1
|
Roach BJ, Ford JM, Nicholas S, Ferri JM, Gunduz-Bruce H, Krystal JH, Jaeger J, Mathalon DH. Gamma oscillations and excitation/inhibition imbalance: parallel effects of N-methyl D-aspartate receptor antagonism and psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00030-8. [PMID: 39832734 DOI: 10.1016/j.bpsc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Auditory steady-state response (ASSR) abnormalities in the 40-Hz (gamma band) frequency have been observed in schizophrenia and rodent studies of N-methyl D-aspartate glutamate receptor (NMDAR) hypofunction. However, the extent to which 40-Hz ASSR abnormalities in schizophrenia resemble deficits in 40-Hz ASSR induced by acute administration of ketamine, an NMDAR antagonist, is not yet known. METHODS To address this knowledge gap, we conducted parallel EEG studies: a crossover, placebo-controlled ketamine drug challenge study in healthy subjects (Study 1) and a comparison of patients with schizophrenia and healthy controls subjects (Study 2). Time-frequency analysis of the ASSR was used to calculate baseline, broadband gamma power, evoked power, total power, phase-locking factor, and phase-locking angle. RESULTS Relative to healthy controls, schizophrenia patients exhibited increases in pre-stimulus broadband gamma power and reductions in 40-Hz ASSR evoked power, total power, and phase-locking factor, replicating prior studies. However, we failed to replicate previous findings of 40-Hz ASSR phase delay in schizophrenia. Relative to placebo, ketamine: increased pre-stimulus broadband gamma power, reduced 40-Hz ASSR evoked power, total power, and phase-locking factor, and advanced the phase of the 40-Hz ASSR. CONCLUSION Normalized by their respective control groups/conditions, direct comparison of these measures between schizophrenia and ketamine data only revealed significant differences in phase, supporting the role of NMDAR hypofunction in mediating gamma oscillation abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Brian J Roach
- Northern California Institute for Research and Education, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States; University of California, San Francisco, San Francisco, CA, United States
| | - Spero Nicholas
- Northern California Institute for Research and Education, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jamie M Ferri
- University of California, San Francisco, San Francisco, CA, United States
| | - Handan Gunduz-Bruce
- Yale University School of Medicine, New Haven, CT, United States; Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - John H Krystal
- Yale University School of Medicine, New Haven, CT, United States; Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Judith Jaeger
- Albert Einstein College of Medicine and CognitionMetrics, LLC (employee of AstraZeneca at the time the work was done)
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States; University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
2
|
Brakatselos C, Polissidis A, Ntoulas G, Asprogerakas MZ, Tsarna O, Vamvaka-Iakovou A, Nakas G, Delis A, Tzimas P, Skaltsounis L, Silva J, Delis F, Oliveira JF, Sotiropoulos I, Antoniou K. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacology 2024; 50:388-400. [PMID: 39242923 PMCID: PMC11631973 DOI: 10.1038/s41386-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece
| | - George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Olga Tsarna
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Vamvaka-Iakovou
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasios Delis
- Center of Basic Research, Biological Imaging Unit, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Petros Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Joao Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
3
|
Cizus E, Jasinskyte U, Guzulaitis R. Effects of acute and chronic ketamine administration on spontaneous and evoked brain activity. Brain Res 2024; 1846:149232. [PMID: 39260789 DOI: 10.1016/j.brainres.2024.149232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Schizophrenia is believed to be, at least in part, a dysfunction of the glutamatergic system. In line with anatomical evidence, suppressing N-methyl-D-aspartate (NMDA) neurotransmission leads to symptoms that are characteristic of schizophrenia. Rodent models of schizophrenia often involve the acute application of NMDA antagonists, which produce both behavioural and brain activity changes that closely resemble symptoms observed in schizophrenia. It is, however, important to note that the full spectrum of schizophrenia symptoms may not be manifested following the acute suppression of NMDA receptors. This has led to the proposal of a chronic model where NMDA receptors are suppressed for prolonged periods. Although the chronic model has shown promising results from a behavioural perspective and alterations in metabolic processes in the brain, its impact on brain oscillations remains largely unknown. The aim of this study is to examine the impact of acute and chronic NMDA neurotransmission suppression on brains' oscillatory activity. To achieve this, chronic brain activity recordings in mice of both sexes were used to assess both spontaneous and evoked brain oscillations. The study demonstrates that an acute suppression of NMDA receptors alters brain oscillations across a wide frequency spectrum and diminishes the oscillatory potency in evoked responses, paralleling changes observed in schizophrenia. However, the chronic suppression of NMDA receptors did not have the expected cumulative effect on brain activity. This research highlights the robust yet similar impacts of acute and chronic NMDA receptor suppression on brain activity, contributing to the nuanced understanding of rodent models of schizophrenia.
Collapse
Affiliation(s)
- Ernestas Cizus
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Urte Jasinskyte
- The Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | |
Collapse
|
4
|
Oginga FO, Mpofana T. Understanding the role of early life stress and schizophrenia on anxiety and depressive like outcomes: An experimental study. Behav Brain Res 2024; 470:115053. [PMID: 38768688 DOI: 10.1016/j.bbr.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; Department of Clinical Medicine, School of Medicine and Health Science, Kabarak University, Nakuru 20157, Kenya.
