1
|
Talbert LD, Kaelberer Z, Gleave E, Driggs A, Driggs AS, Baldwin SA, Steffen PR, Larson MJ. A Systematic Review of the Relationship Between Traumatic Brain Injury and Disruptions in Heart Rate Variability. Appl Psychophysiol Biofeedback 2024; 49:523-540. [PMID: 39222209 DOI: 10.1007/s10484-024-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Autonomic nervous system dysfunction is increasingly recognized as a common sequela of traumatic brain injury (TBI). Heart rate variability (HRV) is a specific measure of autonomic nervous system functioning that can be used to measure beat-to-beat changes in heart rate following TBI. The objective of this systematic review was to determine the state of the literature on HRV dysfunction following TBI, assess the level of support for HRV dysfunction following TBI, and determine if HRV dysfunction predicts mortality and the severity and subsequent recovery of TBI symptoms. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two raters coded each article and provided quality ratings with discrepancies resolved by consensus. Eighty-nine papers met the inclusion criteria. Findings indicated that TBI of any severity is associated with decreased (i.e., worse) HRV; the severity of TBI appears to moderate the relationship between HRV and recovery; decreased HRV following TBI predicts mortality beyond age; HRV disturbances may persist beyond return-to-play and symptom resolution following mild TBI. Overall, current literature suggests HRV is decreased following TBI and may be a good indicator of physiological change and predictor of important outcomes including mortality and symptom improvement following TBI.
Collapse
Affiliation(s)
- Leah D Talbert
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA.
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zoey Kaelberer
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Emma Gleave
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Annie Driggs
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Ammon S Driggs
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Scott A Baldwin
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Patrick R Steffen
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Michael J Larson
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
2
|
Neary JP, Singh J, Alcorn J, Laprairie RB, Dehghani P, Mang CS, Bjornson BH, Hadjistavropoulos T, Bardutz HA, Bhagaloo L, Walsh Z, Szafron M, Dorsch KD, Thompson ES. Pharmacological and physiological effects of cannabidiol: a dose escalation, placebo washout study protocol. BMC Neurol 2024; 24:340. [PMID: 39266961 PMCID: PMC11391713 DOI: 10.1186/s12883-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cannabinoids such as cannabidiol (CBD) exhibit anti-inflammatory properties and have the potential to act as a therapeutic following mild traumatic brain injury. There is limited evidence available on the pharmacological, physiological and psychological effects of escalating CBD dosages in a healthy, male, university athlete population. Furthermore, no dosing regimen for CBD is available with implications of improving physiological function. This study will develop an optimal CBD dose based on the pharmacokinetic data in contact-sport athletes. The physiological and psychological data will be correlated to the pharmacokinetic data to understand the mechanism(s) associated with an escalating CBD dose. METHODS/DESIGN Forty participants will receive escalating doses of CBD ranging from 5 mg CBD/kg/day to 30 mg CBD/kg/day. The CBD dose is escalated every two weeks in increments of 5 mg CBD/kg/day. Participants will provide blood for pharmacological assessments at each of the 10 visits. Participants will complete a physiological assessment at each of the visits, including assessments of cerebral hemodynamics, blood pressure, electrocardiogram, seismocardiogram, transcranial magnetic stimulation, and salivary analysis for genomic sequencing. Finally, participants will complete a psychological assessment consisting of sleep, anxiety, and pain-related questionnaires. DISCUSSION This study will develop of an optimal CBD dose based on pharmacological, physiological, and psychological properties for future use during contact sport seasons to understand if CBD can help to reduce the frequency of mild traumatic injuries and enhance recovery. TRIAL REGISTRATION Clinicaltrials.gov: NCT06204003.
Collapse
Affiliation(s)
- J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada.
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Robert B Laprairie
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Payam Dehghani
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cameron S Mang
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | | | - Holly A Bardutz
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | - Zachary Walsh
- Department of Psychology, University of British Columbia, Kelowna, Canada
| | - Michael Szafron
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- School of Public Health - Biostatistics, University of Saskatchewan, Saskatoon, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Elizabeth S Thompson
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
3
|
Kennedy CM, Burma JS, Smirl JD. Sensor-Assisted Analysis of Autonomic and Cerebrovascular Dysregulation following Concussion in an Individual with a History of Ten Concussions: A Case Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:4404. [PMID: 39001186 PMCID: PMC11244393 DOI: 10.3390/s24134404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. METHOD The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type II disorder, mild attention-deficit hyperactivity disorder, and a history of migraines/headaches. The case was medicated with Valproic Acid and Escitalopram. Sensor-based baseline data were collected within six months of his injury and on days 1-5, 10, and 14 post-injury. Symptom reporting, heart rate variability (HRV), neurovascular coupling (NVC), and dynamic cerebral autoregulation (dCA) assessments were completed using numerous biomedical devices (i.e., transcranial Doppler ultrasound, 3-lead electrocardiography, finger photoplethysmography). RESULTS Total symptom and symptom severity scores were higher for the first-week post-injury, with physical and emotional symptoms being the most impacted. The NVC response showed lowered activation in the first three days post-injury, while autonomic (HRV) and autoregulation (dCA) were impaired across all testing visits occurring in the first 14 days following his concussion. CONCLUSIONS Despite symptom resolution, the case demonstrated ongoing autonomic and autoregulatory dysfunction. Larger samples examining individuals with an extensive history of concussion are warranted to understand the chronic physiological changes that occur following cumulative concussions through biosensing devices.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Chihaoui Mamlouk A, Ouergui I, Ben Waer F, Zarrouk F, Gmada N, Younes M, Bouhlel E. Telic-Paratelic Dominance and Heart Rate Variability in Athletes Engaged in Power and Endurance Training. Percept Mot Skills 2024; 131:861-875. [PMID: 38520178 DOI: 10.1177/00315125241237045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Purpose: The current study aimed to evaluate the telic-paratelic tendency and heart rate variability in athlete participants from different sports activities.Methods: We assigned 117 healthy participants (M age = 20, SD = 3 years) into three groups according to their training activity: power-trained (PT; n=43), endurance-trained (ET; n=36), and healthy untrained individuals (n=38). We assessed their telic-paratelic tendencies with the validated Telic Dominance Scale and their autonomic nervous system activity with heart rate variability (HRV) analyses.Results: Our findings revealed no significant differences in the telic-paratelic tendencies between ET and PT groups. However, significant differences were observed between athletes and untrained individuals (p = 0.001). Indeed, compared to untrained participants, ET and PT athletes had a greater telic tendency (both p = 0.001), were more focused on planning orientation (ET: p = 0.003; PT: p=0.001), and less often avoided arousal or activation (For ET 31% and for PT 26% of participants). The paratelic tendency was more important in untrained individuals, with most of these participants lacking in seriousmindedness and planning. In addition, we found higher HRV in paratelic ET athletes (SDNN p = 0.050, LF p = 0.022, and LF/HF p = 0.031) compared to their telic peers.Conclusion: our results suggest that sport activity did not influence the telic-paratelic tendency. Nevertheless, this tendency differentiates trained from untrained participants. HRV was higher among paratelic ET athletes, potentially reflecting less stress and more training adaptability in these athletes.
Collapse
Affiliation(s)
- Afek Chihaoui Mamlouk
- Centre d'études des transformations des activités physiques et sportives (CETAPS), UFR STAPS, Rouen, France
| | - Ibrahim Ouergui
- High Institute of Sport and Physical Education Kef, University of Jendouba, El Kef, Tunisia
- Sports Science, Health and Movement, University of Jendouba, El Kef, Tunisia
| | - Fatma Ben Waer
- Research Laboratory Education, Motricité, Sport et Santé, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia
| | - Fayçal Zarrouk
- High Institute of Sport and Physical Education Ksar Said, University of Manouba, Tunis, Tunisia
| | - Nabil Gmada
- Physical Education and Sport Sciences Department, Sultan Qaboos University, Muscat, Oman
| | | | - Ezdine Bouhlel
- High Institute of Sport and Physical Education Ksar Said, University of Manouba, Tunis, Tunisia
| |
Collapse
|
5
|
Xu M, Zhang Y, Zhang Y, Liu X, Qing K. EEG biomarkers analysis in different cognitive impairment after stroke: an exploration study. Front Neurol 2024; 15:1358167. [PMID: 38770525 PMCID: PMC11104451 DOI: 10.3389/fneur.2024.1358167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Stroke is a cerebrovascular illness that brings about the demise of brain tissue. It is the third most prevalent cause of mortality worldwide and a significant contributor to physical impairment. Generally, stroke is triggered by blood clots obstructing the brain's blood vessels, or when these vessels rupture. And, the cognitive impairment's evaluation and detection after stroke is crucial research issue and significant project. Thus, the objective of this work is to explore an potential neuroimage tool and find their EEG biomarkers to evaluate and detect four cognitive impairment levels after stroke. In this study, power density spectrum (PSD), functional connectivity map, and one-way ANOVA methods were proposed to analyze the EEG biomarker differences, and the number of patient participants were thirty-two human including eight healthy control, mild, moderate, severe cognitive impairment levels, respectively. Finally, healthy control has significant PSD differences compared to mid, moderate and server cognitive impairment groups. And, the theta and alpha bands of severe cognitive impairment groups have presented consistent superior PSD power at the right frontal cortex, and the theta and beta bands of mild, moderated cognitive impairment (MoCI) groups have shown significant similar superior PSD power tendency at the parietal cortex. The significant gamma PSD power difference has presented at the left-frontal cortex in the mild cognitive impairment (MCI) groups, and severe cognitive impairment (SeCI) group has shown the significant PSD power at the gamma band of parietal cortex. At the point of functional connectivity map, the SeCI group appears to have stronger functional connectivity compared to the other groups. In conclusion, EEG biomarkers can be applied to classify different cognitive impairment groups after stroke. These findings provide a new approach for early detection and diagnosis of cognitive impairment after stroke and also for the development of new treatment options.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Neurology, Chongqing Public Healthy Medical Center, Chongqing, China
| | - Yucheng Zhang
- Department of Mathematics, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Yue Zhang
- Department of Psychology, School of Psychology, Shenzhen University, Shenzhen, China
| | - Xisong Liu
- Intensive Care Unit, Chongqing Public Healthy Medical Center, Chongqing, China
| | - Kunqiang Qing
- Automotive Software Innovation Center, Chongqing, China
- Research Group of Brain-Computer Interface, Brainup Institute of Science and Technology, Chongqing, China
| |
Collapse
|
6
|
Ellingson CJ, Shafiq MA, Ellingson CA, Neary JP, Dehghani P, Singh J. Assessment of cardiovascular functioning following sport-related concussion: A physiological perspective. Auton Neurosci 2024; 252:103160. [PMID: 38428323 DOI: 10.1016/j.autneu.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
There is still much uncertainty surrounding the approach to diagnosing and managing a sport-related concussion (SRC). Neurobiological recovery may extend beyond clinical recovery following SRC, highlighting the need for objective physiological parameters to guide diagnosis and management. With an increased understanding of the connection between the heart and the brain, the utility of assessing cardiovascular functioning following SRC has gained attention. As such, this review focuses on the assessment of cardiovascular parameters in the context of SRC. Although conflicting results have been reported, decreased heart rate variability, blood pressure variability, and systolic (ejection) time, in addition to increased spontaneous baroreflex sensitivity and magnitude of atrial contraction have been shown in acute SRC. We propose that these findings result from the neurometabolic cascade triggered by a concussion and represent alterations in myocardial calcium handling, autonomic dysfunction, and an exaggerated compensatory response that attempts to maintain homeostasis following a SRC. Assessment of the cardiovascular system has the potential to assist in diagnosing and managing SRC, contributing to a more comprehensive and multimodal assessment strategy.
