1
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
2
|
Nedrelow DS, Townsend JM, Detamore MS. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration. J Biomed Mater Res A 2024. [PMID: 39387548 DOI: 10.1002/jbm.a.37804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
There is a clinical need for osteochondral scaffolds with complex geometries for restoring articulating joint surfaces. To address that need, 3D-printing has enabled scaffolds to be created with anatomically shaped geometries and interconnected internal architectures, going beyond simple plug-shaped scaffolds that are limited to small, cylindrical, focal defects. A key challenge for restoring articulating joint surfaces with 3D-printed constructs is the mechanical loading environment, particularly to withstand delamination or mechanical failure. Although the mechanical performance of interfacial scaffolds is essential, interface strength testing has rarely been emphasized in prior studies with stratified scaffolds. In the pioneering studies where interface strength was assessed, varying methods were employed, which has made direct comparisons difficult. Therefore, the current review focused on 3D-printed scaffolds for osteochondral applications with an emphasis on interface integration and biomechanical evaluation. This 3D-printing focus included both multiphasic cylindrical scaffolds and anatomically shaped scaffolds. Combinations of different 3D-printing methods (e.g., fused deposition modeling, stereolithography, bioprinting with pneumatic extrusion of cell-laden hydrogels) have been employed in a handful of studies to integrate osteoinductive and chondroinductive regions into a single scaffold. Most 3D-printed multiphasic structures utilized either an interdigitating or a mechanical interlocking design to strengthen the construct interface and to prevent delamination during function. The most effective approach to combine phases may be to infill a robust 3D-printed osteal polymer with an interlocking chondral phase hydrogel. Mechanical interlocking is therefore recommended for scaling up multiphasic scaffold applications to larger anatomically shaped joint surface regeneration. For the evaluation of layer integration, the interface shear test is recommended to avoid artifacts or variability that may be associated with alternative approaches that require adhesives or mechanical grips. The 3D-printing literature with interfacial scaffolds provides a compelling foundation for continued work toward successful regeneration of injured or diseased osteochondral tissues in load-bearing joints such as the knee, hip, or temporomandibular joint.
Collapse
Affiliation(s)
- David S Nedrelow
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, A Bowers C. Recent advances of 3D-printing in spine surgery. Surg Neurol Int 2024; 15:297. [PMID: 39246777 PMCID: PMC11380890 DOI: 10.25259/sni_460_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools. Methods A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption. Results The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation. Conclusion Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| | - Zaitoon Zafar
- Department of Biotechnology, University of San Francisco, San Francisco, California, United States
| | - Georgios Skandalakis
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States
| | | | - Shreya Madan
- Department of Neurosurgery, Desert Mountain High School, Scottsdale, Arizona, United States
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Guttridge C, Shannon A, O'Sullivan A, O'Sullivan KJ, O'Sullivan LW. Effects of post-curing duration on the mechanical properties of complex 3D printed geometrical parts. J Mech Behav Biomed Mater 2024; 156:106585. [PMID: 38795405 DOI: 10.1016/j.jmbbm.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
This study aims to assess the efficacy of post-curing guidance supplied by 3D printing resin manufacturers. Current guidance applies generically to all geometries with the caveat that post-curing should be extended for 'large' or 'complex' geometries but specific guidance is not provided. Two vat-polymerisation 3D printers (Form3B, Figure 4 Standalone) were used to print test models in 6 biocompatible resins (Pro Black, Med White, Med Amber, Biomed Black, Biomed White, Biomed Amber). The test model is of a complex geometry whilst also housing ISO 527 test specimens in concentric layers. Two separate intervals of curing were applied (100%, 500% stated guidance) creating different curing treatments of the specimens throughout the model. Post processed test models were disassembled and pull testing performed on each of the specimens to assess the mechanical properties. The analysis showed that extending the curing duration had significant effects on the mechanical properties of some materials but not all. The layers of the model had a significant effect except for elongation at break for the Med Amber material. This research demonstrates that generic post-curing guidance regarding UV exposures is not sufficient to achieve homogenous material strength properties for complex geometries. Large variations in mechanical properties throughout the models suggest some material was not fully-cured. This raises a query if such materials as originally marketed as biocompatible are fully cured and therefore safe to use for medical applications involving complex geometries.
Collapse
Affiliation(s)
- Callum Guttridge
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Alice Shannon
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Aidan O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Kevin J O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland
| | - Leonard W O'Sullivan
- Rapid Innovation Unit - School of Design and Confirm Smart Manufacturing Centre, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
6
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J Pers Med 2024; 14:809. [PMID: 39202002 PMCID: PMC11355268 DOI: 10.3390/jpm14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.
Collapse
Affiliation(s)
- Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Division Personalized Pain Research and Education, Tucson, AZ 85712, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá, Bogotá 111321, Colombia
| | - Shaleen Vira
- Orthopedic and Sports Medicine Institute, Banner-University Tucson Campus, 755 East McDowell Road, Floor 2, Phoenix, AZ 85006, USA;
| | - John C. Elfar
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Morgan P. Lorio
- Advanced Orthopedics, 499 East Central Parkway, Altamonte Springs, FL 32701, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
8
|
Zahid MJ, Mavani P, Awuah WA, Alabdulrahman M, Punukollu R, Kundu A, Mago A, Maher K, Adebusoye FT, Khan TN. Sculpting the future: A narrative review of 3D printing in plastic surgery and prosthetic devices. Health Sci Rep 2024; 7:e2205. [PMID: 38915353 PMCID: PMC11194296 DOI: 10.1002/hsr2.2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims The advent of 3D printing has revolutionized plastic surgery and prosthetic devices, providing personalized solutions for patients with traumatic injuries, deformities, and appearance-related conditions. This review offers a comprehensive overview of 3D printing's applications, advantages, limitations, and future prospects in these fields. Methods A literature search was conducted in PubMed, Google Scholar, and Scopus for studies on 3D printing in plastic surgery. Results 3D printing has significantly contributed to personalized medical interventions, with benefits like enhanced design flexibility, reduced production time, and improved patient outcomes. Using computer-aided design (CAD) software, precise models tailored to a patient's anatomy can be created, ensuring better fit, functionality, and comfort. 3D printing allows for intricate geometries, leading to improved aesthetic outcomes and patient-specific prosthetic limbs and orthoses. The historical development of 3D printing, key milestones, and breakthroughs are highlighted. Recent progress in bioprinting and tissue engineering shows promising applications in regenerative medicine and transplantation. The integration of AI and automation with 3D printing enhances surgical planning and outcomes. Emerging trends in patient-specific treatment planning and precision medicine are potential game-changers. However, challenges like technical considerations, economic implications, and ethical issues exist. Addressing these challenges and advancing research in materials, design processes, and long-term outcomes are crucial for widespread adoption. Conclusion The review underscores the increasing adoption of 3D printing in healthcare and its impact on plastic surgery and prosthetic devices. It emphasizes the importance of evaluating the current state and addressing knowledge gaps through future research to foster further advancements.