| | - Thabisile Mpofana
- Department of Human Physiology, Faculty of Health Sciences North West University, Potchefstroom campus, 11 Hoffman St., Potchefstroom 2531, South Africa
| |
Collapse
|
5
|
Gonzalez-Burgos I, Valencia M, Redondo R, Janz P. Optogenetic inhibition of the limbic corticothalamic circuit does not alter spontaneous oscillatory activity, auditory-evoked oscillations, and deviant detection. Sci Rep 2024; 14:13114. [PMID: 38849374 PMCID: PMC11161607 DOI: 10.1038/s41598-024-63036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Miguel Valencia
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Roger Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
6
|
Ledesma-Corvi S, Jornet-Plaza J, Gálvez-Melero L, García-Fuster MJ. Novel rapid treatment options for adolescent depression. Pharmacol Res 2024; 201:107085. [PMID: 38309382 DOI: 10.1016/j.phrs.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
There is an urgent need for novel fast-acting antidepressants for adolescent treatment-resistant depression and/or suicidal risk, since the selective serotonin reuptake inhibitors that are clinically approved for that age (i.e., fluoxetine or escitalopram) take weeks to work. In this context, one of the main research lines of our group is to characterize at the preclinical level novel approaches for rapid-acting antidepressants for adolescence. The present review summarizes the potential use in adolescence of non-pharmacological options, such as neuromodulators (electroconvulsive therapy and other innovative types of brain stimulation), as well as pharmacological options, including consciousness-altering drugs (mainly ketamine but also classical psychedelics) and cannabinoids (i.e., cannabidiol), with promising fast-acting responses. Following a brief analytical explanation of adolescent depression, we present a general introduction for each therapeutical approach together with the clinical evidence supporting its potential beneficial use in adolescence (mainly extrapolated from prior successful examples for adults), to then report recent and/or ongoing preclinical studies that will aid in improving the inclusion of these therapies in the clinic, by considering potential sex-, age-, and dose-related differences, and/or other factors that might affect efficacy or long-term safety. Finally, we conclude the review by providing future avenues to maximize treatment response, including the need for more clinical studies and the importance of designing and/or testing novel treatment options that are safe and fast-acting for adolescent depression.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Laura Gálvez-Melero
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
7
|
Oginga FO, Mpofana T. The impact of early life stress and schizophrenia on motor and cognitive functioning: an experimental study. Front Integr Neurosci 2023; 17:1251387. [PMID: 37928003 PMCID: PMC10622780 DOI: 10.3389/fnint.2023.1251387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Early life stress (ELS) and parental psychopathology, such as schizophrenia (SZ), have been associated with altered neurobiological and behavioral outcomes later in life. Previous studies have investigated the effects of ELS and parental SZ on various aspects of behavior, however, we have studied the combined effects of these stressors and how they interact, as individuals in real-life situations may experience multiple stressors simultaneously. Objective The aim of this study was to investigate the impact of ELS and schizophrenia on locomotor activity, anxiety-like behavior, exploratory tendencies, and spatial memory in Sprague Dawley (SD) rats. Methods Male and female SD pups were randomly assigned to eight groups: control, ELS, schizophrenia, and ELS + schizophrenia. ELS was induced by prenatal stress (maternal stress) and maternal separation (MS) during the first 2 weeks of life, while SZ was induced by subcutaneous administration of ketamine. Behavioral tests included an open field test (OFT) for motor abilities and a Morris water maze (MWM) for cognitive abilities. ANOVA and post hoc Tukey tests were utilized to analyze the data. Results Our results show that ELS and parental psychopathology had enduring effects on SZ symptoms, particularly psychomotor retardation (p < 0.05). The OFT revealed increased anxiety-like behavior in the ELS group (p = 0.023) and the parental psychopathology group (p = 0.017) compared to controls. The combined ELS and parental psychopathology group exhibited the highest anxiety-like behavior (p = 0.006). The MWM analysis indicated impaired spatial memory in the ELS group (p = 0.012) and the combined ELS and parental psychopathology group (p = 0.003) compared to controls. Significantly, the exposure to ELS resulted in a decrease in the population of glial fibrillary acidic protein-positive (GFAP+) astrocytes. However, this effect was reversed by positive parental mental health. Conclusion Our findings highlight the interactive effects of ELS and parental psychopathology on anxiety-like behavior and spatial memory in rats. ELS was linked to increased anxiety-like behavior, while SZ was associated with anhedonia-like behavior. Positive parenting augments neuroplasticity, synaptic function, and overall cognitive capacities.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
- Department of Human Physiology, School of Bio-molecular & Chemical Sciences Mandela University, University Way, Summerstrand, Gqeberha, South Africa
| |
Collapse
|
8
|
Kuang J, Kafetzopoulos V, Deth R, Kocsis B. Dopamine D4 Receptor Agonist Drastically Increases Delta Activity in the Thalamic Nucleus Reuniens: Potential Role in Communication between Prefrontal Cortex and Hippocampus. Int J Mol Sci 2023; 24:15289. [PMID: 37894968 PMCID: PMC10607171 DOI: 10.3390/ijms242015289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Network oscillations are essential for all cognitive functions. Oscillatory deficits are well established in psychiatric diseases and are recapitulated in animal models. They are significantly and specifically affected by pharmacological interventions using psychoactive compounds. Dopamine D4 receptor (D4R) activation was shown to enhance gamma rhythm in freely moving rats and to specifically affect slow delta and theta oscillations in the urethane-anesthetized rat model. The goal of this study was to test the effect of D4R activation on slow network oscillations at delta and theta frequencies during wake states, potentially supporting enhanced functional connectivity during dopamine-induced attention and cognitive processing. Network activity was recorded in the prefrontal cortex (PFC), hippocampus (HC) and nucleus reuniens (RE) in control conditions and after injecting the D4R agonist A-412997 (3 and 5 mg/kg; systemic administration). We found that A-412997 elicited a lasting (~40 min) wake state and drastically enhanced narrow-band delta oscillations in the PFC and RE in a dose-dependent manner. It also preferentially enhanced delta synchrony over theta coupling within the PFC-RE-HC circuit, strongly strengthening PFC-RE coupling. Thus, our findings indicate that the D4R may contribute to cognitive processes, at least in part, through acting on wake delta oscillations and that the RE, providing an essential link between the PFC and HC, plays a prominent role in this mechanism.
Collapse
Affiliation(s)
- J. Kuang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
| | - V. Kafetzopoulos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
- Department of Psychiatry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - B. Kocsis
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
| |
Collapse
|
9
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
11
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
13
|
de la Salle S, Shah U, Hyde M, Baysarowich R, Aidelbaum R, Choueiry J, Knott V. Synchronized Auditory Gamma Response to Frontal Transcranial Direct Current Stimulation (tDCS) and its Inter-Individual Variation in Healthy Humans. Clin EEG Neurosci 2022; 53:472-483. [PMID: 35491558 DOI: 10.1177/15500594221098285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In schizophrenia, a disorder associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction, auditory cortical plasticity deficits have been indexed by the synchronized electroencephalographic (EEG) auditory steady-state gamma-band (40-Hz) response (ASSR) and the early auditory evoked gamma-band response (aeGBR), both considered to be target engagement biomarkers for NMDAR function, and potentially amenable to treatment by NMDAR modulators. As transcranial direct current stimulation (tDCS) is likely dependent on NMDAR neurotransmission, this preliminary study, conducted in 30 healthy volunteers, assessed the off-line effects of prefrontal anodal tDCS and sham (placebo) treatment on 40-Hz ASSR and aeGBR. Anodal tDCS failed to alter aeGBR but increased both 40-Hz ASSR power, as measured by event-related spectral perturbations (ERSP), and phase locking, as measured by inter-trial phase consistency (ITPC). Inter-individual differences in tDCS-induced increases in ERSP were negatively related to baseline ERSPs. These findings provide tentative support for further study of tDCS as a potential NMDAR neuromodulatory intervention for synchronized auditory gamma response deficits.
