1
|
Zhang Q, Zhang A, Zhao Z, Li Q, Hu Y, Huang X, Kuang W, Zhao Y, Gong Q. Cognition-related connectome gradient dysfunctions of thalamus and basal ganglia in drug-naïve first-episode major depressive disorder. J Affect Disord 2024; 370:249-259. [PMID: 39500466 DOI: 10.1016/j.jad.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Subcortical functional abnormalities are believed to contribute to clinical symptoms and cognitive impairments in major depressive disorder (MDD). By introducing functional gradient mapping, the present study evaluated subcortical gradients in MDD patients and their association with cognitive features. METHODS Organization patterns and between-group differences in the principal subcortical gradient were investigated in 145 never-treated first-episode MDD patients and 145 healthy controls (HCs) across limbic, thalamic, and basal ganglia (BG) systems and their structural and functional subregions. We also assessed the associations between significant gradient alterations and clinical characteristics and neuropsychological functioning. RESULTS Overall, MDD patients showed a relatively compressed and disturbed gradient organization than HCs, with limbic and BG regions located at the two extreme ends of the principal gradient. Specifically, MDD patients had lower principal gradient values in thalamus and limbic system but higher values in BG than HCs. These gradient alterations, associated with intrinsic Euclidian distance and functional connectivity patterns, manifested as spatial rearrangements of gradient values within each respective subregion. Lower gradient values in thalamic subregion projecting to default mode network were associated with higher principal gradient values in BG subregion projecting to ventral attention network, and these gradient alterations were correlated with poorer episodic memory performance in MDD patients. LIMITATIONS The specific neuropathological mechanisms driving the gradient alterations still require further investigation. CONCLUSIONS Opposing gradient alterations in the thalamic and BG regions synergistically impact episodic memory performance in MDD, revealing an internally differentiated and cognition related pattern of subcortical gradient dysfunction in MDD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Aoxiang Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ziyuan Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yongbo Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
You B, Wen H, Jackson T. Pain resilience dimensions and regional gray matter volume as risk factors for poor outcomes of chronic pain: a prospective cohort study. Psychol Med 2024; 54:1-10. [PMID: 39439301 PMCID: PMC11536115 DOI: 10.1017/s0033291724001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pain resilience and regional gray matter volume (rGMV) are established correlates of adaptation to chronic pain within cross-sectional studies. Extending such work, this prospective cohort study tested the status of baseline pain resilience dimension scores and rGMV as risk factors for subsequent exacerbations in chronic pain disability and intensity. METHODS 142 adults with chronic musculoskeletal pain completed an initial assessment comprising a structural magnetic resonance imaging scan and self-report measures of cognitive/affective positivity and behavioral perseverance pain resilience dimensions, disability, pain intensity, and demographics. Disability and pain intensity were outcomes re-assessed at a 6-month follow-up. The impact of pain resilience dimension scores and identified rGMV sites on follow-up outcomes was examined after controlling for other baseline correlates of outcomes. Mediating effects of identified rGMV sites on pain resilience dimension-follow-up outcome relations were also evaluated. RESULTS Aside from the significant multivariate effect of lower behavioral perseverance and cognitive/affective positivity scores, augmented left precuneus, temporal pole, superior temporal gyrus (STG), and precentral gyrus rGMV combined to predict higher follow-up disability levels, independent of covariates. Higher left fusiform gyrus rGMV levels predicted follow-up exacerbations in pain intensity, but pain resilience dimension scores did not. Finally, left precuneus and left temporal pole STG rGMV partially mediated cognitive/affective positivity-follow-up disability relations. CONCLUSIONS Findings underscore deficits in pain resilience and increased rGMV as potential risk factors for poorer subsequent outcomes of chronic musculoskeletal pain and provide foundations for further prospective extensions as well as targeted intervention research.
Collapse
Affiliation(s)
- Beibei You
- School of Nursing, Guizhou Medical University, Guiyang, 561113, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, 999078, Macau, SAR, China
| |
Collapse
|
3
|
Chen J, Wang X, Li Z, Yuan H, Wang X, Yun Y, Wu X, Yang P, Qin L. Thalamo-cortical neural mechanism of sodium salicylate-induced hyperacusis and anxiety-like behaviors. Commun Biol 2024; 7:1346. [PMID: 39420035 PMCID: PMC11487285 DOI: 10.1038/s42003-024-07040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xueru Wang
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Tu PC, Lin WC, Chang WC, Su TP, Li CT, Bai YM, Tsai SJ, Chen MH. Thalamocortical Dysconnectivity in Treatment-Resistant Depression. J Neurosci Res 2024; 102:e25388. [PMID: 39367566 DOI: 10.1002/jnr.25388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Thalamocortical connectivity is associated with cognitive and affective processing. The role of thalamocortical connectivity in the pathomechanism of treatment-resistant depression (TRD) remains unclear. This study included 48 patients with TRD and 48 healthy individuals. We investigated thalamocortical connectivity by performing resting-state functional MRI with the bilateral thalamus as the seed. In addition, patients with TRD were evaluated using the Montgomery-Åsberg Depression Rating Scale (MADRS). Compared with the healthy individuals, the patients with TRD exhibited increased functional connectivity (FC) of the thalamus with the insula and superior temporal cortex and reduced the FC of the thalamus with the anterior paracingulate cortex and cerebellum crus II. Our study may support the crucial role of thalamocortical dysconnectivity in the TRD pathomechanism. However, the small sample size may limit the statistical power. A future study with a large sample size of patients with TRD would be required to validate our findings.
Collapse
Grants
- V111C-010 Taipei Veterans General Hospital
- V111C-040 Taipei Veterans General Hospital
- V111C-029 Taipei Veterans General Hospital
- V112C-033 Taipei Veterans General Hospital
- V113C-010 Taipei Veterans General Hospital
- V113C-011 Taipei Veterans General Hospital
- V113C-039 Taipei Veterans General Hospital
- CI-109-21 Yen Tjing Ling Medical Foundation
- CI-109-22 Yen Tjing Ling Medical Foundation
- CI-110-30 Yen Tjing Ling Medical Foundation
- CI-113-30 Yen Tjing Ling Medical Foundation
- CI-113-31 Yen Tjing Ling Medical Foundation
- CI-113-32 Yen Tjing Ling Medical Foundation
- MOST110-2314-B-075-026 Ministry of Science and Technology, Taiwan
- MOST110-2314-B-075-024-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-010-050-MY3 Ministry of Science and Technology, Taiwan
- MOST111-2314-B-075-014-MY2 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-075 -013 Ministry of Science and Technology, Taiwan
- NSTC111-2314-B-A49-089-MY2 Ministry of Science and Technology, Taiwan
- VTA112-V1-6-1 Taipei, Taichung, Kaohsiung Veterans General Hospital, Tri-Service General Hospital, Academia Sinica Joint Research Program
- VTA113-V1-5-1 Taipei, Taichung, Kaohsiung Veterans General Hospital, Tri-Service General Hospital, Academia Sinica Joint Research Program
- VGHUST112-G1-8-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
- VGHUST113-G1-8-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Liao D, Liang LS, Wang D, Li XH, Liu YC, Guo ZP, Zhang ZQ, Liu XF. Altered static and dynamic functional network connectivity in individuals with subthreshold depression: a large-scale resting-state fMRI study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01871-3. [PMID: 39044022 DOI: 10.1007/s00406-024-01871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.
Collapse
Affiliation(s)
- Dan Liao
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Li-Song Liang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Di Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiao-Hai Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Yuan-Cheng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xin-Feng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
6
|
You B, Wen H, Jackson T. Resting-state brain activity as a biomarker of chronic pain impairment and a mediator of its association with pain resilience. Hum Brain Mapp 2024; 45:e26780. [PMID: 38984446 PMCID: PMC11234141 DOI: 10.1002/hbm.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.