Collapse
Affiliation(s)
| | - Parit Mavani
- B. J. Medical CollegeAhmedabadIndia
- Department of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | | | | | | | - Arnab Kundu
- R.G. Kar Medical College and HospitalKolkataIndia
| | - Arpit Mago
- Jawaharlal Nehru medical CollegeBelgaumIndia
| | | | | | | |
Collapse
|
9
|
Goetze E, Zeller AN, Pabst A. Approaching 3D printing in oral and maxillofacial surgery - suggestions for structured clinical standards. Oral Maxillofac Surg 2024; 28:795-802. [PMID: 38214873 DOI: 10.1007/s10006-024-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
PURPOSE With respect to the European Union 2017 amendment of the Medical Device Regulations (MDR), this overview article presents recommendations concerning medical 3D printing in oral and maxillofacial surgery (OMFS). METHODS The MDR were screened for applicability of the rules to medical in-house 3D printing. Applicable regulations were summarized and compared to the status of medical use of 3D printing in OMFS in Germany. Recommendations were made for MDR concerning medical 3D printing. RESULTS In-house printed models, surgical guides, and implants fall under the category of Class I-III, depending on their invasive and active properties. In-house medical 3D printing for custom-made medical devices is possible under certain prerogatives: (1) the product is not being used in another facility, (2) appropriate quality systems are applied, (3) the reason for omitting commercial products is documented, (4) information about its use is supplied to the responsible authority, (5) there is a publicly accessible declaration of origin, identification, and conformity to the MDR, (6) there are records of manufacturing site, process and performance data, (7) all products are produced according to the requirements proclaimed before, and (8) there is an evaluation of clinical use and correction of possible issues. CONCLUSION Several aspects must be addressed for in house medical 3D printing, according to the MDR. Devising MDR related to medical 3D printing is a growing challenge. The implementation of recommendations in OMFS could help practitioners to overcome the challenges and become aware of the in-house production and application of 3D printed devices.
Collapse
Affiliation(s)
- Elisabeth Goetze
- Department of Oral and Maxillofacial Surgery, University Hospital Zurich, Rämistr. 100, 8091, Zurich, Switzerland
| | - Alexander-N Zeller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany.
| |
Collapse
|
10
|
Schafer S, Swain T, Parra M, Slavin BV, Mirsky NA, Nayak VV, Witek L, Coelho PG. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering (Basel) 2024; 11:320. [PMID: 38671741 PMCID: PMC11048570 DOI: 10.3390/bioengineering11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Swain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, New York University Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
11
|
Tsai AY, Greene AC. 3D printing in pediatric surgery. Semin Pediatr Surg 2024; 33:151385. [PMID: 38242062 DOI: 10.1016/j.sempedsurg.2024.151385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Pediatric surgery presents a unique challenge, requiring a specialized approach due to the intricacies of compact anatomy and the presence of distinct congenital features in young patients. Surgeons are tasked with making decisions that not only address immediate concerns but also consider the evolving needs of children as they grow. The advent of three-dimensional (3D) printing has emerged as a valuable tool to facilitate a personalized medical approach. This paper starts by outlining the basics of 3D modeling and printing. We then delve into the transformative role of 3D printing in pediatric surgery, elucidating its applications, benefits, and challenges. The paper concludes by envisioning the future prospects of 3D printing, foreseeing advancements in personalized treatment approaches, improved patient outcomes, and the continued evolution of this technology as an indispensable asset in the pediatric surgical arena.
Collapse
Affiliation(s)
- Anthony Y Tsai
- Division of Pediatric Surgery, Assistant Professor of Surgery and Pediatrics, Penn State Children's Hospital, 500 University Drive, Hershey, PA 17033, United States.
| | - Alicia C Greene
- Division of Pediatric Surgery, Assistant Professor of Surgery and Pediatrics, Penn State Children's Hospital, 500 University Drive, Hershey, PA 17033, United States
| |
Collapse
|
12
|
Slavin BV, Ehlen QT, Costello JP, Nayak VV, Bonfante EA, Benalcázar Jalkh EB, Runyan CM, Witek L, Coelho PG. 3D Printing Applications for Craniomaxillofacial Reconstruction: A Sweeping Review. ACS Biomater Sci Eng 2023; 9:6586-6609. [PMID: 37982644 PMCID: PMC11229092 DOI: 10.1021/acsbiomaterials.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The field of craniomaxillofacial (CMF) surgery is rich in pathological diversity and broad in the ages that it treats. Moreover, the CMF skeleton is a complex confluence of sensory organs and hard and soft tissue with load-bearing demands that can change within millimeters. Computer-aided design (CAD) and additive manufacturing (AM) create extraordinary opportunities to repair the infinite array of craniomaxillofacial defects that exist because of the aforementioned circumstances. 3D printed scaffolds have the potential to serve as a comparable if not superior alternative to the "gold standard" autologous graft. In vitro and in vivo studies continue to investigate the optimal 3D printed scaffold design and composition to foster bone regeneration that is suited to the unique biological and mechanical environment of each CMF defect. Furthermore, 3D printed fixation devices serve as a patient-specific alternative to those that are available off-the-shelf with an opportunity to reduce operative time and optimize fit. Similar benefits have been found to apply to 3D printed anatomical models and surgical guides for preoperative or intraoperative use. Creation and implementation of these devices requires extensive preclinical and clinical research, novel manufacturing capabilities, and strict regulatory oversight. Researchers, manufacturers, CMF surgeons, and the United States Food and Drug Administration (FDA) are working in tandem to further the development of such technology within their respective domains, all with a mutual goal to deliver safe, effective, cost-efficient, and patient-specific CMF care. This manuscript reviews FDA regulatory status, 3D printing techniques, biomaterials, and sterilization procedures suitable for 3D printed devices of the craniomaxillofacial skeleton. It also seeks to discuss recent clinical applications, economic feasibility, and future directions of this novel technology. By reviewing the current state of 3D printing in CMF surgery, we hope to gain a better understanding of its impact and in turn identify opportunities to further the development of patient-specific surgical care.
Collapse
Affiliation(s)
- Blaire V Slavin
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Joseph P Costello
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Estavam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, North Carolina 27101, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, 222 E 41st St., New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, Florida 33136, United States
| |
Collapse
|
13
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
14
|
Kabirian F, Mozafari M, Mela P, Heying R. Incorporation of Controlled Release Systems Improves the Functionality of Biodegradable 3D Printed Cardiovascular Implants. ACS Biomater Sci Eng 2023; 9:5953-5967. [PMID: 37856240 DOI: 10.1021/acsbiomaterials.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
New horizons in cardiovascular research are opened by using 3D printing for biodegradable implants. This additive manufacturing approach allows the design and fabrication of complex structures according to the patient's imaging data in an accurate, reproducible, cost-effective, and quick manner. Acellular cardiovascular implants produced from biodegradable materials have the potential to provide enough support for in situ tissue regeneration while gradually being replaced by neo-autologous tissue. Subsequently, they have the potential to prevent long-term complications. In this Review, we discuss the current status of 3D printing applications in the development of biodegradable cardiovascular implants with a focus on design, biomaterial selection, fabrication methods, and advantages of implantable controlled release systems. Moreover, we delve into the intricate challenges that accompany the clinical translation of these groundbreaking innovations, presenting a glimpse of potential solutions poised to enable the realization of these technologies in the realm of cardiovascular medicine.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering, and TUM School of Engineering and Design, Technical University of Munich, Munich 80333, Germany
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
15
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
16
|
Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 2023; 93:358-384. [PMID: 37823472 DOI: 10.1111/prd.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications. Furthermore, the regulatory pathway for approval of these devices is discussed, highlighting the main hurdles and obstacles. Finally, the review elaborates on a variety of strategies for increasing bone regeneration capacity and explores the future of 4D bioprinting and biodegradable metal 3D printing.
