1
|
Heggie C, Al-Diwani H, Arundel P, Balmer R. Diagnosis and initial management of children presenting with premature loss of primary teeth associated with a systemic condition: A scoping review and development of clinical aid. Int J Paediatr Dent 2024; 34:871-890. [PMID: 38609350 DOI: 10.1111/ipd.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Premature loss of primary teeth (PLPT) can be a rare presentation of systemic medical conditions. Premature loss of primary teeth may present a diagnostic dilemma to paediatric dentists. AIMS To identify systemic conditions associated with PLPT and develop a clinical aid. DESIGN OVID Medline, Embase and Web of Science were searched up to March 2023. Citation searching of review publications occurred. Exclusion occurred for conference abstracts, absence of PLPT and absence of English-language full text. RESULTS Seven hundred and ninety-one publications were identified via databases and 476 by citation searching of review articles. Removal of 390 duplicates occurred. Following the exclusion of 466 records on abstract review, 411 publications were sought for retrieval, of which 142 met inclusion criteria. Thirty-one systemic conditions were identified. For 19 conditions, only one publication was identified. The majority of publications, 91% (n = 129), were case reports or series. Most publications, 44% (n = 62), were related to hypophosphatasia, and 25% (n = 35) were related to Papillon-Lefèvre. Diagnostic features were synthesised, and a clinical aid was produced by an iterative consensus approach. CONCLUSIONS A diverse range of systemic diseases are associated with PLPT. Evidence quality, however, is low, with most diseases having a low number of supporting cases. This clinical aid supports paediatric dentists in differential diagnosis and onward referral.
Collapse
|
2
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
3
|
di Bari I, Ceccarini C, Curcetti M, Cesarano C, Croce AI, Adipietro I, Gallicchio MG, Palladino GP, Patrizio MP, Frisoli B, Santacroce R, D'Apolito M, D'Andrea G, Castriota OM, Pierri CL, Margaglione M. Uncovering a Genetic Diagnosis in a Pediatric Patient by Whole Exome Sequencing: A Modeling Investigation in Wiedemann-Steiner Syndrome. Genes (Basel) 2024; 15:1155. [PMID: 39336746 PMCID: PMC11431573 DOI: 10.3390/genes15091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Wiedemann-Steiner syndrome (WSS), a rare autosomal-dominant disorder caused by haploinsufficiency of the KMT2A gene product, is part of a group of disorders called chromatinopathies. Chromatinopathies are neurodevelopmental disorders caused by mutations affecting the proteins responsible for chromatin remodeling and transcriptional regulation. The resulting gene expression dysregulation mediates the onset of a series of clinical features such as developmental delay, intellectual disability, facial dysmorphism, and behavioral disorders. Aim of the Study: The aim of this study was to investigate a 10-year-old girl who presented with clinical features suggestive of WSS. Methods: Clinical and genetic investigations were performed. Whole exome sequencing (WES) was used for genetic testing, performed using Illumina technology. The bidirectional capillary Sanger resequencing technique was used in accordance with standard methodology to validate a mutation discovered by WES in all family members who were available. Utilizing computational protein modeling for structural and functional studies as well as in silico pathogenicity prediction models, the effect of the mutation was examined. Results: WES identified a de novo heterozygous missense variant in the KMT2A gene KMT2A(NM_001197104.2): c.3451C>G, p.(Arg1151Gly), absent in the gnomAD database. The variant was classified as Likely Pathogenetic (LP) according to the ACMG criteria and was predicted to affect the CXXC-type zinc finger domain functionality of the protein. Modeling of the resulting protein structure suggested that this variant changes the protein flexibility due to a variation in the Gibbs free energy and in the vibrational entropy energy difference between the wild-type and mutated domain, resulting in an alteration of the DNA binding affinity. Conclusions: A novel and de novo mutation discovered by the NGS approach, enhancing the mutation spectrum in the KMT2A gene, was characterized and associated with WSS. This novel KMT2A gene variant is suggested to modify the CXXC-type zinc finger domain functionality by affecting protein flexibility and DNA binding.
Collapse
Affiliation(s)
- Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grazia Gallicchio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Grazia Pia Palladino
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Pia Patrizio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Benedetta Frisoli
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria D'Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giovanna D'Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ombretta Michela Castriota
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 71122 Foggia, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
4
|
Araújo Salomão RP, Rezende Filho FM, Borges V, Kurian MA, Ferraz HB, Breedveld GJ, Bonifati V, Barsottini OG, Pedroso JL. Clinical, neuroimaging and genetic findings in Brazilian patients with neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord 2024; 123:106103. [PMID: 38582019 DOI: 10.1016/j.parkreldis.2024.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses a clinically and genetically heterogeneous group of rare disorders. Here, we report clinical, neuroimaging and genetic studies in twenty three Brazilian NBIA patients. In thirteen subjects, deleterious variants were detected in known NBIA-causing genes (PANK2, PLA2G6, C9ORF12, WDR45 and FA2H), including previously unreported variants in PANK2 and PLA2G6. Two patients carried rare, likely pathogenic variants in genes not previously associated with NBIA: KMT2A c.11785A > C (p.Ile3929Leu), and TIMM8A c.127T > C (p.Cys43Arg), suggesting an expansion of their associated phenotypes to include NBIA. In eight patients the etiology remains unsolved, suggesting variants undetectable by the adopted methods, or the existence of additional NBIA-causing genes.
Collapse
Affiliation(s)
| | | | - Vanderci Borges
- Movement Disorders Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Manju A Kurian
- Great Ormond Street Hospital, Department of Neurology, London, United Kingdom
| | | | - Guido J Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, the Netherlands
| | - Orlando G Barsottini
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
6
|
Niu J, Teng X, Zhang J. Aberrant splicing caused by a novel KMT2A variant in Wiedemann-Steiner syndrome. Mol Genet Genomic Med 2024; 12:e2415. [PMID: 38488438 PMCID: PMC10941593 DOI: 10.1002/mgg3.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
INTRODUCTION Wiedemann-Steiner syndrome (WSS) is a rare autosomal-dominant disorder caused by KMT2A variants. The aim of this study was to characterize a novel KMT2A variant in a child with WSS and demonstrate integrated diagnostic approaches. METHODS A 3-year-old female with developmental delay, distinctive facial features, and anal fistula underwent whole exome sequencing (WES). RNA analysis was performed to assess splicing effects caused by a novel variant. RESULTS WES identified novel heterozygous KMT2A c.5664+6T>C variant initially classified as a variant of uncertain significance. RNA analysis provided evidence of aberrant splicing (exon 20 skipping), allowing reclassification to likely pathogenic. The patient exhibited typical WSS features along with a potential novel finding of anal fistula. CONCLUSION This report describes a novel non-canonical splice site variant in KMT2A associated with WSS. RNA analysis was critical for variant reclassification. Detailed phenotypic evaluation revealed common and expanded WSS manifestations. This case highlights the importance of combining clinical assessment, DNA testing, and RNA functional assays for the diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Jianing Niu
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of MedicineJiaxing UniversityJiaxingChina
| | - Xiaoming Teng
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Junyu Zhang
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
7
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Associations Between Executive Functioning, Behavioral Functioning, and Adaptive Functioning Difficulties in Wiedemann-Steiner Syndrome. Arch Clin Neuropsychol 2024; 39:186-195. [PMID: 37565480 PMCID: PMC10879922 DOI: 10.1093/arclin/acad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a neurogenetic disorder caused by heterozygous variants in KMT2A. Recent investigations suggest increased anxiety and behavior regulation challenges among those with WSS although the neurobehavioral phenotype remains largely unknown. This study aims to examine the pattern of and associations between executive functioning (EF) and behavior functioning among those with WSS. METHOD This study involved utilizing caregiver-report inventories (Behavior Rating Inventory of Executive Function 2nd Edition, BRIEF-2; Adaptive Behavior Assessment 3rd Edition, ABAS-3; Strengths and Difficulties Questionnaire, SDQ) to assess day-to-day behavior functioning among those with WSS (N = 24; mean age = 10.68 years, SD = 3.19). Frequency of clinical elevations in daily difficulties in EF, adaptive behaviors, and behavior regulation were reported. Correlations and hierarchical linear regressions were used to determine the relationships between EF with behavior and adaptive functioning. RESULTS Out of our sample, 63% met clinical levels of executive functioning difficulties on the BRIEF-2, and 75% with Hyperactivity and 54% with Emotional Problems on the SDQ. In addition, 33% were rated >2 SD below the normative mean in overall adaptive functioning on the ABAS-3. Elevated ratings in BRIEF-2 Shift, reflective of challenges with mental flexibility, predicted more Emotional Problems and accounted for 33.5% of its variance. More difficulties in Emotional Control were related to greater adaptive deficits, accounting for 33.3% of its variance. CONCLUSIONS Those with WSS are at risk for EF deficits, hyperactivity, and emotional dysregulation. EF correlates with adaptive and affective behaviors, highlighting the promise of behavioral interventions to target cognitive flexibility, emotional awareness, and reactivity in this population.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Silveira HG, Steiner CE, Toccoli G, Angeloni LL, Heleno JL, Spineli-Silva S, dos Santos AM, Vieira TP, Melaragno MI, Gil-da-Silva-Lopes VL. Variants in KMT2A in Three Individuals with Previous Suspicion of 22q11.2 Deletion Syndrome. Genes (Basel) 2024; 15:211. [PMID: 38397201 PMCID: PMC10888166 DOI: 10.3390/genes15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The condition known as 22q11.2 deletion syndrome (MIM #188400) is a rare disease with a highly variable clinical presentation including more than 180 features; specific guidelines for screening individuals have been used to support clinical suspicion before confirmatory tests by Brazil's Craniofacial Project. Of the 2568 patients listed in the Brazilian Database on Craniofacial Anomalies, 43 individuals negative for the 22q11.2 deletion syndrome were further investigated through whole-exome sequencing. Three patients (6.7%) presented with heterozygous pathogenic variants in the KMT2A gene, including a novel variant (c.6158+1del) and two that had been previously reported (c.173dup and c.3241C>T); reverse phenotyping concluded that all three patients presented features of Wiedemann-Steiner syndrome, such as neurodevelopmental disorders and dysmorphic facial features (n = 3), hyperactivity and anxiety (n = 2), thick eyebrows and lower-limb hypertrichosis (n = 2), congenital heart disease (n = 1), short stature (n = 1), and velopharyngeal insufficiency (n = 2). Overlapping features between 22q11.2 deletion syndrome and Wiedemann-Steiner syndrome comprised neuropsychiatric disorders and dysmorphic characteristics involving the eyes and nose region; velopharyngeal insufficiency was seen in two patients and is an unreported finding in WDSTS. Therefore, we suggest that both conditions should be included in each other's differential diagnoses.