Collapse
Affiliation(s)
- Beibei You
- School of NursingGuizhou Medical UniversityGuian New DistrictChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Todd Jackson
- Department of PsychologyUniversity of MacauTaipaMacau, SARChina
| |
Collapse
|
7
|
Tu PC, Chang WC, Su TP, Lin WC, Li CT, Bai YM, Tsai SJ, Chen MH. Thalamocortical functional connectivity and rapid antidepressant and antisuicidal effects of low-dose ketamine infusion among patients with treatment-resistant depression. Mol Psychiatry 2024:10.1038/s41380-024-02640-3. [PMID: 38971895 DOI: 10.1038/s41380-024-02640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Previous studies have shown an association between the thalamocortical dysconnectivity and treatment-resistant depression (TRD). Whether a single subanesthetic dose of ketamine may change thalamocortical connectivity among patients with TRD is unclear. Whether these changes in thalamocortical connectivity is associated with the antidepressant and antisuicidal effects of ketamine treatment is also unclear. Two resting-state functional MRIs were collected in two clinical trials of 48 patients with TRD (clinical trial 1; 32 receiving ketamine, 16 receiving a normal saline placebo) and 48 patients with TRD and strong suicidal ideation (clinical trial 2; 24 receiving ketamine, 24 receiving midazolam), respectively. All participants underwent rs-fMRI before and 3 days after infusion. Seed-based functional connectivity (FC) was analyzed in the left/right thalamus. FCs between the bilateral thalamus and right middle frontal cortex (BA46) and between the left thalamus and left anterior paracingulate gyrus (BA8) increased among patients in the ketamine group in clinical trials 1 and 2, respectively. FCs between the right thalamus and bilateral frontal pole (BA9) and between the right thalamus and left rostral paracingulate gyrus (BA10) decreased among patients in the ketamine group in clinical trials 1 and 2, respectively. However, the associations between those FC changes and clinical symptom changes did not survive statistical significance after multiple comparison corrections. Whether ketamine-related changes in thalamocortical connectivity may be associated with ketamine's antidepressant and antisuicidal effects would need further investigation. Clinical trials registration: UMIN Clinical Trials Registry (UMIN-CTR): Registration number: UMIN000016985 and UMIN000033916.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of biomedical engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Lin L, Huang P, Cheng Y, Jiang S, Zhang J, Li M, Zheng J, Pan X, Wang Y. Brain white matter changes and their associations with non-motor dysfunction in orthostatic hypotension in α-synucleinopathy: A NODDI study. CNS Neurosci Ther 2024; 30:e14712. [PMID: 38615364 PMCID: PMC11016347 DOI: 10.1111/cns.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Peilin Huang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Shaofan Jiang
- Department of RadiologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for TumorsFujian Medical UniversityFuzhou CityChina
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
- Center for GeriatricsHainan General HospitalHainanChina
| | - Man Li
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yanping Wang
- Department of EndocrinologyFujian Medical University Union HospitalFuzhou CityChina
| |
Collapse
|
9
|
Wu YK, Su YA, Zhu LL, Yan C, Li JT, Lin JY, Chen J, Chen L, Li K, Stein DJ, Si TM. A distinctive subcortical functional connectivity pattern linking negative affect and treatment outcome in major depressive disorder. Transl Psychiatry 2024; 14:136. [PMID: 38443354 PMCID: PMC10915152 DOI: 10.1038/s41398-024-02838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Major depressive disorder (MDD) is associated with functional disturbances in subcortical regions. In this naturalistic prospective study (NCT03294525), we aimed to investigate relationships among subcortical functional connectivity (FC), mood symptom profiles and treatment outcome in MDD using multivariate methods. Medication-free participants with MDD (n = 135) underwent a functional magnetic resonance imaging scan at baseline and completed posttreatment clinical assessment after 8 weeks of antidepressant monotherapy. We used partial least squares (PLS) correlation analysis to explore the association between subcortical FC and mood symptom profiles. FC score, reflecting the weighted representation of each individual in this association, was computed. Replication analysis was undertaken in an independent sample (n = 74). We also investigated the relationship between FC score and treatment outcome in the main sample. A distinctive subcortical connectivity pattern was found to be associated with negative affect. In general, higher FC between the caudate, putamen and thalamus was associated with greater negative affect. This association was partly replicated in the independent sample (similarity between the two samples: r = 0.66 for subcortical connectivity, r = 0.75 for mood symptom profile). Lower FC score predicted both remission and response to treatment after 8 weeks of antidepressant monotherapy. The emphasis here on the role of dorsal striatum and thalamus consolidates prior work of subcortical connectivity in MDD. The findings provide insight into the pathogenesis of MDD, linking subcortical FC with negative affect. However, while the FC score significantly predicted treatment outcome, the low odds ratio suggests that finding predictive biomarkers for depression remains an aspiration.
Collapse
Affiliation(s)
- Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - ChaoGan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jing-Yu Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - JingXu Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Lin Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Ke Li
- PLA Strategic support Force Characteristic Medical Center, Beijing, 100101, China
| | - Dan J Stein
- Neuroscience Institute, Department of Psychiatry and Mental Health, South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
10
|
Zheng W, Zhang Q, Zhao Z, Zhang P, Zhao L, Wang X, Yang S, Zhang J, Yao Z, Hu B. Aberrant dynamic functional connectivity of thalamocortical circuitry in major depressive disorder. J Zhejiang Univ Sci B 2024; 25:857-877. [PMID: 39420522 PMCID: PMC11494164 DOI: 10.1631/jzus.b2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/24/2023] [Indexed: 03/02/2024]
Abstract
Thalamocortical circuitry has a substantial impact on emotion and cognition. Previous studies have demonstrated alterations in thalamocortical functional connectivity (FC), characterized by region-dependent hypo- or hyper-connectivity, among individuals with major depressive disorder (MDD). However, the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear. Hence, we analyzed dynamic FC (dFC) between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls (HCs) to investigate time-varying changes in thalamocortical FC in patients with MDD. Moreover, dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time. Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated. We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks, compared with the HCs. In addition, MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration. The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort. Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms. Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients. The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.
Collapse
Affiliation(s)
- Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Songyu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China. ,
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. ,
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China. ,
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China. ,
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
11
|
Xie M, Huang Y, Cai W, Zhang B, Huang H, Li Q, Qin P, Han J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sci 2024; 14:50. [PMID: 38248265 PMCID: PMC10813043 DOI: 10.3390/brainsci14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Patients with major depressive disorder (MDD) exhibit an abnormal physiological arousal pattern known as hyperarousal, which may contribute to their depressive symptoms. However, the neurobiological mechanisms linking this abnormal arousal to depressive symptoms are not yet fully understood. In this review, we summarize the physiological and neural features of arousal, and review the literature indicating abnormal arousal in depressed patients. Evidence suggests that a hyperarousal state in depression is characterized by abnormalities in sleep behavior, physiological (e.g., heart rate, skin conductance, pupil diameter) and electroencephalography (EEG) features, and altered activity in subcortical (e.g., hypothalamus and locus coeruleus) and cortical regions. While recent studies highlight the importance of subcortical-cortical interactions in arousal, few have explored the relationship between subcortical-cortical interactions and hyperarousal in depressed patients. This gap limits our understanding of the neural mechanism through which hyperarousal affects depressive symptoms, which involves various cognitive processes and the cerebral cortex. Based on the current literature, we propose that the hyperconnectivity in the thalamocortical circuit may contribute to both the hyperarousal pattern and depressive symptoms. Future research should investigate the relationship between thalamocortical connections and abnormal arousal in depression, and explore its implications for non-invasive treatments for depression.