Collapse
Affiliation(s)
- Saso Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Omar Breik
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Jamil Alayan
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Ruben Staples
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Cedryck Vaquette
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Kim JS, Park SK, Lee H. Sniffer worm, C. elegans, as a toxicity evaluation model organism with sensing and locomotion abilities. PLoS One 2023; 18:e0289493. [PMID: 37531332 PMCID: PMC10395899 DOI: 10.1371/journal.pone.0289493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Additive manufacturing, or 3D printing, has revolutionized the way we create objects. However, its layer-by-layer process may lead to an increased incidence of local defects compared to traditional casting-based methods. Factors such as light intensity, depth of light penetration, component inhomogeneity, and fluctuations in nozzle temperature all contribute to defect formations. These defective regions can become sources of toxic component leakage, but pinpointing their locations in 3D printed materials remains a challenge. Traditional toxicological assessments rely on the extraction and subsequent exposure of living organisms to these harmful agents, thus only offering a passive detection approach. Therefore, the development of an active system to both identify and locate sources of toxicity is essential in the realm of 3D printing technologies. Herein, we introduce the use of the nematode model organism, Caenorhabditis elegans (C. elegans), for toxicity evaluation. C. elegans exhibits distinctive 'sensing' and 'locomotion' capabilities that enable it to actively navigate toward safe zones while steering clear of hazardous areas. This active behavior sets C. elegans apart from other aquatic and animal models, making it an exceptional choice for immediate and precise identification and localization of toxicity sources in 3D printed materials.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Chemistry KAIST, Daejeon, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan, Chungnam, Korea
| | - Haeshin Lee
- Department of Chemistry KAIST, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Kirloskar KM, Haffner ZK, Abadeer A, Yosaitis J, Baker SB. The Innovation Press: A Primer on the Anatomy of Digital Design in Plastic Surgery. Ann Plast Surg 2023; 91:307-312. [PMID: 37489974 DOI: 10.1097/sap.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
ABSTRACT Three-dimensional (3D) printing continues to revolutionize the field of plastic surgery, allowing surgeons to adapt to the needs of individual patients and innovate, plan, or refine operative techniques. The utility of this manufacturing modality spans from surgical planning, medical education, and effective patient communication to tissue engineering and device prototyping and has valuable implications in every facet of plastic surgery. Three-dimensional printing is more accessible than ever to the surgical community, regardless of previous background in engineering or biotechnology. As such, the onus falls on the surgeon-innovator to have a functional understanding of the fundamental pipeline and processes in actualizing such innovation. We review the broad range of reported uses for 3D printing in plastic surgery, the process from conceptualization to production, and the considerations a physician must make when using 3D printing for clinical applications. We additionally discuss the role of computer-assisted design and manufacturing and virtual and augmented reality, as well as the ability to digitally modify devices using this software. Finally, a discussion of 3D printing logistics, printer types, and materials is included. With innovation and problem solving comprising key tenets of plastic surgery, 3D printing can be a vital tool in the surgeon's intellectual and digital arsenal to span the gap between concept and reality.
Collapse
Affiliation(s)
| | | | - Andrew Abadeer
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital
| | | | - Stephen B Baker
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital
| |
Collapse
|
19
|
Abstract
New developments in additive manufacturing and regenerative medicine have the potential to radically disrupt the traditional pipelines of therapy development and medical device manufacture. These technologies present a challenge for regulators because traditional regulatory frameworks are designed for mass manufactured therapies, rather than bespoke solutions. 3D bioprinting technologies present another dimension of complexity through the inclusion of living cells in the fabrication process. Herein we overview the challenge of regulating 3D bioprinting in comparison to existing cell therapy products as well as custom-made 3D printed medical devices. We consider a range of specific challenges pertaining to 3D bioprinting in regenerative medicine, including classification, risk, standardization and quality control, as well as technical issues related to the manufacturing process and the incorporated materials and cells.
Collapse
Affiliation(s)
- Tajanka Mladenovska
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Peter F Choong
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Gordon G Wallace
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Cathal D O'Connell
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
20
|
Wu CA, Zhu Y, Woo YJ. Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering. Bioengineering (Basel) 2023; 10:842. [PMID: 37508869 PMCID: PMC10376421 DOI: 10.3390/bioengineering10070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the United States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native structure and function. Three-dimensional (3D) bioprinting offers promising applications through its layer-by-layer biomaterial deposition using different techniques and bio-inks. In this review, we will introduce cardiac tissue engineering, 3D bioprinting processes, bioprinting techniques, bio-ink materials, areas of limitation, and the latest applications of this technology, alongside its future directions for further innovation.
Collapse
Affiliation(s)
- Catherine A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
22
|
Aráoz B, Bellía-Munzón G, Bousquet JI, Hermida ÉB. Advantages of FDM and gamma irradiation to manufacture personalized medical devices for airway obstructions. Front Bioeng Biotechnol 2023; 11:1148295. [PMID: 37456725 PMCID: PMC10348745 DOI: 10.3389/fbioe.2023.1148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
In the early childhood population, congenital airway conditions like bronchomalacia (BM) can pose a life-threatening threat. A breakthrough technology called additive manufacturing, or 3D printing, makes it feasible to create a biomedical device that aids in the treatment of airway obstruction. This article describes how a polycaprolactone (PCL) splint for the upper airways can be created using the fusion deposition technique (FDM) and sterilized using gamma radiation. It is presented as a simple, accessible, and cost-reduced alternative that complements other techniques using more expensive and sophisticated printing methods. Thermomechanical and morphological analysis proved that FDM and sterilizing by gamma irradiation are both appropriate methods for producing splints to treat life-threatening airway blockages. Additionally, the 3D-printed splints' effectiveness in treating a young patient with BM that was life-threatening was assessed by medical professionals. In this regard, the case report of a patient with 34 months of follow-up is presented. Splints manufactured by this affordable 3D printing method successfully surpass breathing arrest in life-threatening airway obstruction in pediatric patients. The success of this procedure represents a fundamental contribution to the treatment of the population in countries where access to expensive and complex technologies is not available.