Collapse
Affiliation(s)
- Sara de la Salle
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Urusa Shah
- Neuroscience, 6339Carleton University, Ottawa, ON, Canada
| | - Molly Hyde
- Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Renee Baysarowich
- Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Robert Aidelbaum
- School of Psychology, 6339Carleton University, Ottawa, ON, Canada
| | - Joëlle Choueiry
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Neuroscience, 6339Carleton University, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada.,School of Psychology, 6339Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Thörn CW, Kafetzopoulos V, Kocsis B. Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling. Int J Mol Sci 2022; 23:ijms231911705. [PMID: 36233007 PMCID: PMC9569525 DOI: 10.3390/ijms231911705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these deficits. In animal experiments, D4R activation was shown to generate aberrant increased gamma oscillations and to reduce performance on cognitive tasks requiring functional prefrontal cortex (PFC) and hippocampus (HPC) networks. While fast oscillations in the gamma range are important for local synchronization within neuronal ensembles, long-range synchronization between distant structures is achieved by slow rhythms in the delta, theta, alpha ranges. The characteristics of slow oscillations vary between structures during cognitive tasks. HPC activity is dominated by theta rhythm, whereas PFC generates unique oscillations in the 2–4 Hz range. In order to investigate the role of D4R on slow rhythms, cortical activity was recorded in rats under urethane anesthesia in which slow oscillations can be elicited in a controlled manner without behavioral confounds, by electrical stimulation of the brainstem reticular formation. The local field potential segments during stimulations were extracted and subjected to fast Fourier transform to obtain power density spectra. The selective D4R agonist A-412997 (5 and 10 mg/kg) and antagonists L-745870 (5 and 10 mg/kg) were injected systemically and the peak power in the two frequency ranges were compared before and after the injection. We found that D4R compounds significantly changed the activity of both HPC and PFC, but the direction of the effect was opposite in the two structures. D4R agonist enhanced PFC slow rhythm (delta, 2–4 Hz) and suppressed HPC theta, whereas the antagonist had an opposite effect. Analogous changes of the two slow rhythms were also found in the thalamic nucleus reuniens, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; delta and theta oscillations were shown in particular, to entrain neuronal firing and to modulate gamma activity in interconnected forebrain structures with a relative HPC theta dominance over PFC. Thus, the results of this study indicate that D4R activation may introduce an abnormal bias in the bidirectional PFC–HPC coupling which can be reversed by D4R antagonists.
Collapse
Affiliation(s)
| | - Vasilios Kafetzopoulos
- Department Psychiatry at BIDMC, Harvard Medical School, Boston, MA 02215, USA
- Department of Psychiatry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Bernat Kocsis
- Department Psychiatry at BIDMC, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-331-1782
| |
Collapse
|
15
|
Fuentes N, Garcia A, Guevara R, Orofino R, Mateos DM. Complexity of Brain Dynamics as a Correlate of Consciousness in Anaesthetized Monkeys. Neuroinformatics 2022; 20:1041-1054. [PMID: 35511398 DOI: 10.1007/s12021-022-09586-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/31/2022]
Abstract
The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to investigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both in anesthetized and non anesthetizes states.
Collapse
Affiliation(s)
- Nicolas Fuentes
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexis Garcia
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | - Roberto Orofino
- Hospital de Ninos Pedro de Elizalde, Buenos Aires, Argentina.,Hospital Español, La Plata, Argentina
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencia y Tecnología. Universidad Autónoma de Entre Ríos (UADER), Oro Verde, Entre Ríos, Argentina. .,Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), CCT CONICET, Santa Fé, Argentina.
| |
Collapse
|
16
|
Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022; 1791:147996. [PMID: 35779582 PMCID: PMC10038235 DOI: 10.1016/j.brainres.2022.147996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
Respiratory rhythm plays an important role in cognitive functions in rodents, as well as in humans. Respiratory related oscillation (RRO), generated in the olfactory bulb (OB), is an extrinsic rhythm imposed on brain networks. In rats, RRO can couple with intrinsic brain oscillations at theta frequency during sniffing and in the delta range outside of such episodes. Disruption of gamma synchronization in cortical networks by ketamine is well established whereas its effects on slow rhythms are poorly understood. We found in this study, that RRO in prefrontal cortex (PFC) and hippocampus (HC) remains present after ketamine injection, even on the background of highly unstable respiratory rate, co-incident with "psychotic-like" behavior and abnormal cortical gamma activity. Guided by the timing of ketamine-induced gamma reaction, pairwise coherences between structures exhibiting RRO and their correlation structure was statistically tested in 5-min segments post-injection (0-25 min) and during recovery (1, 5, 10 h). As in control, RRO in the OB was firmly followed by cortical-bound OB exits directed toward PFC but not to HC. RRO between these structures, however, significantly correlated with OB-HC but not with OB-PFC. The only exception to this general observation was observed during a short transitional period, immediately after injection. Ketamine has a remarkable history in psychiatric research. Modeling chronic NMDA-hypofunction using acute NMDA-receptor blockade shifted the primary focus of schizophrenia research to dysfunctional cortical microcircuitry and the recent discovery of ketamine's antidepressant actions extended investigations to neurophysiology of anxiety and depression. Cortical oscillations are relevant for understanding their pathomechanism.
Collapse
Affiliation(s)
| | - Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School, USA
| | - Bernat Kocsis
- Dept Psychiatry at BIDMC, Harvard Medical School, USA.
| |
Collapse
|
17
|
de la Salle S, Choueiry J, McIntosh J, Bowers H, Ilivitsky V, Knott V. N-methyl-D-aspartate receptor antagonism impairs sensory gating in the auditory cortex in response to speech stimuli. Psychopharmacology (Berl) 2022; 239:2155-2169. [PMID: 35348805 DOI: 10.1007/s00213-022-06090-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Deficits in early auditory sensory processing in schizophrenia have been linked to N-methyl-D-aspartate receptor (NMDAR) hypofunction, but the role of NMDARs in aberrant auditory sensory gating (SG) in this disorder is unclear. This study, conducted in 22 healthy humans, examined the acute effects of a subanesthetic dose of the NMDAR antagonist ketamine on SG as measured electrophysiologically by suppression of the P50 event-related potential (ERP) to the second (S2) relative to the first (S1) of two closely paired (500 ms) identical speech stimuli. Ketamine induced impairment in SG indices at sensor (scalp)-level and at source-level in the auditory cortex (as assessed with eLORETA). Together with preliminary evidence of modest positive associations between impaired gating and dissociative symptoms elicited by ketamine, tentatively support a model of NMDAR hypofunction underlying disturbances in auditory SG in schizophrenia.
