongyuan Zhu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luming Wu
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Zhong
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Laboratory for Endocrine and Metabolic Diseases of Institute of Health Science, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Novel Mutations Detection with Next-Generation Sequencing and Its Association with Clinical Outcome in Unilateral Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9091167. [PMID: 34572353 PMCID: PMC8471673 DOI: 10.3390/biomedicines9091167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Somatic mutations have been identified in adrenal tissues of unilateral primary aldosteronism (uPA). The spectrum of somatic mutations in uPAs was investigated using a customized and targeted next-generation sequencing (cNGS) approach. We also assessed whether cNGS or Sanger sequencing-identified mutations have an association with clinical outcomes in uPA. Adrenal tumoral tissues of uPA patients who underwent adrenalectomy were obtained. Conventional somatic mutation hotspots in 240 extracted DNA samples were initially screened using Sanger sequencing. A total of 75 Sanger-negative samples were further investigated by sequencing the entire coding regions of the known aldosterone-driver genes by our cNGS gene panel. Somatic mutations in aldosterone-driver genes were detected in 21 (28%) of these samples (8.8% of all samples), with 9 samples, including mutations in CACNA1D gene (12%), 5 in CACNA1H (6.6%), 3 in ATP2B3 (4%), 2 in CLCN2 (2.6%), 1 in ATP1A1 (1.3%), and 1 in CTNNB1 (1.3%). Via combined cNGS and Sanger sequencing aldosterone-driver gene mutations were detected in altogether 186 of our 240 (77.5%) uPA samples. The complete clinical success rate of patients containing cNGS-identified mutations was higher than those without mutations (odds ratio (OR) = 10.9; p = 0.012). Identification of somatic mutations with cNGS or Sanger sequencing may facilitate the prediction of complete clinical success after adrenalectomy in uPA patients.
Collapse
|
26
|
KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated with a Greater Recovery of Arterial Stiffness. Cancers (Basel) 2021; 13:cancers13174313. [PMID: 34503121 PMCID: PMC8431463 DOI: 10.3390/cancers13174313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Primary aldosteronism (PA) is the most common form of secondary hypertension and induces various cardiovascular injuries. Aldosterone-producing adenoma (APA) is one of the major forms of PA. The occurrence of APA is closely correlated with somatic mutations, including KCNJ5. We described here the impact of KCNJ5 somatic mutations on arterial stiffness excluding the influence of age, sex, and blood pressure status. We found KCNJ5 mutation carriers had similar arterial stiffness before surgery, but greater improvement of arterial stiffness after adrenalectomy compared with non-carriers. Hence, APA patients with KCNJ5 mutations had a greater improvement in arterial stiffness after adrenalectomy than those without mutations. Abstract Primary aldosteronism is the most common form of secondary hypertension and induces various cardiovascular injuries. In aldosterone-producing adenoma (APA), the impact of KCNJ5 somatic mutations on arterial stiffness excluding the influence of confounding factors is uncertain. We enrolled 213 APA patients who were scheduled to undergo adrenalectomy. KCNJ5 gene sequencing of APA was performed. After propensity score matching (PSM) for age, sex, body mass index, blood pressure, number of hypertensive medications, and hypertension duration, there were 66 patients in each group with and without KCNJ5 mutations. The mutation carriers had a higher aldosterone level and lower log transformed brachial–ankle pulse wave velocity (baPWV) than the non-carriers before PSM, but no difference in log baPWV after PSM. One year after adrenalectomy, the mutation carriers had greater decreases in log plasma aldosterone concentration, log aldosterone–renin activity ratio, and log baPWV than the non-carriers after PSM. Only the mutation carriers had a significant decrease in log baPWV after surgery both before and after PSM. KCNJ5 mutations were not correlated with baseline baPWV after PSM but were significantly correlated with ∆baPWV after surgery both before and after PSM. Conclusively, APA patients with KCNJ5 mutations had a greater regression in arterial stiffness after adrenalectomy than those without mutations.