Collapse
Affiliation(s)
- Beatriz Aráoz
- Laboratory of Biomaterials, Biomechanics, and Bioinstrumentation (Lab3Bio), Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Buenos Aires, Argentina
| | | | - Juan I. Bousquet
- Laboratory of Biomaterials, Biomechanics, and Bioinstrumentation (Lab3Bio), Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Buenos Aires, Argentina
| | - Élida B. Hermida
- Laboratory of Biomaterials, Biomechanics, and Bioinstrumentation (Lab3Bio), Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Buenos Aires, Argentina
| |
Collapse
|
23
|
Fonternel T, van Rooyen H, Joubert G, Turton E. Evaluating the Usability of a 3D-Printed Video Laryngoscope for Tracheal Intubation of a Manikin. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2023; 16:157-165. [PMID: 37346781 PMCID: PMC10281522 DOI: 10.2147/mder.s405833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/23/2023] Open
Abstract
Background Compared to direct laryngoscopy, videolaryngoscopy (VL) can provide improved laryngeal and glottic view, higher intubation success rates in patients with a known or predicted difficult airway and reduced incidence of laryngeal/airway trauma. However, the cost and availability of these devices handicap its use in resource-restricted facilities. The objective was to design and manufacture a novel VL using additive manufacturing (AM) and evaluate its usability on an intubation manikin by comparing it to one of the most common video laryngoscopes used in clinical practice, the CMAC®, by measuring the time to first pass of the endotracheal tube as the main outcome. Methods A randomised cross-over study was performed with 36 anaesthetists attempting tracheal intubation of a manikin. The novel 3D-printed hyperangulated VL blade was compared to a CMAC® VL (D-blade). Participants had no prior experience or training with the novel device. The participants included consultants, registrars/trainees and medical officers in the Department of Anaesthesiology at the University of the Free State (UFS) in South Africa. Results The CMAC® had a statistically shorter time to first pass (median 13.8 seconds) compared to the 3D-printed model (median 19.0 seconds) (95% confidence interval [CI] 1.0-6.2; P=0.0013). No failed attempts occurred with either device. Conclusion Intubation times were faster with the CMAC® than with the novel device. However, with a comparable intubation success rate, 3D printing technology potentially can improve access to video laryngoscopy. Further design improvements, validation of materials and manufacturing processes are required before 3D-printed laryngoscope blades can be used in human subjects.
Collapse
Affiliation(s)
- Theodorus Fonternel
- Department of Anaesthesiology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Gina Joubert
- Department of Biostatistics, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Edwin Turton
- Department of Anaesthesiology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
24
|
Ramos CH, Wild PM, Martins EDC. Effectiveness in Sterilization of Objects Produced by 3D Printing with Polylactic Acid Material: Comparison Between Autoclave and Ethylene Oxide Methods. Rev Bras Ortop 2023; 58:284-289. [PMID: 37252310 PMCID: PMC10212635 DOI: 10.1055/s-0042-1750751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/17/2022] [Indexed: 10/17/2022] Open
Abstract
Objective Due to the popularity of 3D technology, surgeons can create specific surgical guides and sterilize them in their institutions. The aim of the present study is to compare the efficacy of the autoclave and ethylene oxide (EO) sterilization methods for objects produced by 3D printing with polylactic acid (PLA) material. Methods Forty cubic-shaped objects were printed with PLA material. Twenty were solid and 20 were hollow (printed with little internal filling). Twenty objects (10 solid and 10 hollow) were sterilized in autoclave, forming Group 1. The others (10 solid and 10 hollow) were sterilized in EO, composing Group 2. After sterilization, they were stored and referred to culture. Hollow objects of both groups were broken during sowing, communicating the dead space with the culture medium. The results obtained were statistically analyzed (Fisher exact test and residue analysis). Results In group 1 (autoclave), there was bacterial growth in 50% of solid objects and in 30% of hollow objects. In group 2 (EO), growth occurred in 20% of hollow objects, with no bacterial growth in solid objects (100% of negative samples). The bacteria isolated in the positive cases was non-coagulase-producing Staphylococcus Gram positive. Conclusions Sterilization by both autoclave and EO was not effective for hollow printed objects. Solid objects sterilized by autoclave did not demonstrate 100% of negative samples and were not safe in the present assay. Complete absence of contamination occurred only with solid objects sterilized by EO, which is the combination recommended by the authors.
Collapse
Affiliation(s)
| | - Pedro Minuzzi Wild
- Departamento de Ortopedia e Traumatologia do Hospital XV, Curitiba, PR, Brasil
| | | |
Collapse
|
25
|
Patient-specific 3D bioprinting for in situ tissue engineering and regenerative medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
26
|
Pettersson ABV, Ballardini RM, Mimler M, Li P, Salmi M, Minssen T, Gibson I, Mäkitie A. Legal issues and underexplored data protection in medical 3D printing: A scoping review. Front Bioeng Biotechnol 2023; 11:1102780. [PMID: 36923458 PMCID: PMC10009255 DOI: 10.3389/fbioe.2023.1102780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction: 3D printing has quickly found many applications in medicine. However, as with any new technology the regulatory landscape is struggling to stay abreast. Unclear legislation or lack of legislation has been suggested as being one hindrance for wide-scale adoption. Methods: A scoping review was performed in PubMed, Web of Science, SCOPUS and Westlaw International to identify articles dealing with legal issues in medical 3D printing. Results: Thirty-four articles fulfilling inclusion criteria were identified in medical/technical databases and fifteen in the legal database. The majority of articles dealt with the USA, while the EU was also prominently represented. Some common unresolved legal issues were identified, among them terminological confusion between custom-made and patient-matched devices, lack of specific legislation for patient-matched products, and the undefined legal role of CAD files both from a liability and from an intellectual property standpoint. Data protection was mentioned only in two papers and seems an underexplored topic. Conclusion: In this scoping review, several relevant articles and several common unresolved legal issues were identified including a need for terminological uniformity in medical 3D printing. The results of this work are planned to inform our own deeper legal analysis of these issues in the future.
Collapse
Affiliation(s)
- Ante B V Pettersson
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Vascular Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Surgery, South Karelia Central Hospital, Lappeenranta, Finland
| | | | - Marc Mimler
- The City Law School City, University of London, London, United Kingdom
| | - Phoebe Li
- Sussex Law School, University of Sussex, Brighton, United Kingdom
| | - Mika Salmi
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| | - Timo Minssen
- Center for Advanced Studies in Biomedical Innovation Law (CeBIL), Faculty of Law, University of Copenhagen, Copenhagen, Denmark
| | - Ian Gibson
- Department of Design, Production and Management, University of Twente, Enschede, Netherlands
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Fang Y, Chen F, Wu H, Chen B. Progress in the application of 3D printing technology in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2022; 261:903-912. [PMID: 36520184 DOI: 10.1007/s00417-022-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing (3DP) technology is a rapid prototyping technology that is widely used in the medical field. It can be combined with computer-aided design, material manufacturing, and other technologies to construct medical-related appliances, human implants and even cell-based models or biological tissues. In the field of ophthalmology, the technology can be used to manufacture ocular anatomical models, glasses, intraocular implants, microsurgical instruments, drugs, etc. It can also enable future 'bioprinting', involving the refractive and nervous systems of the eyeball, with excellent development prospects in the field. This review introduces the development of 3DP technology in ophthalmology and discusses its application and potential.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ophthalmology, The PLA Navy Anqing Hospital, Anqing, 246000, Anhui, China
| | - Fan Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Huarong Wu
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Bei Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China.