Collapse
Affiliation(s)
- Sara de la Salle
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Joelle Choueiry
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Vadim Ilivitsky
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Verner Knott
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
19
|
Bowman C, Richter U, Jones CR, Agerskov C, Herrik KF. Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat. Front Psychiatry 2022; 13:737295. [PMID: 35153870 PMCID: PMC8830299 DOI: 10.3389/fpsyt.2022.737295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has emerged as a breakthrough therapy for major depressive disorder. Using local field potential recordings in freely moving rats, we studied resting state EEG profiles induced by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic; or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant effects of ketamine. As human electroencephalography (EEG) is predominantly recorded in a passive state, head-mounted accelerometers were used with rats to determine active and passive states at a high temporal resolution to offer the highest translatability. In general, pharmacological effects for the three drugs were more pronounced in (or restricted to) the passive state. Specifically, during inactive periods clozapine induced increases in delta (0.1-4 Hz), gamma (30-60 Hz) and higher frequencies (>100 Hz). Importantly, it reversed the ketamine-induced reduction in low beta power (10-20 Hz) and potentiated ketamine-induced increases in gamma and high frequency oscillations (130-160 Hz). Naltrexone inhibited frequencies above 50 Hz and significantly reduced the ketamine-induced increase in high frequency oscillations. However, some frequency band changes, such as clozapine-induced decreases in delta power, were only seen in locomoting rats. These results emphasise the potential in differentiating between activity states to capture drug effects and translate to human resting state EEG. Furthermore, the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone may have implications for the understanding of psychotomimetic as well as rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Christien Bowman
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Bio Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ulrike Richter
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | - Christopher R Jones
- Department of Pharmacokinetic and Pharmacodynamic Modeling and Simulation, Lundbeck, Copenhagen, Denmark
| | - Claus Agerskov
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | | |
Collapse
|
20
|
N-methyl-d-aspartate receptor antagonism modulates P300 event-related potentials and associated activity in salience and central executive networks. Pharmacol Biochem Behav 2021; 211:173287. [PMID: 34653398 DOI: 10.1016/j.pbb.2021.173287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
Impairments in auditory information processing in schizophrenia as indexed electrophysiologically by P300 deficits during novelty (P3a) and target (P3b) processing are linked to N -methyl- D -aspartate receptor (NMDAR) dysfunction. This study in 14 healthy volunteers examined the effects of a subanesthetic dose of the NMDAR antagonist ketamine on P300 and their relationship to psychomimetic symptoms and cortical source activity (with eLORETA). Ketamine reduced early (e- P3a) and late (l-P3a) novelty P300 at sensor (scalp)-level and at source-level in the salience network. Increases in dissociation symptoms were negatively correlated with ketamine-induced P3b changes, at sensor-level and source-level, in both salience and central executive networks. These P3a alterations during novelty processing, and the symptom-related P3b changes during target processing support a model of NMDAR hypofunction underlying disrupted auditory attention in schizophrenia.
Collapse
|
21
|
Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry 2021; 26:4702-4718. [PMID: 32488127 DOI: 10.1038/s41380-020-0793-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.
Collapse
|
22
|
NMDARs Containing NR2B Subunit Do Not Contribute to the LTP Form of Hippocampal Plasticity: In Vivo Pharmacological Evidence in Rats. Int J Mol Sci 2021; 22:ijms22168672. [PMID: 34445376 PMCID: PMC8395520 DOI: 10.3390/ijms22168672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Synaptic plasticity is the key to synaptic health, and aberrant synaptic plasticity, which in turn impairs the functioning of large-scale brain networks, has been associated with neurodegenerative and psychiatric disorders. The best known and most studied form of activity-dependent synaptic plasticity remains long-term potentiation (LTP), which is controlled by glutamatergic N-methyl-d-aspartate) receptors (NMDAR) and considered to be a mechanism crucial for cellular learning and memory. Over the past two decades, discrepancies have arisen in the literature regarding the contribution of NMDAR subunit assemblies in the direction of NMDAR-dependent synaptic plasticity. Here, the nonspecific NMDAR antagonist ketamine (5 and 10 mg/kg), and the selective NR2B antagonists CP-101606 and Ro 25-6981 (6 and 10 mg/kg), were administered intraperitoneally in Sprague Dawley rats to disentangle the contribution of NR2B subunit in the LTP induced at the Schaffer Collateral-CA1 synapse using the theta burst stimulation protocol (TBS). Ketamine reduced, while CP-101606 and Ro 25-6981 did not alter the LTP response. The administration of CP-101606 before TBS did not influence the effects of ketamine when administered half an hour after tetanization, suggesting a limited contribution of the NR2B subunit in the action of ketamine. This work confirms the role of NMDAR in the LTP form of synaptic plasticity, whereas specific blockade of the NR2B subunit was not sufficient to modify hippocampal LTP. Pharmacokinetics at the doses used may have contributed to the lack of effects with specific antagonists. The findings refute the role of the NR2B subunit in the plasticity mechanism of ketamine in the model.
Collapse
|
23
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
24
|
Curic S, Andreou C, Nolte G, Steinmann S, Thiebes S, Polomac N, Haaf M, Rauh J, Leicht G, Mulert C. Ketamine Alters Functional Gamma and Theta Resting-State Connectivity in Healthy Humans: Implications for Schizophrenia Treatment Targeting the Glutamate System. Front Psychiatry 2021; 12:671007. [PMID: 34177660 PMCID: PMC8222814 DOI: 10.3389/fpsyt.2021.671007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Disturbed functional connectivity is assumed to cause neurocognitive deficits in patients suffering from schizophrenia. A Glutamate N-methyl-D-aspartate receptor (NMDAR) dysfunction has been suggested as a possible mechanism underlying altered connectivity in schizophrenia, especially in the gamma- and theta-frequency range. The present study aimed to investigate the effects of the NMDAR-antagonist ketamine on resting-state power, functional connectivity, and schizophrenia-like psychopathological changes in healthy volunteers. In a placebo-controlled crossover design, 25 healthy subjects were recorded using resting-state 64-channel-electroencephalography (EEG) (eyes closed). The imaginary coherence-based Multivariate Interaction Measure (MIM) was used to measure gamma and theta connectivity across 80 cortical regions. The network-based statistic was applied to identify involved networks under ketamine. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) and the 5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC). Ketamine caused an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01). Significant increases in resting-state gamma and theta power were observed under ketamine compared to placebo (p < 0.05). The source-space analysis revealed two distinct networks with an increased mean functional gamma- or theta-band connectivity during the ketamine session. The gamma-network consisted of midline regions, the cuneus, the precuneus, and the bilateral posterior cingulate cortices, while the theta-band network involved the Heschl gyrus, midline regions, the insula, and the middle cingulate cortex. The current source density (CSD) within the gamma-band correlated negatively with the PANSS negative symptom score, and the activity within the gamma-band network correlated negatively with the subjective changed meaning of percepts subscale of the 5D-ASC. These results are in line with resting-state patterns seen in people who have schizophrenia and argue for a crucial role of the glutamate system in mediating dysfunctional gamma- and theta-band-connectivity in schizophrenia. Resting-state networks could serve as biomarkers for the response to glutamatergic drugs or drug development efforts within the glutamate system.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Centre for Psychiatry and Psychotherapy, Justus Liebig University, Giessen, Germany
| |
Collapse
|
25
|
Fedor FZ, Zátonyi A, Cserpán D, Somogyvári Z, Borhegyi Z, Juhász G, Fekete Z. Application of a flexible polymer microECoG array to map functional coherence in schizophrenia model. MethodsX 2020; 7:101117. [PMID: 33194564 PMCID: PMC7644754 DOI: 10.1016/j.mex.2020.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Anatomically, connections form the fundamental brain network, functionally the different types of oscillatory electric activities are creating a temporarily connected fraction of the anatomical connectome generating an output to the motor system. Schizophrenia can be considered as a connectome disease, in which the sensory input generates a schizophrenia specific temporary connectome and the signal processing becomes diseased showing hallucinations and adverse behavioral reactions. In this work, flexible, 32-channel polymer microelectrode arrays fabricated by the authors are used to map the functional coherence on large cortical areas during physiological activities in a schizophrenia model in rats.-Fabrication of a flexible microECoG array is shown.-Protocol to use a flexible microECoG is demonstrated to characterize connectome diseases in rats.-Customized method to analyze the functional coherence between different cortical areas during visually evoked potential is detailed.-R-based implementation of the analysis method is presented.