Collapse
|
27
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
28
|
Nanba K, Rainey WE. GENETICS IN ENDOCRINOLOGY: Impact of race and sex on genetic causes of aldosterone-producing adenomas. Eur J Endocrinol 2021; 185:R1-R11. [PMID: 33900205 PMCID: PMC8480207 DOI: 10.1530/eje-21-0031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Primary aldosteronism (PA) is a common cause of secondary hypertension. Recent technological advances in genetic analysis have provided a better understanding of the molecular pathogenesis of this disease. The application of next-generation sequencing has resulted in the identification of somatic mutations in aldosterone-producing adenoma (APA), a major subtype of PA. Based on the recent findings using a sequencing method that selectively targets the tumor region where aldosterone synthase (CYP11B2) is expressed, the vast majority of APAs appear to harbor a somatic mutation in one of the aldosterone-driver genes, including KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. Mutations in these genes alter intracellular ion homeostasis and enhance aldosterone production. In a small subset of APAs, somatic activating mutations in the CTNNB1 gene, which encodes β-catenin, have also been detected. Accumulating evidence suggests that race and sex impact the somatic mutation spectrum of APA. Specifically, somatic mutations in the KCNJ5 gene, encoding an inwardly rectifying K+ channel, are common in APAs from Asian populations as well as women regardless of race. Associations between APA histology, genotype, and patient clinical characteristics have also been proposed, suggesting a potential need to consider race and sex for the management of PA patients. Herein, we review recent findings regarding somatic mutations in APA and discuss potential roles of race and sex on the pathophysiology of APA as well as possible clinical implications.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
29
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. Gender differences in human adrenal cortex and its disorders. Mol Cell Endocrinol 2021; 526:111177. [PMID: 33582213 DOI: 10.1016/j.mce.2021.111177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
The adrenal cortex plays pivotal roles in the maintenance of blood volume, responsiveness to stress and the development of gender characteristics. Gender differences of human adrenal cortex have been recently reported and attracted increasing interests. Gender differences occur from the developing stage of the adrenal, in which female subjects had more activated stem cells with higher renewal capacity resulting in gender-associated divergent structures and functions of cortical zonations of human adrenal. Female subjects generally have the lower blood pressure with the lower renin levels and ACE activities than male subjects. In addition, HPA axis was more activated in female than male, which could possibly contribute to gender differences in coping with various stressful events in our life. Of particular interest, estrogens were reported to suppress RAAS but activate HPA axis, whereas androgens had opposite effects. In addition, adrenocortical disorders in general occur more frequently in female with more pronounced adrenocortical hormonal abnormalities possibly due to their more activated WNT and PRK signaling pathways with more abundant activated adrenocortical stem cells present in female adrenal glands. Therefore, it has become pivotal to clarify the gender influence on both clinical and biological features of adrenocortical disorders. We herein reviewed recent advances in these fields.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
30
|
Update on Genetics of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9040409. [PMID: 33920271 PMCID: PMC8069207 DOI: 10.3390/biomedicines9040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two subtypes: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent developments in genetic analysis have facilitated the discovery of mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2, and CTNNB1 in sporadic or familial forms of PA in the last decade. These findings have greatly advanced our understanding of the mechanism of excess aldosterone synthesis, particularly in APA. Most of the causative genes encode ion channels or pumps, and their mutations lead to depolarization of the cell membrane due to impairment of ion transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium signaling and promotes the transcription of aldosterone synthase, resulting in overproduction of aldosterone. In this article, we review recent findings on the genetic and molecular mechanisms of PA.
Collapse
|
31
|
Kamilaris CDC, Stratakis CA, Hannah-Shmouni F. Molecular Genetic and Genomic Alterations in Cushing's Syndrome and Primary Aldosteronism. Front Endocrinol (Lausanne) 2021; 12:632543. [PMID: 33776926 PMCID: PMC7994620 DOI: 10.3389/fendo.2021.632543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic alterations that cause the development of glucocorticoid and/or mineralocorticoid producing benign adrenocortical tumors and hyperplasias have largely been elucidated over the past two decades through advances in genomics. In benign aldosterone-producing adrenocortical tumors and hyperplasias, alteration of intracellular calcium signaling has been found to be significant in aldosterone hypersecretion, with causative defects including those in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. In benign cortisol-producing adrenocortical tumors and hyperplasias abnormal cyclic adenosine monophosphate-protein kinase A signaling has been found to play a central role in tumorigenesis, with pathogenic variants in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B being implicated. The role of this signaling pathway in the development of Cushing's syndrome and adrenocortical tumors was initially discovered through the study of the underlying genetic defects causing the rare multiple endocrine neoplasia syndromes McCune-Albright syndrome and Carney complex with subsequent identification of defects in genes affecting the cyclic adenosine monophosphate-protein kinase A pathway in sporadic tumors. Additionally, germline pathogenic variants in ARMC5, a putative tumor suppressor, were found to be a cause of cortisol-producing primary bilateral macronodular adrenal hyperplasia. This review describes the genetic causes of benign cortisol- and aldosterone-producing adrenocortical tumors.
Collapse
Affiliation(s)
| | | | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
32
|
Unravelling the Genetic Basis of Primary Aldosteronism. Nutrients 2021; 13:nu13030875. [PMID: 33800142 PMCID: PMC7999899 DOI: 10.3390/nu13030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Primary aldosteronism (PA), a condition characterized by autonomous aldosterone hypersecretion, constitutes the most common cause of secondary hypertension. Over the last decade, major breakthroughs have been made in the field of genetics underpinning PA. The advent and wide application of Next Generation Sequencing (NGS) technology led to the identification of several somatic and germline mutations associated with sporadic and familial forms of PA. Somatic mutations in ion-channel genes that participate in aldosterone biosynthesis, including KCNJ5, CACNA1D, ATP1A1, and ATP2B3, have been implicated in the development of aldosterone-producing adenomas (APAs). On the other hand, germline variants in CLCN2, KCNJ5, CACNA1H, and CACNA1D genes have been implicated in the pathogenesis of the familial forms of PA, FH-II, FH-III, and F-IV, as well as PA associated with seizures and neurological abnormalities. However, recent studies have shown that the prevalence of PA is higher than previously thought, indicating the need for an improvement of our diagnostic tools. Further research is required to recognize mild forms of PA and to investigate the underlying molecular mechanisms.