Collapse
Affiliation(s)
- Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Prairie Vascular Research Inc, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | | | - Jyotpal Singh
- Prairie Vascular Research Inc, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| |
Collapse
|
7
|
Singh J, Ellingson CJ, Ellingson CA, Scott P, Neary JP. Cardiac cycle timing and contractility following acute sport-related concussion. Res Sports Med 2024; 32:260-267. [PMID: 35850630 DOI: 10.1080/15438627.2022.2102918] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Cardiac sequelae following sport-related concussion are not well understood. This study describes changes in the cardiac cycle timing intervals and contractility parameters during the acute phase of concussion. Twelve athletes (21 ± 2 years, height = 182 ± 9 cm, mass = 86 ± 15 kg, BMI = 26 ± 3 kg/m2) were assessed within 5 days of sustaining a diagnosed concussion against their own pre-season baseline. A non-invasive cardiac sensor (LLA RecordisTM) was used to record the cardiac cycle parameters of the heart for 1 minute during supine rest. Cardiac cycle timing intervals (Isovolumic relaxation and contraction time, Mitral valve open to E wave, Rapid ejection period, Atrial systole to mitral valve closure, Systole, and Diastole) and contractile forces (Twist force and Atrial systole: AS) were compared. Systolic time significantly decreased during acute concussion (p = 0.034). Magnitude of AS significantly increased during acute concussion (p = 0.013). These results imply that concussion can result in altered systolic function.
Collapse
Affiliation(s)
- Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Chase J Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Parker Scott
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
8
|
Wesolowski E, Ahmed Z, Di Pietro V. History of concussion and lowered heart rate variability at rest beyond symptom recovery: a systematic review and meta-analysis. Front Neurol 2024; 14:1285937. [PMID: 38318235 PMCID: PMC10838961 DOI: 10.3389/fneur.2023.1285937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Concussion is a growing concern in worldwide sporting culture. Heart rate variability (HRV) is closely tied with autonomic nervous system (ANS) deficits that arise from a concussion. The objective of this review was to determine if a history of concussion (HOC) can impact HRV values in the time-domain in individuals at rest. This review works to add to the literature surrounding HRV testing and if it can be used to check for brain vulnerabilities beyond the recovery of concussion symptoms. Materials and methods The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method. A computer based systematic review scanned articles dating from 1996 to June 2023 through PubMed, Cochrane Library, Google Scholar, and EMBASE databases. A risk of bias assessment was conducted using the ROBINS-E tool. The average difference in time between heartbeats (MeanNN), the standard deviation of the differences (SDNN), and the root mean squared of the successive intervals (RMSSD) were measured. Results Six total studies were found that fit the inclusion criteria including a total of 242 participants (133 without HOC, 109 with HOC). The average age of the control group was 23.3 ± 8.2, while the average age of the history of TBI group was 25.4 ± 9.7, with no significant difference between the groups (p = 0.202). Four of the studies reported no significant difference in any of the three measures, while two of the studies reported significant difference for all three measures. The meta-analysis was conducted and found that MeanNN (p = 0.03) and RMSSD (p = 0.04) reached statistical significance, while SDNN did not (p = 0.11). Conclusion The results of this meta-analysis showed significant difference in two of the three HRV time-domain parameters evaluated. It demonstrates that there can be lowered HRV values that expand beyond the recovery of symptoms, reflecting an extensive period of ANS susceptibility after a concussion. This may be an important variable in determining an athlete's return to play (RTP). Lack of homogenous study populations and testing methods introduces potential for bias and confounding factors, such as gender or age. Future studies should focus on baseline tests to compare individuals to themselves rather than matched controls.
Collapse
Affiliation(s)
- Eric Wesolowski
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Landvater J, Kim S, Caswell K, Kwon C, Odafe E, Roe G, Tripathi A, Vukovics C, Wang J, Ryan K, Cocozza V, Brock M, Tchopev Z, Tonkin B, Capaldi V, Collen J, Creamer J, Irfan M, Wickwire EM, Williams S, Werner JK. Traumatic brain injury and sleep in military and veteran populations: A literature review. NeuroRehabilitation 2024; 55:245-270. [PMID: 39121144 PMCID: PMC11613026 DOI: 10.3233/nre-230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a hallmark of wartime injury and is related to numerous sleep wake disorders (SWD), which persist long term in veterans. Current knowledge gaps in pathophysiology have hindered advances in diagnosis and treatment. OBJECTIVE We reviewed TBI SWD pathophysiology, comorbidities, diagnosis and treatment that have emerged over the past two decades. METHODS We conducted a literature review of English language publications evaluating sleep disorders (obstructive sleep apnea, insomnia, hypersomnia, parasomnias, restless legs syndrome and periodic limb movement disorder) and TBI published since 2000. We excluded studies that were not specifically evaluating TBI populations. RESULTS Highlighted areas of interest and knowledge gaps were identified in TBI pathophysiology and mechanisms of sleep disruption, a comparison of TBI SWD and post-traumatic stress disorder SWD. The role of TBI and glymphatic biomarkers and management strategies for TBI SWD will also be discussed. CONCLUSION Our understanding of the pathophysiologic underpinnings of TBI and sleep health, particularly at the basic science level, is limited. Developing an understanding of biomarkers, neuroimaging, and mixed-methods research in comorbid TBI SWD holds the greatest promise to advance our ability to diagnose and monitor response to therapy in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Landvater
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sharon Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keenan Caswell
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline Kwon
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emamoke Odafe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Grace Roe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ananya Tripathi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jonathan Wang
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keith Ryan
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Matthew Brock
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Zahari Tchopev
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Brionn Tonkin
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Vincent Capaldi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob Collen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Muna Irfan
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Emerson M. Wickwire
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Scott Williams
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Defense Health Headquarters, Falls Church, VA, USA
| | - J. Kent Werner
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
10
|
Doucet M, Brisebois H, McKerral M. Heart Rate Variability in Concussed College Athletes: Follow-Up Study and Biological Sex Differences. Brain Sci 2023; 13:1669. [PMID: 38137117 PMCID: PMC10741497 DOI: 10.3390/brainsci13121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Finding reliable biomarkers to assess concussions could play a pivotal role in diagnosis, monitoring, and predicting associated risks. The present study aimed to explore the use of heart rate variability (HRV) in the follow-up of concussions among college athletes and to investigate the relationships between biological sex, symptomatology, and HRV values at baseline and after a concussion. Correlations between measures were also analyzed. A total of 169 (55 females) athletes aged 16 to 22 years old completed baseline testing, and 30 (8 females) concussion cases were followed. Baseline assessment (T1) included psychosocial and psychological questionnaires, symptoms report, and four minutes of HRV recording. In the event of a concussion, athletes underwent re-testing within 72 h (T2) and before returning to play (T3). Baseline findings revealed that girls had higher %VLF while sitting than boys, and a small negligible correlation was identified between %HF and total symptoms score as well as %HF and affective sx. Post-concussion analyses demonstrated a significant effect of time × position × biological sex for %HF, where girls exhibited higher %HF at T3. These findings suggest disruptions in HRV following a concussion and underscore biological sex as an important factor in the analysis of HRV variation in concussion recovery trajectory.
Collapse
Affiliation(s)
- Mariane Doucet
- Departement of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H3S 2J4, Canada
| | - Hélène Brisebois
- Departement of Psychology, Collège Montmorency, Laval, QC H7N 5H9, Canada
| | - Michelle McKerral
- Departement of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Institut Universitaire sur la Réadaptation en Déficience Physique de Montréal (IURDPM), CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC H3S 2J4, Canada
| |
Collapse
|
11
|
Reddy P, Izzetoglu K, Shewokis PA, Sangobowale M, Diaz-Arrastia R. Differences in time-frequency characteristics between healthy controls and TBI patients during hypercapnia assessed via fNIRS. Neuroimage Clin 2023; 40:103504. [PMID: 37734166 PMCID: PMC10518610 DOI: 10.1016/j.nicl.2023.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Damage to the cerebrovascular network is a universal feature of traumatic brain injury (TBI). This damage is present during different phases of the injury and can be non-invasively assessed using functional near infrared spectroscopy (fNIRS). fNIRS signals are influenced by partial arterial carbon dioxide (PaCO2), neurogenic, Mayer waves, respiratory and cardiac oscillations, whose characteristics vary in time and frequency and may differ in the presence of TBI. Therefore, this study aims to investigate differences in time-frequency characteristics of these fNIRS signal components between healthy controls and TBI patients and characterize the changes in their characteristics across phases of the injury. Data from 11 healthy controls and 21 TBI patients were collected during the hypercapnic protocol. Results demonstrated significant differences in low-frequency oscillations between healthy controls and TBI patients, with the largest differences observed in Mayer wave band (0.06 to 0.15 Hz), followed by the PaCO2 band (0.012 to 0.02 Hz). The effects within these bands were opposite, with (i) Mayer wave activity being lower in TBI patients during acute phase of the injury (d = 0.37 [0.16, 0.57]) and decreasing further during subacute (d = 0.66 [0.44, 0.87]) and postacute (d = 0.75 [0.50, 0.99]) phases; (ii) PaCO2 activity being lower in TBI patients only during acute phase of the injury (d = 0.36 [0.15, 0.56]) and stabilizing to healthy levels by the subacute phase. These findings demonstrate that TBI patients have impairments in low frequency oscillations related to different mechanisms and that these impairments evolve differently over the course of injury.
Collapse
Affiliation(s)
- Pratusha Reddy
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; Nutrition Sciences Department, Health Sciences Division of College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA
| | - Michael Sangobowale
- Clinical TBI Research Center and Department of Neurology at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ramon Diaz-Arrastia
- Clinical TBI Research Center and Department of Neurology at University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Coenen J, Reinsberger C. Neurophysiological Markers to Guide Return to Sport After Sport-Related Concussion. J Clin Neurophysiol 2023; 40:391-397. [PMID: 36930211 DOI: 10.1097/wnp.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sport-related concussion (SRC) has been defined as a subset of mild traumatic brain injury (mTBI), without structural abnormalities, reflecting a functional disturbance. Over the past decade, SRC has gained increasing awareness and attention, which coincides with an increase in incidence rates. Because this injury has been considered one of the most challenging encounters for clinicians, there is a need for objective biomarkers to aid in diagnosis (i.e., presence/severity) and management (i.e., return to sport) of SRC/mTBI.The primary aim of this article was to present state-of-the-art neurophysiologic methods (e.g., electroencephalography, magnetoencephalography, transcranial magnetic stimulation, and autonomic nervous system) that are appropriate to investigate the complex pathophysiological process of a concussion. A secondary aim was to explore the potential for evidence-based markers to be used in clinical practice for SRC management. The article concludes with a discussion of future directions for SRC research with specific focus on clinical neurophysiology.