Collapse
Affiliation(s)
- F Z Fedor
- Doctoral School of Chemical Engineering and Material Sciences, Pannon University, Veszprém, Hungary.,ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A Zátonyi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - D Cserpán
- Theoretical Neuroscience and Complex Systems Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Z Somogyvári
- Theoretical Neuroscience and Complex Systems Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Z Borhegyi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - G Juhász
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Z Fekete
- Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.,Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
26
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
27
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
28
|
Lopes-Aguiar C, Ruggiero RN, Rossignoli MT, Esteves IDM, Peixoto-Santos JE, Romcy-Pereira RN, Leite JP. Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo. Sci Rep 2020; 10:7167. [PMID: 32346044 PMCID: PMC7188848 DOI: 10.1038/s41598-020-63979-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Ingrid de Miranda Esteves
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | | | - João P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
29
|
Matrov D, Imbeault S, Kanarik M, Shkolnaya M, Schikorra P, Miljan E, Shimmo R, Harro J. Comprehensive mapping of cytochrome c oxidase activity in the rat brain after sub-chronic ketamine administration. Acta Histochem 2020; 122:151531. [PMID: 32131979 DOI: 10.1016/j.acthis.2020.151531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Ketamine is a noncompetitive antagonist of glutamatergic N-methyl-d-aspartate receptors. Its acute effects on healthy volunteers and schizophrenia patients mimic some acute psychotic, but also cognitive and negative symptoms of schizophrenia, and subchronic treatment with ketamine has been used as an animal model of psychotic disorders. Glutamatergic neurotransmission is tightly coupled to oxidative metabolism in the brain. Quantitative histochemical mapping of cytochrome c oxidase (COX) activity, which reflect long-term energy metabolism, was carried out in rats that received a daily subanaesthetic dose (30 mg/kg) of ketamine for 10 days. In total, COX activity was measured in 190 brain regions to map out metabolic adaptations to the subchronic administration of ketamine. Ketamine treatment was associated with elevated COX activity in nine brain sub-regions in sensory thalamus, basal ganglia, cortical areas, hippocampus and superior colliculi. Changes in pairwise correlations between brain regions were studied with differential correlation analysis. Ketamine treatment was associated with the reduction of positive association between brain regions in 66 % of the significant comparisons. Different layers of the superior colliculi showed the strongest effects. Changes in other visual and auditory brain centres were also of note. The locus coeruleus showed opposite pattern of increased coupling to mainly limbic brain regions in ketamine-treated rats. Our study replicated commonly observed activating effects of ketamine in the hippocampus, cingulate cortex, and basal ganglia. The current study is the first to extensively map the oxidative metabolism in the CNS in the ketamine model of schizophrenia. It shows that ketamine treatment leads to the re-organization of activity in sensory and memory-related brain circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Sophie Imbeault
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Marianna Shkolnaya
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Patricia Schikorra
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ergo Miljan
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Ruth Shimmo
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
30
|
Raith H, Schuelert N, Duveau V, Roucard C, Plano A, Dorner-Ciossek C, Ferger B. Differential effects of traxoprodil and S-ketamine on quantitative EEG and auditory event-related potentials as translational biomarkers in preclinical trials in rats and mice. Neuropharmacology 2020; 171:108072. [PMID: 32243874 DOI: 10.1016/j.neuropharm.2020.108072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats. Recorded EEG data were analyzed using fast Fourier transformation to determine power spectra and vigilance states. Additionally, body temperature and locomotor activity were assessed via telemetry. For recordings of auditory event-related potentials (AERP) male C57Bl/6J mice were chronically implanted with deep electrodes using a tethered system. Power spectral analysis revealed a significant increase in gamma power following ketamine treatment, whereas traxoprodil (6&18 mg/kg) induced an overall decrease primarily within alpha and beta bands. Additionally, ketamine disrupted sleep and enhanced time spent in wake vigilance states, whereas traxoprodil did not alter sleep-wake architecture. AERP and mismatch negativity (MMN) revealed that ketamine (10 mg/kg) selectively disrupts auditory deviance detection, whereas traxoprodil (6 mg/kg) did not alter MMN at clinically relevant doses. In contrast to ketamine treatment, traxoprodil did not produce hyperactivity and hypothermia. In conclusion, ketamine and traxoprodil showed very different effects on diverse EEG readouts differentiating selective GluN2B antagonism from non-selective pan-NMDA-R antagonists like ketamine. These readouts are thus perfectly suited to support drug discovery efforts on NMDA-R and understanding the different functions of NMDA-R subtypes.
Collapse
Affiliation(s)
- Henrike Raith
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Niklas Schuelert
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Venceslas Duveau
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Corinne Roucard
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Andrea Plano
- Plano Consulting, Georg-Schinbain-Str. 70, 88400, Biberach an der Riß, Germany.
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Boris Ferger
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| |
Collapse
|
31
|
Baron Shahaf D, Hare GMT, Shahaf G. The Effects of Anesthetics on the Cortex-Lessons From Event-Related Potentials. Front Syst Neurosci 2020; 14:2. [PMID: 32116577 PMCID: PMC7026482 DOI: 10.3389/fnsys.2020.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Consciousness while under general anesthesia is a dreadful condition. Various electroencephalogram (EEG)-based technologies have been developed, on the basis of empirical evidence, in order to identify this condition. However, certain electrophysiological phenomena, which seem strongly related with depth of anesthesia in some drugs, appear less consistent with those of other anesthetic drugs. There is a gap between the complexity of the phenomenon of consciousness and its behavioral manifestations, on the one hand, and the empirical nature of the reported electrophysiological markers, which are associated with it, on the other hand. In fact, such a gap might prevent us from progressing toward unified electrophysiological markers of consciousness while under anesthesia, which are applicable to all anesthetic drugs. We believe that there is a need to bridge this conceptual gap. Therefore, in this work, we will try to present a theoretical framework for such bridging. First, we suggest focusing on neuropsychological processes, which seem to have a clear role in the behavioral manifestations of consciousness while under anesthesia but seem, nevertheless, better defined than consciousness itself-such as perception and attention. Then, we suggest analyzing the effects of anesthesia upon these neuropsychological processes, as they are manifested in the EEG signal. Specifically, we will focus on the effects of anesthesia on event-related potentials (ERPs), which seem more easily associable with neuropsychological modeling.