Collapse
|
33
|
Nanba K, Rainey WE, Udager AM. Approaches to Gene Mutation Analysis Using Formalin-Fixed Paraffin-Embedded Adrenal Tumor Tissue From Patients With Primary Aldosteronism. Front Endocrinol (Lausanne) 2021; 12:683588. [PMID: 34267727 PMCID: PMC8276099 DOI: 10.3389/fendo.2021.683588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Aldosterone production is physiologically under the control of circulating potassium and angiotensin II as well as adrenocorticotropic hormone and other secretagogues such as serotonin. The adrenal's capacity to produce aldosterone relies heavily on the expression of a single enzyme, aldosterone synthase (CYP11B2). This enzyme carries out the final reactions in the synthesis of aldosterone and is expressed almost solely in the adrenal zona glomerulosa. From a disease standpoint, primary aldosteronism (PA) is the most common of all adrenal disorders. PA results from renin-independent adrenal expression of CYP11B2 and production of aldosterone. The major causes of PA are adrenal aldosterone-producing adenomas (APA) and adrenal idiopathic hyperaldosteronism. Our understanding of the genetic causes of APA has significantly improved through comprehensive genetic profiling with next-generation sequencing. Whole-exome sequencing has led to the discovery of mutations in six genes that cause renin-independent aldosterone production and thus PA. To facilitate broad-based prospective and retrospective studies of APA, recent technologic advancements have allowed the determination of tumor mutation status using formalin-fixed paraffin-embedded (FFPE) tissue sections. This approach has the advantages of providing ready access to archival samples and allowing CYP11B2 immunohistochemistry-guided capture of the exact tissue responsible for inappropriate aldosterone synthesis. Herein we review the methods and approaches that facilitate the use of adrenal FFPE material for DNA capture, sequencing, and mutation determination.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- *Correspondence: Kazutaka Nanba,
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Aaron M. Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Chang YY, Tsai CH, Peng SY, Chen ZW, Chang CC, Lee BC, Liao CW, Pan CT, Chen YL, Lin LC, Chang YR, Peng KY, Chou CH, Wu VC, Hung CS, Lin YH. KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated With a Worse Baseline Status and Better Recovery of Left Ventricular Remodeling and Diastolic Function. Hypertension 2020; 77:114-125. [PMID: 33249859 DOI: 10.1161/hypertensionaha.120.15679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Primary aldosteronism is the most common secondary endocrine form of hypertension and causes many cardiovascular injuries. KCNJ5 somatic mutations have recently been identified in aldosterone-producing adenoma. However, their impacts on left ventricular remodeling precluding the interference of age, sex, and blood pressure are still uncertain. We enrolled 184 aldosterone-producing adenoma patients who received adrenalectomy. Clinical, biochemical, and echocardiographic data were analyzed preoperatively and 1 year postoperatively. KCNJ5 gene sequencing of aldosterone-producing adenoma was performed. After propensity score matching for age, sex, body mass index, blood pressure, hypertension duration, and number of hypertensive medications, there were 60 patients in each group with and without KCNJ5 mutations. The mutation carriers had higher left ventricular mass index (LVMI) and inappropriately excessive LVMI (ieLVMI) and lower e' than the noncarriers. After adrenalectomy, the mutation carriers had greater decreases in LVMI and ieLVMI than the noncarriers. In addition, only mutation carriers had a significant decrease in E/e' after surgery. In multivariate analysis, baseline LVMI correlated with KCNJ5 mutations, the number of hypertensive medications, and systolic blood pressure. Baseline ieLVMI correlated with KCNJ5 mutations and the number of hypertensive medications. The regression of both LVMI and ieLVMI after surgery was mainly correlated with KCNJ5 mutations and changes in systolic blood pressure. Aldosterone-producing adenoma patients with KCNJ5 mutations had higher LVMI and ieLVMI and a greater regression of LVMI and ieLVMI after adrenalectomy than those without mutations. The patients with KCNJ5 mutations also benefited from adrenalectomy with regard to left ventricular diastolic function, whereas noncarriers did not.
Collapse
Affiliation(s)
- Yi-Yao Chang
- From the National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (Y.-Y.C.).,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan (Y.-Y.C.).,Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Center of General Education, Chihlee University of Technology, New Taipei City, Taiwan (Y.-Y.C.)
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Department of Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, JinShan Branch (C.-H.T.)
| | - Shih-Yuan Peng
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch (Z.-W.C., C.-T.P.)
| | - Chin-Chen Chang
- Department of Medical Imaging (C.-C.C., B.-C.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Bo-Ching Lee
- Department of Medical Imaging (C.-C.C., B.-C.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch (C.-W.L.)
| | - Chien-Ting Pan
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch (Z.-W.C., C.-T.P.)
| | - Ya-Li Chen
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Lung-Chun Lin
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Yi-Ru Chang
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Kang-Yung Peng
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Chia-Hung Chou
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.)