| |
Collapse
|
28
|
Three-dimensional Printing in Pediatric Otolaryngology. Otolaryngol Clin North Am 2022; 55:1243-1251. [DOI: 10.1016/j.otc.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Denour E, Eyen SL. Emerging applications of 3D printed microporous prosthesis in nonunion repair: mechanisms and therapeutic potential. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1299. [PMID: 36660651 PMCID: PMC9843378 DOI: 10.21037/atm-22-5436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Erika Denour
- College of Dental Medicine, Columbia University, New York, NY, USA;,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Samantha Lewis Eyen
- College of Dental Medicine, Columbia University, New York, NY, USA;,College of Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Expanding Quality by Design Principles to Support 3D Printed Medical Device Development Following the Renewed Regulatory Framework in Europe. Biomedicines 2022; 10:biomedicines10112947. [PMID: 36428514 PMCID: PMC9687721 DOI: 10.3390/biomedicines10112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The vast scope of 3D printing has ignited the production of tailored medical device (MD) development and catalyzed a paradigm shift in the health-care industry, particularly following the COVID pandemic. This review aims to provide an update on the current progress and emerging opportunities for additive manufacturing following the introduction of the new medical device regulation (MDR) within the EU. The advent of early-phase implementation of the Quality by Design (QbD) quality management framework in MD development is a focal point. The application of a regulatory supported QbD concept will ensure successful MD development, as well as pointing out the current challenges of 3D bioprinting. Utilizing a QbD scientific and risk-management approach ensures the acceleration of MD development in a more targeted way by building in all stakeholders' expectations, namely those of the patients, the biomedical industry, and regulatory bodies.
Collapse
|
31
|
Ramaraju H, Landry AM, Sashidharan S, Shetty A, Crotts SJ, Maher KO, Goudy SL, Hollister SJ. Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support. Biomaterials 2022; 289:121702. [PMID: 36041362 DOI: 10.1016/j.biomaterials.2022.121702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 01/01/2023]
Abstract
Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - April M Landry
- Department of Otolaryngology-Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Subhadra Sashidharan
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah J Crotts
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kevin O Maher
- Division of Cardiology, Pediatric Cardiology, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Goudy
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
32
|
George MJ, Dias-Neto M, Ramos Tenorio E, Skibber MA, Morris JM, Oderich GS. 3D printing in aortic endovascular therapies. THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:597-605. [PMID: 35822744 DOI: 10.23736/s0021-9509.22.12407-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.
Collapse
Affiliation(s)
- Mitchell J George
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA -
| | - Marina Dias-Neto
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Emanuel Ramos Tenorio
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Max A Skibber
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jonathan M Morris
- Unit of Anatomic Modeling, Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Gustavo S Oderich
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
33
|
Suwanpitak K, Lim LY, Singh I, Sriamornsak P, Thepsonthi T, Huanbutta K, Sangnim T. Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler). Pharmaceutics 2022; 14:pharmaceutics14091922. [PMID: 36145670 PMCID: PMC9504113 DOI: 10.3390/pharmaceutics14091922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to develop an add-on device for dry powder inhalers (Accuhaler) via 3D printing to improve drug administration efficiency in patients with limited inspiratory capacity, including young children, the elderly, and those with chronic obstructive pulmonary disease. With salmeterol xinafoate and fluticasone propionate as model active pharmaceutical ingredients (API), the emitted API doses were used to assess the effectiveness of the add-on device. The APIs were quantified by an HPLC assay validated for specificity, range, linearity, accuracy, and precision. The motor power of the add-on device could be regulated to moderate fan speed and the air flow in the assembled device. When 50–100% of the fan motor power of the add-on device was used, the emitted dose from the attached dry powder inhaler (DPI) was increased. A computational fluid dynamics application was used to simulate the air and particle flow in the DPI with the add-on device in order to elucidate the operating mechanism. The use of the add-on device combined with a sufficient inhalation flow rate resulted in a larger pressure drop and airflow velocity at the blister pocket. As these characteristics are associated with powder fluidization, entrainment, and particle re-suspension, this innovative add-on device might be utilized to enhance the DPI emitted drug dose for patients with low inspiratory rates and to facilitate the provision of adequate drug doses to achieve the treatment outcomes.
Collapse
Affiliation(s)
- Kittipat Suwanpitak
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | | | - Thanongsak Thepsonthi
- Faculty of Engineering, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Thanyaburi, Pathumthani 12110, Thailand
- Correspondence: (K.H.); (T.S.)
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand
- Correspondence: (K.H.); (T.S.)
| |
Collapse
|
34
|
Byrd CT, Lui NS, Guo HH. Applications of Three-Dimensional Printing in Surgical Oncology. Surg Oncol Clin N Am 2022; 31:673-684. [DOI: 10.1016/j.soc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Aslam A, De Luis Cardenas J, Morrison RJ, Lagisetty KH, Litmanovich D, Sella EC, Lee E, Agarwal PP. Tracheobronchomalacia and Excessive Dynamic Airway Collapse: Current Concepts and Future Directions. Radiographics 2022; 42:1012-1027. [PMID: 35522576 DOI: 10.1148/rg.210155] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tracheobronchomalacia (TBM) and excessive dynamic airway collapse (EDAC) are airway abnormalities that share a common feature of expiratory narrowing but are distinct pathophysiologic entities. Both entities are collectively referred to as expiratory central airway collapse (ECAC). The malacia or weakness of cartilage that supports the tracheobronchial tree may occur only in the trachea (ie, tracheomalacia), in both the trachea and bronchi (TBM), or only in the bronchi (bronchomalacia). On the other hand, EDAC refers to excessive anterior bowing of the posterior membrane into the airway lumen with intact cartilage. Clinical diagnosis is often confounded by comorbidities including asthma, chronic obstructive pulmonary disease, obesity, hypoventilation syndrome, and gastroesophageal reflux disease. Additional challenges include the underrecognition of ECAC at imaging; the interchangeable use of the terms TBM and EDAC in the literature, which leads to confusion; and the lack of clear guidelines for diagnosis and treatment. The use of CT is growing for evaluation of the morphology of the airway, tracheobronchial collapsibility, and extrinsic disease processes that can narrow the trachea. MRI is an alternative tool, although it is not as widely available and is not used as frequently for this indication as is CT. Together, these tools not only enable diagnosis, but also provide a road map to clinicians and surgeons for planning treatment. In addition, CT datasets can be used for 3D printing of personalized medical devices such as stents and splints. An invited commentary by Brixey is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Anum Aslam
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Jose De Luis Cardenas
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Robert J Morrison
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Kiran H Lagisetty
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Diana Litmanovich
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Edith Carolina Sella
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Elizabeth Lee
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Prachi P Agarwal
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| |
Collapse
|
36
|
Sun C, Kang J, Yang C, Zheng J, Su Y, Dong E, Liu Y, Yao S, Shi C, Pang H, He J, Wang L, Liu C, Peng J, Liu L, Jiang Y, Li D. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:116-133. [PMID: 36105567 PMCID: PMC9465989 DOI: 10.12336/biomatertransl.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 02/02/2023]
Abstract
Polyether-ether-ketone (PEEK) is believed to be the next-generation biomedical material for orthopaedic implants that may replace metal materials because of its good biocompatibility, appropriate mechanical properties and radiolucency. Currently, some PEEK implants have been used successfully for many years. However, there is no customised PEEK orthopaedic implant made by additive manufacturing licensed for the market, although clinical trials have been increasingly reported. In this review article, design criteria, including geometric matching, functional restoration, strength safety, early fixation, long-term stability and manufacturing capability, are summarised, focusing on the clinical requirements. An integrated framework of design and manufacturing processes to create customised PEEK implants is presented, and several typical clinical applications such as cranioplasty patches, rib prostheses, mandibular prostheses, scapula prostheses and femoral prostheses are described. The main technical challenge faced by PEEK orthopaedic implants lies in the poor bonding with bone and soft tissue due to its biological inertness, which may be solved by adding bioactive fillers and manufacturing porous architecture. The lack of technical standards is also one of the major factors preventing additive-manufactured customised PEEK orthopaedic implants from clinical translation, and it is good to see that the abundance of standards in the field of additive-manufactured medical devices is helping them enter the clinical market.