Collapse
Affiliation(s)
- Musi Xie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Ying Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Wendan Cai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Bingqi Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Haonan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
- Pazhou Laboratory, Guangzhou 510330, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| |
Collapse
|
12
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
13
|
Tsuchiyagaito A, Misaki M, Cochran G, Philip NS, Paulus MP, Guinjoan SM. Thalamo-cortical circuits associated with trait- and state-repetitive negative thinking in major depressive disorder. J Psychiatr Res 2023; 168:184-192. [PMID: 37913745 PMCID: PMC10872862 DOI: 10.1016/j.jpsychires.2023.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT), often referred to as rumination in the mood disorders literature, is a symptom dimension associated with poor prognosis and suicide in major depressive disorder (MDD). Given the transdiagnostic nature of RNT, this study aimed to evaluate the hypothesis that neurobiological substrates of RNT in MDD may share the brain mechanisms underlying obsessions, particularly those involving cortico-striatal-thalamic-cortical (CSTC) circuits. METHODS Thirty-nine individuals with MDD underwent RNT induction during fMRI. Trait-RNT was measured by the Ruminative Response Scale (RRS) and state-RNT was measured by a visual analogue scale. We employed a connectome-wide association analysis examining the association between RNT intensity with striatal and thalamic connectivity. RESULTS A greater RRS score was associated with hyperconnectivity of the right mediodorsal thalamus with prefrontal cortex, including lateral orbitofrontal cortex, along with Wernicke's area and posterior default mode network nodes (t = 4.66-6.70). A greater state-RNT score was associated with hyperconnectivity of the right laterodorsal thalamus with bilateral primary sensory and motor cortices, supplementary motor area, and Broca's area (t = 4.51-6.57). Unexpectedly, there were no significant findings related to the striatum. CONCLUSIONS The present results suggest RNT in MDD is subserved by abnormal connectivity between right thalamic nuclei and cortical regions involved in both visceral and higher order cognitive processing. Emerging deep-brain neuromodulation methods may be useful to establish causal relationships between dysfunction of right thalamic-cortical circuits and RNT in MDD.
Collapse
Affiliation(s)
- Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA; Research Center for Child Mental Development, Chiba University, Chiba, Japan.
| | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Gabe Cochran
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | | | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Psychiatry, Oklahoma University Health Sciences Center at Tulsa, Tulsa, OK, USA; Laureate Psychiatric Hospital and Clinic, Tulsa, OK, USA
| |
Collapse
|
14
|
Dehghani A, Soltanian-Zadeh H, Hossein-Zadeh GA. Neural modulation enhancement using connectivity-based EEG neurofeedback with simultaneous fMRI for emotion regulation. Neuroimage 2023; 279:120320. [PMID: 37586444 DOI: 10.1016/j.neuroimage.2023.120320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Emotion regulation plays a key role in human behavior and overall well-being. Neurofeedback is a non-invasive self-brain training technique used for emotion regulation to enhance brain function and treatment of mental disorders through behavioral changes. Previous neurofeedback research often focused on using activity from a single brain region as measured by fMRI or power from one or two EEG electrodes. In a new study, we employed connectivity-based EEG neurofeedback through recalling positive autobiographical memories and simultaneous fMRI to upregulate positive emotion. In our novel approach, the feedback was determined by the coherence of EEG electrodes rather than the power of one or two electrodes. We compared the efficiency of this connectivity-based neurofeedback to traditional activity-based neurofeedback through multiple experiments. The results showed that connectivity-based neurofeedback effectively improved BOLD signal change and connectivity in key emotion regulation regions such as the amygdala, thalamus, and insula, and increased EEG frontal asymmetry, which is a biomarker for emotion regulation and treatment of mental disorders such as PTSD, anxiety, and depression and coherence among EEG channels. The psychometric evaluations conducted both before and after the neurofeedback experiments revealed that participants demonstrated improvements in enhancing positive emotions and reducing negative emotions when utilizing connectivity-based neurofeedback, as compared to traditional activity-based and sham neurofeedback approaches. These findings suggest that connectivity-based neurofeedback may be a superior method for regulating emotions and could be a useful alternative therapy for mental disorders, providing individuals with greater control over their brain and mental functions.
Collapse
Affiliation(s)
- Amin Dehghani
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA
| | - Gholam-Ali Hossein-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
15
|
Wu D, Schaper FLWVJ, Jin G, Qi L, Du J, Wang X, Wang Y, Xu C, Wang X, Yu T, Fox MD, Ren L. Human anterior thalamic stimulation evoked cortical potentials align with intrinsic functional connectivity. Neuroimage 2023:120243. [PMID: 37353098 DOI: 10.1016/j.neuroimage.2023.120243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Characterizing human thalamocortical network is fundamental for understanding a vast array of human behaviors since the thalamus plays a central role in cortico-subcortical communication. Over the past few decades, advances in functional magnetic resonance imaging have allowed for spatial mapping of intrinsic resting-state functional connectivity (RSFC) between both cortical regions and in cortico-subcortical networks. Despite these advances, identifying the electrophysiological basis of human thalamocortical network architecture remains challenging. By leveraging stereoelectroencephalography electrodes temporarily implanted into distributed cortical regions and the anterior nucleus of the thalamus (ANT) of 10 patients with refractory focal epilepsy, we tested whether ANT stimulation evoked cortical potentials align with RSFC from the stimulation site, derived from a normative functional connectome (n=1000). Our study identifies spatial convergence of ANT stimulation evoked cortical potentials and normative RSFC. Other than connections to the Papez circuit, the ANT was found to be closely connected to several distinct higher-order association cortices, including the precuneus, angular gyrus, dorsal lateral prefrontal cortex, and anterior insula. Remarkably, we found that the spatial distribution and magnitude of cortical-evoked responses to single-pulse electrical stimulation of the ANT aligned with the spatial pattern and strength of normative RSFC of the stimulation site. The present study provides electrophysiological evidence that stimulation evoked electrical activity flows along intrinsic brain networks connected on a thalamocortical level.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Frederic L W V J Schaper
- Center of Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Guangyuan Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Lei Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Jialin Du
- Department of Pharmacy Phase I Clinical Trial Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaopeng Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Yuke Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Cuiping Xu
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xueyuan Wang
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tao Yu
- National Center for Neurological Disorders, Beijing 100053, China; Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Michael D Fox
- Center of Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, United States; Havard Medical School, Boston, MA 02115, USA
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Clinical Research Center of Epilepsy, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
16
|
Zheng Y, Wu Y, Liu Y, Li D, Liang X, Chen Y, Zhang H, Guo Y, Lu R, Wang J, Qiu S. Abnormal dynamic functional connectivity of thalamic subregions in patients with first-episode, drug-naïve major depressive disorder. Front Psychiatry 2023; 14:1152332. [PMID: 37234210 PMCID: PMC10206063 DOI: 10.3389/fpsyt.2023.1152332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Recent studies have shown that major depressive disorder (MDD) is associated with altered intrinsic functional connectivity (FC) of the thalamus; however, investigations of these alterations at a finer time scale and the level of thalamic subregions are still lacking. Methods We collected resting-state functional MRI data from 100 treatment-naïve, first-episode MDD patients and 99 age-, gender- and education-matched healthy controls (HCs). Seed-based whole-brain sliding window-based dFC analyses were performed for 16 thalamic subregions. Between-group differences in the mean and variance of dFC were determined using threshold-free cluster enhancement algorithm. For significant alterations, there relationships with clinical and neuropsychological variables were further examined via bivariate and multivariate correlation analyses. Results Of all thalamic subregions, only the left sensory thalamus (Stha) showed altered variance of dFC in the patients characterized by increases with the left inferior parietal lobule, left superior frontal gyrus, left inferior temporal gyrus, and left precuneus, and decreases with multiple frontal, temporal, parietal, and subcortical regions. These alterations accounted for, to a great extent, clinical, and neuropsychological characteristics of the patients as revealed by the multivariate correlation analysis. In addition, the bivariate correlation analysis revealed a positive correlation between the variance of dFC between the left Stha and right inferior temporal gurus/fusiform and childhood trauma questionnaires scores (r = 0.562, P < 0.001). Conclusion These findings suggest that the left Stha is the most vulnerable thalamic subregion to MDD, whose dFC alterations may serve as potential biomarkers for the diagnosis of the disease.