Collapse
Affiliation(s)
- Jessica Coenen
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Paderborn, Germany; and
| | - Claus Reinsberger
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Paderborn, Germany; and
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Shafiq MA, Ellingson CA, Krätzig GP, Dorsch KD, Neary JP, Singh J. Differences in Heart Rate Variability and Baroreflex Sensitivity between Male and Female Athletes. J Clin Med 2023; 12:3916. [PMID: 37373610 DOI: 10.3390/jcm12123916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Heart rate variability (HRV), systolic blood pressure variability (BPV), and spontaneous baroreflex sensitivity (BRS) are indirect and approximate measures of autonomic regulation of the cardiovascular system. Studies have shown differences in HRV and BRS between males and females; however, no study has observed differences in BPV, HRV, or BRS between male and female athletes. One hundred males (age 21.2 ± 2.1 y; BMI 27.4 ± 4.5 kg/m2) and sixty-five females (age: 19.7 ± 1.6 y; BMI 22.7 ± 2.2 kg/m2) were assessed during the pre-season baseline. We collected resting beat-to-beat blood pressure and R-R intervals using finger photoplethysmography and a 3-lead electrocardiogram, respectively. Participants underwent a controlled slow breathing protocol (six breaths/minute: 5 s inhale, 5 s exhale) for 5 min. Spectral and linear analysis was conducted on blood pressure and ECG data. Regression curves were fitted to the blood pressure and R-R signals, with the slopes providing the BRS parameters. Male athletes had significantly (p < 0.05) lower mean heart rate, RR interval SD2/SD1, HRV % low-frequency, and higher BP high-frequency power during controlled respiration. No differences were found in any BRS parameters. HRV and BPV responses to a slow breathing protocol differed between male and female athletes; however, BRS responses did not.
Collapse
Affiliation(s)
- M Abdullah Shafiq
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Gregory P Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
| |
Collapse
|
14
|
Delling AC, Jakobsmeyer R, Coenen J, Christiansen N, Reinsberger C. Home-Based Measurements of Nocturnal Cardiac Parasympathetic Activity in Athletes during Return to Sport after Sport-Related Concussion. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094190. [PMID: 37177393 PMCID: PMC10181314 DOI: 10.3390/s23094190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Sport-related concussions (SRC) are characterized by impaired autonomic control. Heart rate variability (HRV) offers easily obtainable diagnostic approaches to SRC-associated dysautonomia, but studies investigating HRV during sleep, a crucial time for post-traumatic cerebral regeneration, are relatively sparse. The aim of this study was to assess nocturnal HRV in athletes during their return to sports (RTS) after SRC in their home environment using wireless wrist sensors (E4, Empatica, Milan, Italy) and to explore possible relations with clinical concussion-associated sleep symptoms. Eighteen SRC athletes wore a wrist sensor obtaining photoplethysmographic data at night during RTS as well as one night after full clinical recovery post RTS (>3 weeks). Nocturnal heart rate and parasympathetic activity of HRV (RMSSD) were calculated and compared using the Mann-Whitney U Test to values of eighteen; matched by sex, age, sport, and expertise, control athletes underwent the identical protocol. During RTS, nocturnal RMSSD of SRC athletes (Mdn = 77.74 ms) showed a trend compared to controls (Mdn = 95.68 ms, p = 0.021, r = -0.382, p adjusted using false discovery rate = 0.126) and positively correlated to "drowsiness" (r = 0.523, p = 0.023, p adjusted = 0.046). Post RTS, no differences in RMSSD between groups were detected. The presented findings in nocturnal cardiac parasympathetic activity during nights of RTS in SRC athletes might be a result of concussion, although its relation to recovery still needs to be elucidated. Utilization of wireless sensors and wearable technologies in home-based settings offer a possibility to obtain helpful objective data in the management of SRC.
Collapse
Affiliation(s)
- Anne Carina Delling
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany
| | - Rasmus Jakobsmeyer
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany
| | - Jessica Coenen
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany
| | - Nele Christiansen
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany
| | - Claus Reinsberger
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Smirl JD, Peacock D, Burma JS, Wright AD, Bouliane KJ, Dierijck J, van Donkelaar P. Repetitive bout of controlled soccer heading does not alter heart rate variability metrics: A preliminary investigation. Front Neurol 2022; 13:980938. [PMID: 36504654 PMCID: PMC9732532 DOI: 10.3389/fneur.2022.980938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives There is elevated unease regarding how repetitive head impacts, such as those associated with soccer heading, contribute to alterations in brain function. This study examined the extent heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) metrics are altered immediately following an acute bout of soccer heading. Methods Seven male elite soccer players (24.1 ± 1.5 years) completed 40 successful soccer headers in 20-min. The headers were performed under controlled circumstances using a soccer ball launcher located 25 meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading condition). An accelerometer (xPatch) on the right mastoid process quantified linear/rotational head accelerations. Participants also completed sham (body contact) and control (non-contact) sessions. A three-lead ECG and finger photoplethysmography characterized short-term spontaneous HRV/cardiac BRS, before and after each condition. The SCAT3 indexed symptom scores pre-post exposures to all three conditions. Results During the heading condition, cumulative linear and rotational accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2, respectively. Heart rate trended toward an increase from pre- to post-heading (p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not significantly changed following all three conditions. Following the heading condition, SCAT3 symptom severity increased (p = 0.030) with a trend for symptom score augmentation (p = 0.078) compared to control and sham. Conclusion Whereas, symptoms as measured by the SCAT3 were induced following an acute bout of controlled soccer heading, these preliminary findings indicate they were not accompanied by alterations to autonomic function. Ultimately, this demonstrates further research is needed to understand the physiological underpinnings of alterations in brain function occurring immediately after a bout of soccer heading and how these may, over time, contribute to long-term neurological impairments.
Collapse
Affiliation(s)
- Jonathan David Smirl
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada,*Correspondence: Jonathan David Smirl
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Joel Stephen Burma
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander D. Wright
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,University of British Columbia, Vancouver, BC, Canada,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J. Bouliane
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Paul van Donkelaar
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
16
|
Neary JP, Singh J, Sirant LW, Gaul CA, Martin S, Stuart-Hill L, Candow DG, Mang CS, Kratzig GP. History of Brain Injury Alters Cerebral Haemodynamic Oscillations with Cardiac Influence. Brain Sci 2022; 12:1443. [PMID: 36358369 PMCID: PMC9688194 DOI: 10.3390/brainsci12111443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2024] Open
Abstract
(1) Background: Cerebral autoregulation is altered during acute mild traumatic brain injury, or concussion. However, it is unknown how a history of concussion can impact cerebral haemodynamic activity during a task that elicits an autoregulatory response. (2) Methods: We assessed cerebral haemodynamic activity in those with a history of three or more concussions. The study included 44 retired athletes with concussion history and 25 control participants. We recorded participants' relative changes in right and left pre-frontal cortex oxygenation collected by near-infrared spectroscopy and continuous beat-to-beat blood pressure measured by finger photoplethysmography. Participants completed a 5-min seated rest followed by a 5-min repeated squat (10-s) stand (10-s) maneuver (0.05 Hz) to elicit a cerebral autoregulatory response. Wavelet transformation was applied to the collected signals, allowing separation into cardiac interval I (0.6 to 2 Hz), respiratory interval II (0.145 to 0.6 Hz), and smooth muscle cell interval III (0.052 to 0.145 Hz). (3) Results: Significant increases at cardiac interval I were found for the wavelet amplitude of oxy-haemoglobin and haemoglobin difference at the right pre-frontal cortex. No significant difference was found at the left pre-frontal cortex or the blood pressure wavelet amplitudes. (4) Conclusions: Contributions from cardiac activity to the pre-frontal cortex oxygenation are elevated when eliciting dynamic cerebral autoregulation in those with a history of three or more concussions.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Catherine A. Gaul
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steve Martin
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Darren G. Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Cameron S. Mang
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gregory P. Kratzig
- Department of Psychology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
17
|
Ellingson CJ, Singh J, Ellingson CA, Sirant LW, Krätzig GP, Dorsch KD, Piskorski J, Neary JP. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life (Basel) 2022; 12:life12091400. [PMID: 36143435 PMCID: PMC9500648 DOI: 10.3390/life12091400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Current methods to diagnose concussions are subjective and difficult to confirm. A variety of physiological biomarkers have been reported, but with conflicting results. This study assessed heart rate variability (HRV), spontaneous baroreflex sensitivity (BRS), and systolic blood pressure variability (BPV) in concussed athletes. The assessment consisted of a 5-min seated rest followed by a 5-min (0.1 Hz) controlled breathing protocol. Thirty participants completed baseline assessments. The protocol was repeated during the post-injury acute phase (days one to five). Total (p = 0.02) and low-frequency (p = 0.009) BPV spectral power were significantly decreased during the acute phase of concussion. BRS down-sequence (p = 0.036) and up-sequence (p = 0.05) were significantly increased in the acute phase of concussion, with a trend towards an increased BRS pooled (p = 0.06). Significant decreases in HRV were also found. Acute concussion resulted in altered BRS and BPV dynamics compared to baseline. These findings highlight objective physiological parameters that could aid concussion diagnosis and return-to-play protocols.
Collapse
Affiliation(s)
- Chase J. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Cody A. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- College of Medicine, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Gregory P. Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D. Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jaroslaw Piskorski
- Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Correspondence: ; Tel.: +1-306-585-4844
| |
Collapse
|
18
|
Farrell G, Wang S, Chapple C, Kennedy E, Gisselman AS, Sampath K, Cook C, Tumilty S. Dysfunction of the stress response in individuals with persistent post-concussion symptoms: a scoping review. PHYSICAL THERAPY REVIEWS 2022. [DOI: 10.1080/10833196.2022.2096195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Gerard Farrell
- School of Physiotherapy, Centre for Health, Activity, and Rehabilitation Research, Dunedin, New Zealand
| | - Sizhong Wang
- School of Physiotherapy, Centre for Health, Activity, and Rehabilitation Research, Dunedin, New Zealand
| | - Cathy Chapple
- School of Physiotherapy, Centre for Health, Activity, and Rehabilitation Research, Dunedin, New Zealand
| | - Ewan Kennedy
- School of Physiotherapy, Centre for Health, Activity, and Rehabilitation Research, Dunedin, New Zealand
| | | | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Steve Tumilty
- School of Physiotherapy, Centre for Health, Activity, and Rehabilitation Research, Dunedin, New Zealand
| |
Collapse
|
19
|
Heart Rate Variability as a Reliable Biomarker Following Concussion: A Critically Appraised Topic. J Sport Rehabil 2022; 31:954-961. [PMID: 35894898 DOI: 10.1123/jsr.2021-0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
CLINICAL SCENARIO Recent systematic reviews show conflicting information regarding the effect of concussion on cardiac autonomic function. Controlled aerobic exercise is the most popular intervention for those recovering from a concussion. There is a gap in the literature supporting the utility of objective metrics during exertional return to play protocols and rehabilitation. CLINICAL QUESTION Can heart rate variability (HRV) during physical exertion be a reliable biomarker over time for those who suffered a sport-related concussion? SUMMARY OF KEY FINDINGS A literature search produced 3 studies relevant to the clinical question. One, a prospective-matched control group cohort study, reported disturbances in HRV during physical exertion in those with a history of concussion, and identified persistent HRV dysfunction after resolution of subjective complaints, return to play, and with multiple concussive events. Second, a cross-sectional cohort study found an HRV difference in those with and without a history of concussion and in HRV related to age and sex. Finally, the prospective longitudinal case-control cohort study did not find sex or age differences in HRV and concluded that, although postconcussion HRV improved as time passed, resting HRV was not as clinically meaningful as HRV during exertional activities. CLINICAL BOTTOM LINE There is emerging evidence to support the use of HRV as an observable biomarker, over time, of autonomic function during physical exertion following a sport-related concussion. However, the meaningfulness of HRV data is not fully understood and the utility seems individualized to the level of athlete, age, and sex and, therefore, cannot be generalizable. In order to be more clinically meaningful and to assist with current clinical decision making regarding RTP, a preinjury baseline assessment would be beneficial as an individualized reference for baseline comparison. STRENGTH OF RECOMMENDATION Although HRV is not fully understood, currently, there is grade B evidence to support the use of individualized baseline exertional HRV data as comparative objective metric to assess the autonomic nervous system function, over time, following a concussive event.