Collapse
Affiliation(s)
- Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | | | - Chuncheng Yang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Enchun Dong
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yingjie Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Changquan Shi
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Huanhao Pang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liang Liu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
37
|
Mills N, Howsley P, Bartlett CM, Olubajo L, Dimitri P. Overcoming challenges to develop technology for child health. J Med Eng Technol 2022; 46:547-557. [PMID: 35730496 DOI: 10.1080/03091902.2022.2089254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Millions of children and young people (CYP) in the UK are affected by chronic or rare health conditions. Rapid advances in science and technology have resulted in CYP with chronic and rare conditions now surviving well into adulthood. New technologies have the potential to improve short- and long-term health outcomes for CYP with health conditions, prevent adult onset disease and complications, and reduce the burden on health services. There is thus a need for targeted investment and appropriate governance in child health technology development to address the specific needs of this population; health technology must be versatile to meet the social, anatomical, cognitive, psychological, and physiological changes inherent to childhood development. Despite the growing demand for health technology for a sizeable global population, industry still wrongly perceives the market size is relatively small, and health technology development is often localised and fragmented with limited scope for spread and adoption. These challenges can be overcome by validating and prioritising unmet needs, involving CYP and their families throughout the innovation pathway, facilitating effective partnerships with key stakeholders, and utilising national and international infrastructure and networks. This paper outlines five innovations supported by NIHR Children and Young People MedTech Co-operative that illustrate how common challenges in child health technology development can be overcome. It is essential that we continue to address such challenges and invest in the health and wellbeing of CYP.
Collapse
Affiliation(s)
- Nathaniel Mills
- NIHR Children and Young People MedTech Co-operative, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,NIHR Devices for Dignity MedTech Co-operative, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Philippa Howsley
- NIHR Children and Young People MedTech Co-operative, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Clare M Bartlett
- NIHR Children and Young People MedTech Co-operative, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Linda Olubajo
- Sheffield Business School, Sheffield Hallam University, Sheffield, UK
| | - Paul Dimitri
- NIHR Children and Young People MedTech Co-operative, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
38
|
Vidakis N, Petousis M, Mountakis N, Maravelakis E, Zaoutsos S, Kechagias JD. Mechanical response assessment of antibacterial PA12/TiO 2 3D printed parts: parameters optimization through artificial neural networks modeling. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 121:785-803. [PMID: 35645447 PMCID: PMC9124053 DOI: 10.1007/s00170-022-09376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/12/2022] [Indexed: 05/06/2023]
Abstract
This study investigates the mechanical response of antibacterial PA12/TiO2 nanocomposite 3D printed specimens by varying the TiO2 loading in the filament, raster deposition angle, and nozzle temperature. The prediction of the antibacterial and mechanical performance of such nanocomposites is a challenging field, especially nowadays with the covid-19 pandemic dilemma. The experimental work in this study utilizes a fully factorial design approach to analyze the effect of three parameters on the mechanical response of 3D printed components. Therefore, all combinations of these three parameters were tested, resulting in twenty-seven independent experiments, in which each combination was repeated three times (a total of eighty-one experiments). The antibacterial performance of the fabricated PA12/TiO2 nanocomposite materials was confirmed, and regression and arithmetic artificial neural network (ANN) models were developed and validated for mechanical response prediction. The analysis of the results showed that an increase in the TiO2% loading decreased the mechanical responses but increased the antibacterial performance of the nanocomposites. In addition, higher nozzle temperatures and zero deposition angles optimize the mechanical performance of all TiO2% nanocomposites. Independent experiments evaluated the proposed models with mean absolute percentage errors (MAPE) similar to the ANN models. These findings and the interaction charts show a strong interaction between the studied parameters. Therefore, the authors propose the improvement of predictions by utilizing artificial neural network models and genetic algorithms as future work and the spreading of the experimental area with extra variable parameters and levels.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Crete, Greece
| | - Emmanuel Maravelakis
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - Stefanos Zaoutsos
- Department of Energy Systems, University of Thessaly, 41500 Larissa, Greece
| | - John D. Kechagias
- Department of Forestry Wood Science and Design, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
39
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
40
|
Cornejo J, Cornejo-Aguilar JA, Vargas M, Helguero CG, Milanezi de Andrade R, Torres-Montoya S, Asensio-Salazar J, Rivero Calle A, Martínez Santos J, Damon A, Quiñones-Hinojosa A, Quintero-Consuegra MD, Umaña JP, Gallo-Bernal S, Briceño M, Tripodi P, Sebastian R, Perales-Villarroel P, De la Cruz-Ku G, Mckenzie T, Arruarana VS, Ji J, Zuluaga L, Haehn DA, Paoli A, Villa JC, Martinez R, Gonzalez C, Grossmann RJ, Escalona G, Cinelli I, Russomano T. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6797745. [PMID: 35372574 PMCID: PMC8970887 DOI: 10.1155/2022/6797745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses different techniques and materials based on patients' needs, which allows bioprofessionals to design and develop unique pieces using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system, cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices and tools for space surgery to get better outcomes under changing gravity conditions.