Collapse
Affiliation(s)
- Henrique Garcia Silveira
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (Unifesp), São Paulo 04023-062, Brazil; (H.G.S.); (G.T.); (M.I.M.)
| | - Carlos Eduardo Steiner
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| | - Giovana Toccoli
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (Unifesp), São Paulo 04023-062, Brazil; (H.G.S.); (G.T.); (M.I.M.)
| | - Luise Longo Angeloni
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| | - Júlia Lôndero Heleno
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| | - Samira Spineli-Silva
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| | - Ana Mondadori dos Santos
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
- Faculdade São Leopoldo Mandic (SLMandic), Campinas 13045-755, Brazil
| | - Társis Paiva Vieira
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| | - Maria Isabel Melaragno
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (Unifesp), São Paulo 04023-062, Brazil; (H.G.S.); (G.T.); (M.I.M.)
| | - Vera Lúcia Gil-da-Silva-Lopes
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas 13083-970, Brazil; (C.E.S.); (L.L.A.); (J.L.H.); (S.S.-S.); (A.M.d.S.); (T.P.V.)
| |
Collapse
|
9
|
Sedlackova L, Sterbova K, Vlckova M, Seeman P, Zarubova J, Marusic P, Krsek P, Krijtova H, Musilova A, Lassuthova P. Yield of exome sequencing in patients with developmental and epileptic encephalopathies and inconclusive targeted gene panel. Eur J Paediatr Neurol 2024; 48:17-29. [PMID: 38008000 DOI: 10.1016/j.ejpn.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies characterised by refractory seizures, developmental delay, or regression and generally poor prognosis. DEE are now known to have an identifiable molecular genetic basis and are usually examined using a gene panel. However, for many patients, the genetic cause has still not been identified. The aims of this study were to identify causal variants for DEE in patients for whom the previous examination with a gene panel did not determine their genetic diagnosis. It also aims for a detailed description and broadening of the phenotypic spectrum of several rare DEEs. METHODS In the last five years (2015-2020), 141 patients from all over the Czech Republic were referred to our department for genetic testing in association with their diagnosis of epilepsy. All patients underwent custom-designed gene panel testing prior to enrolment into the study, and their results were inconclusive. We opted for whole exome sequencing (WES) to identify the cause of their disorder. If a causal or potentially causal variant was identified, we performed a detailed clinical evaluation and phenotype-genotype correlation study to better describe the specific rare subtypes. RESULTS Explanatory causative variants were detected in 20 patients (14%), likely pathogenic variants that explain the epilepsy in 5 patients (3.5%) and likely pathogenic variants that do not fully explain the epilepsy in 11 patients (7.5%), and variants in candidate genes in 4 patients (3%). Variants were mostly de novo 29/40 (72.5%). SIGNIFICANCE WES enables us to identify the cause of the disease in additional patients, even after gene panel testing. It is very important to perform a WES in DEE patients as soon as possible, since it will spare the patients and their families many years of a diagnostic odyssey. In particular, patients with rare epilepsies might significantly benefit from this approach, and we propose using WES as a new standard in the diagnosis of DEE instead of targeted gene panel testing.
Collapse
Affiliation(s)
- Lucie Sedlackova
- Neurogenetic Laboratory, Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Katalin Sterbova
- Department of Paediatric Neurology, Second Faculty of Medicine, Motol Epilepsy Center, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Pavel Seeman
- Neurogenetic Laboratory, Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic; Department of Medical Genetics, Masaryk Hospital, Ústí nad Labem, Czech Republic.
| | - Jana Zarubova
- Department of Neurology, Motol Epilepsy Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Petr Marusic
- Department of Neurology, Motol Epilepsy Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Motol Epilepsy Center, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Hana Krijtova
- Department of Neurology, Motol Epilepsy Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Alena Musilova
- Neurogenetic Laboratory, Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| | - Petra Lassuthova
- Neurogenetic Laboratory, Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Full Member of the ERN EpiCARE, Czech Republic.
| |
Collapse
|
10
|
Zhu JY, Lee H, Huang X, van de Leemput J, Han Z. Distinct Roles for COMPASS Core Subunits Set1, Trx, and Trr in the Epigenetic Regulation of Drosophila Heart Development. Int J Mol Sci 2023; 24:17314. [PMID: 38139143 PMCID: PMC10744143 DOI: 10.3390/ijms242417314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Highly evolutionarily conserved multiprotein complexes termed Complex of Proteins Associated with Set1 (COMPASS) are required for histone 3 lysine 4 (H3K4) methylation. Drosophila Set1, Trx, and Trr form the core subunits of these complexes. We show that flies deficient in any of these three subunits demonstrated high lethality at eclosion (emergence of adult flies from their pupal cases) and significantly shortened lifespans for the adults that did emerge. Silencing Set1, trx, or trr in the heart led to a reduction in H3K4 monomethylation (H3K4me1) and dimethylation (H3K4me2), reflecting their distinct roles in H3K4 methylation. Furthermore, we studied the gene expression patterns regulated by Set1, Trx, and Trr. Each of the COMPASS core subunits controls the methylation of different sets of genes, with many metabolic pathways active early in development and throughout, while muscle and heart differentiation processes were methylated during later stages of development. Taken together, our findings demonstrate the roles of COMPASS series complex core subunits Set1, Trx, and Trr in regulating histone methylation during heart development and, given their implication in congenital heart diseases, inform research on heart disease.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Ng R, Kalinousky A, Fahrner JA, Bjornsson HT, Harris J. The social phenotype associated with Wiedemann-Steiner syndrome: Autistic traits juxtaposed with high social drive and prosociality. Am J Med Genet A 2023; 191:2591-2601. [PMID: 37470210 DOI: 10.1002/ajmg.a.63351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison Kalinousky
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Zhu JY, van de Leemput J, Han Z. The Roles of Histone Lysine Methyltransferases in Heart Development and Disease. J Cardiovasc Dev Dis 2023; 10:305. [PMID: 37504561 PMCID: PMC10380575 DOI: 10.3390/jcdd10070305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic marks regulate the transcriptomic landscape by facilitating the structural packing and unwinding of the genome, which is tightly folded inside the nucleus. Lysine-specific histone methylation is one such mark. It plays crucial roles during development, including in cell fate decisions, in tissue patterning, and in regulating cellular metabolic processes. It has also been associated with varying human developmental disorders. Heart disease has been linked to deregulated histone lysine methylation, and lysine-specific methyltransferases (KMTs) are overrepresented, i.e., more numerous than expected by chance, among the genes with variants associated with congenital heart disease. This review outlines the available evidence to support a role for individual KMTs in heart development and/or disease, including genetic associations in patients and supporting cell culture and animal model studies. It concludes with new advances in the field and new opportunities for treatment.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Lin Y, Chen X, Xie B, Guan Z, Chen X, Li X, Yi P, Du R, Mei H, Liu L, Zhang W, Zeng C. Novel variants and phenotypic heterogeneity in a cohort of 11 Chinese children with Wiedemann-Steiner syndrome. Front Genet 2023; 14:1085210. [PMID: 37025457 PMCID: PMC10070943 DOI: 10.3389/fgene.2023.1085210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: Wiedemann-Steiner syndrome (WSS) is a rare autosomal dominant disorder caused by deleterious heterozygous variants of the KMT2A gene. This study aims to describe the phenotypic and genotypic features of Chinese WSS patients, and assess therapeutic effects of recombinant human growth hormone (rhGH). Methods: Eleven Chinese children with WSS were enrolled in our cohort. Their clinical, imaging, biochemical and molecular findings were analyzed retrospectively. Moreover, the phenotypic features of 41 previously reported Chinese WSS patients were reviewed and included in our analysis. Results: In our cohort, the 11 WSS patients presented with classic clinical manifestations, but with different frequencies. The most common clinical features were short stature (90.9%) and developmental delay (90.9%), followed by intellectual disability (72.7%). The most frequent imaging features were patent ductus arteriosus (57.1%) and patent foramen ovale (42.9%) in cardiovascular system, and abnormal corpus callosum (50.0%) in the brain. In the set comprising 52 Chinese WSS patients, the most common clinical and imaging manifestations were developmental delay (84.6%), intellectual disability (84.6%), short stature (80.8%) and delayed bone age (68.0%), respectively. Eleven different variants, including three known and eight novel variants, of the KMT2A gene were identified in our 11 WSS patients without a hotspot variant. Two patients were treated with rhGH and yielded satisfactory height gains, but one developed acceleration of bone age. Conclusion: Our study adds 11 new patients with WSS, reveals different clinical characteristics in Chinese WSS patients, and extends the mutational spectrum of the KMT2A gene. Our study also shares the therapeutic effects of rhGH in two WSS patients without GH deficiency.