Collapse
|
20
|
Jacob D, Unnsteinsdóttir Kristensen IS, Aubonnet R, Recenti M, Donisi L, Ricciardi C, Svansson HÁR, Agnarsdóttir S, Colacino A, Jónsdóttir MK, Kristjánsdóttir H, Sigurjónsdóttir HÁ, Cesarelli M, Eggertsdóttir Claessen LÓ, Hassan M, Petersen H, Gargiulo P. Towards defining biomarkers to evaluate concussions using virtual reality and a moving platform (BioVRSea). Sci Rep 2022; 12:8996. [PMID: 35637235 PMCID: PMC9151646 DOI: 10.1038/s41598-022-12822-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.
Collapse
Affiliation(s)
- Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Leandro Donisi
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Halldór Á R Svansson
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Sólveig Agnarsdóttir
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Andrea Colacino
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Computer Engineering, Electrical and Applied Mathematics, University of Salerno, Salerno, Italy
| | - María K Jónsdóttir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Hafrún Kristjánsdóttir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
- Physical Activity, Physical Education, Sport and Health (PAPESH) Research Centre, Sports Science Department, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | - Helga Á Sigurjónsdóttir
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mario Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- Department of Information Technology and Electrical Engineering, University of Naples, Naples, Italy
| | - Lára Ósk Eggertsdóttir Claessen
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mahmoud Hassan
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- MINDig, 35000, Rennes, France
| | - Hannes Petersen
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland.
- Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
21
|
Gąsior JS, Rosoł M, Młyńczak M, Flatt AA, Hoffmann B, Baranowski R, Werner B. Reliability of Symbolic Analysis of Heart Rate Variability and Its Changes During Sympathetic Stimulation in Elite Modern Pentathlon Athletes: A Pilot Study. Front Physiol 2022; 13:829887. [PMID: 35295583 PMCID: PMC8918944 DOI: 10.3389/fphys.2022.829887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Most studies on heart rate variability (HRV) in professional athletes concerned linear, time-, and frequency-domain indices, and there is lack of studies on non-linear parameters in this group. The study aimed to determine the inter-day reliability, and group-related and individual changes of short-term symbolic dynamics (SymDyn) measures during sympathetic nervous system activity (SNSa) stimulation among elite modern pentathletes. Methods Short-term electrocardiographic recordings were performed in stable measurement conditions with a 7-day interval between tests. SNSa stimulation via isometric handgrip strength test was conducted on the second day of study. The occurrence rate of patterns without variations (0V), with one variation (1V), two like (2LV), and two unlike variations (2UV) obtained using three approaches (the Max–min, the σ, and the Equal-probability methods) were analyzed. Relative and absolute reliability were evaluated. Results All SymDyn indices obtained using the Max–min method, 0V, and 2UV obtained using the σ method, 2UV obtained using the Equal-probability method presented acceptable inter-day reliability (the intraclass correlation coefficient between .91 and .99, Cohen’s d between −.08 and .10, the within-subject coefficient of variation between 4% and 22%). 2LV, 2UV, and 0V obtained using the Max–min and σ methods significantly decreased and increased, respectively, during SNSa stimulation—such changes were noted for all athletes. There was no significant association between differences in SymDyn parameters and respiratory rate in stable conditions and while comparing stable conditions and SNSa stimulation. Conclusion SymDyn indices may be used as reliable non-respiratory-associated parameters in laboratory settings to detect autonomic nervous system (ANS) activity modulations in elite endurance athletes. These findings provide a potential solution for addressing the confounding influence of respiration frequency on HRV-derived inferences of cardiac autonomic function. For this reason, SymDyn may prove to be preferable for field-based monitoring where measurements are unsupervised.
Collapse
Affiliation(s)
- Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jakub S. Gąsior,
| | - Maciej Rosoł
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marcel Młyńczak
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Department of Health Sciences and Kinesiology, Georgia Southern University (Armstrong Campus), Savannah, GA, United States
| | - Bartosz Hoffmann
- Physiotherapy Division, Faculty of Medical Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Baranowski
- Department of Heart Rhythm Disorders, National Institute of Cardiology, Warsaw, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Burma JS, Lapointe AP, Soroush A, Oni IK, Smirl JD, Dunn JF. Insufficient sampling frequencies skew heart rate variability estimates: Implications for extracting heart rate metrics from neuroimaging and physiological data. J Biomed Inform 2021; 123:103934. [PMID: 34666185 DOI: 10.1016/j.jbi.2021.103934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND While cardiac pulsations are widely present within physiological and neuroimaging data, it is unknown the extent this information can provide valid and reliable heart rate and heart rate variability (HRV) estimates. The objective of this study was to demonstrate how a slight temporal shift due to an insufficient sampling frequency can impact the validity/accuracy of deriving cardiac metrics. METHODS Twenty-two participants were instrumented with valid/reliable industry-standard or open-source electrocardiograms. Five-minute lead II recordings were collected at 1000 Hz in an upright orthostatic position. Following artifact removal, the 1000 Hz recording for each participant was downsampled to frequencies ranging 2-500 Hz. The validity of each participant's downsampled recording was compared against their 1000 Hz recording ("reference-standard") using Bland-Altman plots with 95 % limits of agreement (LOA), coefficient of variation (CoV), intraclass correlation coefficients, and adjusted r-squared values. RESULTS Downsampled frequencies of ≥ 50 and ≥ 90 Hz produced highly robust measures with narrow log-transformed 95 % LOA (<±0.01) and low CoV values (≤3.5 %) for heart rate and HRV metrics, respectively. Below these thresholds, the log-transformed 95 % LOA became wider (LOA range: ±0.1-1.9) and more variable (CoV range: 1.5-111.6 %). CONCLUSION These results provide an important consideration for obtaining cardiac information from physiological data. Compared to the "reference-standard" ECG, a seemingly negligible temporal shift of the systolic contraction (R wave) greater than 11-milliseconds (90 Hz) away from its true value, lessened the validity of the HRV. Further research is warranted to determine the minimum sampling frequency required to obtain valid heart rate/HRV metrics from pulsatile waveforms.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ateyeh Soroush
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Singh J, Bhagaloo L, Piskorski J, Neary JP. Effects of Phytocannabinoids on Heart Rate Variability and Blood Pressure Variability in Female Post-Concussion Syndrome Patients: Case Series. Can J Physiol Pharmacol 2021; 100:192-196. [PMID: 34597522 DOI: 10.1139/cjpp-2021-0395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabidiol (CBD) can exert neuroprotective effects without being intoxicating, and in combination with ∆9-tetrahydrocannabinol (THC), CBD has shown to protect against THC psychosis. Acute concussion and post-concussion syndrome (PCS) can result in autonomic dysfunction in heart rate variability (HRV), but less information is available on blood pressure variability (BPV). Furthermore, the effects of phytocannabinoids on HRV and BPV in PCS are unknown. The purpose of this study was to observe the influence of daily administration of CBD or a combination of CBD and THC on HRV and BPV parameters in 4 female PCS participants. Participants completed a seated 5-minute rest followed by 6 breaths per minute paced breathing protocol. Data was collected prior to phytocannabinoid intake and continued over 54 to 70 days. High frequency systolic BPV parameter increased every assessment period, unless altered due to external circumstances and symptoms. HRV parameters showed less consistent and varying responses. These results suggest that CBD can help to improve the altered autonomic dysfunction in those with PCS, and that responses to the drug administration was individualized. Double blinded, randomized controlled trials with greater sample sizes are required to better understand the influences of the varying dosages on human physiology and in PCS.
Collapse
Affiliation(s)
- Jyotpal Singh
- University of Regina, 6846, Regina, Saskatchewan, Canada, S4S 0A2;
| | | | | | | |
Collapse
|
24
|
La Fountaine MF, Hohn AN, Leahy CL, Testa AJ, Weir JP. Use of Mayer wave activity to demonstrate aberrant cardiovascular autonomic control following sports concussion injury. Ann N Y Acad Sci 2021; 1507:121-132. [PMID: 34480369 PMCID: PMC9291215 DOI: 10.1111/nyas.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022]
Abstract
Dysregulation of cardiovascular autonomic control is gaining recognition as a prevailing consequence of concussion injury. Characterizing the presence of autonomic dysfunction in concussed persons is inconsistent and conventional metrics of autonomic function cannot differentiate the presence/absence of injury. Mayer wave (MW) activity originates through baroreflex adjustments to blood pressure (BP) oscillations that appear in the low‐frequency (LF: 0.04–0.15 Hz) band of the BP and heart rate (HR) power spectrum after a fast Fourier transform. We prospectively explored MW activity (∼0.1 Hz) in 19 concussed and 19 noninjured athletes for 5 min while seated at rest within 48 h and 1 week of injury. MW activity was derived from the LF band of continuous digital electrocardiogram and beat‐to‐beat BP signals (LFHR, LF‐SBP, MWHR, and MW‐SBP, respectively); a proportion between MWBP and MWHR was computed (cMW). At 48 h, the concussion group had a significantly lower MWBP and cMW than controls; these differences were gone by 1 week. MWHR, LFHR, and LF‐SBP were not different between groups at either visit. Attenuated sympathetic vasomotor tone was present and the central autonomic mechanisms regulating MW activity to the heart and peripheral vasculature became transiently discordant early after concussion with apparent resolution by 1 week.
Collapse
Affiliation(s)
- Michael F La Fountaine
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, New Jersey.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey.,Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey
| | - Asante N Hohn
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, New Jersey.,Spectrum Physical Therapy and Athletic Training, Morristown, New Jersey
| | - Caroline L Leahy
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, New Jersey.,SportsCare Physical Therapy, Cedar Knolls, New Jersey
| | - Anthony J Testa
- Center for Sports Medicine, Seton Hall University, South Orange, New Jersey
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas.,Osness Human Performance Laboratories, University of Kansas, Lawrence, Kansas
| |
Collapse
|
25
|
Schmid W, Fan Y, Chi T, Golanov E, Regnier-Golanov AS, Austerman RJ, Podell K, Cherukuri P, Bentley T, Steele CT, Schodrof S, Aazhang B, Britz GW. Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries. J Neural Eng 2021; 18. [PMID: 34330120 DOI: 10.1088/1741-2552/ac1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.