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine (V.-C.W.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Chi-Sheng Hung
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine (Y.-Y.C., C.-H.T., S.-Y.P., Y.-L.C., L.-C.L., Y.-R.C., K.-Y.P., C.-S.H., Y.-H.L.).,Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. (L.-C.L., Y.-R.C., C.-S.H., Y.-H.L.)
| | | |
Collapse
|
35
|
Zennaro MC, Boulkroun S, Fernandes-Rosa FL. Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol 2020; 16:578-589. [PMID: 32724183 DOI: 10.1038/s41574-020-0382-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Early diagnosis and appropriate treatment of primary aldosteronism, the most frequent cause of secondary hypertension, are crucial to prevent deleterious cardiovascular outcomes. In the past decade, the discovery of genetic abnormalities responsible for sporadic and familial forms of primary aldosteronism has improved the knowledge of the pathogenesis of this disorder. Mutations in genes encoding ion channels and pumps lead to increased cytosolic concentrations of calcium in zona glomerulosa cells, which triggers CYP11B2 expression and autonomous aldosterone production. Improved understanding of the mechanisms underlying the disease is key to improving diagnostics and to developing and implementing targeted treatments. This Review provides an update on the genetic abnormalities associated with sporadic and familial forms of primary aldosteronism, their frequency among different populations and the mechanisms explaining excessive aldosterone production and adrenal nodule development. The possible effects and uses of these findings for improving the diagnostics for primary aldosteronism are discussed. Furthermore, current treatment options of primary aldosteronism are reviewed, with particular attention to the latest studies on blood pressure and cardiovascular outcomes following medical or surgical treatment. The new perspectives regarding the use of targeted drug therapy for aldosterone-producing adenomas with specific somatic mutations are also addressed.
Collapse
Affiliation(s)
- Maria-Christina Zennaro
- INSERM, PARCC, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | | | | |
Collapse
|
36
|
Eisenhofer G, Durán C, Cannistraci CV, Peitzsch M, Williams TA, Riester A, Burrello J, Buffolo F, Prejbisz A, Beuschlein F, Januszewicz A, Mulatero P, Lenders JWM, Reincke M. Use of Steroid Profiling Combined With Machine Learning for Identification and Subtype Classification in Primary Aldosteronism. JAMA Netw Open 2020; 3:e2016209. [PMID: 32990741 PMCID: PMC7525346 DOI: 10.1001/jamanetworkopen.2020.16209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Most patients with primary aldosteronism, a major cause of secondary hypertension, are not identified or appropriately treated because of difficulties in diagnosis and subtype classification. Applications of artificial intelligence combined with mass spectrometry-based steroid profiling could address this problem. OBJECTIVE To assess whether plasma steroid profiling combined with machine learning might facilitate diagnosis and treatment stratification of primary aldosteronism, particularly for patients with unilateral adenomas due to pathogenic KCNJ5 sequence variants. DESIGN, SETTING, AND PARTICIPANTS This diagnostic study was conducted at multiple tertiary care referral centers. Steroid profiles were measured from June 2013 to March 2017 in 462 patients tested for primary aldosteronism and 201 patients with hypertension. Data analyses were performed from September 2018 to August 2019. MAIN OUTCOMES AND MEASURES The aldosterone to renin ratio and saline infusion tests were used to diagnose primary aldosteronism. Subtyping was done by adrenal venous sampling and follow-up of patients who underwent adrenalectomy. Statistical tests and machine-learning algorithms were applied to plasma steroid profiles. Areas under receiver operating characteristic curves, sensitivity, specificity, and other diagnostic performance measures were calculated. RESULTS Primary aldosteronism was confirmed in 273 patients (165 men [60%]; mean [SD] age, 51 [10] years), including 134 with bilateral disease and 139 with unilateral adenomas (58 with and 81 without somatic KCNJ5 sequence variants). Plasma steroid profiles varied according to disease subtype and were particularly distinctive in patients with adenomas due to KCNJ5 variants, who showed better rates of biochemical cure after adrenalectomy than other patients. Among patients tested for primary aldosteronism, a selection of 8 steroids in combination with the aldosterone to renin ratio showed improved effectiveness for diagnosis over either strategy alone. In contrast, the steroid profile alone showed superior performance over the aldosterone to renin ratio for identifying unilateral disease, particularly adenomas due to KCNJ5 variants. Among 632 patients included in the analysis, machine learning-designed combinatorial marker profiles of 7 steroids alone both predicted primary aldosteronism in 1 step and subtyped patients with unilateral adenomas due to KCNJ5 variants at diagnostic sensitivities of 69% (95% CI, 68%-71%) and 85% (95% CI, 81%-88%), respectively, and at specificities of 94% (95% CI, 93%-94%) and 97% (95% CI, 97%-98%), respectively. The validation series yielded comparable diagnostic performance. CONCLUSIONS AND RELEVANCE Machine learning-designed combinatorial plasma steroid profiles may facilitate both screening for primary aldosteronism and identification of patients with unilateral adenomas due to pathogenic KCNJ5 variants, who are most likely to show benefit from surgical intervention.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudio Durán
- Biomedical Cybernetics Group, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Center for Systems Biology Dresden, Department of Physics, Technische Universität Dresden, Dresden, Germany