Collapse
Affiliation(s)
- Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaohong Chen
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihong Guan
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiaodan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Peng Yi
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Rong Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
14
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Unique profile of academic learning difficulties in Wiedemann-Steiner syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:101-111. [PMID: 36437529 PMCID: PMC9839653 DOI: 10.1111/jir.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by heterozygous variants in KMT2A. To date, the cognitive profile associated with WSS remains largely unknown, although emergent case series implicate increased risk of non-verbal reasoning and visual processing deficits. This study examines the academic and learning concerns associated with WSS based on a parent-report screening measure. PARTICIPANTS AND METHODS A total of 25 parents of children/adults with a molecularly-confirmed diagnosis of WSS (mean age = 12.85 years, SD = 7.82) completed the Colorado Learning Difficulties Questionnaire (CLDQ), a parent-screening measure of learning and academic difficulties. Parent ratings were compared to those from a normative community sample to determine focal areas in Math, Reading and Spatial skills that may be weaker within this clinical population. RESULTS On average, parent ratings on the Math (mean Z = -3.08, SD = 0.87) and Spatial scales (mean Z = -2.52, SD = 0.85) were significantly more elevated than that of Reading (mean Z = -1.31, SD = 1.46) (Wilcoxon sign rank test Z < -3.83, P < 0.001), reflecting relatively more challenges observed in these areas. Distribution of parent ratings in Math items largely reflect a positively skewed distribution with most endorsing over three standard deviations below a community sample. In contrast, distributions of parent ratings in Reading and Spatial domains were more symmetric but flat. Ratings for Reading items yielded much larger variance than the other two domains, reflecting a wider range of performance variability. CONCLUSIONS Parent ratings on the CLDQ suggest more difficulties with Math and Spatial skills among those with WSS within group and relative to a community sample. Study results are consistent with recent case reports on the neuropsychological profile associated with WSS and with Kabuki syndrome, which is caused by variants in the related gene KMT2D. Findings lend support for overlapping cognitive patterns across syndromes, implicating potential common disease pathogenesis.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland, Reykjavik
- Landspitali University Hospital
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Jacqueline Harris
- Kennedy Krieger Institute
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Department of Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
15
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Anxiety in Wiedemann-Steiner syndrome. Am J Med Genet A 2023; 191:437-444. [PMID: 36373844 PMCID: PMC9907226 DOI: 10.1002/ajmg.a.63040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A. Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
CARNEIRO VF, MACHADO RA, BARBOSA MC, DIAS VO, MARTELLI DRB, MARTELLI-JÚNIOR H. Dental anomalies in syndromes displaying hypertrichosis in the clinical spectrum. Braz Oral Res 2023; 37:e030. [PMID: 37018811 DOI: 10.1590/1807-3107bor-2023.vol37.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/19/2022] [Indexed: 04/05/2023] Open
Abstract
Hypertrichosis and dental anomalies may occur alone or in combination in the spectrum of many syndromes. To identify genetic entities characterized by hypertrichosis and dental anomalies, a search was performed in the Mendelian Inheritance in Man database with the terms "hypertrichosis" or "hirsutism" and "tooth" or "dental abnormalities." Nondependent androgen metabolism disturbances were classified as hypertrichosis. Genetic entities with hypertrichosis and dental anomalies were included in the study. Additional searches were performed in the PubMed and Orphanet databases, when necessary, in order to include data from scientific articles. An integrative analysis of the genes associated with the identified syndromes was conducted using STRING to characterize biological processes, pathways, and interactive networks. The p-values were subjected to the false discovery rate for the correction of multiple tests. Thirty-nine syndromes were identified, and dental agenesis was the most frequent dental anomaly present in 41.02% (n = 16) of the syndromes. Causative genes were identified in 33 out of 39 genetic syndromes. Among them, 39 genes were identified, and 38 were analyzed by STRING, which showed 148 biological processes and three pathways that were statistically significant. The most significant biological processes were the disassembly of the nucleosome (GO:0006337, p = 1.09e-06), chromosomal organization (GO:0051276, p = 1.09e-06) and remodeling of the chromatin (GO: 0006338, p = 7.86e-06), and the pathways were hepatocellular carcinoma (hsa05225, p = 5.77e-05), thermogenesis (hsa04714, p = 0.00019), and cell cycle (hsa04110, p = 0.0433). Our results showed that the identification of hypertrichosis and dental anomalies may raise the suspicion of one of the thirty-nine syndromes with both phenotypes.
Collapse
|
17
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
18
|
Individuals with Wiedemann-Steiner syndrome show nonverbal reasoning and visuospatial defects with relative verbal skill sparing. J Int Neuropsychol Soc 2022; 29:512-518. [PMID: 36062544 DOI: 10.1017/s1355617722000467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.
Collapse
|
19
|
Durand B, Schaefer E, Burger P, Baer S, Schroder C, Mandel JL, Piton A, Coutelle R. Neurocognitive and neurobehavioural characterization of two frequent forms of neurodevelopmental disorders: the DYRK1A and the Wiedemann-Steiner syndromes. Clin Genet 2022; 102:296-304. [PMID: 35821609 DOI: 10.1111/cge.14190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
DYRK1A and Wiedemann-Steiner syndromes (WSS) are two genetic conditions associated with neurodevelopmental disorders (NDDs). Although their clinical phenotype has been described, their behavioural phenotype has not systematically been studied using standardized assessment tools. To characterize the latter, we conducted a retrospective study, collecting data on developmental history, Autism Spectrum Disorder (ASD), adaptive functioning, behavioural assessments, and sensory processing of individuals with these syndromes (n=14;21). In addition, we analysed information collected from families (n=20;20) using the GenIDA database, an international patient-driven data collection aiming to better characterize natural history of genetic forms of NDDs. In the retrospective study, individuals with DYRK1A syndrome showed lower adaptive behaviour scores compared to those with WSS, whose scores showed greater heterogeneity. An ASD diagnosis was established for 57% (8/14) of individuals with DYRK1A syndrome and 24% (5/21) of those with WSS. Language and communication were severely impaired in individuals with DYRK1A syndrome, which was also evident from GenIDA data, whereas in WSS patients, exploration of behavioural phenotypes revealed the importance of anxiety symptomatology and ADHD signs, also flagged in GenIDA. This study, describing the behavioural and sensorial profiles of individuals with WSS and DYRK1A syndrome, highlighted some specificities important to be considered for patients' management.