Collapse
Affiliation(s)
- William Schmid
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Yingying Fan
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Taiyun Chi
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Eugene Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | | | - Ryan J Austerman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering (IBB), Rice University, Houston, TX 77005, United States of America
| | - Timothy Bentley
- Office of Naval Research, Arlington, VA 22203, United States of America
| | - Christopher T Steele
- Military Operational Medicine Research Program, US Army Medical Research and Development Command, Fort Detrick, MD 21702, United States of America
| | - Sarah Schodrof
- Department of Athletics-Sports Medicine, Rice University, Houston, TX 77005, United States of America
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
26
|
Morissette MP, Prior HJ, Tate RB, Wade J, Leiter JRS. Associations between concussion and risk of diagnosis of psychological and neurological disorders: a retrospective population-based cohort study. Fam Med Community Health 2021; 8:fmch-2020-000390. [PMID: 32719017 PMCID: PMC7388873 DOI: 10.1136/fmch-2020-000390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate associations between concussion and the risk of follow-up diagnoses of attention-deficit hyperactivity disorder (ADHD), mood and anxiety disorders (MADs), dementia and Parkinson’s disease. Design A retrospective population-based cohort study. Setting Administrative health data for the Province of Manitoba between 1990–1991 and 2014–2015. Participants A total of 47 483 individuals were diagnosed with a concussion using International Classification of Diseases (ICD) codes (ICD-9-CM: 850; ICD-10-CA: S06.0). All concussed subjects were matched with healthy controls at a 3:1 ratio based on age, sex and geographical location. Associations between concussion and conditions of interest diagnosed later in life were assessed using a stratified Cox proportional hazards regression model, with adjustments for socioeconomic status and pre-existing medical conditions. Results 28 021 men (mean age ±SD, 25±18 years) and 19 462 women (30±21 years) were included in the concussion group, while 81 871 men (25±18 years) and 57 159 women (30±21 years) were included in the matched control group. Concussion was associated with adjusted hazard ratios of 1.39 (95% CI 1.32 to 1.46, p<0.001) for ADHD, 1.72 (95% CI 1.69 to 1.76; p<0.001) for MADs, 1.72 (95% CI 1.61 to 1.84; p<0.001) for dementia and 1.57 (95% CI 1.41 to 1.75; p<0.001) for Parkinson’s disease. Conclusion Concussion was associated with an increased risk of diagnosis for all four conditions of interest later in life.
Collapse
Affiliation(s)
- Marc P Morissette
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada .,Applied Health Sciences, Faculty of Graduate Studies, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather J Prior
- Manitoba Centre for Health Policy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert B Tate
- Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Wade
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeff R S Leiter
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Burma JS, Lapointe AP, Soroush A, Oni IK, Smirl JD, Dunn JF. The validity and reliability of an open source biosensing board to quantify heart rate variability. Heliyon 2021; 7:e07148. [PMID: 34124405 PMCID: PMC8173091 DOI: 10.1016/j.heliyon.2021.e07148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/17/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heart rate variability (HRV) is a popular tool to quantify autonomic function. However, this typically requires an expensive 3-12 lead electrocardiogram (ECG) and BioAmp system. This investigation sought to determine the validity and reliability of an OpenBCI cyton biosensing board (open source) for accurately quantifying HRV. New method A cyton board with a 3-lead ECG was employed to acquire heart rate waveform data, which was processed to obtain HRV within both time- and frequency-domains. The concurrent validity was compared to a simultaneous recording from an industry-standard 3-lead ECG (ADInstruments) (n = 15). The reliability of the cyton board was compared between three days within a 7-day timespan (n = 10). Upright quiet-stance short-term HRV metrics were quantified in time- and frequency-domains. Results The two devices displayed excellent limits of agreements (all log mean differences ±0.4) and very high between-device variable associations (all r 2 > 0.98). Between the three time points in the same subjects, no differences were noted within time- (all p > 0.71) or frequency-domains (all p > 0.88) across testing points. Finally, all HRV metrics exhibited excellent levels of reliability through high Cronbach's Alpha (all ≥0.916) and intraclass correlation coefficients (all ≥0.930); and small standard error of the measurement (all ≤0.7) and typical error of the measurement (all ≤0.1) metrics. Comparison with existing methods The cyton board with 3-lead ECG was compared with an industry-standard ADInstruments ECG during HRV assessments. There were no significant differences between devices with respect to time- and frequency-domains. The cyton board displayed high-levels of between-day reliability and provided values harmonious to previous ECG literature highlighting the applicability for longitudinal studies. Conclusion With proper background knowledge regarding ECG principles and a small degree of set-up complexity, an open source cyton board can be created and employed to perform multimodal HRV assessments at a fraction of the cost (~4%) of an industry-standard ECG setup.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Andrew P. Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ateyeh Soroush
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K. Oni
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jeff F. Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
28
|
Burma JS, Graver S, Miutz LN, Macaulay A, Copeland PV, Smirl JD. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J Appl Physiol (1985) 2021; 130:1848-1867. [PMID: 33856258 DOI: 10.1152/japplphysiol.00955.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Thirty-six adults (18 males, age: 26 ± 5 yr, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300 s in length and five UST time points (i.e., 30 s, 60 s, 120 s, 180 s, and 240 s) were extracted from the original 300-s recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA and two-tailed paired t tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency domains. No group differences were noted between all short-term and UST measures, for either time- (all P > 0.202) or frequency-domain metrics (all P > 0.086). A longer recording duration was associated with augmented validity and reliability, which was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60 s, 240 s, and 300 s, respectively. Future studies employing UST HRV metrics should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.NEW & NOTEWORTHY A one size fits all methodological approach to quantify HRV metrics appears to be inappropriate, where study design considerations need to be conducted upon a variable-by-variable basis. The present results found 60 s (heart rate), 240 s (time-domain parameters), and 300 s (relative frequency-domain parameters) were required to obtain accurate and reproducible metrics. The lower validity/reliability of the ultra-short-term metrics was attributable to measurement error and/or confounding from extraneous physiological influences (i.e., respiratory and hemodynamic variables).
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sarah Graver
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paige V Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
29
|
Prim JH, Davila MI, McCulloch KL. A pilot study on exertional tasks with physiological measures designed for the assessment of military concussion. Concussion 2021; 6:CNC88. [PMID: 33976903 PMCID: PMC8097503 DOI: 10.2217/cnc-2020-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Guidelines for clinicians treating military concussion recommend exertional testing before return-to-duty, yet there is currently no standardized task or inclusion of an objective physiological measure like heart rate variability (HRV). Methodology & results: We pilot-tested two clinically feasible exertional tasks that include HRV measures and examined reliability of a commercially available heart rate monitor. Testing healthy participants confirmed that the 6-min step test and 2-min pushup test evoked the targeted physiological response, and the Polar H10 was reliable to the gold-standard electrocardiogram. Conclusion: Both tasks are brief assessments that can be implemented into primary care setting including the Polar H10 as an affordable way to access HRV. Additional research utilizing these tasks to evaluate concussion recovery can validate standardized exertional tasks for clinical use.
Collapse
Affiliation(s)
- Julianna H Prim
- Department of Allied Health Sciences, Curriculum in Human Movement Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria I Davila
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen L McCulloch
- Department of Allied Health Sciences, Curriculum in Human Movement Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Allied Health Sciences, Division of Physical Therapy, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
McGeown JP, Kara S, Fulcher M, Crosswell H, Borotkanics R, Hume PA, Quarrie KL, Theadom A. Predicting Sport-related mTBI Symptom Resolution Trajectory Using Initial Clinical Assessment Findings: A Retrospective Cohort Study. Sports Med 2021; 50:1191-1202. [PMID: 31845203 DOI: 10.1007/s40279-019-01240-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To identify which aspects of initial clinical assessment for sport-related mild traumatic brain injury (SR-mTBI) predict whether an athlete achieves symptom resolution within 14 days of the injury. RESEARCH DESIGN Retrospective cohort study using prospectively collected data. METHODS Clinical assessment data were collected from 568 patients diagnosed with SR-mTBI at a single medical clinic between February 2017 and December 2018. Demographic data, medical history, SCAT-5 testing, and physician notes were included in the data set. Data were processed and analysed to identify a shortlist of predictor variables to develop a logistic regression model to discriminate between SR-mTBI symptom resolution that occurred in ≤ 14-days or > 14-days. The data were randomly divided into model development and validation subsamples. The top 15 models were analysed to determine the predictor variables to be included in the final logistic regression model. The final model was then applied to the validation subsample. RESULTS Half of the athlete participants in this study experienced > 14-day symptom resolution. The final logistic regression model included sex, symptom reporting at initial assessment and presentation with a physiological predominant symptom cluster. The model accounted for 0.90 and 0.85 of the area under the curve and predicted recovery trajectory with 81% and 76% accuracy for the training and validation subsamples, respectively. CONCLUSIONS Being female, reporting a higher Positive Symptom Total at initial assessment, and being less likely to have a physiological predominant symptom cluster at initial assessment predicted > 14 versus ≤ 14-day SR-mTBI symptom resolution with a high level of accuracy.
Collapse
Affiliation(s)
- Joshua P McGeown
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Stephen Kara
- Axis Sports Medicine Clinic, Auckland, New Zealand
| | - Mark Fulcher
- Axis Sports Medicine Clinic, Auckland, New Zealand
| | | | - Robert Borotkanics
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Patria A Hume
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.,Faculty of Health and Environmental Science, National Institute of Stroke and Applied Neuroscience (NISAN), Auckland University of Technology, Auckland, New Zealand
| | - Kenneth L Quarrie
- Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.,New Zealand Rugby, 100 Molesworth Street, Wellington, New Zealand
| | - Alice Theadom
- Faculty of Health and Environmental Science, National Institute of Stroke and Applied Neuroscience (NISAN), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
31
|
Snyder A, Sheridan C, Tanner A, Bickart K, Sullan M, Craske M, Choe M, Babikian T, Giza C, Asarnow R. Cardiorespiratory Functioning in Youth with Persistent Post-Concussion Symptoms: A Pilot Study. J Clin Med 2021; 10:561. [PMID: 33546148 PMCID: PMC7913264 DOI: 10.3390/jcm10040561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of the autonomic nervous system (ANS) may play an important role in the development and maintenance of persistent post-concussive symptoms (PPCS). Post-injury breathing dysfunction, which is influenced by the ANS, has not been well-studied in youth. This study evaluated cardiorespiratory functioning at baseline in youth patients with PPCS and examined the relationship of cardiorespiratory variables with neurobehavioral outcomes. Participants were between the ages of 13-25 in two groups: (1) Patients with PPCS (concussion within the past 2-16 months; n = 13) and (2) non-injured controls (n = 12). Capnometry was used to obtain end-tidal CO2 (EtCO2), oxygen saturation (SaO2), respiration rate (RR), and pulse rate (PR) at seated rest. PPCS participants exhibited a reduced mean value of EtCO2 in exhaled breath (M = 36.3 mmHg, SD = 2.86 mmHg) and an altered inter-correlation between EtCO2 and RR compared to controls. Neurobehavioral outcomes including depression, severity of self-reported concussion symptoms, cognitive catastrophizing, and psychomotor processing speed were correlated with cardiorespiratory variables when the groups were combined. Overall, results from this study suggest that breathing dynamics may be altered in youth with PPCS and that cardiorespiratory outcomes could be related to a dimension of neurobehavioral outcomes associated with poorer recovery from concussion.
Collapse
Affiliation(s)
- Aliyah Snyder
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA; (T.B.); (R.A.)