Collapse
Affiliation(s)
| | - Gregory M T Hare
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,St. Michael's Hospital Center of Excellence for Patient Blood Management, St. Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Research, in the Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | | |
Collapse
|
32
|
Komatsu M, Ichinohe N. Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates. Front Psychiatry 2020; 11:826. [PMID: 32973576 PMCID: PMC7466740 DOI: 10.3389/fpsyt.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts broad effects on consciousness and perception. Since NMDA receptor antagonists induce cognitive impairments, ketamine has been used for translational research on several psychiatric diseases, such as schizophrenia. Whereas the effects of ketamine on cognitive functions have been extensively studied, studies on the effects of ketamine on simple sensory information processing remain limited. In this study, we investigated the cortex-wide effects of ketamine administration on auditory information processing in nonhuman primates using whole-cortical electrocorticography (ECoG). We first recorded ECoG from awake monkeys on presenting auditory stimuli of different frequencies or different durations. We observed auditory evoked responses (AERs) across the cortex, including in frontal, parietal, and temporal areas, while feature-specific responses were obtained around the temporal sulcus. Next, we examined the effects of ketamine on cortical auditory information processing. We conducted ECoG recordings from monkeys that had been administered anesthetic doses of ketamine from 10 to 180 min following administration. We observed significant changes in stimulus feature-specific responses. Electrodes showing a frequency preference or offset responses were altered following ketamine administration, while those of the AERs were not strongly influenced. However, the frequency preference of a selected electrode was not significantly altered by ketamine administration over time following administration, while the imbalances in the onset and offset persisted over the course of 150 min following ketamine administration in all three monkeys. These results suggest that ketamine affects the ability to distinguish between sound frequency and duration in different ways. In conclusion, future research on the NMDA sensitivity of cortical wide sensory information processing may provide a new perspective into the development of nonhuman primate models of psychiatric disorders.
Collapse
Affiliation(s)
- Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
33
|
Bartolomeo LA, Wright AM, Ma RE, Hummer TA, Francis MM, Visco AC, Mehdiyoun NF, Bolbecker AR, Hetrick WP, Dydak U, Barnard J, O'Donnell BF, Breier A. Relationship of auditory electrophysiological responses to magnetic resonance spectroscopy metabolites in Early Phase Psychosis. Int J Psychophysiol 2019; 145:15-22. [PMID: 31129143 DOI: 10.1016/j.ijpsycho.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Both auditory evoked responses and metabolites measured by magnetic resonance spectroscopy (MRS) are altered in schizophrenia and other psychotic disorders, but the relationship between electrophysiological and metabolic changes are not well characterized. We examined the relation of MRS metabolites to cognitive and electrophysiological measures in individuals during the early phase of psychosis (EPP) and in healthy control subjects. The mismatch negativity (MMN) of the auditory event-related potential to duration deviant tones and the auditory steady response (ASSR) to 40 Hz stimulation were assessed. MRS was used to quantify glutamate+glutamine (Glx), N-Acetylasparate (NAA), creatine (Cre), myo-inositol (Ins) and choline (Cho) at a voxel placed medially in the frontal cortex. MMN amplitude and ASSR power did not differ between groups. The MRS metabolites Glx, Cre and Cho were elevated in the psychosis group. Partial least squares analysis in the patient group indicated that elevated levels of MRS metabolites were associated with reduced MMN amplitude and increased 40 Hz ASSR power. There were no correlations between the neurobiological measures and clinical measures. These data suggest that elevated neurometabolites early in psychosis are accompanied by altered auditory neurotransmission, possibly indicative of a neuroinflammatory or excitotoxic disturbance which disrupts a wide range of metabolic processes in the cortex.
Collapse
Affiliation(s)
- Lisa A Bartolomeo
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Andrew M Wright
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America
| | - Ruoyun E Ma
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Tom A Hummer
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michael M Francis
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Andrew C Visco
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Nicole F Mehdiyoun
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - William P Hetrick
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - John Barnard
- Section of Biostatistics, Cleveland Clinic, Cleveland, OH, United States of America
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, United States of America.
| | - Alan Breier
- Department of Psychiatry, Prevention and the Recovery Center for Early Psychosis, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
34
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
35
|
( 2R,6R)-hydroxynorketamine exerts mGlu 2 receptor-dependent antidepressant actions. Proc Natl Acad Sci U S A 2019; 116:6441-6450. [PMID: 30867285 DOI: 10.1073/pnas.1819540116] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently approved antidepressant drugs often take months to take full effect, and ∼30% of depressed patients remain treatment resistant. In contrast, ketamine, when administered as a single subanesthetic dose, exerts rapid and sustained antidepressant actions. Preclinical studies indicate that the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a rapid-acting antidepressant drug candidate with limited dissociation properties and abuse potential. We assessed the role of group II metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) in the antidepressant-relevant actions of (2R,6R)-HNK using behavioral, genetic, and pharmacological approaches as well as cortical quantitative EEG (qEEG) measurements in mice. Both ketamine and (2R,6R)-HNK prevented mGlu2/3 receptor agonist (LY379268)-induced body temperature increases in mice lacking the Grm3, but not Grm2, gene. This action was not replicated by NMDA receptor antagonists or a chemical variant of ketamine that limits metabolism to (2R,6R)-HNK. The antidepressant-relevant behavioral effects and 30- to 80-Hz qEEG oscillation (gamma-range) increases resultant from (2R,6R)-HNK administration were prevented by pretreatment with an mGlu2/3 receptor agonist and absent in mice lacking the Grm2, but not Grm3 -/-, gene. Combined subeffective doses of the mGlu2/3 receptor antagonist LY341495 and (2R,6R)-HNK exerted synergistic increases on gamma oscillations and antidepressant-relevant behavioral actions. These findings highlight that (2R,6R)-HNK exerts antidepressant-relevant actions via a mechanism converging with mGlu2 receptor signaling and suggest enhanced cortical gamma oscillations as a marker of target engagement relevant to antidepressant efficacy. Moreover, these results support the use of (2R,6R)-HNK and inhibitors of mGlu2 receptor function in clinical trials for treatment-resistant depression either alone or in combination.
Collapse
|
36
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
37
|
Haaf M, Leicht G, Curic S, Mulert C. Glutamatergic Deficits in Schizophrenia - Biomarkers and Pharmacological Interventions within the Ketamine Model. Curr Pharm Biotechnol 2018; 19:293-307. [PMID: 29929462 PMCID: PMC6142413 DOI: 10.2174/1389201019666180620112528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 11/30/2022]
Abstract
Background: The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. NMDAR hypofunction can explain many schizophrenia symptoms directly due to excitatory-to-inhibitory (E/I) imbalance, but also dopaminergic dysfunction itself. However, so far no new drug targeting the NMDAR has been successfully approved. In the search for possible biomarkers it is interesting that ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) signals. Methods: We systematically searched PubMed/Medline and Web of Knowledge databases (January 2006 to July 2017) to identify EEG/MEG and fMRI studies of the ketamine model of schizophrenia with human subjects. The search strategy identified 209 citations of which 46 articles met specified eligibility criteria. Results: In EEG/MEG studies, ketamine induced changes of event-related potentials, such as the P300 potential and the mismatch negativity, similar to alterations observed in schizophrenia patients. In fMRI studies, alterations of activation were observed in different brain regions, most prominently within the anterior cingulate cortex and limbic structures as well as task-relevant brain regions. These alterations were accompanied by changes in functional connectivity, indicating a balance shift of the underlying brain networks. Pharmacological treatments did alter ketamine-induced changes in EEG/MEG and fMRI studies to different extents. Conclusion: This review highlights the potential applicability of the ketamine model for schizophrenia drug development by offering the possibility to assess the effect of pharmacological agents on schizophrenia-like symptoms and to find relevant neurophysiological and neuroimaging biomarkers.