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Center for Systems Biology Dresden, Department of Physics, Technische Universität Dresden, Dresden, Germany
- Center for Complex Network Intelligence Laboratory at the Tsinghua Laboratory of Brain and Intelligence, Department of Bioengineering, Tsinghua University, Beijing, China
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tracy Ann Williams
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Endocrinology, Diabetology, and Clinical Nutrition, UniversitätsSpital Zürich, Zürich, Switzerland
| | | | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jacques W. M. Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
37
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
38
|
Vaduva P, Bonnet F, Bertherat J. Molecular Basis of Primary Aldosteronism and Adrenal Cushing Syndrome. J Endocr Soc 2020; 4:bvaa075. [PMID: 32783015 PMCID: PMC7412855 DOI: 10.1210/jendso/bvaa075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
This review reports the main molecular alterations leading to development of benign cortisol- and/or aldosterone-secreting adrenal tumors. Causes of adrenal Cushing syndrome can be divided in 2 groups: multiple bilateral tumors or adenomas secreting cortisol. Bilateral causes are mainly primary pigmented nodular adrenocortical disease, most of the time due to PRKAR1A germline-inactivating mutations, and primary bilateral macronodular adrenal hyperplasia that can be caused in some rare syndromic cases by germline-inactivating mutations of MEN1, APC, and FH and of ARMC5 in isolated forms. PRKACA somatic-activating mutations are the main alterations in unilateral cortisol-producing adenomas. In primary hyperaldosteronism (PA), familial forms were identified in 1% to 5% of cases: familial hyperaldosteronism type I (FH-I) due to a chimeric CYP11B1/CYP11B2 hybrid gene, FH-II due to CLCN-2 germline mutations, FH-III due to KCNJ5 germline mutations, FH-IV due to CACNA1H germline mutations and PA, and seizures and neurological abnormalities syndrome due to CACNA1D germline mutations. Several somatic mutations have been found in aldosterone-producing adenomas in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 genes. In addition to these genetic alterations, genome-wide approaches identified several new alterations in transcriptome, methylome, and miRnome studies, highlighting new pathways involved in steroid dysregulation.
Collapse
Affiliation(s)
- Patricia Vaduva
- Reference Center for Rare Adrenal Diseases, Department of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR8104, Paris University, Paris, France
| | - Fideline Bonnet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris University, Paris, France.,Hormonal Biology Laboratory, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jérôme Bertherat
- Reference Center for Rare Adrenal Diseases, Department of Endocrinology, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR8104, Paris University, Paris, France
| |
Collapse
|
39
|
Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Genetic and Genomic Mechanisms of Primary Aldosteronism. Trends Mol Med 2020; 26:819-832. [PMID: 32563556 DOI: 10.1016/j.molmed.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the main cause of primary aldosteronism (PA), the most frequent form of secondary hypertension. Mutations in ion channels and ATPases have been identified in APA and inherited forms of PA, highlighting the central role of calcium signaling in PA development. Different somatic mutations are also found in aldosterone-producing cell clusters in adrenal glands from healthy individuals and from patients with unilateral and bilateral PA, suggesting additional pathogenic mechanisms. Recent mouse models have also contributed to a better understanding of PA. Application of genetic screening in familial PA, development of surrogate biomarkers for somatic mutations in APA, and use of targeted treatment directed at mutated proteins may allow improved management of patients.
Collapse
Affiliation(s)
| | | | - Maria-Christina Zennaro
- Inserm, PARCC, Université de Paris, F-75015 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
40
|
Abstract
Advances in genomics over the past two decades have allowed for elucidation of the genetic alterations leading to the development of adrenocortical tumors and/or hyperplasias. These molecular changes were initially discovered through the study of rare familial tumor syndromes such as McCune-Albright Syndrome, Carney complex, Li-Fraumeni syndrome, and Beckwith-Wiedemann syndrome, with the identification of alterations in genes and molecular pathways that subsequently led to the discovery of aberrations in these or related genes and pathways in sporadic tumors. Genetic alterations in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B, that lead to aberrant cyclic adenosine monophosphate-protein (cAMP) kinase A signaling, were found to play a major role in the development of benign cortisol-producing adrenocortical tumors and/or hyperplasias, whereas genetic defects in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2 were implicated in the development of benign aldosterone-producing tumors and/or hyperplasias through modification of intracellular calcium signaling. Germline ARMC5 defects were found to cause the development of primary bilateral macronodular adrenocortical hyperplasia with glucocorticoid and/or mineralocorticoid oversecretion. Adrenocortical carcinoma was linked primarily to aberrant p53 signaling and/or Wnt-β-catenin signaling, as well as IGF2 overexpression, with frequent genetic alterations in TP53, ZNRF3, CTNNB1, and 11p15. This review focuses on the genetic underpinnings of benign cortisol- and aldosterone-producing adrenocortical tumors/hyperplasias and adrenocortical carcinoma.