Collapse
Affiliation(s)
- Benjamin Durand
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pauline Burger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique, Illkirch, France
| | - Sarah Baer
- Service de Pédiatrie Spécialisée et Générale, Unité de Neurologie Pédiatrique, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carmen Schroder
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique, Illkirch, France.,University of Strasbourg's Institute for Advanced Studies (USIAS), Strasbourg, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique, Illkirch, France.,Laboratoire de diagnostic génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut Universitaire de, France
| | - Romain Coutelle
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,INSERM U-1114, Clinique Psychiatrique, 1 place de l'Hôpital, Strasbourg, France
| |
Collapse
|
20
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
21
|
Reynisdottir T, Anderson KJ, Boukas L, Bjornsson HT. Missense variants causing Wiedemann-Steiner syndrome preferentially occur in the KMT2A-CXXC domain and are accurately classified using AlphaFold2. PLoS Genet 2022; 18:e1010278. [PMID: 35727845 PMCID: PMC9249231 DOI: 10.1371/journal.pgen.1010278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental disorder caused by de novo variants in KMT2A, which encodes a multi-domain histone methyltransferase. To gain insight into the currently unknown pathogenesis of WDSTS, we examined the spatial distribution of likely WDSTS-causing variants across the 15 different domains of KMT2A. Compared to variants in healthy controls, WDSTS variants exhibit a 61.9-fold overrepresentation within the CXXC domain–which mediates binding to unmethylated CpGs–suggesting a major role for this domain in mediating the phenotype. In contrast, we find no significant overrepresentation within the catalytic SET domain. Corroborating these results, we find that hippocampal neurons from Kmt2a-deficient mice demonstrate disrupted histone methylation (H3K4me1 and H3K4me3) preferentially at CpG-rich regions, but this has no systematic impact on gene expression. Motivated by these results, we combine accurate prediction of the CXXC domain structure by AlphaFold2 with prior biological knowledge to develop a classification scheme for missense variants in the CXXC domain. Our classifier achieved 92.6% positive and 92.9% negative predictive value on a hold-out test set. This classification performance enabled us to subsequently perform an in silico saturation mutagenesis and classify a total of 445 variants according to their functional effects. Our results yield a novel insight into the mechanistic basis of WDSTS and provide an example of how AlphaFold2 can contribute to the in silico characterization of variant effects with very high accuracy, suggesting a paradigm potentially applicable to many other Mendelian disorders. Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental pediatric disorder caused by the genetic disruption of the histone methyltransferase KMT2A. Since KMT2A has many different domains that perform different functions, we reasoned that by identifying the domains most enriched for WDSTS-causing genetic variants we would gain insights into the incompletely understood molecular pathogenesis of WDSTS. We discovered that the CXXC domain—which binds unmethylated CpGs—shows by far the greatest enrichment, suggesting that loss of the CpG-binding ability of KMT2A plays a central role in WDSTS. Next, to understand specific rules underlying the genetic disruption of the CXXC domain, we combined prior knowledge about the function/structure of the domain with 3D structure prediction by AlphaFold2 to develop an effect classifier for CXXC missense variants. We found that this classifier exhibits accurate performance, and we therefore applied it to provide classifications for any such variant that can possibly arise, in order to aid in the interpretation of such variants in the clinic. Our work provides novel insights into WDSTS and suggests a strategy for missense variant classification that can potentially be applied to many other pediatric genetic disorders.
Collapse
Affiliation(s)
- Tinna Reynisdottir
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kimberley Jade Anderson
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Leandros Boukas
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (LB); (HTB)
| | - Hans Tomas Bjornsson
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- * E-mail: (LB); (HTB)
| |
Collapse
|
22
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|
23
|
Spodzieja K, Olczak-Kowalczyk D. Premature Loss of Deciduous Teeth as a Symptom of Systemic Disease: A Narrative Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063386. [PMID: 35329073 PMCID: PMC8953685 DOI: 10.3390/ijerph19063386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Background: Premature loss of primary teeth can occur as a consequence of dental trauma, neonatal tooth extraction, early childhood caries, or periodontal problems, or it can be a manifestation of systemic disease. This review aims to present systemic disorders that can lead to premature loss of deciduous teeth in children and to provide a comprehensive resource for clinical practice for both physicians and dentists. Methods: This study is a narrative review of original studies and case reports published in English and Polish between 1957 and 2021 that was conducted by searching electronic scientific resources: PubMed, Google Scholar, Web of Science, and Science Direct. The schema of the qualification process is represented by a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). In total, 196 articles were identified; after provisional assessment of the titles and abstracts by two reviewers, 46 were found to be relevant to the topic, including 1 review, 16 original papers, and 27 case reports regarding systemic disease resulting in premature tooth loss. Results: In this study, 16 systemic diseases were linked to premature primary tooth loss in children: Papillon–Lefèvre syndrome, mucocutaneous dyskeratosis, Coffin–Lowry syndrome, congenital adrenal hyperplasia, Langerhans cell histiocytosis, cherubism, hypophosphatasia, acatalasia, Chediak–Higashi syndrome, cyclic neutropenia, erythromelalgia, Down syndrome, Hajdu–Cheney syndrome, short bowel syndrome, leukocyte adhesion deficiency type 1 (LAD-1), and Wiedemann–Steiner syndrome (WSS).
Collapse
|
24
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Sleep disturbances correlate with behavioral problems among individuals with Wiedemann-Steiner syndrome. Front Genet 2022; 13:950082. [PMID: 36313433 PMCID: PMC9608624 DOI: 10.3389/fgene.2022.950082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by mutation in KMT2A and characterized by neurodevelopmental delay. This study is the first prospective investigation to examine the sleep and behavioral phenotypes among those with WSS through parent-informant screening inventories. A total of 24 parents of children/adults with WSS (11F, Mean age = 12.71 years, SD = 8.17) completed the Strengths and Difficulties Questionnaire (SDQ) and 22 of these caregivers also completed the Modified Simonds and Parraga Sleep Questionnaire (MSPSQ). On average, the majority of those with WSS (83%) were rated to show borderline to clinical level of behavioral difficulties on the SDQ. Approximately 83% were rated in these ranges for hyperactivity, 63% for emotional problems, and 50% for conduct problems. When applying prior published clinical cut-off for risk of sleep disturbance among those with neurodevelopmental disorders, over 80% of our sample exceeded this limit on the MSPSQ. Largely, caregivers' ratings suggested restless sleep, rigid bedtime rituals, sleep reluctance and breathing through the mouth in sleep were most consistent problems observed. Partial correlations between sleep and behavioral domains showed elevated emotional problems were associated with parasomnia characteristics after controlling for age. Daytime drowsiness and activity were associated with more hyperactivity. Those with more night waking problems and delayed sleep onset were rated to show more severe conduct problems. Overall, these findings suggest dysfunctional sleep behaviors, hyperactivity, and affective problems are part of the neurobehavioral phenotype of WSS. Routine clinical care for those affected by WSS should include close monitoring of sleep and overactive behaviors.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Luo S, Bi B, Zhang W, Zhou R, Chen W, Zhao P, Huang Y, Yuan L, He X. Three de novo variants in KMT2A (MLL) identified by whole exome sequencing in patients with Wiedemann-Steiner syndrome. Mol Genet Genomic Med 2021; 9:e1798. [PMID: 34469078 PMCID: PMC8580087 DOI: 10.1002/mgg3.1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/17/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Wiedemann–Steiner syndrome (WSS) is an autosomal dominant disorder characterized by short stature, hypertrichosis, intellectual disability, developmental delay, along with facial dysmorphism. WSS patients exhibit great phenotypic heterogeneities. Some variants in KMT2A (MLL) gene have been identified as the cause of WSS. Methods Whole exome sequencing on the probands followed by Sanger sequencing validations in the family were applied to determine genetic variants. In silico analyses were used for predicting potential effects of the variants. Results We identified three novel de novo heterozygous variants: c.883A>T (p.Lys295*), c.4171C>T (p.Gln1391*), and c.3499T>C (p.Cys1167Arg), in KMT2A gene from three unrelated Chinese WSS patients. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, these three variants were classified as pathogenic, pathogenic and likely pathogenic variant, respectively. By reviewing all the available cases with same mutated KMT2A regions as the three patients had, we found that in addition to the representative symptoms, our patients exhibited some sporadically observed symptoms, such as severe ophthalmological symptoms, endocardial fibroelastosis, cytomegalovirus infection, and feet eversion. We also revealed that variants in different KMT2A regions contribute to the phenotypic heterogeneity of WSS, highlighting challenges in the diagnosis of syndromic disorders spanning a broad phenotypic spectrum. Conclusion Our study would aid in further broadening our knowledge about the genotype–phenotype correlation of WSS.