Collapse
Affiliation(s)
- Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yujie Wu
- Department of Clinical Psychology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yujie Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Liang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaoping Chen
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanyue Zhang
- Department of Radiology, Guangzhou First People’s Hospital, Guangzhou, Guangdong, China
| | - Yan Guo
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruoxi Lu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Lu F, Chen Y, Cui Q, Guo Y, Pang Y, Luo W, Yu Y, Chen J, Gao J, Sheng W, Tang Q, Zeng Y, Jiang K, Gao Q, He Z, Chen H. Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder. Cereb Cortex 2023:6987621. [PMID: 36642500 DOI: 10.1093/cercor/bhac534] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Evidence has indicated abnormalities of thalamo-cortical functional connectivity (FC) in bipolar disorder during a depressive episode (BDD) and major depressive disorder (MDD). However, the dynamic FC (dFC) within this system is poorly understood. We explored the thalamo-cortical dFC pattern by dividing thalamus into 16 subregions and combining with a sliding-window approach. Correlation analysis was performed between altered dFC variability and clinical data. Classification analysis with a linear support vector machine model was conducted. Compared with healthy controls (HCs), both patients revealed increased dFC variability between thalamus subregions with hippocampus (HIP), angular gyrus and caudate, and only BDD showed increased dFC variability of the thalamus with superior frontal gyrus (SFG), HIP, insula, middle cingulate gyrus, and postcentral gyrus. Compared with MDD and HCs, only BDD exhibited enhanced dFC variability of the thalamus with SFG and superior temporal gyrus. Furthermore, the number of depressive episodes in MDD was significantly positively associated with altered dFC variability. Finally, the disrupted dFC variability could distinguish BDD from MDD with 83.44% classification accuracy. BDD and MDD shared common disrupted dFC variability in the thalamo-limbic and striatal-thalamic circuitries, whereas BDD exhibited more extensive and broader aberrant dFC variability, which may facilitate distinguish between these 2 mood disorders.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yanchi Chen
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Yuanhong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, No. 100 Science Avenue, High-tech Zone, 450001, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Kexing Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China.,School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| |
Collapse
|
18
|
Dehghani A, Soltanian-Zadeh H, Hossein-Zadeh GA. Probing fMRI brain connectivity and activity changes during emotion regulation by EEG neurofeedback. Front Hum Neurosci 2023; 16:988890. [PMID: 36684847 PMCID: PMC9853008 DOI: 10.3389/fnhum.2022.988890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the existence of several emotion regulation studies using neurofeedback, interactions among a small number of regions were evaluated, and therefore, further investigation is needed to understand the interactions of the brain regions involved in emotion regulation. We implemented electroencephalography (EEG) neurofeedback with simultaneous functional magnetic resonance imaging (fMRI) using a modified happiness-inducing task through autobiographical memories to upregulate positive emotion. Then, an explorative analysis of whole brain regions was done to understand the effect of neurofeedback on brain activity and the interaction of whole brain regions involved in emotion regulation. The participants in the control and experimental groups were asked to do emotion regulation while viewing positive images of autobiographical memories and getting sham or real (based on alpha asymmetry) EEG neurofeedback, respectively. The proposed multimodal approach quantified the effects of EEG neurofeedback in changing EEG alpha power, fMRI blood oxygenation level-dependent (BOLD) activity of prefrontal, occipital, parietal, and limbic regions (up to 1.9% increase), and functional connectivity in/between prefrontal, parietal, limbic system, and insula in the experimental group. New connectivity links were identified by comparing the brain functional connectivity between experimental conditions (Upregulation and View blocks) and also by comparing the brain connectivity of the experimental and control groups. Psychometric assessments confirmed significant changes in positive and negative mood states in the experimental group by neurofeedback. Based on the exploratory analysis of activity and connectivity among all brain regions involved in emotion regions, we found significant BOLD and functional connectivity increases due to EEG neurofeedback in the experimental group, but no learning effect was observed in the control group. The results reveal several new connections among brain regions as a result of EEG neurofeedback which can be justified according to emotion regulation models and the role of those regions in emotion regulation and recalling positive autobiographical memories.
Collapse
Affiliation(s)
- Amin Dehghani
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States,*Correspondence: Amin Dehghani, ,
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Medical Image Analysis Lab, Department of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
19
|
Yang L, Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Aberrant degree centrality of functional brain networks in subclinical depression and major depressive disorder. Front Psychiatry 2023; 14:1084443. [PMID: 36873202 PMCID: PMC9978101 DOI: 10.3389/fpsyt.2023.1084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND As one of the most common diseases, major depressive disorder (MDD) has a significant adverse impact on the li of patients. As a mild form of depression, subclinical depression (SD) serves as an indicator of progression to MDD. This study analyzed the degree centrality (DC) for MDD, SD, and healthy control (HC) groups and identified the brain regions with DC alterations. METHODS The experimental data were composed of resting-state functional magnetic resonance imaging (rs-fMRI) from 40 HCs, 40 MDD subjects, and 34 SD subjects. After conducting a one-way analysis of variance, two-sample t-tests were used for further analysis to explore the brain regions with changed DC. Receiver operating characteristic (ROC) curve analysis of single index and composite index features was performed to analyze the distinguishable ability of important brain regions. RESULTS For the comparison of MDD vs. HC, increased DC was found in the right superior temporal gyrus (STG) and right inferior parietal lobule (IPL) in the MDD group. For SD vs. HC, the SD group showed a higher DC in the right STG and the right middle temporal gyrus (MTG), and a smaller DC in the left IPL. For MDD vs. SD, increased DC in the right middle frontal gyrus (MFG), right IPL, and left IPL, and decreased DC in the right STG and right MTG was found in the MDD group. With an area under the ROC (AUC) of 0.779, the right STG could differentiate MDD patients from HCs and, with an AUC of 0.704, the right MTG could differentiate MDD patients from SD patients. The three composite indexes had good discriminative ability in each pairwise comparison, with AUCs of 0.803, 0.751, and 0.814 for MDD vs. HC, SD vs. HC, and MDD vs. SD, respectively. CONCLUSION Altered DC in the STG, MTG, IPL, and MFG were identified in depression groups. The DC values of these altered regions and their combinations presented good discriminative ability between HC, SD, and MDD. These findings could help to find effective biomarkers and reveal the potential mechanisms of depression.
Collapse
Affiliation(s)
- Lei Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Jiang J, Wang A, Liu Y, Yao Z, Sun M, Jiang T, Li W, Jiang S, Zhang X, Wang Y, Zhang Y, Jia Z, Zou X, Xu J. Spatiotemporal Characteristics of Regional Brain Perfusion Associated with Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 95:981-993. [PMID: 37638444 DOI: 10.3233/jad-230499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Current technology for exploring neuroimaging markers and neural circuits of neuropsychiatric symptoms (NPS) in patients with Alzheimer's disease (AD) is expensive and usually invasive, limiting its use in clinical practice. OBJECTIVE To investigate the cerebral morphology and perfusion characteristics of NPS and identify the spatiotemporal perfusion circuits of NPS sub-symptoms. METHODS This nested case-control study included 102 AD patients with NPS and 51 age- and sex-matched AD patients without NPS. Gray matter volume, cerebral blood flow (CBF), and arterial transit time (ATT) were measured and generated using time-encoded 7-delay pseudo-continuous arterial spin labeling (pCASL). Multiple conditional logistic regression analysis was used to identify neuroimaging markers of NPS. The associations between the CBF or ATT of affected brain areas and NPS sub-symptoms were evaluated after adjusting for confounding factors. The neural circuits of sub-symptoms were identified based on spatiotemporal perfusion sequencing. RESULTS Lower Mini-Mental State Examination scores (p < 0.001), higher Caregiver Burden Inventory scores (p < 0.001), and higher CBF (p = 0.001) and ATT values (p < 0.003) of the right anteroventral thalamic nucleus (ATN) were risk factors for NPS in patients with AD. Six spatiotemporal perfusion circuits were found from 12 sub-symptoms, including the anterior cingulate gyri-temporal pole/subcortical thalamus-cerebellum circuit, insula-limbic-cortex circuit, subcortical thalamus-temporal pole-cortex circuit, subcortical thalamus-cerebellum circuit, frontal cortex-cerebellum-occipital cortex circuit, and subcortical thalamus-hippocampus-dorsal raphe nucleus circuit. CONCLUSIONS Prolonged ATT and increased CBF of the right ATN may be neuroimaging markers for detecting NPS in patients with AD. Time-encoded pCASL could be a reliable technique to explore the neural perfusional circuits of NPS.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaou Liu
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zeshan Yao
- Beijing Institute of Collaborative Innovation Beijing Institute of Collaborative Innovation, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoli Zhang
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
21
|
Jing R, Huo Y, Si J, Li H, Yu M, Lin X, Liu G, Li P. Altered spatio-temporal state patterns for functional dynamics estimation in first-episode drug-naive major depression. Brain Imaging Behav 2022; 16:2744-2754. [PMID: 36333522 PMCID: PMC9638404 DOI: 10.1007/s11682-022-00739-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Patients with major depressive disorder (MDD) display affective and cognitive impairments. Although MDD-associated abnormalities of brain function and structure have been explored in depth, the relationships between MDD and spatio-temporal large-scale functional networks have not been evaluated in large-sample datasets. We employed data from International Big-Data Center for Depression Research (IBCDR), and comparable 543 healthy controls (HC) and 314 first-episode drug-naive (FEDN) MDD patients were included. We used a multivariate pattern classification method to learn informative spatio-temporal functional states. Brain states of each participant were extracted for functional dynamic estimation using an independent component analysis. Then, a multi-kernel pattern classification method was developed to identify discriminative spatio-temporal states associated with FEDN MDD. Finally, statistical analysis was applied to intrinsic and clinical brain characteristics. Compared with HC, FEDN MDD patients exhibited altered spatio-temporal functional states of the default mode network (DMN), the salience network, a hub network (centered on the dorsolateral prefrontal cortex), and a relatively complex coupling network (visual, DMN, motor-somatosensory and subcortical networks). Multi-kernel classification models to distinguish patients from HC obtained areas under the receiver operating characteristic curves up to 0.80. Classification scores correlated with Hamilton Depression Rating Scale scores and age at MDD onset. FEDN MDD patients had multiple abnormal spatio-temporal functional states. Classification scores derived from these states were related to symptom severity. The assessment of spatio-temporal states may represent a powerful clinical and research tool to distinguish between neuropsychiatric patients and controls.