Collapse
Affiliation(s)
- Moritz Haaf
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, UKGM, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
38
|
Pittman-Polletta B, Hu K, Kocsis B. Subunit-specific NMDAR antagonism dissociates schizophrenia subtype-relevant oscillopathies associated with frontal hypofunction and hippocampal hyperfunction. Sci Rep 2018; 8:11588. [PMID: 30072757 PMCID: PMC6072790 DOI: 10.1038/s41598-018-29331-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
NMDAR antagonism alters mesolimbic, hippocampal, and cortical function, acutely reproducing the positive, cognitive, and negative symptoms of schizophrenia. These physiological and behavioral effects may depend differentially on NMDAR subtype- and region-specific effects. The dramatic electrophysiological signatures of NMDAR blockade in rodents include potentiated high frequency oscillations (HFOs, ∼140 Hz), likely generated in mesolimbic structures, and increased HFO phase-amplitude coupling (PAC), a phenomenon related to goal-directed behavior and dopaminergic tone. This study examined the impact of subtype-specific NMDAR antagonism on HFOs and PAC. We found that positive-symptom-associated NR2A-preferring antagonism (NVP-AAM077), but not NR2B-specific antagonism (Ro25-6985) or saline control, replicated increases in HFO power seen with nonspecific antagonism (MK-801). However, PAC following NR2A-preferring antagonism was distinct from all other conditions. While θ-HFO PAC was prominent or potentiated in other conditions, NVP-AAM077 increased δ-HFO PAC and decreased θ-HFO PAC. Furthermore, active wake epochs exhibiting narrowband frontal δ oscillations, and not broadband sleep-associated δ, selectively exhibited δ-HFO coupling, while paradoxical sleep epochs having a high CA1 θ to frontal δ ratio selectively exhibited θ-HFO coupling. Our results suggest: (1) NR2A-preferring antagonism induces oscillopathies reflecting frontal hyperfunction and hippocampal hypofunction; and (2) HFO PAC indexes cortical vs. hippocampal control of mesolimbic circuits.
Collapse
Affiliation(s)
- Benjamin Pittman-Polletta
- Harvard Medical School, Boston, MA, USA.
- Brigham & Women's Hospital, Boston, MA, USA.
- Boston University, Boston, MA, USA.
| | - Kun Hu
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| | - Bernat Kocsis
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
39
|
Schuelert N, Dorner‐Ciossek C, Brendel M, Rosenbrock H. A comprehensive analysis of auditory event-related potentials and network oscillations in an NMDA receptor antagonist mouse model using a novel wireless recording technology. Physiol Rep 2018; 6:e13782. [PMID: 30155997 PMCID: PMC6113138 DOI: 10.14814/phy2.13782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that impaired sensory processing significantly contributes to cognitive deficits found in schizophrenia. Electroencephalography (EEG) has become an important preclinical and clinical technique to investigate the underlying mechanisms of neurophysiological dysfunctions in psychiatric disorders. Patients with schizophrenia show marked deficits in auditory event-related potentials (ERP), the detection of deviant auditory stimuli (mismatch negativity, MMN), the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation (ASSR) and reduced auditory-evoked oscillation in the gamma range. Due to a novel data-logging technology (Neurologger, TSE Systems), it is now possible to record wireless EEG data in awake, free-moving small rodents without any restrictions due to size of the device or attached cables. Recently, a new version of the Neurologger was released with improved performance to record time-locked event-related EEG signals. In this study, we were able to show in mice that pharmacological intervention with the NMDA receptor antagonists Ketamine and MK-801 can impair a comprehensive selection of EEG/ERP readouts (ERP N1 amplitude, 40 Hz ASSR, basal and evoked gamma oscillation, MMN) and therefore mimic the EEG deficits observed in patients with schizophrenia. Our data support the translational value of NMDA receptor antagonists as a model for preclinical evaluation of sensory processing deficits relevant to schizophrenia. Further, the new Neurologger system is a suitable device for wireless recording of clinically relevant EEG biomarkers in freely moving mice and a robust translational tool to investigate novel therapeutic approaches regarding sensory processing deficits related to psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Niklas Schuelert
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Cornelia Dorner‐Ciossek
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Michael Brendel
- Biostatistics and Data SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Holger Rosenbrock
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| |
Collapse
|
40
|
Schwertner A, Zortea M, Torres FV, Caumo W. Effects of Subanesthetic Ketamine Administration on Visual and Auditory Event-Related Potentials (ERP) in Humans: A Systematic Review. Front Behav Neurosci 2018; 12:70. [PMID: 29713269 PMCID: PMC5911464 DOI: 10.3389/fnbeh.2018.00070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Ketamine is a non-competitive N-Methyl-D-Aspartate (NMDA) receptor antagonist whose effect in subanesthetic doses has been studied for chronic pain and mood disorders treatment. It has been proposed that ketamine could change the perception of nociceptive stimuli by modulating the cortical connectivity and altering the top-down mechanisms that control conscious pain perception. As this is a strictly central effect, it would be relevant to provide fresh insight into ketamine's effect on cortical response to external stimuli. Event-related potentials (ERPs) reflect the combined synchronic activity of postsynaptic potentials of many cortical pyramidal neurons similarly oriented, being a well-established technique to study cortical responses to sensory input. Therefore, the aim of this study was to examine the current evidence of subanesthetic ketamine doses on patterns of cortical activity based on ERPs in healthy subjects. To answer the question whether ERPs could be potential markers of the cortical effects of ketamine, we conducted a systematic review of ketamine's effect on ERPs after single and repeated doses. We have searched PubMed, EMBASE and Cochrane Databases and pre-selected 141 articles, 18 of which met the inclusion criteria. Our findings suggest that after ketamine administration some ERP parameters are reduced (reduced N2, P2, and P3 amplitudes, PN and MMN) while others remain stable or are even increased (P50 reduction, PPI, P1, and N1 amplitudes). The current understanding of these effects is that ketamine alters the perceived contrast between distinct visual and auditory stimuli. The analgesic effect of ketamine might also be influenced by a decreased affective discrimination of sensorial information, a finding from studies using ketamine as a model for schizophrenia, but that can give an important hint not only for the treatment of mood disorders, but also to treat pain and ketamine abuse.