Collapse
Affiliation(s)
- Sukun Luo
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Bi
- Rehabilitation Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqian Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rui Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Wuhan Clinical Laboratories, BGI-Shenzhen, Wuhan, China
| | - Peiwei Zhao
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Yuan
- Ultrasonography Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
27
|
Lopez-Martín S, Albert J, Peña Vila-Belda MDM, Liu X, Zhang ZC, Han J, Jiménez de Domingo A, Fernández-Mayoralas DM, Fernández-Perrone AL, Calleja-Pérez B, Álvarez S, Fernández-Jaén A. A mild clinical and neuropsychological phenotype of Renpenning syndrome: A new case report with a maternally inherited PQBP1 missense mutation. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:921-927. [PMID: 34470565 DOI: 10.1080/21622965.2021.1970551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mutations in the PQBP1 gene are associated with Renpenning syndrome (RENS1, MIM# 309500). Most cases are characterized by intellectual disability, but a detailed neuropsychological profile has not yet been established. The present case study of a 8.5 years-old male child with a missense novel mutation in the PQBP1 gene expands existing understanding of this syndrome by presenting a milder clinical and neuropsychological phenotype. Whole exome trio analysis sequencing revealed a maternally inherited PQBP1 missense mutation in chromosome X [NM_001032383.1, c.727C > T (p.Arg243Trp)]. Variant functional studies demonstrated a significant reduction in the interaction between PQBP1 and the component of the nuclear pre-mRNA splicing machinery, U5-15KD. A comprehensive neuropsychological assessment revealed marked deficits in processing speed, attention and executive functioning (including planning, inhibitory control and working memory) without intellectual disability. Several components of language processing were also impaired. These results support that this mutation partially disrupts the function of this gene, which is known to play critical roles in embryonic and neural development. As most of the genomic PQBP1 abnormalities associated with intellectual disability have been found to be loss-of-function mutations, we hypothesize that a partial loss-of-function of this variant is associated with a mild behavioral and neuropsychological phenotype.
Collapse
Affiliation(s)
- Sara Lopez-Martín
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain.,Neuromottiva, Madrid, Spain
| | - Jacobo Albert
- Faculty of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Xian Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zi-Chao Zhang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | | | | | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
28
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Wang X, Zhang G, Lu Y, Luo X, Wu W. Trio-WES reveals a novel de novo missense mutation of KMT2A in a Chinese patient with Wiedemann-Steiner syndrome: A case report. Mol Genet Genomic Med 2020; 9:e1533. [PMID: 33325147 PMCID: PMC7963408 DOI: 10.1002/mgg3.1533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Wiedemann-Steiner Syndrome (WSS) is an autosomal dominant genetic condition caused by mutations in the KMT2A gene. Lysine methyltransferase, encoded by KMT2A, plays critical roles in the regulation of gene expression during early development. METHODS Trio-based whole exome sequencing (Trio-WES) was performed on a 15 months old Chinese girl and her two parents by MyGenostics (Beijing, China) using the Illumina HiSeq X ten system. Variants were confirmed with Sanger sequencing. She exhibited mild/moderate intellectual disability (ID), hypotonia, hypertrichosis cubiti, hypertrichosis on the back, dysmorphic facies, psychomotor retardation, growth delay, small and puffy hands, fat pads anterior to calcanei, and palmar/plantar grooves. RESULTS Trio-WES revealed a novel de novo mutation of KMT2A gene (NM_001197104.1: c.3566G>T, p.Cys1189Phe). WSS was diagnosed based on WES and clinical features. CONCLUSION Our findings expand the phenotypic and mutation spectra of WSS.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guijiao Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Carman KB, Kaplan E, Aslan CN, Kocagil S, Cilinigr O, Yarar C. Wiedemann–Steiner Syndrome: A Rare Differential Diagnosis of Neurodevelopmental Delay and Dysmorphic Features. J Pediatr Genet 2020; 11:162-164. [DOI: 10.1055/s-0040-1716709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
AbstractWiedemann–Steiner syndrome (WSS) is a rare genetic disorder characterized by dysmorphic features, neurodevelopmental delay, growth retardation, and hypertrichosis cubiti. It is caused by pathogenic variants in the KMT2A gene. Here, we report a child with WSS presented with neurodevelopmental delay. Genetic analysis revealed a heterozygous c.2312dupC (p.Ser774Valfs*11) variant at the KMT2A gene that was classified as pathogenic in dbSNP (rs1057518649). To the best of our knowledge, this is the first patient of WSS from Turkey. This case draws attention to the diagnosis of WSS in children with neurodevelopmental delay.
Collapse
Affiliation(s)
- Kursat Bora Carman
- Department of Pediatric Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Emre Kaplan
- Department of Pediatric Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cefa Nil Aslan
- Department of Pediatric Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sinem Kocagil
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Oguz Cilinigr
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Coskun Yarar
- Department of Pediatric Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
32
|
Wang J, Lu QR. Convergent epigenetic regulation of glial plasticity in myelin repair and brain tumorigenesis: A focus on histone modifying enzymes. Neurobiol Dis 2020; 144:105040. [PMID: 32800999 DOI: 10.1016/j.nbd.2020.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Brain regeneration and tumorigenesis are complex processes involving in changes in chromatin structure to regulate cellular states at the molecular and genomic level. The modulation of chromatin structure dynamics is critical for maintaining progenitor cell plasticity, growth and differentiation. Oligodendrocyte precursor cells (OPC) can be differentiated into mature oligodendrocytes, which produce myelin sheathes to permit saltatory nerve conduction. OPCs and their primitive progenitors such as pri-OPC or pre-OPC are highly adaptive and plastic during injury repair or brain tumor formation. Recent studies indicate that chromatin modifications and epigenetic homeostasis through histone modifying enzymes shape genomic regulatory landscape conducive to OPC fate specification, lineage differentiation, maintenance of myelin sheaths, as well as brain tumorigenesis. Thus, histone modifications can be convergent mechanisms in regulating OPC plasticity and malignant transformation. In this review, we will focus on the impact of histone modifying enzymes in modulating OPC plasticity during normal development, myelin regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
33
|
Fontana P, Passaretti FF, Maioli M, Cantalupo G, Scarano F, Lonardo F. Clinical and molecular spectrum of Wiedemann-Steiner syndrome, an emerging member of the chromatinopathy family. World J Med Genet 2020; 9:1-11. [DOI: 10.5496/wjmg.v9.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/19/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Wiedemann-Steiner syndrome (OMIM #605130) is a rare congenital malformation syndrome characterized by hypertrichosis cubiti associated with short stature; consistent facial features, including long eyelashes, thick or arched eyebrows with a lateral flare, wide nasal bridge, and downslanting and vertically narrow palpebral fissures; mild to moderate intellectual disability; behavioral difficulties; and hypertrichosis on the back. It is caused by heterozygous pathogenic variants in KMT2A. This gene has an established role in histone methylation, which explains the overlap of Wiedemann-Steiner syndrome with other chromatinopathies, a heterogeneous group of syndromic conditions that share a common trigger: The disruption of one of the genes involved in chromatin modification, leading to dysfunction of the epigenetic machinery.
Collapse
Affiliation(s)
- Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento 82100, Italy
| | | | - Marianna Maioli
- Medical Genetics Unit, San Pio Hospital, Benevento 82100, Italy
| | | | | | | |
Collapse
|
34
|
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 2020; 10:7046. [PMID: 32341405 PMCID: PMC7184603 DOI: 10.1038/s41598-020-63928-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.
Collapse
Affiliation(s)
- Weizhen Ji
- Departments of Pediatrics, New Haven, CT, USA
| | | | - Joshua Copel
- Departments of Pediatrics, New Haven, CT, USA
- Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | | | | | - Martina Brueckner
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
- Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT, USA
| | - Mustafa K Khokha
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
| | - Laura R Ment
- Departments of Pediatrics, New Haven, CT, USA.
- Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| |
Collapse
|
35
|
Lautrup CK, Teik KW, Unzaki A, Mizumoto S, Syx D, Sin HH, Nielsen IK, Markholt S, Yamada S, Malfait F, Matsumoto N, Miyake N, Kosho T. Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genomic Med 2020; 8:e1197. [PMID: 32130795 PMCID: PMC7216804 DOI: 10.1002/mgg3.1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023] Open
Abstract
Background Musculocontractural Ehlers–Danlos Syndrome (mcEDS) is a rare connective tissue disorder caused by biallelic loss‐of‐function variants in CHST14 (mcEDS‐CHST14) or DSE (mcEDS‐DSE), both of which result in defective dermatan sulfate biosynthesis. Forty‐one patients with mcEDS‐CHST14 and three patients with mcEDS‐DSE have been described in the literature. Methods Clinical, molecular, and glycobiological findings in three additional patients with mcEDS‐DSE were investigated. Results Three patients from two families shared craniofacial characteristics (hypertelorism, blue sclera, midfacial hypoplasia), skeletal features (pectus and spinal deformities, characteristic finger shapes, progressive talipes deformities), skin features (fine or acrogeria‐like palmar creases), and ocular refractive errors. Homozygous pathogenic variants in DSE were found: c.960T>A/p.Tyr320* in patient 1 and c.996dupT/p.Val333Cysfs*4 in patients 2 and 3. No dermatan sulfate was detected in the urine sample from patient 1, suggesting a complete depletion of DS. Conclusion McEDS‐DSE is a congenital multisystem disorder with progressive symptoms involving craniofacial, skeletal, cutaneous, and cardiovascular systems, similar to the symptoms of mcEDS‐CHST14. However, the burden of symptoms seems lower in patients with mcEDS‐DSE.
Collapse
Affiliation(s)
- Charlotte K Lautrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Keng W Teik
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ai Unzaki
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Problem-Solving Oriented Training Program for Advanced Medical Personnel: NGSD (Next Generation Super Doctor) Project, Matsumoto, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Heng H Sin
- Department of Pediatrics, Sabah Women and Children's Hospital, Kota Kinabalu Sabah, Malaysia
| | - Irene K Nielsen
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Sara Markholt
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
36
|
Arora V, Puri RD, Bijarnia‐Mahay S, Verma IC. Expanding the phenotypic and genotypic spectrum of Wiedemann–Steiner syndrome: First patient from India. Am J Med Genet A 2020; 182:953-956. [DOI: 10.1002/ajmg.a.61534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/01/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital New Delhi India
| | - Ratna D. Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital New Delhi India
| | | | - Ishwar C. Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital New Delhi India
| |
Collapse
|
37
|
Gupta S, Verma P, Kapoor S, Sait H, Ghosh S. Dental phenotype of multiple impacted supernumerary teeth in Wiedemann–Steiner syndrome. JOURNAL OF CLEFT LIP PALATE AND CRANIOFACIAL ANOMALIES 2020. [DOI: 10.4103/jclpca.jclpca_12_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Grangeia A, Leão M, Moura CP. Wiedemann-Steiner syndrome in two patients from Portugal. Am J Med Genet A 2019; 182:25-28. [PMID: 31710778 DOI: 10.1002/ajmg.a.61407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/28/2023]
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder characterized by growth retardation, facial dysmorphism, hypertrichosis cubiti and neurodevelopment delay. It is caused by pathogenic variants in the KMT2A gene. This report describes two unrelated Portuguese patients, age 11 and 17 years, with a phenotype concordant with WSS and clinical and molecular diagnosis of WSS by the identification of two novel frameshift variants in the KMT2A gene. This work also highlights the presence of certain clinical features in patients with growth retardation and development delay and should draw attention to the diagnosis of WSS, when hirsutism, particularly hypertrichosis cubiti is present.
Collapse
Affiliation(s)
- Ana Grangeia
- Department of Medical Genetics, São João Hospital Center, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Oporto University, Porto, Portugal
| | - Miguel Leão
- Department of Medical Genetics, São João Hospital Center, Porto, Portugal.,Department of Genetics, Faculty of Medicine, Oporto University, Porto, Portugal
| | - Carla P Moura
- Department of Medical Genetics, São João Hospital Center, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Oporto University, Porto, Portugal.,Department of Genetics, Faculty of Medicine, Oporto University, Porto, Portugal
| |
Collapse
|
39
|
Chan AJS, Cytrynbaum C, Hoang N, Ambrozewicz PM, Weksberg R, Drmic I, Ritzema A, Schachar R, Walker S, Uddin M, Zarrei M, Yuen RKC, Scherer SW. Expanding the neurodevelopmental phenotypes of individuals with de novo KMT2A variants. NPJ Genom Med 2019; 4:9. [PMID: 31044088 PMCID: PMC6486600 DOI: 10.1038/s41525-019-0083-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
De novo loss-of-function (LoF) variants in the KMT2A gene are associated with Wiedemann-Steiner Syndrome (WSS). Recently, de novo KMT2A variants have been identified in sequencing studies of cohorts of individuals with neurodevelopmental disorders (NDDs). However, most of these studies lack the detailed clinical information required to determine whether those individuals have isolated NDDs or WSS (i.e. syndromic NDDs). We performed thorough clinical and neurodevelopmental phenotyping on six individuals with de novo KMT2A variants. From these data, we found that all six patients met clinical criteria for WSS and we further define the neurodevelopmental phenotypes associated with KMT2A variants and WSS. In particular, we identified a subtype of Autism Spectrum Disorder (ASD) in five individuals, characterized by marked rigid, repetitive and inflexible behaviours, emotional dysregulation, externalizing behaviours, but relative social motivation. To further explore the clinical spectrum associated with KMT2A variants, we also conducted a meta-analysis of individuals with KMT2A variants reported in the published literature. We found that de novo LoF or missense variants in KMT2A were significantly more prevalent than predicted by a previously established statistical model of de novo mutation rate for KMT2A. Our genotype-phenotype findings better define the clinical spectrum associated with KMT2A variants and suggest that individuals with de novo LoF and missense variants likely have a clinically unrecognized diagnosis of WSS, rather than isolated NDD or ASD alone. This highlights the importance of a clinical genetic and neurodevelopmental assessment for individuals with such variants in KMT2A.
Collapse
Affiliation(s)
- Ada J. S. Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Cheryl Cytrynbaum
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON Canada
| | - Patricia M. Ambrozewicz
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON Canada
- Department of Psychology, The Hospital for Sick Children, Toronto, ON Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Irene Drmic
- Ron Joyce Children’s Health Centre, Hamilton Health Services, Hamilton, ON Canada
| | - Anne Ritzema
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON Canada
- Department of Psychology, The Hospital for Sick Children, Toronto, ON Canada
| | - Russell Schachar
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON Canada
- Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Susan Walker
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Mohammed Uddin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Ryan K. C. Yuen
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- McLaughin Centre, University of Toronto, Toronto, ON Canada
| |
Collapse
|
40
|
Ramirez-Montaño D, Pachajoa H. Wiedemann-Steiner syndrome with a novel pathogenic variant in KMT2A: a case report. Colomb Med (Cali) 2019; 50:40-45. [PMID: 31168168 PMCID: PMC6536042 DOI: 10.25100/cm.v50i1.3555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Case Description: We report the case of a one-year-old girl who was diagnosed with Wiedemann-Steiner Syndrome based on the identification of a novel de novo frameshift mutation in the KMT2A gene by whole exome sequencing and supported by her clinical features. Clinical Findings: KMT2A mutations cause Wiedemann-Steiner Syndrome, a very rare genetic disorder characterized by congenital hypertrichosis, short stature, intellectual disability, and distinct facial features. Treatment and Outcome: Whole exome sequencing identified a novel frameshift variant: c. 4177dupA (p.Ile1393Asnfs * 14) in KMT2A; this change generates an alteration of the specific binding to non-methylated CpG motifs of the DNA to the protein. The genotype and phenotype of the patient were compared with those of earlier reported patients in the literature. Clinical Relevance: In diseases with low frequency, it is necessary to establish a genotype-phenotype correlation that allows the establishment of therapeutic and follow-up goals. The phenotype comparation with other reported cases did not show differences attributable to sex or age among patients with Wiedemann-Steiner Syndrome. Whole exome sequencing allows identifying causality in conditions with high clinical and genetic heterogeneity like hypertrichosis.