Collapse
Affiliation(s)
- José Cornejo
- Facultad de Ingeniería, Universidad San Ignacio de Loyola, La Molina, Lima 15024, Peru
- Department of Medicine and Biology & Department of Physics and Engineering, Bioastronautics and Space Mechatronics Research Group, Lima 15024, Peru
| | | | | | | | - Rafhael Milanezi de Andrade
- Robotics and Biomechanics Laboratory, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Brazil
| | | | | | - Alvaro Rivero Calle
- Department of Oral and Maxillofacial Surgery, Hospital 12 de Octubre, Madrid, Spain
| | - Jaime Martínez Santos
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Damon
- Department of Neurosurgery, Mayo Clinic, FL, USA
| | | | | | - Juan Pablo Umaña
- Cardiovascular Surgery, Instituto de Cardiología-Fundación Cardioinfantil, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manolo Briceño
- Villamedic Group, Lima, Peru
- Clínica Internacional, Lima, Peru
| | | | - Raul Sebastian
- Department of Surgery, Northwest Hospital, Randallstown, MD, USA
| | | | - Gabriel De la Cruz-Ku
- Universidad Científica del Sur, Lima, Peru
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jiakai Ji
- Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, NY, USA
| | - Laura Zuluaga
- Department of Urology, Fundación Santa Fe de Bogotá, Colombia
| | | | - Albit Paoli
- Howard University Hospital, Washington, DC, USA
| | | | | | - Cristians Gonzalez
- Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut of Image-Guided Surgery (IHU-Strasbourg), Strasbourg, France
| | | | - Gabriel Escalona
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Catholic University of Chile, Santiago, Chile
| | - Ilaria Cinelli
- Aerospace Human Factors Association, Aerospace Medical Association, VA, USA
| | | |
Collapse
|
41
|
Carl AK, Hochmann D. Comparison of the regulatory requirements for custom-made medical devices using 3D printing in Europe, the United States, and Australia. BIOMED ENG-BIOMED TE 2022; 67:61-69. [PMID: 35301831 DOI: 10.1515/bmt-2021-0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Additive manufacturing (AM) has continuously grown in recent decades. Enhanced quality, further development of technology, and fall in prices make AM applicable and capable for various industrial applications, also for the manufacture of medical devices. 3D printing offers the possibility for an unprecedented adaptation to the anatomy of each patient, generating medical devices on a case-by-case basis. In many jurisdictions, custom-made devices qualify for an exemption to pre-market approval standards. This regulation is called into question by new technologies, like AM. Therefore, this article compares the current regulatory requirements for custom-made devices in Europe, the United States, and Australia and discusses the impact on 3D printed devices. It concludes that not all jurisdictions have yet adjusted their regulatory framework for custom-made devices to technological advances. Remaining uncertainties must be eliminated in order to help manufacturers comply with the regulatory requirements, emphasizing key aspects of AM.
Collapse
Affiliation(s)
- Ann-Kathrin Carl
- Biomechatronics Research Laboratory, FH Münster University of Applied Sciences, Steinfurt, Germany
| | - David Hochmann
- Biomechatronics Research Laboratory, FH Münster University of Applied Sciences, Steinfurt, Germany
| |
Collapse
|
42
|
Zeng X, Meng Z, He J, Mao M, Li X, Chen P, Fan J, Li D. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater 2022; 140:1-22. [PMID: 34875360 DOI: 10.1016/j.actbio.2021.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
Abstract
3D bioprinting has been developed as an effective and powerful technique for the fabrication of living tissue constructs in a well-controlled manner. However, most existing 3D bioprinting strategies face substantial challenges in replicating delicate and intricate tissue-specific structural organizations using mechanically weak biomaterials such as hydrogels. Embedded bioprinting is an emerging bioprinting strategy that can directly fabricate complex structures derived from soft biomaterials within a supporting matrix, which shows great promise in printing large vascularized tissues and organs. Here, we provide a state-of-the-art review on the development of embedded bioprinting including extrusion-based and light-based processes to manufacture complex tissue constructs with biomimetic architectures. The working principles, bioinks, and supporting matrices of embedded printing processes are introduced. The effect of key processing parameters on the printing resolution, shape fidelity, and biological functions of the printed tissue constructs are discussed. Recent innovations in the processes and applications of embedded bioprinting are highlighted, such as light-based volumetric bioprinting and printing of functional vascularized organ constructs. Challenges and future perspectives with regard to translating embedded bioprinting into an effective strategy for the fabrication of functional biological constructs with biomimetic structural organizations are finally discussed. STATEMENT OF SIGNIFICANCE: It is still challenging to replicate delicate and intricate tissue-specific structural organizations using mechanically-weak hydrogels for the fabrication of functional living tissue constructs. Embedded bioprinting is an emerging 3D printing strategy that enables to produce complex tissue structures directly inside a reservoir filled with supporting matrix, which largely widens the choice of bioprinting inks to ECM-like hydrogels. Here we aim to provide a comprehensive review on various embedded bioprinting techniques mainly including extrusion-based and light-based processes. Various bioinks, supporting matrices, key processing parameters as well as their effects on the structures and biological functions of resultant living tissue constructs are discussed. We expect that it can provide an important reference and generate new insights for the bioprinting of large vascularized tissues and organs with biological functions.
Collapse
|
43
|
Wiseman J, Rawther T, Langbart M, Kernohan M, Ngo Q. Sterilization of bedside 3D-printed devices for use in the operating room. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
44
|
Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf 2022; 5:580-606. [PMID: 35194519 PMCID: PMC8853031 DOI: 10.1007/s42242-022-00187-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
Abstract
Medical devices are instruments and other tools that act on the human body to aid clinical diagnosis and disease treatment, playing an indispensable role in modern medicine. Nowadays, the increasing demand for personalized medical devices poses a significant challenge to traditional manufacturing methods. The emerging manufacturing technology of three-dimensional (3D) printing as an alternative has shown exciting applications in the medical field and is an ideal method for manufacturing such personalized medical devices with complex structures. However, the application of this new technology has also brought new risks to medical devices, making 3D-printed devices face severe challenges due to insufficient regulation and the lack of standards to provide guidance to the industry. This review aims to summarize the current regulatory landscape and existing research on the standardization of 3D-printed medical devices in China, and provide ideas to address these challenges. We focus on the aspects concerned by the regulatory authorities in 3D-printed medical devices, highlighting the quality system of such devices, and discuss the guidelines that manufacturers should follow, as well as the current limitations and the feasible path of regulation and standardization work based on this perspective. The key points of the whole process quality control, performance evaluation methods and the concept of whole life cycle management of 3D-printed medical devices are emphasized. Furthermore, the significance of regulation and standardization is pointed out. Finally, aspects worthy of attention and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, 102629 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002 China
- Cancer Center, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
45
|
Kumari G, Abhishek K, Singh S, Hussain A, Altamimi MA, Madhyastha H, Webster TJ, Dev A. A voyage from 3D to 4D printing in nanomedicine and healthcare: part I. Nanomedicine (Lond) 2022; 17:237-253. [PMID: 35109704 DOI: 10.2217/nnm-2021-0285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The transition from 3D to 4D printing has revolutionized various domains of healthcare, pharmaceuticals, design and architecture, and coating processes. The evolution from 3D printing to 4D printing (4DP) has added a fourth dimension as a time-dependent response. This review discusses the significance, demands, various types of smart materials/biomaterials, as well as bioinks and printers used in 4DP technology. This review also provides insights into the limitations of the bioprinting process and bioinks used in various bioprinting technologies and the challenges that come with these limitations. A brief discussion on the future potential of the fundamentals and capabilities of 4D printing is also discussed.
Collapse
Affiliation(s)
- Gourvi Kumari
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kumar Abhishek
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, School of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
46
|
Vrana NE, Gupta S, Mitra K, Rizvanov AA, Solovyeva VV, Antmen E, Salehi M, Ehterami A, Pourchet L, Barthes J, Marquette CA, von Unge M, Wang CY, Lai PL, Bit A. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank 2022; 23:417-440. [PMID: 35000046 DOI: 10.1007/s10561-021-09975-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.