Collapse
Affiliation(s)
- André Schwertner
- Post-graduation Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Maxciel Zortea
- Post-graduation Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Felipe V Torres
- Post-graduation Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Wolnei Caumo
- Post-graduation Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
41
|
Anderson PM, Jones NC, O'Brien TJ, Pinault D. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway. Cereb Cortex 2018; 27:3172-3185. [PMID: 27261525 DOI: 10.1093/cercor/bhw168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in cortical and subcortical structures, including the thalamus. The underlying mechanisms are unknown. The goal of the present study was to determine whether a ketamine-induced psychotic-relevant state disturbs the functional state of the corticothalamic (CT) pathway. Multisite field recordings were performed in the somatosensory CT system of the sedated rat. Baseline activity was challenged by activation of vibrissa-related prethalamic inputs. The sensory-evoked thalamic response was characterized by a short-latency (∼4 ms) prethalamic-mediated negative sharp potential and a longer latency (∼10 ms) CT-mediated negative potential. Following a single subcutaneous injection of ketamine (2.5 mg/kg), spontaneously occurring and sensory-evoked thalamic gamma oscillations increased and decreased in power, respectively. The power of the sensory-related gamma oscillations was positively correlated with both the amplitude and the area under the curve of the corresponding CT potential but not with the prethalamic potential. The present results show that the layer VI CT pathway significantly contributes in thalamic gamma oscillations, and they support the hypothesis that reduced NMDAR activation disturbs the functional state of CT and corticocortical networks.
Collapse
Affiliation(s)
- Paul M Anderson
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, INSERM U1114, Strasbourg, France.,FMTS, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Current address: Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Didier Pinault
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, INSERM U1114, Strasbourg, France.,FMTS, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Sherif MA, Cortes-Briones JA, Ranganathan M, Skosnik PD. Cannabinoid-glutamate interactions and neural oscillations: implications for psychosis. Eur J Neurosci 2018; 48:2890-2902. [PMID: 29247465 DOI: 10.1111/ejn.13800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed A. Sherif
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Jose A. Cortes-Briones
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Mohini Ranganathan
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Patrick D. Skosnik
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| |
Collapse
|
43
|
Furth KE, McCoy AJ, Dodge C, Walters JR, Buonanno A, Delaville C. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus. PLoS One 2017; 12:e0186732. [PMID: 29095852 PMCID: PMC5667758 DOI: 10.1371/journal.pone.0186732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023] Open
Abstract
Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in contributing to ketamine-induced schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Katrina E. Furth
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alex J. McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline Dodge
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith R. Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claire Delaville
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state. PLoS One 2017; 12:e0187198. [PMID: 29073221 PMCID: PMC5658186 DOI: 10.1371/journal.pone.0187198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/16/2017] [Indexed: 01/11/2023] Open
Abstract
Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.
Collapse
|
45
|
Cardis R, Cabungcal JH, Dwir D, Do KQ, Steullet P. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiol Dis 2017; 109:64-75. [PMID: 29024713 DOI: 10.1016/j.nbd.2017.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023] Open
Abstract
The GluN2A subunit of NMDA receptors (NMDARs) plays a critical role during postnatal brain development as its expression increases while Glun2B expression decreases. Mutations and polymorphisms in GRIN2A gene, coding for GluN2A, are linked to developmental brain disorders such as mental retardation, epilepsy, schizophrenia. Published data suggest that GluN2A is involved in maturation and phenotypic maintenance of parvalbumin interneurons (PVIs), and these interneurons suffer from a deficient glutamatergic neurotransmission via GluN2A-containing NMDARs in schizophrenia. In the present study, we find that although PVIs and their associated perineuronal nets (PNNs) appear normal in anterior cingulate cortex of late adolescent/young adult GRIN2A KO mice, a lack of GluN2A delays PNN maturation. GRIN2A KO mice display a susceptibility to redox dysregulation as sub-threshold oxidative stress and subtle alterations in antioxidant systems are observed in their prefrontal cortex. Consequently, an oxidative insult applied during early postnatal development increases oxidative stress, decreases the number of parvalbumin-immunoreactive cells, and weakens the PNNs in KO but not WT mice. These effects are long-lasting, but preventable by the antioxidant, N-acetylcysteine. The persisting oxidative stress, deficit in PVIs and PNNs, and reduced local high-frequency neuronal synchrony in anterior cingulate of late adolescent/young adult KO mice, which have been challenged by an early-life oxidative insult, is accompanied with microglia activation. Altogether, these indicate that a lack of GluN2A-containing NMDARs alters the fine control of redox status, leading to a delayed maturation of PNNs, and conferring vulnerability for long-term oxidative stress, microglial activation, and PVI network dysfunction.
Collapse
Affiliation(s)
- Romain Cardis
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Site de Cery, 1008 Prilly, Lausanne, Switzerland.
| |
Collapse
|
46
|
Lemercier CE, Holman C, Gerevich Z. Aberrant alpha and gamma oscillations ex vivo after single application of the NMDA receptor antagonist MK-801. Schizophr Res 2017; 188:118-124. [PMID: 28109667 DOI: 10.1016/j.schres.2017.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/14/2023]
Abstract
Clinical symptoms of schizophrenia are associated with altered cortical neuronal oscillations in multiple frequency bands such as alpha (7-13Hz) and gamma (30-90Hz) rhythms. NMDA receptor antagonists induce psychotic symptoms in humans and a schizophrenia-like phenotype in animals, suggesting NMDA receptor dysfunction is involved in the generation of many symptoms of the disorder. We investigated the effects of a single intraperitoneal injection of the NMDA receptor antagonist MK-801 in rats, a model of first-episode schizophrenia, on network oscillations recorded ex vivo in the hippocampus and prefrontal cortex. We found that spontaneous gamma oscillations in hippocampal slices of MK-801-treated animals had a higher peak frequency, but that their rate of occurrence, peak power and Q factor (ratio of peak frequency to half bandwidth) were not affected. Hippocampal gamma oscillations induced by application of acetylcholine displayed a higher peak power, a reduced peak frequency and a shortened induction latency, whereas the Q factor did not change. In the prefrontal cortex, co-application of carbachol and kainate induced two types of network activity in sham animals: continuous gamma oscillations and alternating alpha/gamma oscillations. In MK-801-treated animals, the alternating pattern completely disappeared, and only continuous gamma oscillations could be detected, possessing an increased peak power, decreased peak frequency and decreased Q factor. Alpha oscillations recorded in MK-801-treated animals also had a significantly lower Q factor. In conclusion, our data suggest that NMDA receptor antagonists fundamentally alter the power, peak frequency, dynamics and periodicity of neuronal oscillations in the alpha and gamma frequency band.
Collapse
Affiliation(s)
- Clément E Lemercier
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Constance Holman
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
47
|
Mihara T, Mensah-Brown K, Sobota R, Lin R, Featherstone R, Siegel SJ. Amygdala activity associated with social choice in mice. Behav Brain Res 2017; 332:84-89. [DOI: 10.1016/j.bbr.2017.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
|
48
|
Altered Cortical Ensembles in Mouse Models of Schizophrenia. Neuron 2017; 94:153-167.e8. [PMID: 28384469 DOI: 10.1016/j.neuron.2017.03.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/07/2016] [Accepted: 03/10/2017] [Indexed: 01/26/2023]
Abstract
In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A+/-, modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single-neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an "attractor" disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia.
Collapse
|
49
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
50
|
Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol 2017; 152:21-37. [PMID: 26724279 PMCID: PMC4919246 DOI: 10.1016/j.pneurobio.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|