Collapse
Affiliation(s)
- Crystal D C Kamilaris
- Section on Endocrinology and Genetics & Inter-Institute Endocrinology Fellowship Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics & Inter-Institute Endocrinology Fellowship Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics & Inter-Institute Endocrinology Fellowship Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Wang Y, Jiang XY, Yu XY. BRD9 controls the oxytocin signaling pathway in gastric cancer via CANA2D4, CALML6, GNAO1, and KCNJ5. Transl Cancer Res 2020; 9:3354-3366. [PMID: 35117701 PMCID: PMC8798819 DOI: 10.21037/tcr.2020.03.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/08/2020] [Indexed: 01/26/2023]
Abstract
Background First-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers. Methods We used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells and AGS cells for global gene expression analysis in inhibiting BRD9 conditions. Results Our studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin. Conclusions Our study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 overexpression.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
42
|
Rege J, Turcu AF, Rainey WE. Primary aldosteronism diagnostics: KCNJ5 mutations and hybrid steroid synthesis in aldosterone-producing adenomas. Gland Surg 2020; 9:3-13. [PMID: 32206594 DOI: 10.21037/gs.2019.10.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary aldosteronism (PA) is characterized by autonomous aldosterone production by renin-independent mechanisms and is most commonly sporadic. While 60-70% of sporadic PA can be attributed to bilateral hyperaldosteronism, the remaining 30-40% is caused by a unilateral aldosterone-producing adenoma (APA). Somatic mutations in or near the selectivity filter the KCNJ5 gene (encoding the potassium channel GIRK4) have been implicated in the pathogenesis of both sporadic and familial PA. Several studies using tumor tissue, peripheral and adrenal vein samples from PA patients have demonstrated that along with aldosterone, the hybrid steroids 18-hydroxycortisol (18OHF) and 18-oxocortisol (18oxoF) are a hallmark of APA harboring KCNJ5 mutations. Herein, we review the recent advances with respect to the molecular mechanisms underlying the pathogenesis of PA and the steroidogenic fingerprints of KCNJ5 mutations. In addition, we present an outlook toward the future of PA subtyping and diagnostic work-up utilizing steroid profiling.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
De Sousa K, Boulkroun S, Baron S, Nanba K, Wack M, Rainey WE, Rocha A, Giscos-Douriez I, Meatchi T, Amar L, Travers S, Fernandes-Rosa FL, Zennaro MC. Genetic, Cellular, and Molecular Heterogeneity in Adrenals With Aldosterone-Producing Adenoma. Hypertension 2020; 75:1034-1044. [PMID: 32114847 PMCID: PMC7098445 DOI: 10.1161/hypertensionaha.119.14177] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text. Aldosterone-producing adenoma (APA) cause primary aldosteronism—the most frequent form of secondary hypertension. Somatic mutations in genes coding for ion channels and ATPases are found in APA and in aldosterone-producing cell clusters. We investigated the genetic, cellular, and molecular heterogeneity of different aldosterone-producing structures in adrenals with APA, to get insight into the mechanisms driving their development and to investigate their clinical and biochemical correlates. Genetic analysis of APA, aldosterone-producing cell clusters, and secondary nodules was performed in adrenal tissues from 49 patients by next-generation sequencing following CYP11B2 immunohistochemistry. Results were correlated with clinical and biochemical characteristics of patients, steroid profiles, and histological features of the tumor and adjacent adrenal cortex. Somatic mutations were identified in 93.75% of APAs. Adenoma carrying KCNJ5 mutations had more clear cells and cells expressing CYP11B1, and fewer cells expressing CYP11B2 or activated β-catenin, compared with other mutational groups. 18-hydroxycortisol and 18-oxocortisol were higher in patients carrying KCNJ5 mutations and correlated with histological features of adenoma; however, mutational status could not be predicted using steroid profiling. Heterogeneous CYP11B2 expression in KCNJ5-mutated adenoma was not associated with genetic heterogeneity. Different mutations were identified in secondary nodules expressing aldosterone synthase and in independent aldosterone-producing cell clusters from adrenals with adenoma; known KCNJ5 mutations were identified in 5 aldosterone-producing cell clusters. Genetic heterogeneity in different aldosterone-producing structures in the same adrenal suggests complex mechanisms underlying APA development.
Collapse
Affiliation(s)
- Kelly De Sousa
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.)
| | - Sheerazed Boulkroun
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.)
| | - Stéphanie Baron
- Université de Paris, France (S. Baron, M.W., T.M.).,Service de Physiologie (S. Baron, S.T.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor, MI, USA.,Department of Endocrinology and Metabolism, National Hospital Organization, Kyoto Medical Center, Japan (K.N.)
| | - Maxime Wack
- Université de Paris, France (S. Baron, M.W., T.M.).,Service d'informatique médicale (M.W.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - William E Rainey
- Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor, MI, USA.,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor, MI, USA
| | - Angélique Rocha
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.)
| | - Isabelle Giscos-Douriez
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.)
| | - Tchao Meatchi
- Université de Paris, France (S. Baron, M.W., T.M.).,Service d'Anatomie Pathologique (T.M.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Laurence Amar
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.).,Unité Hypertension artérielle (L.A.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Simon Travers
- Service de Physiologie (S. Baron, S.T.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Fabio L Fernandes-Rosa
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.)