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
| | - Christopher Sheridan
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexandra Tanner
- Department of Psychology, University of California, Los Angeles, CA 90095, USA; (A.T.); (M.C.)
| | - Kevin Bickart
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
- Departments of Neurology and Neuropsychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Molly Sullan
- Department of Psychiatry, Psychology Service, University of California, San Diego, CA 92093, USA;
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Michelle Craske
- Department of Psychology, University of California, Los Angeles, CA 90095, USA; (A.T.); (M.C.)
| | - Meeryo Choe
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
- UCLA Mattel Children’s Hospital, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Talin Babikian
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA; (T.B.); (R.A.)
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
| | - Christopher Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
- UCLA Mattel Children’s Hospital, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Robert Asarnow
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA; (T.B.); (R.A.)
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA 90095, USA; (C.S.); (K.B.); (M.C.); (C.G.)
- Department of Psychology, University of California, Los Angeles, CA 90095, USA; (A.T.); (M.C.)
| |
Collapse
|
32
|
Coffman CA, Kay JJM, Saba KM, Harrison AT, Holloway JP, LaFountaine MF, Moore RD. Predictive Value of Subacute Heart Rate Variability for Determining Outcome Following Adolescent Concussion. J Clin Med 2021; 10:jcm10010161. [PMID: 33466532 PMCID: PMC7796512 DOI: 10.3390/jcm10010161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023] Open
Abstract
Objective assessments of concussion recovery are crucial for facilitating effective clinical management. However, predictive tools for determining adolescent concussion outcomes are currently limited. Research suggests that heart rate variability (HRV) represents an indirect and objective marker of central and peripheral nervous system integration. Therefore, it may effectively identify underlying deficits and reliably predict the symptomology following concussion. Thus, the present study sought to evaluate the relationship between HRV and adolescent concussion outcomes. Furthermore, we sought to examine its predictive value for assessing outcomes. Fifty-five concussed adolescents (12–17 years old) recruited from a local sports medicine clinic were assessed during the initial subacute evaluation (within 15 days postinjury) and instructed to follow up for a post-acute evaluation. Self-reported clinical and depressive symptoms, neurobehavioral function, and cognitive performance were collected at each timepoint. Short-term HRV metrics via photoplethysmography were obtained under resting conditions and physiological stress. Regression analyses demonstrated significant associations between HRV metrics, clinical symptoms, neurobehavioral function, and cognitive performance at the subacute evaluation. Importantly, the analyses illustrated that subacute HRV metrics significantly predicted diminished post-acute neurobehavioral function and cognitive performance. These findings indicate that subacute HRV metrics may serve as a viable predictive biomarker for identifying underlying neurological dysfunction following concussion and predict late cognitive outcomes.
Collapse
Affiliation(s)
- Colt A. Coffman
- Concussion Health and Neuroscience Lab, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (J.J.M.K.); (K.M.S.); (A.T.H.)
- Correspondence: (C.A.C.); (R.D.M.); Tel.: +1-(803)-777-3278 (C.A.C. & R.D.M.)
| | - Jacob J. M. Kay
- Concussion Health and Neuroscience Lab, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (J.J.M.K.); (K.M.S.); (A.T.H.)
| | - Kat M. Saba
- Concussion Health and Neuroscience Lab, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (J.J.M.K.); (K.M.S.); (A.T.H.)
| | - Adam T. Harrison
- Concussion Health and Neuroscience Lab, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (J.J.M.K.); (K.M.S.); (A.T.H.)
| | - Jeffrey P. Holloway
- Department of Pediatrics, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Michael F. LaFountaine
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ 07110, USA;
- Departments of Medical Sciences and Neurology, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Robert Davis Moore
- Concussion Health and Neuroscience Lab, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (J.J.M.K.); (K.M.S.); (A.T.H.)
- Correspondence: (C.A.C.); (R.D.M.); Tel.: +1-(803)-777-3278 (C.A.C. & R.D.M.)
| |
Collapse
|
33
|
Meneghetti HG, Souza GCD, Santos JGF, Morales MDSB, Martins RADM, Ferreira GD. O uso da análise da variabilidade da frequência cardíaca no monitoramento de lesões esportivas e sua influência sobre o balanço autonômico: uma revisão sistemática. FISIOTERAPIA E PESQUISA 2021. [DOI: 10.1590/1809-2950/20022228032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O objetivo desta revisão busca compreender o uso da variabilidade da frequência cardíaca (VFC) para identificar sua relação com a ocorrência de lesões esportivas que não envolvem contato, além de indicar padrões da VFC após concussões para orientar o retorno seguro ao esporte. Foi realizada uma revisão sistemática nas bases de dados Pubmed, EMBASE e PEDRo, incluindo artigos até dezembro de 2020, utilizando os seguintes termos: ((((athletes OR players) AND (Heart Hate Variability OR HRV)) AND (sport OR sports OR exercises OR physical activity)) AND (injuries OR injury)). Os princípios de elegibilidade de PICOS foram: P (population): atletas, I (intervention): o uso da VFC, C (control): atletas não lesionados, O (outcomes): índices de VFC e suas relações com lesões esportivas, e S (study): estudos em seres humanos. De 62 artigos identificados na busca, 12 foram incluídos na revisão, sendo 6 mostrando que a diminuição da VFC e o desequilíbrio simpatovagal estão relacionados à fadiga, overtraining e overreaching; e 6 artigos relacionados com a avaliação da VFC pós-concussão, onde identificaram alteração de modulação autonômica nos atletas concussionados que vão além da ausência dos sintomas. Em conclusão, a VFC pode ser uma ferramenta utilizada no âmbito esportivo para identificar maior risco de lesões esportivas sem contato, identificando situações de fadiga, overtraining e overreaching, como também auxiliar no processo de retorno ao esporte pós-concussão cerebral pela avaliação do balanço autonômico.
Collapse
|
34
|
Gąsior JS, Hoffmann B, Silva LEV, Małek Ł, Flatt AA, Baranowski R, Werner B. Changes in Short-Term and Ultra-Short Term Heart Rate, Respiratory Rate, and Time-Domain Heart Rate Variability Parameters during Sympathetic Nervous System Activity Stimulation in Elite Modern Pentathlonists-A Pilot Study. Diagnostics (Basel) 2020; 10:diagnostics10121104. [PMID: 33348572 PMCID: PMC7766436 DOI: 10.3390/diagnostics10121104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Monitoring of markers reflecting cardiac autonomic activity before and during stressful situations may be useful for identifying the physiological state of an athlete and may have medical or performance implications. The study aimed to determine group and individual changes in short-term (5 min) and ultra-short-term (1 min) heart rate (HR), respiratory rate (RespRate), and time-domain heart rate variability (HRV) parameters during sympathetic nervous system activity (SNSa) stimulation among professional endurance athletes. Electrocardiographic recordings were performed in stable measurement conditions (Baseline) and during SNSa stimulation via isometric handgrip in 12 elite modern pentathlonists. Significant increases in short-term HR and decreases in time-domain HRV parameters with no changes in RespRate were observed during SNSa stimulation. Significant differences were observed between Baseline (all minutes) and the last (i.e., 5th) minute of SNSa stimulation for ultra-short-term parameters. Analysis of intra-individual changes revealed some heterogeneity in responses. The study provides baseline responses of HR, RespRate, and time-domain HRV parameters to SNSa stimulation among elite pentathlonists, which may be useful for identifying abnormal responses among fatigued or injured (e.g., concussed) athletes. More attention to individual analysis seems to be necessary when assessing physiological responses to sympathetic stimuli in professional endurance athletes.
Collapse
Affiliation(s)
- Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: or ; Tel.: +48-793-199-222
| | - Bartosz Hoffmann
- Physiotherapy Division, Faculty of Medical Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Luiz Eduardo Virgilio Silva
- Department of Internal Medicine of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| | - Łukasz Małek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-635 Warsaw, Poland;
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Department of Health Sciences and Kinesiology, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA;
| | - Rafał Baranowski
- Department of Heart Rhythm Disorders, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
35
|
Shafi R, Poublanc J, Venkatraghavan L, Crawley AP, Sobczyk O, McKetton L, Bayley M, Chandra T, Foster E, Ruttan L, Comper P, Tartaglia MC, Tator CH, Duffin J, Mutch WA, Fisher J, Mikulis DJ. A Promising Subject-Level Classification Model for Acute Concussion Based on Cerebrovascular Reactivity Metrics. J Neurotrauma 2020; 38:1036-1047. [PMID: 33096952 DOI: 10.1089/neu.2020.7272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Concussion imaging research has primarily focused on neuronal disruption with lesser emphasis directed toward vascular dysfunction. However, blood flow metrics may be more sensitive than measures of neuronal integrity. Vascular dysfunction can be assessed by measuring cerebrovascular reactivity (CVR)-the change in cerebral blood flow per unit change in vasodilatory stimulus. CVR metrics, including speed and magnitude of flow responses to a standardized well-controlled vasoactive stimulus, are potentially useful for assessing individual subjects following concussion given that blood flow dysregulation is known to occur with traumatic brain injury. We assessed changes in CVR metrics to a standardized vasodilatory stimulus during the acute phase of concussion. Using a case control design, 20 concussed participants and 20 healthy controls (HCs) underwent CVR assessment measuring blood oxygen-level dependent (BOLD) magnetic resonance imaging using precise changes in end-tidal partial pressure of CO2 (PETCO2). Metrics were calculated for the whole brain, gray matter (GM), and white matter (WM) using sex-stratification. A leave-one-out receiver operating characteristic (ROC) analysis classified concussed from HCs based on CVR metrics. CVR magnitude was greater and speed of response faster in concussed participants relative to HCs, with WM showing higher classification accuracy compared with GM. ROC analysis for WM-CVR metrics revealed an area under the curve of 0.94 in males and 0.90 in females for speed and magnitude of response respectively. These greater than normal responses to a vasodilatory stimulus warrant further investigation to compare the predictive ability of CVR metrics against structural injury metrics for diagnosis and prognosis in acute concussion.
Collapse
Affiliation(s)
- Reema Shafi
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bayley
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Tharshini Chandra
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan Foster
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Lesley Ruttan
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Paul Comper
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Charles H Tator
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - W Alan Mutch
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph Fisher
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Canadian Concussion Center, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Snowden T, Reid H, Kennedy S, Kenny R, McQuarrie A, Stuart-Hill L, Garcia-Barrera MA, Gawryluk J, Christie BR. Heading in the Right Direction: A Critical Review of Studies Examining the Effects of Heading in Soccer Players. J Neurotrauma 2020; 38:169-188. [PMID: 32883162 DOI: 10.1089/neu.2020.7130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The practice of heading in soccer has become a public concern because of the potential for subconcussive impacts to cause cumulative concussive-like effects; however, experimental evidence for this hypothesis has been mixed. This systematic review used pre-defined search parameters to assess primary literature that examined changes in cognitive, behavioral, structural, and/or biological processes after acute heading exposure in youth and young adult soccer players. The findings were synthesized into a concise and comprehensive summary of the research following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format, and suggestions for standardization of acute heading protocols are described. A total of 1189 articles were considered for this review, with 19 articles meeting all of the inclusion criteria for full analysis. An attempt was made to identify methods with significant sensitivity and reliability by grouping studies based on their outcome measures. Because of lack of standardization across intervention types and data collection protocols, no sensitive and reliable methods could be identified conclusively to assess the effects of acute heading exposure in soccer players. Based on this review, there is not enough evidence to either support or refute the potential of effects of subconcussive events from acute soccer heading exposure. Recommendations for standardization of acute heading exposure studies based on the included literature are discussed. Standardization is required to better understand the impact of acute heading exposure in soccer players, while allowing for the development of guidelines that mitigate any potential risks and allowing athletes to remain active and develop their skills.