Collapse
Affiliation(s)
| | | | - Kunal Mitra
- Florida Institute of Technology, Melbourne, USA
| | | | | | - Ezgi Antmen
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University (METU), Ankara, Turkey
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lea Pourchet
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | - Julien Barthes
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | | | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Oslo, Norway.,Center for Clinical Research, Uppsala University, Vasteras, Uppsala, Sweden
| | - Chi-Yun Wang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Arindam Bit
- National Institute of Technology, Raipur, India.
| |
Collapse
|
47
|
Vidakis N, Petousis M, Velidakis E, Mountakis N, Tsikritzis D, Gkagkanatsiou A, Kanellopoulou S. Investigation of the Biocidal Performance of Multi-Functional Resin/Copper Nanocomposites with Superior Mechanical Response in SLA 3D Printing. Biomimetics (Basel) 2022; 7:8. [PMID: 35076452 PMCID: PMC8788471 DOI: 10.3390/biomimetics7010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Metals, such as silver, gold, and copper are known for their biocidal properties, mimicking the host defense peptides (HDPs) of the immune system. Developing materials with such properties has great importance in medicine, especially when combined with 3D printing technology, which is an additional asset for various applications. In this work, copper nanoparticles were used as filler in stereolithography (SLA) ultraviolet (UV) cured commercial resin to induce such biocidal properties in the material. The nanocomposites developed featured enhanced mechanical responses when compared with the neat material. The prepared nanocomposites were employed to manufacture specimens with the SLA process, to be tested for their mechanical response according to international standards. The process followed was evaluated with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of the fabricated nanocomposites was evaluated using the agar-well diffusion method. Results showed enhanced mechanical performance of approximately 33.7% in the tensile tests for the nanocomposites filled with 1.0 wt.%. ratios, when compared to the neat matrix material, while this loading showed sufficient antibacterial performance when compared to lower filler loadings, providing an added value for the fabrication of effective nanocomposites in medical applications with the SLA process.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| | - Emmanuel Velidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| | - Dimitris Tsikritzis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Aikaterini Gkagkanatsiou
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| | - Sotiria Kanellopoulou
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece; (N.V.); (E.V.); (N.M.); (A.G.); (S.K.)
| |
Collapse
|
48
|
Dimitri P, Pignataro V, Lupo M, Bonifazi D, Henke M, Musazzi UM, Ernst F, Minghetti P, Redaelli DF, Antimisiaris SG, Migliaccio G, Bonifazi F, Marciani L, Courtenay AJ, Denora N, Lopedota A. Medical Device Development for Children and Young People-Reviewing the Challenges and Opportunities. Pharmaceutics 2021; 13:pharmaceutics13122178. [PMID: 34959459 PMCID: PMC8706877 DOI: 10.3390/pharmaceutics13122178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Development of specific medical devices (MDs) is required to meet the healthcare needs of children and young people (CYP). In this context, MD development should address changes in growth and psychosocial maturation, physiology, and pathophysiology, and avoid inappropriate repurposing of adult technologies. Underpinning the development of MD for CYP is the need to ensure MD safety and effectiveness through pediatric MD-specific regulations. Contrary to current perceptions of limited market potential, the global pediatric healthcare market is expected to generate around USD 15,984 million by 2025. There are 1.8 billion young people in the world today; 40% of the global population is under 24, creating significant future healthcare market opportunities. This review highlights a number of technology areas that have led to successful pediatric MD, including 3D printing, advanced materials, drug delivery, and diagnostic imaging. To ensure the targeted development of MD for CYP, collaboration across multiple professional disciplines is required, facilitated by a platform to foster collaboration and drive innovation. The European Pediatric Translational Research Infrastructure (EPTRI) will be established as the European platform to support collaboration, including the life sciences industrial sector, to identify unmet needs in child health and support the development, adoption, and commercialization of pediatric MDs.
Collapse
Affiliation(s)
- Paul Dimitri
- Department of Pediatric Endocrinology, Sheffield Children’s NHS Foundation Trust & Sheffield Hallam University, Shefeld S10 2TH, UK;
| | - Valeria Pignataro
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani 178, 70122 Bari, Italy; (V.P.); (D.B.); (G.M.)
| | - Mariangela Lupo
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani 178, 70122 Bari, Italy; (V.P.); (D.B.); (G.M.)
| | - Maria Henke
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; (M.H.); (F.E.)
| | - Umberto M. Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 20133 Milan, Italy; (U.M.M.); (P.M.)
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; (M.H.); (F.E.)
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 20133 Milan, Italy; (U.M.M.); (P.M.)
| | - Davide F. Redaelli
- Scientific Institute IRCCS E. Medea, Bosisio Parini, 23843 Lecco, Italy;
| | | | - Giovanni Migliaccio
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani 178, 70122 Bari, Italy; (V.P.); (D.B.); (G.M.)
| | - Fedele Bonifazi
- Fondazione per la ricerca farmacologica Gianni Benzionlus, Via Abate Eustasio, 30, 70010 Valenzano, Italy;
| | - Luca Marciani
- Translational Medical Sciences, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Derby Road, Nottingham NG7 2UH, UK;
| | - Aaron J. Courtenay
- School of Pharmacy and Pharmaceutical Sciences, Coleraine Campus, Ulster University, Cromore Road, Coleraine, Co. Londonderry, Northern Ireland BT52 1SA, UK;
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (N.D.); (A.L.)
| | - Angela Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (N.D.); (A.L.)
| |
Collapse
|
49
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
50
|
Kermavnar T, Shannon A, O'Sullivan KJ, McCarthy C, Dunne CP, O'Sullivan LW. Three-Dimensional Printing of Medical Devices Used Directly to Treat Patients: A Systematic Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:366-408. [PMID: 36655011 PMCID: PMC9828627 DOI: 10.1089/3dp.2020.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Until recently, three-dimensional (3D) printing/additive manufacturing has not been used extensively to create medical devices intended for actual clinical use, primarily on patient safety and regulatory grounds. However, in recent years there have been advances in materials, printers, and experience, leading to increased clinical use. The aim of this study was to perform a structured systematic review of 3D-printed medical devices used directly in patient treatment. A search of 13 databases was performed to identify studies of 3D-printed medical devices, detailing fabrication technology and materials employed, clinical application, and clinical outcome. One hundred and ten papers describing one hundred and forty medical devices were identified and analyzed. A considerable increase was identified in the use of 3D printing to produce medical devices directly for clinical use in the past 3 years. This is dominated by printing of patient-specific implants and surgical guides for use in orthopedics and orthopedic oncology, but there is a trend of increased use across other clinical specialties. The prevailing material/3D-printing technology used were titanium alloy/electron beam melting for implants, and polyamide/selective laser sintering or polylactic acid/fused deposition modeling for surgical guides and instruments. A detailed analysis across medical applications by technology and materials is provided, as well as a commentary regarding regulatory aspects. In general, there is growing familiarity with, and acceptance of, 3D printing in clinical use.
Collapse
Affiliation(s)
| | - Alice Shannon
- School of Design, University of Limerick, Limerick, Ireland
| | | | - Conor McCarthy
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Colum P. Dunne
- Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Leonard W. O'Sullivan
- School of Design, University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|