Collapse
Affiliation(s)
- Rixing Jing
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China.
| | - Yanxi Huo
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Juanning Si
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Huiyu Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Mingxin Yu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China
| | - Guozhong Liu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China.
| |
Collapse
|
22
|
Stoyanov D, Khorev V, Paunova R, Kandilarova S, Simeonova D, Badarin A, Hramov A, Kurkin S. Resting-State Functional Connectivity Impairment in Patients with Major Depressive Episode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14045. [PMID: 36360924 PMCID: PMC9656256 DOI: 10.3390/ijerph192114045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
AIM This study aims to develop new approaches to characterize brain networks to potentially contribute to a better understanding of mechanisms involved in depression. METHOD AND SUBJECTS We recruited 90 subjects: 49 healthy controls (HC) and 41 patients with a major depressive episode (MDE). All subjects underwent clinical evaluation and functional resting-state MRI. The data were processed investigating functional connectivity network measures across the two groups using Brain Connectivity Toolbox. The statistical inferences were developed at a functional network level, using a false discovery rate method. Linear discriminant analysis was used to differentiate between the two groups. RESULTS AND DISCUSSION Significant differences in functional connectivity (FC) between depressed patients vs. healthy controls was demonstrated, with brain regions including the lingual gyrus, cerebellum, midcingulate cortex and thalamus more prominent in healthy subjects as compared to depression where the orbitofrontal cortex emerged as a key node. Linear discriminant analysis demonstrated that full-connectivity matrices were the most precise in differentiating between depression vs. health subjects. CONCLUSION The study provides supportive evidence for impaired functional connectivity networks in MDE patients.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Artem Badarin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Alexander Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| |
Collapse
|
23
|
Yang L, Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Alterations of functional connectivity of the lateral habenula in subclinical depression and major depressive disorder. BMC Psychiatry 2022; 22:588. [PMID: 36064380 PMCID: PMC9442927 DOI: 10.1186/s12888-022-04221-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common cause of disability and morbidity, affecting about 10% of the population worldwide. Subclinical depression (SD) can be understood as a precursor of MDD, and therefore provides an MDD risk indicator. The pathogenesis of MDD and SD in humans is still unclear, and the current diagnosis lacks accurate biomarkers and gold standards. METHODS A total of 40 MDD, 34 SD, and 40 healthy control (HC) participants matched by age, gender, and education were included in this study. Resting-state functional magnetic resonance images (rs-fMRI) were used to analyze the functional connectivity (FC) of the posterior parietal thalamus (PPtha), which includes the lateral habenula, as the region of interest. Analysis of variance with the post hoc t-test test was performed to find significant differences in FC and clarify the variations in FC among the HC, SD, and MDD groups. RESULTS Increased FC was observed between PPtha and the left inferior temporal gyrus (ITG) for MDD versus SD, and between PPtha and the right ITG for SD versus HC. Conversely, decreased FC was observed between PPtha and the right middle temporal gyrus (MTG) for MDD versus SD and MDD versus HC. The FC between PPtha and the middle frontal gyrus (MFG) in SD was higher than that in MDD and HC. Compared with the HC group, the FC of PPtha-ITG (left and right) increased in both the SD and MDD groups, PPtha-MTG (right) decreased in both the SD and MDD groups and PPtha-MFG (right) increased in the SD group and decreased in the MDD group. CONCLUSION Through analysis of FC measured by rs-fMRI, the altered FC between PPtha and several brain regions (right and left ITG, right MTG, and right MFG) has been identified in participants with SD and MDD. Different alterations in FC between PPtha and these regions were identified for patients with depression. These findings might provide insights into the potential pathophysiological mechanisms of SD and MDD, especially related to PPtha and the lateral habenula.
Collapse
Affiliation(s)
- Lei Yang
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China. .,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Yueyang Teng
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- grid.217309.e0000 0001 2180 0654Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Xiuhang Ruan
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Wang J, Zhou S, Deng D, Chen M, Cai H, Zhang C, Liu F, Luo W, Zhu J, Yu Y. Compensatory thalamocortical functional hyperconnectivity in type 2 Diabetes Mellitus. Brain Imaging Behav 2022; 16:2556-2568. [PMID: 35922652 DOI: 10.1007/s11682-022-00710-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with brain damage and cognitive decline. Despite the fact that the thalamus involves aspects of cognition and is typically affected in T2DM, existing knowledge of subregion-level thalamic damage and its associations with cognitive performance in T2DM patients is limited. The thalamus was subdivided into 8 subregions in each hemisphere. Resting-state functional and structural MRI data were collected to calculate resting-state functional connectivity (rsFC) and gray matter volume (GMV) of each thalamic subregion in 62 T2DM patients and 50 healthy controls. Compared with controls, T2DM patients showed increased rsFC of the medial pre-frontal thalamus, posterior parietal thalamus, and occipital thalamus with multiple cortical regions. Moreover, these thalamic functional hyperconnectivity were associated with better cognitive performance and lower glucose variability in T2DM patients. However, there were no group differences in GMV for any thalamic subregions. These findings suggest a possible neural compensation mechanism whereby selective thalamocortical functional hyperconnectivity facilitated by better glycemic control help to preserve cognitive ability in T2DM patients, which may ultimately inform intervention and prevention of T2DM-related cognitive decline in real-world clinical settings.
Collapse
Affiliation(s)
- Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, 230032, Hefei, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, 230032, Hefei, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, 230032, Hefei, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China
| | - Wei Luo
- Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000, Chaohu, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, 230032, Hefei, Anhui Province, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, 230032, Hefei, Anhui Province, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
25
|
Piani MC, Maggioni E, Delvecchio G, Brambilla P. Sustained attention alterations in major depressive disorder: A review of fMRI studies employing Go/No-Go and CPT tasks. J Affect Disord 2022; 303:98-113. [PMID: 35139418 DOI: 10.1016/j.jad.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe psychiatric condition characterized by selective cognitive dysfunctions. In this regard, functional Magnetic Resonance Imaging (fMRI) studies showed, both at resting state and during tasks, alterations in the brain functional networks involved in cognitive processes in MDD patients compared to controls. Among those, it seems that the attention network may have a role in the disease pathophysiology. Therefore, in this review we aim at summarizing the current fMRI evidence investigating sustained attention in MDD patients. METHODS We conducted a search on PubMed on case-control studies on MDD employing fMRI acquisitions during Go/No-Go and continuous performance tasks. A total of 12 studies have been included in the review. RESULTS Overall, the majority of fMRI studies reported quantitative alterations in the response to attentive tasks in selective brain regions, including the prefrontal cortex, the cingulate cortex, the temporal and parietal lobes, the insula and the precuneus, which are key nodes of the attention, the executive, and the default mode networks. LIMITATIONS The heterogeneity in the study designs, fMRI acquisition techniques and processing methods have limited the generalizability of the results. CONCLUSIONS The results from the included studies showed the presence of alterations in the activation patterns of regions involved in sustained attention in MDD, which are in line with current evidence and seemed to explain some of the key symptoms of depression. However, given the paucity and heterogeneity of studies available, it may be worthwhile to continue investigating the attentional domain in MDD with ad-hoc study designs to retrieve more robust evidence.