Collapse
Affiliation(s)
- Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Hannah Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Samantha Kennedy
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - Rebecca Kenny
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Amanda McQuarrie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, and University of Victoria, Victoria, British Columbia, Canada
| | | | - Jodie Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,School of Exercise Science, Physical and Health Education, and University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
37
|
Merkulov YA, Pyatkov AA, Gorokhova SG, Merkulova DM, Atkov OY. [Disturbances of Autonomic Regulation of Cardiovascular System at Different Working Regimes with Night Shifts]. ACTA ACUST UNITED AC 2020; 60:62-67. [PMID: 33131476 DOI: 10.18087/cardio.2020.9.n1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
Abstract
Aim To study temporal and spectral characteristics of heart rhythm variability (HRV) in night shift workers.Materials and methods Along with traditional risk factors, conditions of labor contribute to development of cardiovascular morbidity, including night shift work, which can be associated with disorders of the autonomic regulation detected by analysis of HRV. This study included 100 healthy men. 74 of them were engaged in shift work, including 53 men with rotating shift work, 21 men with fixed night shifts, and 26 men with day-time work. HRV was analyzed by data of 5-min electrocardiogram recording (background recording and orthostatic test).Results Night-shift workers had decreases in total power of regulation (ТР, SDNN) and in the parasympathetic branch (HF, pNN50). Rotating night-shift workers displayed significant decreases in SDNN and pNN50 and pronounced changes in the VLF / LF / HF ratio in the orthostatic test.Conclusion In work with night shifts, the type of autonomic regulation differs from the "standard" functioning of the autonomic nervous system (ANS). This study showed different effects of night work regimens on HRV indexes. With the rotating shift work, the ANS dysregulation was more profound and was evident by a significant decrease in the ANS total tone and parasympathetic activity (SDNN, pNN50) compared to night shifts with fixed working hours. The excessive weakening of the parasympathetic component in the passive orthostatic test can be considered as an early marker for ANS maladaptation.
Collapse
Affiliation(s)
- Yu A Merkulov
- Moscow Centre for Medical Rehabilitation, Restorative and Sports Medicine, Moscow
| | - A A Pyatkov
- Moscow Centre for Medical Rehabilitation, Restorative and Sports Medicine, Moscow
| | - S G Gorokhova
- Russian Medical Academy of Postgraduate Education, Moscow
| | - D M Merkulova
- B.M. Guekht Neurology center, «CCH «RZD-Medicine», Moscow
| | - O Yu Atkov
- Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia
| |
Collapse
|
38
|
McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020; 11:541050. [PMID: 33101170 PMCID: PMC7554632 DOI: 10.3389/fneur.2020.541050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Approaches to furthering our understanding of the bioeffects, behavioral changes, and treatment options following exposure to blast are a worldwide priority. Of particular need is a more concerted effort to employ animal models to determine possible sex differences, which have been reported in the clinical literature. In this review, clinical and preclinical reports concerning blast injury effects are summarized in relation to sex as a biological variable (SABV). The review outlines approaches that explore the pertinent role of sex chromosomes and gonadal steroids for delineating sex as a biological independent variable. Next, underlying biological factors that need exploration for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular, and inflammation factors that all have evidence as having important SABV relevance. A major second consideration for the study of SABV and preclinical blast effects is the notable lack of consistent model design—a wide range of devices have been employed with questionable relevance to real-life scenarios—as well as poor standardization for reporting of blast parameters. Hence, the review also provides current views regarding optimal design of shock tubes for approaching the problem of primary blast effects and sex differences and outlines a plan for the regularization of reporting. Standardization and clear description of blast parameters will provide greater comparability across models, as well as unify consensus for important sex difference bioeffects.
Collapse
Affiliation(s)
- Joseph T McCabe
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B Tucker
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
39
|
Anderson FL, Hellwinkel JE, Montjoy M, Levi M, Tu B, Noble JM, Ahmad CS, Bottiglieri TS. Change in Heart Rate Variability after Concussion in a Collegiate Soccer Player. Neurotrauma Rep 2020; 1:88-92. [PMID: 34223534 PMCID: PMC8240878 DOI: 10.1089/neur.2020.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Athletes are known to under-report concussion symptoms due to competitive disincentives to report and conflation of concussion symptoms with other conditions associated with rigorous participation in sports. A quantitative biomarker for concussion has the potential to decrease the reliance on inconsistent patient-reported symptoms for the diagnosis of concussion. The objective of this project was to monitor heart rate variability (HRV) patterns of in-season athletes as a potential biomarker for concussion. Twenty in-season National Collegiate Athletic Association (NCAA) Division 2 collegiate soccer players were given a wristband heart rate sensor with instructions to wear the band full time (24/7) for the entire fall season (approximately 3 months). The athletes were prompted by email to complete a weekly survey on the severity and frequency of any concussion symptoms. The survey and HRV data were de-identified for confidentiality, and to increase the likelihood of accurate reporting the athletes were told their responses would not be used to disqualify them from athletics. Our hypothesis was that HRV would be diminished in those with recent concussion. One athlete (5% of the cohort) sustained a concussion during the study period. A marked decrease in HRV was identified 7 days following the concussion, which eventually returned to baseline. This normalization of HRV followed the timing of resolution of concussion symptoms. Participants who did not sustain a concussion exhibited minimal variance in HRV over time. This preliminary study shows that HRV has potential as a biomarker for symptom resolution after clinically apparent concussion. HRV is unlikely to serve as a concussion diagnostic due to the 7-day lag in HRV change after concussion.
Collapse
Affiliation(s)
- Forrest L Anderson
- Department of Orthopedics, Columbia University Medical Center, New York, New York, USA
| | - Justin E Hellwinkel
- Department of Orthopedics, Columbia University Medical Center, New York, New York, USA
| | - Marguerite Montjoy
- Department of Orthopedics, Columbia University Medical Center, New York, New York, USA
| | - Max Levi
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Bin Tu
- Columbia Comprehensive Epilepsy Center, Columbia University, New York, New York, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain, and G.H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Christopher S Ahmad
- Department of Orthopedics, Columbia University Medical Center, New York, New York, USA
| | - Thomas S Bottiglieri
- Department of Orthopedics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
40
|
Fogazzi DV, Neary JP, Sonza A, Reppold CT, Kaiser V, Scassola CM, Casali KR, Rasia-Filho AA. The prefrontal cortex conscious and unconscious response to social/emotional facial expressions involve sex, hemispheric laterality, and selective activation of the central cardiac modulation. Behav Brain Res 2020; 393:112773. [PMID: 32544509 DOI: 10.1016/j.bbr.2020.112773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The human prefrontal cortex (PFC) processes complex sensory information for the elaboration of social behaviors. The non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) identifies hemodynamic changes and concentration of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin in the cerebral cortex. We studied the responses detected by NIRS in the right and left PFC activation of 28 participants (n = 14 adult young females and males) while processing social/emotional facial expressions, i.e., in conscious perception of different expressions (neutral, happy, sad, angry, disgust, and fearful) and in unconscious/masked perception of negative expressions (fearful and disgust overlapped by neutral). The power spectral analysis from concomitant ECG signals revealed the sympathetic and parasympathetic modulation of cardiac responses. We found higher HbO2 values in the right PFC of females than in males during, and in the left PFC after, following the conscious perception of the happy face. In males, the left PFC increased and the right PFC decreased HbO2 while viewing the happy expression. In both sexes, HHb values were higher during the masked presentation of disgust than fearful expression, and after the masked presentation of fearful expression than during it. Higher sympathetic and lower parasympathetic activity (LF/ HF components) occurred in females when consciously and unconsciously processing negative emotions (p < 0.05 in all cases). These results demonstrate that the human PFC displays a selective activation depending on sex, hemispheric laterality, attention, time for responding to conscious and unconscious emotionally loaded stimuli with simulataneous centrally modulated cardiovascular responses.
Collapse
Affiliation(s)
- Débora V Fogazzi
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Graduation Program in Biosciences, Porto Alegre, RS, Brazil
| | - J Patrick Neary
- University of Regina, Centre for Kinesiology, Faculty of Kinesiology and Health Studies, Regina, Canada
| | - Anelise Sonza
- Universidade do Estado de Santa Catarina (UDESC), Graduation Program in Physiotherapy, Florianópolis,SC, Brazil
| | - Caroline T Reppold
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Psychology, Porto Alegre,RS, Brazil
| | - Vanessa Kaiser
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Psychology, Porto Alegre,RS, Brazil
| | - Catharina M Scassola
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, SP, Brazil
| | - Karina R Casali
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, SP, Brazil
| | - Alberto A Rasia-Filho
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Graduation Program in Biosciences, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Department of Basic Sciences/Physiology, Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Between 1.6 and 3.6 million concussions, or mild traumatic brain injuries (mTBI), occur each year, nearly half of which go unreported and untreated. Despite the high incidence, practitioners currently lack both objective gold-standard diagnostic tools and evidence-based treatments to enable optimal care of concussed individuals. RECENT FINDINGS This article aims to review recent research on the topic, emphasizing the role of the autonomic nervous system (ANS) in concussion. Current data suggests that ANS dysfunction is often evident following mTBI and accounts for many of the symptoms commonly seen in concussed patients. This link suggests several objective biomarkers that could be used to diagnose and monitor recovery following mTBI. Contrary to conventional wisdom, symptoms and biomarkers of ANS function improve when individuals are exposed to a program of graded exercise as treatment within the first week following concussion. SUMMARY ANS dysfunction contributes to concussion symptomatology, an effect likely mediated through diffuse axonal injury, including brainstem structures and pathways mediating normal cerebrovascular autoregulation. Exercise, which enhances ANS function, is a well tolerated and effective method of treatment for both acute concussion patients and those suffering from postconcussion syndrome (PCS). The relationship between the ANS, exercise, and concussion creates an opportunity for the identification of objective biomarkers that can facilitate the diagnosis and treatment of mTBI.