Collapse
Affiliation(s)
- Diana Ramirez-Montaño
- Universidad Icesi, Facultad de Ciencias de la Salud. Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER). Cali, Colombia
| | - Harry Pachajoa
- Universidad Icesi, Facultad de Ciencias de la Salud. Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER). Cali, Colombia.,Fundación Clínica Valle del Lili. Cali, Colombia
| |
Collapse
|
41
|
Feldman HR, Dlouhy SR, Lah MD, Payne KK, Weaver DD. The progression of Wiedemann-Steiner syndrome in adulthood and two novel variants in the KMT2A gene. Am J Med Genet A 2018; 179:300-305. [PMID: 30549396 DOI: 10.1002/ajmg.a.60698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Wiedemann-Steiner syndrome is a genetic condition associated with dysmorphic facies, hypertrichosis, short stature, developmental delay, and intellectual disability. Congenital malformations of the cerebral, cardiac, renal, and optic structures have also been reported. Because the majority of reported individuals with this condition have been under age 20, the long-term prognosis is not well defined. Here we report on two further unrelated individuals diagnosed with Wiedemann-Steiner syndrome, one of whom is in her third decade of life. In addition, both individuals have novel KMT2A mutations. The information provided below about the outcome in Wiedemann-Steiner syndrome is important for families of affected individuals.
Collapse
Affiliation(s)
- Hailey R Feldman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen R Dlouhy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa D Lah
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katelyn K Payne
- Section of Child Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
42
|
Li N, Wang Y, Yang Y, Wang P, Huang H, Xiong S, Sun L, Cheng M, Song C, Cheng X, Ding Y, Chang G, Chen Y, Xu Y, Yu T, Yao RE, Shen Y, Wang X, Wang J. Description of the molecular and phenotypic spectrum of Wiedemann-Steiner syndrome in Chinese patients. Orphanet J Rare Dis 2018; 13:178. [PMID: 30305169 PMCID: PMC6180513 DOI: 10.1186/s13023-018-0909-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023] Open
Abstract
Background Wiedemann–Steiner syndrome (WDSTS) is a rare genetic disorder characterized by facial gestalt, neurodevelopmental delay, skeletal anomalies and growth retardation, which is caused by variation of KMT2A gene. To date, only 2 Chinese WDSTS patients have been reported. Here, we report the phenotypes and KMT2A gene variations in 14 unrelated Chinese WDSTS patients and investigate the phenotypic differences between the Chinese and French cohorts. Methods Next generation sequencing was performed for each patient, and the variants in the KMT2A gene were validated by Sanger sequencing. The phenotypes of 16 Chinese WDSTS patients were summarized and compared to 33 French patients. Results Genetic sequencing identified 13 deleterious de novo KMT2A variants in 14 patients, including 10 truncating, 2 missenses and 1 splicing variants. Of the 13 variants, 11 are novel and two have been reported previously. One of the patients is mosaic in the KMT2A gene. The variation spectra and phenotypic profiles of the Chinese WDSTS patients showed no difference with patients of other ethnicities; however, differ in the frequencies of several clinical features. We demonstrated that variations in the KMT2A gene can lead to both advanced and delayed bone age. We identified 6 novel phenotypes, which include microcephaly, deep palmar crease, external ear deformity, carpal epiphyseal growth retardation, dyslipidemia, and glossoptosis. In addition, patients harbored missense variants in the CXXC zinc finger domain of KMT2A showed more severe neurophenotypes. Conclusion Our study consists of the largest cohort of Chinese WDSTS patients that continues to expand the WDSTS phenotypic and variation spectrum. Our results support the notion that the CXXC zinc finger domain of KMT2A gene is a hotspot for missense variants associated with more severe neurophenotypes. Electronic supplementary material The online version of this article (10.1186/s13023-018-0909-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | | | - Hui Huang
- Central laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | - Shiyi Xiong
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Luming Sun
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolic Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders. Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xinran Cheng
- Department of Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, Sichuan Province, Chengdu, 610091, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
43
|
RNA Sequencing and Pathway Analysis Identify Important Pathways Involved in Hypertrichosis and Intellectual Disability in Patients with Wiedemann-Steiner Syndrome. Neuromolecular Med 2018; 20:409-417. [PMID: 30014449 DOI: 10.1007/s12017-018-8502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 01/10/2023]
Abstract
A growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS. Using fibroblasts from four WSS patients harboring loss-of-function KMT2A variants, we performed RNA sequencing and identified a number of genes for which transcription was altered in KMT2A-mutated cells compared to the control ones. Strikingly, analysis of the pathways and biological functions significantly deregulated between patients with WSS and healthy individuals revealed a number of processes predicted to be altered that are relevant for hypertrichosis and intellectual disability, the cardinal signs of this disease.
Collapse
|
44
|
Baer S, Afenjar A, Smol T, Piton A, Gérard B, Alembik Y, Bienvenu T, Boursier G, Boute O, Colson C, Cordier MP, Cormier-Daire V, Delobel B, Doco-Fenzy M, Duban-Bedu B, Fradin M, Geneviève D, Goldenberg A, Grelet M, Haye D, Heron D, Isidor B, Keren B, Lacombe D, Lèbre AS, Lesca G, Masurel A, Mathieu-Dramard M, Nava C, Pasquier L, Petit A, Philip N, Piard J, Rondeau S, Saugier-Veber P, Sukno S, Thevenon J, Van-Gils J, Vincent-Delorme C, Willems M, Schaefer E, Morin G. Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases. Clin Genet 2018; 94:141-152. [PMID: 29574747 DOI: 10.1111/cge.13254] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 families and mosaicism in one family. Clinically, we observed a broad phenotypic spectrum with regard to ID (mild to severe), the facies (typical or not of WSS) and associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Hypertrichosis cubiti that was supposed to be pathognomonic in the literature was found only in 61% of our cases. This is the largest series of WSS cases yet described to date. A majority of patients exhibited suggestive features, but others were less characteristic, only identified by molecular diagnosis. The prevalence of WSS was higher than expected in patients with ID, suggesting than KMT2A is a major gene in ID.
Collapse
Affiliation(s)
- S Baer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A Afenjar
- Unité de Génétique, Hôpital Armand Trousseau-La Roche-Guyon, AP-HP, Paris, France
| | - T Smol
- Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - A Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - B Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Y Alembik
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - T Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - G Boursier
- Département Génétique Médicale, Laboratoire génétique moléculaire maladies auto inflammatoires et maladies rares, CHRU de Montpellier, Montpellier, France
| | - O Boute
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - C Colson
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M-P Cordier
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - V Cormier-Daire
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - B Delobel
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Doco-Fenzy
- Service de Génétique, CHU de Reims, Reims, France
| | - B Duban-Bedu
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Fradin
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - D Geneviève
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - A Goldenberg
- Service de Génétique Médicale, CHU de Rouen, Rouen, France
| | - M Grelet
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - D Haye
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Heron
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - B Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - B Keren
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - A-S Lèbre
- Laboratoire de Génétique, Service de Génétique et Biologie de la Reproduction, CHU de Reims, Reims, France
| | - G Lesca
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - A Masurel
- Centre de Génétique, CHU Dijon, Hôpital d'Enfants, Dijon, France
| | | | - C Nava
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - L Pasquier
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - A Petit
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| | - N Philip
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - J Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU Besançon, Besançon, France
| | - S Rondeau
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - P Saugier-Veber
- Département de Génétique, CHU Rouen, Inserm U1079, Institut pour la recherche et l'innovation en Biomédecine, Université de Rouen, Rouen, France
| | - S Sukno
- Service de Neuropédiatrie, Hôpital Saint Vincent de Paul, Groupe Hospitalier de l'Institut Catholique Lillois, Faculté Libre de Médecine, Lille, France
| | - J Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - J Van-Gils
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - C Vincent-Delorme
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M Willems
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - E Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - G Morin
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
45
|
Lebrun N, Giurgea I, Goldenberg A, Dieux A, Afenjar A, Ghoumid J, Diebold B, Mietton L, Briand-Suleau A, Billuart P, Bienvenu T. Molecular and cellular issues of KMT2A variants involved in Wiedemann-Steiner syndrome. Eur J Hum Genet 2017; 26:107-116. [PMID: 29203834 DOI: 10.1038/s41431-017-0033-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Variants in KMT2A, encoding the histone methyltransferase KMT2A, are a growing cause of intellectual disability (ID). Up to now, the majority of KMT2A variants are non-sense and frameshift variants causing a typical form of Wiedemann-Steiner syndrome. We studied KMT2A gene in a cohort of 200 patients with unexplained syndromic and non-syndromic ID and identified four novel variants, one splice and three missense variants, possibly deleterious. We used primary cells from the patients and molecular approaches to determine the deleterious effects of those variants on KMT2A expression and function. For the putative splice variant c.11322-1G>A, we showed that it led to only one nucleotide deletion and loss of the C-terminal part of the protein. For two studied KMT2A missense variants, c.3460C>T (p.(Arg1154Trp)) and c.8558T>G (p.(Met2853Arg)), located at the cysteine-rich CXXC domain and the transactivation domain of the protein, respectively, we found altered KMT2A target genes expression in patient's fibroblasts compared to controls. Furthermore, we found a disturbed subcellular distribution of KMT2A for the c.3460C>T mutant. Taken together, our results demonstrated the deleterious impact of the splice variant and of the missense variants located at two different functional domains and suggested reduction of KMT2A function as the disease-causing mechanism.