| | - Maria-Christina Zennaro
- From the PARCC, INSERM, Université de Paris, France (K.D.S., S. Boulkroun, A.R., I.G.-D., L.A., F.L.F.-R., M.-C.Z.).,Service de Génétique (M.-C.Z.), Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| |
Collapse
|
44
|
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension affecting 5%-10% of patients with arterial hypertension. In PA, high blood pressure is associated with high aldosterone and low renin levels, and often hypokalemia. In a majority of cases, autonomous aldosterone production by the adrenal gland is caused by an aldosterone producing adenoma (APA) or bilateral adrenal hyperplasia (BAH). During the last ten years, a better knowledge of the pathophysiology of PA came from the discovery of somatic and germline mutations in different genes in both sporadic and familial forms of the disease. Those genes code for ion channels and pumps, as well as proteins involved in adrenal cortex development and function. Targeted next generation sequencing following immunohistochemistry guided detection of aldosterone synthase expression allows detection of somatic mutations in up to 90% of APA, while whole exome sequencing has discovered the genetic causes of four different familial forms of PA. The identification, in BAH, of somatic mutations in aldosterone producing cell clusters open new perspectives in our understanding of the bilateral form of the disease and the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, INSERM, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| |
Collapse
|
45
|
Ono Y, Yamazaki Y, Omata K, Else T, Tomlins SA, Rhayem Y, Williams TA, Reincke M, Carling T, Monticone S, Mulatero P, Beuschlein F, Ito S, Satoh F, Rainey WE, Sasano H. Histological Characterization of Aldosterone-producing Adrenocortical Adenomas with Different Somatic Mutations. J Clin Endocrinol Metab 2020; 105:5649299. [PMID: 31789380 PMCID: PMC7048684 DOI: 10.1210/clinem/dgz235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Aldosterone-producing adrenocortical adenomas (APAs) are mainly composed of clear (lipid rich) and compact (eosinophilic) tumor cells. The detailed association between these histological features and somatic mutations (KCNJ5, ATP1A1, ATP2B3, and CACNA1D) in APAs is unknown. OBJECTIVE To examine the association between histological features and individual genotypes in APAs. METHODS Examination of 39 APAs subjected to targeted next-generation sequencing (11 KCNJ5, 10 ATP1A1, 10 ATP2B3, and 8 CACNA1D) and quantitative morphological and immunohistochemical (CYP11B2 and CYP17A1) analyses using digital imaging software. RESULTS KCNJ5- and ATP2B3-mutated APAs had clear cell dominant features (KCNJ5: clear 59.8% [54.4-64.6%] vs compact 40.2% (35.4-45.6%), P = .0022; ATP2B3: clear 54.3% [48.2-62.4 %] vs compact 45.7% (37.6-51.8 %), P = .0696). ATP1A1- and CACNA1D-mutated APAs presented with marked intratumoral heterogeneity. A significantly positive correlation of immunoreactivity was detected between CYP11B2 and CYP17A1 in tumor cells of KCNJ5-mutated APAs (P = .0112; ρ = 0.7237), in contrast, significantly inverse correlation was detected in ATP1A1-mutated APAs (P = .0025; ρ = -0.8667). CONCLUSION KCNJ5-mutated APAs, coexpressing CYP11B2 and CYP17A1, were more deviated in terms of zonation-specific differentiation of adrenocortical cells than ATP1A1- and ATP2B3-mutated APAs.
Collapse
Affiliation(s)
- Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Omata
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yara Rhayem
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, Connecticut
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - William E Rainey
- Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Correspondence and Reprint Requests: Hironobu Sasano, MD, PhD, Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980- 8575 JAPAN. E-mail:
| |
Collapse
|
46
|
Nanba K, Omata K, Gomez-Sanchez CE, Stratakis CA, Demidowich AP, Suzuki M, Thompson LDR, Cohen DL, Luther JM, Gellert L, Vaidya A, Barletta JA, Else T, Giordano TJ, Tomlins SA, Rainey WE. Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension 2019; 73:885-892. [PMID: 30739536 DOI: 10.1161/hypertensionaha.118.12070] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatic mutations have been identified in aldosterone-producing adenomas (APAs) in genes that include KCNJ5, ATP1A1, ATP2B3, and CACNA1D. Based on independent studies, there appears to be racial differences in the prevalence of somatic KCNJ5 mutations, particularly between East Asians and Europeans. Despite the high cardiovascular disease mortality of blacks, there have been no studies focusing on somatic mutations in APAs in this population. In the present study, we investigated genetic characteristics of APAs in blacks using a CYP11B2 (aldosterone synthase) immunohistochemistry-guided next-generation sequencing approach. The adrenal glands with adrenocortical adenomas from 79 black patients with primary aldosteronism were studied. Seventy-three tumors from 69 adrenal glands were confirmed to be APAs by CYP11B2 immunohistochemistry. Sixty-five of 73 APAs (89%) had somatic mutations in aldosterone-driver genes. Somatic CACNA1D mutations were the most prevalent genetic alteration (42%), followed by KCNJ5 (34%), ATP1A1 (8%), and ATP2B3 mutations (4%). CACNA1D mutations were more often observed in APAs from males than those from females (55% versus 29%, P=0.033), whereas KCNJ5 mutations were more prevalent in APAs from females compared with those from males (57% versus 13%, P<0.001). No somatic mutations in aldosterone-driver genes were identified in tumors without CYP11B2 expression. In conclusion, 89% of APAs in blacks harbor aldosterone-driving mutations, and unlike Europeans and East Asians, the most frequently mutated aldosterone-driver gene was CACNA1D. Determination of racial differences in the prevalence of aldosterone-driver gene mutations may facilitate the development of personalized medicines for patients with primary aldosteronism.