Collapse
|
42
|
Neary JP, Singh J, Christiansen JP, Teckchandani TA, Potter KL. Causal Link between Ventricular Ectopy and Concussion. Case Rep Med 2020; 2020:7154120. [PMID: 32565823 PMCID: PMC7292985 DOI: 10.1155/2020/7154120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
We present a unique case study report of a male individual with a history of mild nonischaemic cardiomyopathy, with no ventricular ectopy, that at the age of 76 years sustained multiple concussions (i.e., mild traumatic brain injury) within a week of each other. Concussion symptoms included cognitive difficulties, "not feeling well," lethargy, fatigue, and signs of depression. He was later medically diagnosed with postconcussion syndrome. The patient, WJT, was referred for cardiac and neurological assessment. Structural neuroimaging of the brain (MRI) was unremarkable, but electrocardiography (ECG) assessments using a 24-hour Holter monitor revealed significant incidence of ventricular ectopy (9.4%; 9,350/99,836 beats) over a period of 5-6 months after injury and then a further increase in ventricular ectopy to 18% (15,968/88,189 beats) during the subsequent 3 months. The patient was then prescribed Amiodarone 200 mg, and his ventricular ectopy and concussion symptoms completely resolved simultaneously within days. To the authors' knowledge, our study is the first to show a direct link between observable and documented cardiac dysregulation and concussion symptomology. Our study has important implications for both cardiac patients and the patients that sustain a concussion, and if medically managed with appropriate pharmacological intervention, it can reverse ventricular ectopy and concussion symptomology. More research is warranted to investigate the mechanisms for this dramatic and remarkable change in cardiac and cerebral functions and to further explore the brain-heart interaction and the intricate autonomic interaction that exists between the extrinsic and intracardiac nervous systems.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jonathan P. Christiansen
- University of Auckland, Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Taylor A. Teckchandani
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kirsty L. Potter
- Waitemata Cardiology, 181 Shakespeare Road, Milford, Auckland 0620, New Zealand
| |
Collapse
|
43
|
Neary JP, Dudé CM, Singh J, Len TK, Bhambhani YN. Pre-frontal Cortex Oxygenation Changes During Aerobic Exercise in Elite Athletes Experiencing Sport-Related Concussion. Front Hum Neurosci 2020; 14:35. [PMID: 32116614 PMCID: PMC7028689 DOI: 10.3389/fnhum.2020.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Aims: Recent research suggests that aerobic exercise can be performed safely within the first week following a concussion injury and that early initiation of exercise may speed recovery. To better understand the physiological changes during a concussion, we tested the hypothesis that mild-to-intense exercise testing can be performed within days immediately following injury, and can be used to discern differences between the concussed and normal healthy state. Thus, the purpose was to observe the cerebral hemodynamic responses to incremental exercise testing performed acutely post-concussion in high-performance athletes. Methods: This study was a within- and between-experimental design, with seven male university ice hockey teams participating. A subgroup of five players acted as control subjects (CON) and was tested at the same time as the 14 concussed (mTBI) players on Day 2, 4, and 7 post-concussion. A 5-min resting baseline and 5-min exercise bouts of mild (EX1), moderate (EX2), and high (EX3) intensity exercise were performed on a cycle ergometer. Near-infrared spectroscopy was used to monitor pre-frontal cortex oxy-haemoglobin (HbO2), deoxy-haemoglobin (HHb), and total blood volume (tHb) changes. Results: ANOVA compared differences between testing days and groups, and although large percentage changes in HbO2 (20-30%), HHb (30-40%), and tHb (30-40%) were recorded, no significant (p ≤ 0.05) differences in cerebral hemodynamics occurred between mTBI vs. CON during aerobic exercise testing on any day post-injury. Furthermore, there was a linear relationship between exercise intensity vs. cerebral hemodynamics during testing for each day (r 2 = 0.83-0.99). Conclusion: These results demonstrate two novel findings: (1) mild-to-intense aerobic exercise testing can be performed safely as early as Day 2 post-concussion injury in a controlled laboratory environment; and (2) evidence-based objective measures such as cerebral hemodynamics can easily be collected using near-infrared spectroscopy (NIRS) to monitor physiological changes during the first-week post-injury. This research has important implications for monitoring physiological recovery post-injury and establishing new rehabilitation guidelines.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | | | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Trevor K. Len
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Yagesh N. Bhambhani
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Abstract
ABSTRACT:Cannabidiol (CBD) has been generating increasing interest in medicine due to its therapeutic properties and an apparent lack of negative side effects. Research has suggested that high dosages of CBD can be taken acutely and chronically with little to no risk. This review focuses on the neuroprotective effects of a CBD, with an emphasis on its implications for recovering from a mild traumatic brain injury (TBI) or concussion. CBD has been shown to influence the endocannabinoid system, both by affecting cannabinoid receptors and other receptors involved in the endocannabinoid system such as vanilloid receptor 1, adenosine receptors, and 5-hydroxytryptamine via cannabinoid receptor-independent mechanisms. Concussions can result in many physiological consequences, potentially resulting in post-concussion syndrome. While impairments in cerebrovascular and cardiovascular physiology following concussion have been shown, there is unfortunately still no single treatment available to enhance recovery. CBD has been shown to influence the blood brain barrier, brain-derived neurotrophic factors, cognitive capacity, the cerebrovasculature, cardiovascular physiology, and neurogenesis, all of which have been shown to be altered by concussion. CBD can therefore potentially provide treatment to enhance neuroprotection by reducing inflammation, regulating cerebral blood flow, enhancing neurogenesis, and protecting the brain against reactive oxygen species. Double-blind randomized controlled trials are still required to validate the use of CBD as medication following mild TBIs, such as concussion.
Collapse
|
45
|
Anesthetic Care for the Post-concussive Patient: There Are More Questions Than Answers. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
A Look Ahead. Concussion 2020. [DOI: 10.1016/b978-0-323-65384-8.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
|
47
|
LA Fountaine MF, Hohn AN, Testa AJ, Weir JP. Attenuation of Spontaneous Baroreceptor Sensitivity after Concussion. Med Sci Sports Exerc 2019; 51:792-797. [PMID: 30407273 DOI: 10.1249/mss.0000000000001833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Cardiovascular autonomic nervous system (CV-ANS) function is negatively impacted after concussion. The arterial baroreflex buffers pressor and depressor challenges through efferent modulation of cardiac chronotropism and inotropism, and peripheral vascular tone. Baroreceptor sensitivity (BRS) reflects the capacity of the CV-ANS to accommodate dynamic metabolic demands in the periphery. The impact of concussion on BRS has yet to be defined. METHODS Cardiovascular autonomic nervous system assessment (e.g., electrocardiogram and beat-to-beat systolic blood pressure [SBP]) was performed the seated upright position at rest within 48 h (V1) of concussion and 1 wk later (V2) in 10 intercollegiate male athletes with concussion and 10 noninjured male athletes. Changes in HR, SBP, high- and low-frequency HR variabilities (HF-HRV and LF-HRV, respectively), LF-SBP variability and BRS for increasing (BRSn-Up) and decreasing (BRSn-Dn) SBP excursions, and overall BRS (BRSn-Avg) were assessed for differences at V1 and V2. RESULTS The concussion (age, 20 ± 1 yr; height, 1.79 ± 0.14 m; weight, 83 ± 10 kg) and control (age, 20 ± 1 yr; height, 1.78 ± 0.10 m; weight, 79 ± 13 kg) groups were matched for demographics. Concussed athletes had a significantly reduced BRSn-Up, BRSn-Dn, and BRSn-Avg compared with controls at V1 or V2; these changes occurred without differences in conventional markers of CV-ANS function (e.g., HF-HRV, LF-HRV, LF-SBP), HR, or SBP at either visit. CONCLUSIONS Reduced BRS is a postconcussive consequence of CV-ANS dysfunction during the first postinjury week. Because SBP was similar between groups, it may be speculated that reduced BRS was not afferent in origin, but represents a postinjury consequence of the central nervous system after injury.
Collapse
Affiliation(s)
- Michael F LA Fountaine
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ.,The Institute for Advanced Study of Rehabilitation and Sports Science, Seton Hall University, South Orange, NJ.,Departments of Medical Sciences and Neurology, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ
| | - Asante N Hohn
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ
| | - Anthony J Testa
- Center for Sports Medicine, Seton Hall University, South Orange, NJ
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS
| |
Collapse
|
48
|
Morissette MP, Cordingley DM, Ellis MJ, Leiter JRS. Evaluation of Early Submaximal Exercise Tolerance in Adolescents with Symptomatic Sport-related Concussion. Med Sci Sports Exerc 2019; 52:820-826. [PMID: 31688644 DOI: 10.1249/mss.0000000000002198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aimed to compare cardiorespiratory response to a graded aerobic exercise challenge between adolescents with symptomatic sport-related concussion (SSRC) and healthy control subjects. METHODS A quasiexperimental nonrandomized study at a multidisciplinary pediatric concussion program was conducted. Thirty-four adolescents with SSRC (19 males and 15 females) and 40 healthy control subjects (13 males and 27 females) completed the Buffalo Concussion Treadmill Testing (BCTT) until either symptom exacerbation or volitional fatigue. Main outcome measures included heart rate (HR), oxygen consumption (V˙O2), carbon dioxide production (V˙CO2), and minute ventilation (V˙E) at rest and at test termination, and change from rest in variables (ΔHR, ΔV˙O2, ΔV˙CO2, and ΔV˙E) during the first five stages of the BCTT. Main outcomes were analyzed using three-way mixed-model ANOVA, with group status (control vs SSRC) and sex (male vs female) as between-subject factors, and time (BCTT stage) as the within-subject factor. RESULTS No group differences in resting HR, systolic and diastolic blood pressure, ΔV˙O2, V˙CO2, and V˙E were observed. During the first five stages of the BCTT, no group differences in ΔV˙O2, V˙CO2, and V˙E were observed; however, SSRC patients demonstrated higher RPE (P < 0.0005) compared with control subjects. No sex-based differences were observed among SSRC patients on measures collected at rest and during early stages of BCTT. CONCLUSIONS Although SSRC patients exhibited higher RPE during a graded aerobic exercise challenge, no differences in cardiorespiratory response were observed compared with control subjects exercising at equivalent workloads. Further work is needed to elucidate the physiological mechanisms underlying exercise intolerance after SSRC.
Collapse
Affiliation(s)
| | | | | | - Jeff R S Leiter
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, CANADA
| |
Collapse
|
49
|
Multiannual, Intensive Strength-Endurance Training Modulates the Activity of the Cardiovascular and Autonomic Nervous System among Rowers of the International Level. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3989304. [PMID: 31662977 PMCID: PMC6791253 DOI: 10.1155/2019/3989304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Introduction Professional athlete training is significantly different from recreational physical activity, and sustained, repetitive exposure to over-strenuous and intensive training may result in critical changes of most systems and organs in a sportsman's body. Aim The assessment of the influence of multiannual strength-endurance training on the autonomic nervous system (ANS) and cardiovascular system (CVS) among the rowers of Polish national team. Materials and Methods 20 rowers, aged 20–30, seniors of Polish national team were qualified into the study. The functional examination of ANS was conducted by means of Task Force® Monitor system. The assessed parameters included hemodynamic parameters, heart rate, and blood pressure variability and reflexes sensitivity of baroreceptors. In order to examine and compare the reaction of autonomic nervous system the subjects underwent a tilt test. Results In the study group, significantly higher levels of sBP (129.3 ± 12.2 vs 118.3 ± 8.4, p = 0.0030), SI (59.9 ± 8.8 vs 41.2 ± 6.8, p > 0.001), CI (3.2 ± 0.5 vs 2.4 ± 0.4, p > 0.001), and significantly lower levels of HR (54.2 ± 5.3 vs 60.1 ± 5.7, p = 0.0034) and TPRI (2333.3 ± 389.9 vs 2950.2 ± 604.2, p = 0.0012) compared to the control group, were found. After the tilt test the levels of HR (p = 0.0005) and TPRI (p = 0.0128) were significantly higher but SI (p > 0.001) and CI (p = 0.0006) were significantly lower in the study group compared to the control. Conclusions Multiannual strength-endurance training connected with rowing activities substantially modulates the activity of cardiovascular and autonomic nervous system, influences the volumetric workload of the heart and structural changes, and increases the sensitivity of reflexes of arterial baroreceptors.
Collapse
|
50
|
Purkayastha S, Williams B, Murphy M, Lyng S, Sabo T, Bell KR. Reduced heart rate variability and lower cerebral blood flow associated with poor cognition during recovery following concussion. Auton Neurosci 2019; 220:102548. [DOI: 10.1016/j.autneu.2019.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 11/24/2022]
|