Collapse
Affiliation(s)
- Maria Chiara Piani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| |
Collapse
|
26
|
Chen D, Lei X, Du L, Long Z. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study. J Psychiatr Res 2022; 148:88-94. [PMID: 35121273 DOI: 10.1016/j.jpsychires.2022.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, safe, and efficacious treatment for major depressive disorder (MDD). However, the antidepressant efficacy of rTMS greatly varies across individual patients. Thus, markers that can be used to predict the outcome of rTMS treatment at the individual level must be identified. Thalamo-cortical connectivity was abnormal in patients with MDD, and was normalized after rTMS treatment. In the current study, we investigated whether the resting-state functional and structural thalamo-cortical connectivity could be utilized to predict the rTMS treatment efficacy by employing support vector machine regression analysis. Results showed that the Hamilton Depression Scale scores of patients with MDD decreased after rTMS treatment. The functional connectivity of mediodorsal nucleus with prefrontal cortex predicted the rTMS treatment improvement, whereas the functional connectivity of other thalamic nuclei with cerebral cortex did not predict the treatment efficacy. The brain areas that contributed the most to the prediction were dorsal lateral prefrontal cortex, ventral lateral, and orbital and medial prefrontal areas. The improvement in the outcome of rTMS treatment could also be predicted by the thalamo-prefrontal structural connectivity. No statistically significantly difference in thalamo-cortical connectivity was observed between early improvers and early non-improvers. These results suggested that the thalamo-prefrontal connectivity can predict the rTMS treatment improvement. This study highlighted the crucial role of the thalamo-prefrontal connectivity as a neuroimaging marker in the treatment of depression via rTMS.
Collapse
Affiliation(s)
- Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China.
| |
Collapse
|
27
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
28
|
Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry 2022; 12:36. [PMID: 35082273 PMCID: PMC8791951 DOI: 10.1038/s41398-022-01787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-BRAIN, Jülich/Aachen, Germany.
| | - Tanja Veselinović
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
29
|
Hong W, Li M, Liu Z, Li X, Huai H, Jia D, Jin W, Zhao Z, Liu L, Li J, Sun F, Xu R, Zhao Z. Heterogeneous alterations in thalamic subfields in major depression disorder. J Affect Disord 2021; 295:1079-1086. [PMID: 34706417 DOI: 10.1016/j.jad.2021.08.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND It is well known that the thalamus is not a unitary and homogeneous entity but a complex and highly connected archeocortical structure. Although many neuroimaging studies have reported alterations in the thalamus in major depressive disorder (MDD), the structural alterations in thalamic subfields remain unclear. This study aimed to investigate changes in gray matter volume (GMV) in thalamic subfields in MDD patients. METHODS The present study included structural images of 848 MDD patients and 794 age-matched normal controls (NC) from 17 study sites of the REST-meta-MDD consortium. We performed voxel-based morphometric analyses to calculate the GMV in the entire thalamus and its subfields using three different automated anatomical labeling atlases and subsequently compared the differences between first-episode drug-naïve major depressive disorder (FEDN), recurrent major depressive disorder (RMDD), and NC groups. We also evaluated the relationships between thalamic GMV and clinical symptoms in MDD patients. RESULTS Compared to NC, the FEDN patients showed increased GMV in thalamic subfields but not in the entire thalamus, while RMDD patients showed no significant alterations in GMV in the entire thalamus and its subfields. Moreover, the mean GMV in the right anterior thalamus and left anteroventral thalamus in RMDD patients were mildly positively correlated with the Hamilton Anxiety Rating Scale scores. LIMITATIONS The main limitations are a single-modal analysis based on T1-weighted MR images and a cross-sectional design. CONCLUSIONS Our findings suggest that FEDN and RMDD patients show heterogeneous alterations across thalamic subfields, which may help us understand the pathophysiological mechanisms of MDD.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zaixing Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiguang Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hongbo Huai
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongqi Jia
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Jin
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhigang Zhao
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Liang Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jiyuan Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fenfen Sun
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing 312000, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Li J, Liu J, Zhong Y, Wang H, Yan B, Zheng K, Wei L, Lu H, Li B. Causal Interactions Between the Default Mode Network and Central Executive Network in Patients with Major Depression. Neuroscience 2021; 475:93-102. [PMID: 34487819 DOI: 10.1016/j.neuroscience.2021.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Two different but interacting neural systems exist in the human brain: the task positive networks and task negative networks. One of the most important task positive networks is the central executive network (CEN), while the task negative network generally refers to the default mode network (DMN), which usually demonstrates task-induced deactivation. Although previous studies have clearly shown the association of both the CEN and DMN with major depressive disorder (MDD), how the causal interactions between these two networks change in depressed patients remains unclear. In the current study, 99 subjects (43 patients with MDD and 56 healthy controls) were recruited with their resting-state fMRI data collected. After data preprocessing, spectral dynamic causal modeling (spDCM) was used to investigate the causal interactions within and between the DMN and CEN. Group commonalities and differences in causal interaction patterns within and between the CEN and DMN in patients and controls were assessed by a parametric empirical Bayes (PEB) model. Both subject groups demonstrated significant effective connectivity between regions of the CEN and DMN. In particular, we detected inhibitory influences from the CEN to the DMN with node-level PEB analyses, which may help to explain the anticorrelations between these two networks consistently reported in previous studies. Compared with healthy controls, patients with MDD showed increased effective connectivity within the CEN and decreased connectivity from regions of the CEN to DMN, suggesting impaired control of the DMN by the CEN in these patients. These findings might provide new insights into the neural substrates of MDD.
Collapse
Affiliation(s)
- Jiaming Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jian Liu
- Network Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yufang Zhong
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huaning Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Baoyu Yan
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaizhong Zheng
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Wei
- Network Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
31
|
Chen F, Lv X, Fang J, Li T, Xu J, Wang X, Hong Y, Hong L, Wang J, Wang W, Wang C. Body-mind relaxation meditation modulates the thalamocortical functional connectivity in major depressive disorder: a preliminary resting-state fMRI study. Transl Psychiatry 2021; 11:546. [PMID: 34689151 PMCID: PMC8542047 DOI: 10.1038/s41398-021-01637-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how body-mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body-mind relaxation meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study, future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and self-related processes.