Collapse
Affiliation(s)
- Nicolas Lebrun
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Irina Giurgea
- Service de Génétique, Hôpital Trousseau, Paris, France
| | - Alice Goldenberg
- Service de génétique, CHU de Rouen et Inserm U1079, Université de Rouen, Center Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Anne Dieux
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Alexandra Afenjar
- GRC Concer-LD, Sorbonne universités, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Jamal Ghoumid
- Service de génétique clinique Guy Fontaine CHRU de Lille - Hôpital Jeanne de Flandre Avenue Eugène Avinée, 59037, LILLE, France
| | - Bertrand Diebold
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Léo Mietton
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Briand-Suleau
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - Pierre Billuart
- Inserm, Institut Cochin, U1016, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Bienvenu
- Inserm, Institut Cochin, U1016, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, HUPC, AP-HP, Paris, France.
| |
Collapse
|
46
|
Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities. Eur J Hum Genet 2017; 25:1335-1344. [PMID: 29255178 DOI: 10.1038/s41431-017-0023-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
Kabuki syndrome is a monogenic disorder caused by loss of function variants in either of two genes encoding histone-modifying enzymes. We performed targeted sequencing in a cohort of 27 probands with a clinical diagnosis of Kabuki syndrome. Of these, 12 had causative variants in the two known Kabuki syndrome genes. In 2, we identified presumptive loss of function de novo variants in KMT2A (missense and splice site variants), a gene that encodes another histone modifying enzyme previously exclusively associated with Wiedermann-Steiner syndrome. Although Kabuki syndrome is a disorder of histone modification, we also find alterations in DNA methylation among individuals with a Kabuki syndrome diagnosis relative to matched normal controls, regardless of whether they carry a variant in KMT2A or KMT2D or not. Furthermore, we observed characteristic global abnormalities of DNA methylation that distinguished patients with a loss of function variant in KMT2D or missense or splice site variants in either KMT2D or KMT2A from normal controls. Our results provide new insights into the relationship of genotype to epigenotype and phenotype and indicate cross-talk between histone and DNA methylation machineries exposed by inborn errors of the epigenetic apparatus.
Collapse
|
47
|
Enokizono T, Ohto T, Tanaka R, Tanaka M, Suzuki H, Sakai A, Imagawa K, Fukushima H, Iwabuti A, Fukushima T, Sumazaki R, Uehara T, Takenouchi T, Kosaki K. Preaxial polydactyly in an individual with Wiedemann-Steiner syndrome caused by a novel nonsense mutation in KMT2A. Am J Med Genet A 2017; 173:2821-2825. [PMID: 28815892 DOI: 10.1002/ajmg.a.38405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Wiedemann-Steiner syndrome (WDSTS) is an autosomal dominant disorder characterized by hypertrichosis, intellectual disability, and dysmorphic facial appearances (down-slanted vertically narrow palpebral fissures, wide nasal bridge, broad nasal tip, and thick eyebrows). In 2012, Jones and co-workers identified heterozygous mutations in KMT2A (lysine methyltransferase 2A) as the molecular cause of WDSTS. Although the phenotype of this syndrome continues to expand, the associated features are not fully understood. Here, we report WDSTS in a 12-year-old Japanese boy with a novel nonsense mutation in KMT2A. He had right preaxial polydactyly, which has not been previously reported in WDSTS. We could not identify a causal relationship between the KMT2A mutation and preaxial polydactyly, and cannot exclude the preaxial polydactyly is a simple coincidence. We summarized the clinical features of WDSTS associated with KMT2A mutation and discussed the cardinal symptoms in detail.
Collapse
Affiliation(s)
- Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Tatsuyuki Ohto
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryuta Tanaka
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hisato Suzuki
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Aiko Sakai
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Iwabuti
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Bogaert DJ, Dullaers M, Kuehn HS, Leroy BP, Niemela JE, De Wilde H, De Schryver S, De Bruyne M, Coppieters F, Lambrecht BN, De Baets F, Rosenzweig SD, De Baere E, Haerynck F. Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes. Sci Rep 2017. [PMID: 28623346 PMCID: PMC5473876 DOI: 10.1038/s41598-017-02434-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Syndromic primary immunodeficiencies are rare genetic disorders that affect both the immune system and other organ systems. More often, the immune defect is not the major clinical problem and is sometimes only recognized after a diagnosis has been made based on extra-immunological abnormalities. Here, we report two sibling pairs with syndromic primary immunodeficiencies that exceptionally presented with a phenotype resembling early-onset common variable immunodeficiency, while extra-immunological characteristics were not apparent at that time. Additional features not typically associated with common variable immunodeficiency were diagnosed only later, including skeletal and organ anomalies and mild facial dysmorphism. Whole exome sequencing revealed KMT2A-associated Wiedemann-Steiner syndrome in one sibling pair and their mother. In the other sibling pair, targeted testing of the known disease gene for Roifman syndrome (RNU4ATAC) provided a definite diagnosis. With this study, we underline the importance of an early-stage and thorough genetic assessment in paediatric patients with a common variable immunodeficiency phenotype, to establish a conclusive diagnosis and guide patient management. In addition, this study extends the mutational and immunophenotypical spectrum of Wiedemann-Steiner and Roifman syndromes and highlights potential directions for future pathophysiological research.
Collapse
Affiliation(s)
- Delfien J Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB Inflammation Research Centre, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB Inflammation Research Centre, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Centre, National Institutes of Health, Bethesda, MD, USA
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Centre, National Institutes of Health, Bethesda, MD, USA
| | - Hans De Wilde
- Department of Paediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Sarah De Schryver
- Department of Paediatric Allergy and Immunology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Centre, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Frans De Baets
- Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Centre, National Institutes of Health, Bethesda, MD, USA
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium. .,Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
49
|
Aggarwal A, Rodriguez-Buritica DF, Northrup H. Wiedemann-Steiner syndrome: Novel pathogenic variant and review of literature. Eur J Med Genet 2017; 60:285-288. [PMID: 28359930 DOI: 10.1016/j.ejmg.2017.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/30/2017] [Accepted: 03/15/2017] [Indexed: 01/28/2023]
Abstract
Wiedemann-Steiner syndrome (WDSTS) is a very rare genetic disorder characterized by short stature, intellectual disability and distinctive facial appearance. We present a five-year-old boy who was diagnosed with WDSTS based on identification of a novel de novo pathogenic variant in the KMT2A gene (OMIM: 159555) by Whole Exome Sequencing and supported by some characteristic clinical features. Genotype and phenotype of the patient is compared with the earlier reported patients in the literature, in an attempt to broaden our knowledge of this rare syndrome.
Collapse
Affiliation(s)
- Anjali Aggarwal
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States.
| | - David F Rodriguez-Buritica
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|
50
|
Miyatake S, Okamoto N, Stark Z, Nabetani M, Tsurusaki Y, Nakashima M, Miyake N, Mizuguchi T, Ohtake A, Saitsu H, Matsumoto N. ANKRD11 variants cause variable clinical features associated with KBG syndrome and Coffin-Siris-like syndrome. J Hum Genet 2017; 62:741-746. [PMID: 28250421 PMCID: PMC5537415 DOI: 10.1038/jhg.2017.24] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 02/03/2023]
Abstract
KBG syndrome (KBGS) is an autosomal dominant multiple congenital anomaly-intellectual disability syndrome, characterized by developmental delay with neurological involvements, macrodontia of the upper central incisors, characteristic facial dysmorphism and skeletal anomalies. Variants in ANKRD11 cause KBGS. We present five individuals from four families with ANKRD11 variants identified by whole-exome sequencing. Four of the five were clinically affected, and their diagnoses were varied. One was typical KBGS, two were Coffin-Siris syndrome-like (CSS), and one was intellectual disability with infantile spasms. One individual showed extremely mild phenotype. All individuals fulfilled the proposed diagnostic criteria for KBGS. Phenotypic features overlap between KBGS and CSS to some extent, and characteristic dental and fifth finger/toe findings can indicate differential diagnosis. These findings indicate that patients with ANKRD11 variants occupy a wide spectrum of intellectual disability, including clinically normal individuals. This is the first report highlighting the clinical overlap between KBGS and CSS and supporting the recently proposed clinical concept, in which transcriptional machineries are disrupted.
Collapse
Affiliation(s)
- Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Zornitza Stark
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Australia
| | - Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka City, Osaka, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|