Collapse
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor
| | - Kei Omata
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor
| | - Celso E Gomez-Sanchez
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S.).,Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Constantine A Stratakis
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Andrew P Demidowich
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Mari Suzuki
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Lester D R Thompson
- Department of Pathology, Woodland Hills Medical Center, Southern California Permanente Medical Group (L.D.R.T.)
| | - Debbie L Cohen
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.L.C.)
| | - James M Luther
- Division of Clinical Pharmacology (J.M.L.), Vanderbilt University Medical Center, Nashville, TN
| | - Lan Gellert
- Department of Pathology, Microbiology and Immunology (L.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Justine A Barletta
- Department of Pathology (J.A.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor
| | - Thomas J Giordano
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor.,Rogel Cancer Center (T.J.G., S.A.T.), University of Michigan, Ann Arbor
| | - Scott A Tomlins
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Rogel Cancer Center (T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Department of Urology (S.A.T.), University of Michigan, Ann Arbor.,Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor.,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor
| |
Collapse
|
47
|
[Primary aldosteronism : Genetics and pathology]. DER PATHOLOGE 2019; 40:369-372. [PMID: 31705237 DOI: 10.1007/s00292-019-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Primary aldosteronism, the excessive production of the steroid hormone aldosterone, is the most common cause of secondary hypertension. Common subforms include bilateral adrenal hyperplasia and aldosterone-producing adenoma. OBJECTIVES The goal of this review is to summarize important publications on the genetic basis of primary aldosteronism. RESULTS Somatic mutations in the KCNJ5, CACNA1D, ATP1A1, and ATP2B3 genes have been described as causes of aldosterone-producing adenomas. They eventually all lead to increased cellular calcium influx and aldosterone production. The mechanisms of rare CTNNB1 mutations are less defined. Correlations between mutations and different histologic characteristics as well as gender and ethnicity remain unexplained. Recent publications suggest that bilateral hyperplasia is at least partially due to so-called aldosterone-producing cell clusters, often with mutations in CACNA1D. Rare familial forms show mutations in the CYP11B2, CLCN2, KCNJ5, CACNA1H, or CACNA1D genes. CONCLUSIONS These results suggest that a significant fraction of primary aldosteronism is due to somatic mutations in single genes.
Collapse
|
48
|
Genetic causes of primary aldosteronism. Exp Mol Med 2019; 51:1-12. [PMID: 31695023 PMCID: PMC6834635 DOI: 10.1038/s12276-019-0337-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
Primary aldosteronism is characterized by at least partially autonomous production of the adrenal steroid hormone aldosterone and is the most common cause of secondary hypertension. The most frequent subforms are idiopathic hyperaldosteronism and aldosterone-producing adenoma. Rare causes include unilateral hyperplasia, adrenocortical carcinoma and Mendelian forms (familial hyperaldosteronism). Studies conducted in the last eight years have identified somatic driver mutations in a substantial portion of aldosterone-producing adenomas, including the genes KCNJ5 (encoding inwardly rectifying potassium channel GIRK4), CACNA1D (encoding a subunit of L-type voltage-gated calcium channel CaV1.3), ATP1A1 (encoding a subunit of Na+/K+-ATPase), ATP2B3 (encoding a Ca2+-ATPase), and CTNNB1 (encoding ß-catenin). In addition, aldosterone-producing cells were recently reported to form small clusters (aldosterone-producing cell clusters) beneath the adrenal capsule. Such clusters accumulate with age and appear to be more frequent in individuals with idiopathic hyperaldosteronism. The fact that they are associated with somatic mutations implicated in aldosterone-producing adenomas also suggests a precursor function for adenomas. Rare germline variants of CYP11B2 (encoding aldosterone synthase), CLCN2 (encoding voltage-gated chloride channel ClC-2), KCNJ5, CACNA1H (encoding a subunit of T-type voltage-gated calcium channel CaV3.2), and CACNA1D have been reported in different subtypes of familial hyperaldosteronism. Collectively, these studies suggest that primary aldosteronism is largely due to genetic mutations in single genes, with potential implications for diagnosis and therapy.
Collapse
|
49
|
Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling. Sci Rep 2019; 9:14677. [PMID: 31605007 PMCID: PMC6789122 DOI: 10.1038/s41598-019-50988-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Primary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. Inactivation of Rarα in mice led to significant structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA.
Collapse
|
50
|
|