Collapse
Affiliation(s)
- Fangfang Chen
- grid.263488.30000 0001 0472 9649College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060 China
| | - Xueyu Lv
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiliang Fang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Tao Li
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jinping Xu
- grid.458489.c0000 0001 0483 7922Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiaoling Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Yang Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lan Hong
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Weidong Wang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Chao Wang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Liampas I, Raptopoulou M, Mpourlios S, Siokas V, Tsouris Z, Aloizou AM, Dastamani M, Brotis A, Bogdanos D, Xiromerisiou G, Dardiotis E. Factors associated with recurrent transient global amnesia: systematic review and pathophysiological insights. Rev Neurosci 2021; 32:751-765. [PMID: 33675214 DOI: 10.1515/revneuro-2021-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
The examination of the risk factors that affect the recurrence of transient global amnesia (TGA) may shed light on the pathophysiological substrate of the disease. A systematic review was performed to identify the factors associated with the recurrence of TGA. MEDLINE, EMBASE, CENTRAL and PsycINFO were meticulously searched. Observational controlled studies involving patients with single (s-TGA) and recurrent TGA (r-TGA) according to Hodges and Warlow's criteria were retrieved. Differences in the demographic characteristics, personal and family medical history, previous exposure to precipitating events and laboratory findings were examined. Retrieved evidence was assessed in the context of the individual article validity, based on the numerical power and methodological quality of each study. Nine cohort studies with retrospective, prospective or mixed design were retrieved. In total, 1989 patients with TGA were included, 269 of whom suffered from r-TGA (13.5%). R-TGA presented an earlier age of onset. Evidence was suggestive of a relationship between recurrence and a family or personal history of migraine, as well as a personal history of depression. There was weaker evidence that associated recurrence with a positive family history of dementia, a personal history of head injury and hippocampal lesions in diffusion-weighted MRI. On the other hand, no connection was found between recurrence and electroencephalographic abnormalities, impaired jugular venous drainage, cardiovascular risk factors, atrial fibrillation, previous cerebrovascular events, exposure to precipitating events, a positive family history of TGA and hypothyroidism. Important pathophysiological insights that arised from these findings were discussed.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Maria Raptopoulou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece.,First Department of Internal Medicine, General Hospital of Trikala, Karditsis 56, 42100Trikala, Greece
| | - Stefanos Mpourlios
- School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Alexandros Brotis
- Department of Neurosurgery, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and clinical Immunology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Mezourlo Hill, 41100Larissa, Greece
| |
Collapse
|
33
|
Liang X, Zhu Y, Fang Y. COVID-19 and post-traumatic stress disorder: A vicious circle involving immunosuppression. CNS Neurosci Ther 2020; 26:876-878. [PMID: 32678521 PMCID: PMC7405215 DOI: 10.1111/cns.13431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China.,Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Zhu
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Psychotic disorders, Shanghai, China
| |
Collapse
|
34
|
Zeng C, Xue Z, Ross B, Zhang M, Liu Z, Wu G, Ouyang X, Li D, Pu W. Salience-thalamic circuit uncouples in major depressive disorder, but not in bipolar depression. J Affect Disord 2020; 269:43-50. [PMID: 32217342 DOI: 10.1016/j.jad.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bipolar depression (BDD) and major depressive disorder (MDD) are two diseases both characterized by depressed mood and diminished interest or pleasure. Recent neuroimaging studies have implicated the thalamo-cortical circuit in mood disorders, and the present study aimed to map thalamo-cortical connectivity to explore the dissociable and common abnormalities between bipolar and major depression in this circuit. METHOD Applying resting-state functional magnetic resonance imaging (fMRI), we mapped the thalamo-cortical circuit using a fine-grained thalamic atlas with 8 sub-regions bilaterally in 38 BDD patients, 42 MDD patients and 39 healthy controls (HCs). Correlation analysis was then performed between thalamo-cortical connectivity and clinical variables. RESULT The findings showed that both patient groups exhibited prefronto-thalamo-cerebellar and sensorimotor-thalamic hypoconnectivity, while the abnormalities in MDD were more extensive. Particularly, MDD group showed decreased thalamic connectivity with the salience network including the insula, anterior cingulate cortex (ACC), and striatum. No correlations were found between the abnormal thalamo-cortical connectivity and clinical symptoms in either patient group. LIMITATION Most patients in our study were taking drugs at the time of scanning, which may confound our findings. CONCLUSION Our finding suggest that the thalamo-cortical hypofunction is a common neuro-substrate for BDD and MDD. Specifically, the hypoconnectivity between the thalamus and salience network including the insula, ACC and striatum may be a distinguished biomarker for MDD, which may help to differentiate these two emotional disorders.
Collapse
Affiliation(s)
- Can Zeng
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China; China National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Mental Health Institute of Central South University, Changsha, China; Education college, Shaoguan University, Shaoguan, China
| | - Zhimin Xue
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China; China National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Mental Health Institute of Central South University, Changsha, China
| | - Brendan Ross
- McGill Faculty of Medicine, Montreal, QC, Canada
| | - Manqi Zhang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan , China
| | - Zhening Liu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China; China National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Mental Health Institute of Central South University, Changsha, China
| | - Guowei Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China; China National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuan Ouyang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University,Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China; China National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Mental Health Institute of Central South University, Changsha, China
| | - Dan Li
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weidan Pu
- The China National Clinical Research Center for Mental Health Disorders, Changsha, China; Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan , China.
| |
Collapse
|
35
|
Zhao J, Su Q, Liu F, Zhang Z, Yang R, Guo W, Zhao J. Enhanced Connectivity of Thalamo-Cortical Networks in First-Episode, Treatment-Naive Somatization Disorder. Front Psychiatry 2020; 11:555836. [PMID: 33061917 PMCID: PMC7518236 DOI: 10.3389/fpsyt.2020.555836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dysfunctions of the thalamus and its projections to cortical cortices have been implicated in patient with somatization disorder (SD). However, changes in the anatomical specificity of thalamo-cortical functional connectivity (FC) in SD remain unclear. METHODS Resting-state fMRI scans were collected in 25 first-episode, drug-naive patients with SD, as well as 28 sex-, age-, and education-matched healthy controls. We parcellated the thalamus with seven predefined regions of interest (ROIs) and used them as seeds to map whole-brain FC. Correlation analysis was conducted in the patients. RESULTS We found an increased pattern of thalamic ROI-cortex connectivity in patients with SD. Patients with SD demonstrated enhanced thalamic connectivity to the bilateral anterior/middle cingulum, motor/sensory cortex, visual cortex, and auditory cortex. A significantly negative correlation was found between the right occipital thalamic ROI to the anterior cingulum and EPQ extraversion scores (r=0.404, p=0.045) after the Benjamini-Hochberg correction. CONCLUSIONS This study demonstrates that anatomical specificity of enhanced thalamo-cortical FCs exists in first-episode, drug-naive patients with SD. These findings further highlight the importance of the thalamic subregions in the pathophysiology of SD.
Collapse
Affiliation(s)
- Jin Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qinji Su
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
36
|
Affiliation(s)
- Ming-Rui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian-Mei Si
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Han F, Liu H, Wang K, Yang J, Yang L, Liu J, Zhang M, Dun W. Correlation Between Thalamus-Related Functional Connectivity and Serum BDNF Levels During the Periovulatory Phase of Primary Dysmenorrhea. Front Hum Neurosci 2019; 13:333. [PMID: 31632254 PMCID: PMC6779153 DOI: 10.3389/fnhum.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/09/2019] [Indexed: 01/30/2023] Open
Abstract
The thalamus is a key region for the transmission of nociceptive information in the central modulation of pain and has been studied in the setting of numerous chronic pain conditions. Brain-derived neurotrophic factor (BDNF) is considered an important modulator for mediating nociceptive pathways in chronic pain. The present study aimed to investigate whether there was thalamus-related abnormal functional connectivity or relevant serum BDNF level alterations during periovulation in long-term primary dysmenorrhea (PDM). Thalamic subregions were defined according to the Human Brainnetome Atlas. Functional connectivity analyses were performed in 36 patients in the periovulatory phase and 29 age-, education-, and gender-matched healthy controls. Serum BDNF levels were evaluated by enzyme-linked immunosorbent assay and a significantly higher BDNF level was detected in PDM patients. Compared with HCs, PDM patients had abnormal functional connectivity of thalamic-subregions, mainly involving with prefrontal cortex, sensorimotor cortex, and temporal cortex. In addition, the functional connectivity of thalamic-subregions showed significant interactive effect correlated with serum BDNF level between PDM and HCs. It has been suggested that there were maladaptive or adoptive alteration associated with chronic menstrual pain even without the ongoing menstrual pain. BDNF might play a role in the development and chronicity of central nervous system dysfunction. These findings provided more accurate information about the involvement of the thalamus in the pathophysiology of PDM.
Collapse
Affiliation(s)
- Fang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongjuan Liu
- Department of Intensive Care Unit, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Yang
- Department of Medical Imaging, Chong Qing Medical University, Chong Qing, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanghuan Dun
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Lee S, Lee SM, Kang WS, Jahng GH, Ryu CW, Park JK. Altered resting-state functional connectivity in depressive disorder patients with suicidal attempts. Neurosci Lett 2019; 696:174-178. [DOI: 10.1016/j.neulet.2018.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 01/14/2023]
|
39
|
Xue SW, Wang D, Tan Z, Wang Y, Lian Z, Sun Y, Hu X, Wang X, Zhou X. Disrupted Brain Entropy And Functional Connectivity Patterns Of Thalamic Subregions In Major Depressive Disorder. Neuropsychiatr Dis Treat 2019; 15:2629-2638. [PMID: 31571880 PMCID: PMC6750201 DOI: 10.2147/ndt.s220743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Entropy analysis of resting-state functional magnetic resonance imaging (R-fMRI) has recently been adopted to characterize brain temporal dynamics in some neuropsychological or psychiatric diseases. Thalamus-related dysfunction might be a potential trait marker of major depressive disorder (MDD), but the abnormal changes in the thalamus based on R-fMRI are still unclear from the perspective of brain temporal dynamics. The aim of this study was to identify local entropy changes and subregional connectivity patterns of the thalamus in MDD patients. PATIENTS AND METHODS We measured the sample entropy of the R-fMRI data from 46 MDD patients and 32 matched healthy controls. We employed the Louvain method for the module detection algorithm to automatically identify a functional parcellation of the thalamus and then examined the whole-brain subregional connectivity patterns. RESULTS The results indicated that the MDD patients had decreased entropy in the bilateral thalami compared with healthy controls. Increased functional connectivity between the thalamic subregions and the medial part of the superior frontal gyrus (mSFG) was found in MDD patients. CONCLUSION This study showed new evidence about sample entropy changes in MDD patients. The functional connectivity alterations that were widely distributed across almost all the thalamic subregions with the mSFG in MDD suggest a general involvement independent of the location and function of the subregions.
Collapse
Affiliation(s)
- Shao-Wei Xue
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Zhonglin Tan
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou 310013, People's Republic of China
| | - Yan Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Zhenzhen Lian
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Yunkai Sun
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xiaojiao Hu
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xiaole Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xin Zhou
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| |
Collapse
|
40
|
Kang L, Zhang A, Sun N, Liu P, Yang C, Li G, Liu Z, Wang Y, Zhang K. Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: a resting-state fMRI study. BMC Psychiatry 2018; 18:339. [PMID: 30340472 PMCID: PMC6194586 DOI: 10.1186/s12888-018-1913-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Studies have confirmed that the thalamus and the primary somatosensory cortex (SI) are associated with cognitive function. These two brain regions are closely related in structure and function. The interactions between SI and the thalamus are of crucial significance for the cognitive process. Patients with major depressive disorder (MDD) have significant cognitive impairment. Based on these observations, we used resting-state functional magnetic resonance imaging (rs-fMRI) to investigate whether there is an abnormality in the SI-thalamic functional connection in MDD. Furthermore, we explored the clinical symptoms related to this abnormality. METHODS We included 31 patients with first-episode major depressive disorder and 28 age-, gender-, and education-matched healthy controls (HC). The SI-thalamic functional connectivity was compared between the MDD and HC groups. The correlation analyses were performed between areas with abnormal connectivity and clinical characteristics. RESULTS Compared with healthy subjects, the MDD patients had enhanced functional connectivity between the thalamus and SI (p < 0.05, corrected). Brain areas with significantly different levels of connectivity had a negative correlation with the Assessment of Neuropsychological Status total score (r = - 0.383, p = 0.033), delayed memory score (r = - 0.376, p = 0.037) and two-digit continuous operation test score (r = - 0.369, p = 0.041) in MDD patients. CONCLUSIONS These results demonstrate that SI-thalamic functional connectivity is abnormal and associated with the core clinical symptoms in MDD. The SI-thalamic functional connectivity functions as a neurobiological feature and potential biomarker for MDD.
Collapse
Affiliation(s)
- Lijun Kang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China ,grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Aixia Zhang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Ning Sun
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Penghong Liu
- grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Chunxia Yang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Gaizhi Li
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Zhifen Liu
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Yanfang Wang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
41
|
Zhornitsky S, Ide JS, Wang W, Chao HH, Zhang S, Hu S, Krystal JH, Li CSR. Problem Drinking, Alcohol Expectancy, and Thalamic Resting-State Functional Connectivity in Nondependent Adult Drinkers. Brain Connect 2018; 8:487-502. [PMID: 30198312 PMCID: PMC6207153 DOI: 10.1089/brain.2018.0633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alcohol misuse is associated with thalamic dysfunction. The thalamus comprises subnuclei that relay and integrate information between cortical and subcortical structures. However, it is unclear how the subnuclei contribute to thalamic dysfunctions in problem drinking. We investigated resting-state functional connectivity (rsFC) of thalamic subregions in 107 nondependent drinkers (57 women), using masks delineated by white matter tractography. Thalamus was parceled into motor, somatosensory, visual, premotor, frontal association, parietal association, and temporal association subregions. Whole-brain linear regression, each against Alcohol Use Disorders Identification Test (AUDIT) and positive alcohol expectancy (AE) score with age as a covariate, was performed for each seed, for men and women combined, and separately. Overall, problem drinking was associated with increased thalamic connectivities, whereas AE was associated with a mixed pattern of increased and decreased connectivities. Motor, premotor, somatosensory, and frontal association thalamic connectivity with bilateral caudate head was positively correlated with AUDIT score in men and women combined. Connectivity of the right caudate head with frontal association and premotor thalamus was also positively correlated with AE score in men and women combined. In contrast, motor and premotor thalamic connectivity with a number of cortical and subcortical structures showed sex differences in the correlation each with AUDIT and AE score. In mediation analyses, AE score completely mediated the correlation between thalamic caudate connectivity and AUDIT score, whereas the model where AE contributed to problem drinking and, in turn, altered thalamic caudate connectivity was not supported. To conclude, thalamic subregional rsFCs showed both shared and distinct changes and sex differences in association with problem drinking and AE. Increased thalamic caudate connectivity may contribute to problem drinking via enhanced AE. The findings suggest the importance of examining thalamic subdivisions and sex in investigating the functional roles of thalamus in problem drinking.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jaime S. Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare System, West Haven, Connecticut
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sien Hu
- Department of Psychology, State University of New York, Oswego, New York
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
42
|
Kong QM, Qiao H, Liu CZ, Zhang P, Li K, Wang L, Li JT, Su Y, Li KQ, Yan CG, Mitchell PB, Si TM. Aberrant intrinsic functional connectivity in thalamo-cortical networks in major depressive disorder. CNS Neurosci Ther 2018; 24:1063-1072. [PMID: 29493113 DOI: 10.1111/cns.12831] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Growing evidence has implicated dysfunction of the thalamus and its projection cortical targets in depression. However, the anatomical specificity of thalamo-cortical connectivity in major depressive disorder (MDD) remains unknown due to the regional heterogeneity of the thalamus and limited methods to examine this. METHODS Resting-state fMRI was collected on 70 MDD patients and 70 healthy controls. The thalamus was parcellated based on connectivity with six predefined cortical regions of interest (ROIs). The segmented thalamic nuclei were used as seeds to map connectivity with the rest of the whole brain. The cortical-to-thalamus connectivity values and thalamus-based connectivity maps were compared between groups. RESULTS The cortical ROIs demonstrated correlations with spatially distinct zones within the thalamus. We found a trend toward reduced parietal ROI-to-thalamus connectivity in MDD. Importantly, MDD patients demonstrated reduced connectivity between prefrontal and parietal thalamus ROIs and bilateral middle frontal gyrus (MFG) and the right posterior default mode network (DMN) and between the prefrontal and motor thalamus ROIs and lateral temporal regions. Conversely, increased connectivity emerged between the motor thalamus ROI and right MFG and right medial frontal gyrus/anterior cingulate; between motor/somatosensory thalamus ROIs and right posterior DMN; between prefrontal/somatosensory thalamus ROIs and cerebellum; and between the parietal thalamus ROI and left insula. CONCLUSIONS This study is the first to examine the anatomical specificity of thalamo-cortical connectivity disturbances in MDD. Subjects with MDD demonstrated altered thalamo-cortical connectivity characterized by a complex pattern of region-dependent hypo- or hyperconnectivity. We therefore speculate that selectively modulating the connectivity of thalamo-cortical circuitry may be a potential novel therapeutic mechanism for MDD.
Collapse
Affiliation(s)
- Qing-Mei Kong
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong Qiao
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Chao-Zhong Liu
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ping Zhang
- The Sixth Hospital of Hebei Province, Hebei, China
| | - Ke Li
- Department of Radiology, 306 Hospital of People's Liberation Army, Beijing, China
| | - Li Wang
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ji-Tao Li
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun'Ai Su
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ke-Qing Li
- The Sixth Hospital of Hebei Province, Hebei, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales and Black Dog Institute, Sydney, NSW, Australia
| | - Tian-Mei Si
- Peking University the Sixth Hospital (Institute of Mental Health), Beijing, China.,National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|