1
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Strickland JB, Davis-Anderson K, Micheva-Viteva S, Twary S, Iyer R, Harris JF, Solomon EA. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1180-1191. [PMID: 35018825 PMCID: PMC9805869 DOI: 10.1089/ten.teb.2021.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses responsible for signal transduction between motor neurons (MNs) and skeletal muscle tissue. Malfunction at this site can result from developmental disorders, toxic environmental exposures, and neurodegenerative diseases leading to severe neurological dysfunction. Exploring these conditions in human or animal subjects is restricted by ethical concerns and confounding environmental factors. Therefore, in vitro NMJ models provide exciting opportunities for advancements in tissue engineering. In the last two decades, multiple NMJ prototypes and platforms have been reported, and each model system design is strongly tied to a specific application: exploring developmental physiology, disease modeling, or high-throughput screening. Directing the differentiation of stem cells into mature MNs and/or skeletal muscle for NMJ modeling has provided critical cues to recapitulate early-stage development. Patient-derived inducible pluripotent stem cells provide a personalized approach to investigating NMJ disease, especially when disease etiology cannot be resolved down to a specific gene mutation. Having reproducible NMJ culture replicates is useful for high-throughput screening to evaluate drug toxicity and determine the impact of environmental threat exposures. Cutting-edge bioengineering techniques have propelled this field forward with innovative microfabrication and design approaches allowing both two-dimensional and three-dimensional NMJ culture models. Many of these NMJ systems require further validation for broader application by regulatory agencies, pharmaceutical companies, and the general research community. In this summary, we present a comprehensive review on the current state-of-art research in NMJ models and discuss their ability to provide valuable insight into cell and tissue interactions. Impact statement In vitro neuromuscular junction (NMJ) models reveal the specialized mechanisms of communication between neurons and muscle tissue. This site can be disrupted by developmental disorders, toxic environmental exposures, or neurodegenerative diseases, which often lead to fatal outcomes and is therefore of critical importance to the medical community. Many bioengineering approaches for in vitro NMJ modeling have been designed to mimic development and disease; other approaches include in vitro NMJ models for high-throughput toxicology screening, providing a platform to limit or replace animal testing. This review describes various NMJ applications and the bioengineering advancements allowing for human NMJ characteristics to be more accurately recapitulated. While the extensive range of NMJ device structures has hindered standardization attempts, there is still a need to harmonize these devices for broader application and to continue advancing the field of NMJ modeling.
Collapse
Affiliation(s)
- Julie B. Strickland
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Emilia A. Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.,Address correspondence to: Emilia A. Solomon, PhD, Bioscience Division, Los Alamos National Laboratory, PO Box 1663 MS M888, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
Cherne MD, Sidar B, Sebrell TA, Sanchez HS, Heaton K, Kassama FJ, Roe MM, Gentry AB, Chang CB, Walk ST, Jutila M, Wilking JN, Bimczok D. A Synthetic Hydrogel, VitroGel ® ORGANOID-3, Improves Immune Cell-Epithelial Interactions in a Tissue Chip Co-Culture Model of Human Gastric Organoids and Dendritic Cells. Front Pharmacol 2021; 12:707891. [PMID: 34552484 PMCID: PMC8450338 DOI: 10.3389/fphar.2021.707891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.
Collapse
Affiliation(s)
- Michelle D. Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Barkan Sidar
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - T. Andrew Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Humberto S. Sanchez
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Kody Heaton
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Francis J. Kassama
- Department of Chemistry and Biochemistry, Bowdoin College, Brunswick, ME, United States
| | - Mandi M. Roe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Andrew B. Gentry
- Bozeman GI Clinic, Deaconess Hospital, Bozeman, MT, United States
| | - Connie B. Chang
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - James N. Wilking
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
4
|
Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, Moulin CM, Dame K, Hartman N, Volpe DA, Matta MK, Hughes DJ, Strauss DG, Kostrzewski T, Ribeiro AJS. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci 2021; 14:1049-1061. [PMID: 33382907 PMCID: PMC8212739 DOI: 10.1111/cts.12969] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.
Collapse
Affiliation(s)
- Andrés Rubiano
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amruta Indapurkar
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ryosuke Yokosawa
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Barry Rosenzweig
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ayesha Arefin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chloe M Moulin
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Keri Dame
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Neil Hartman
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Donna A Volpe
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Murali K Matta
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - David G Strauss
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA.,Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Alexandre J S Ribeiro
- Center for Drug Evaluation and Research, Office of Translational Sciences, Office of Clinical Pharmacology, Division of Applied Regulatory Science, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
|
6
|
Deal HE, Brown AC, Daniele MA. Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J Mater Chem B 2020; 8:7062-7075. [PMID: 32756718 PMCID: PMC7460719 DOI: 10.1039/d0tb00544d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wound healing is a multivariate process involving the coordinated response of numerous proteins and cell types. Accordingly, biomedical research has seen an increased adoption of the use of in vitro wound healing assays with complexity beyond that offered by traditional well-plate constructs. These microphysiological systems (MPS) seek to recapitulate one or more physiological features of the in vivo microenvironment, while retaining the analytical capacity of more reductionist assays. Design efforts to achieve relevant wound healing physiology include the use of dynamic perfusion over static culture, the incorporation of multiple cell types, the arrangement of cells in three dimensions, the addition of biomechanically and biochemically relevant hydrogels, and combinations thereof. This review provides a brief overview of the wound healing process and in vivo assays, and we critically review the current state of MPS and supporting technologies for modelling and studying wound healing. We distinguish between MPS that seek to inform a particular phase of wound healing, and constructs that have the potential to inform multiple phases of wound healing. This distinction is a product of whether analysis of a particular process is prioritized, or a particular physiology is prioritized, during design. Material selection is emphasized throughout, and relevant fabrication techniques discussed.
Collapse
Affiliation(s)
- Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA and Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol 2020; 50:279-309. [DOI: 10.1080/10408444.2020.1756219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xihui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Tianyan Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control (NIFDC), China Food and Drug Administration (CFDA), Beijing, P. R. China
| | - Leshuai W. Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| |
Collapse
|
8
|
Schurdak M, Vernetti L, Bergenthal L, Wolter QK, Shun TY, Karcher S, Taylor DL, Gough A. Applications of the microphysiology systems database for experimental ADME-Tox and disease models. LAB ON A CHIP 2020; 20:1472-1492. [PMID: 32211684 PMCID: PMC7497411 DOI: 10.1039/c9lc01047e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
To accelerate the development and application of Microphysiological Systems (MPS) in biomedical research and drug discovery/development, a centralized resource is required to provide the detailed design, application, and performance data that enables industry and research scientists to select, optimize, and/or develop new MPS solutions, as well as to harness data from MPS models. We have previously implemented an open source Microphysiology Systems Database (MPS-Db), with a simple icon driven interface, as a resource for MPS researchers and drug discovery/development scientists (https://mps.csb.pitt.edu). The MPS-Db captures and aggregates data from MPS, ranging from static microplate models to integrated, multi-organ microfluidic models, and associates those data with reference data from chemical, biochemical, pre-clinical, clinical and post-marketing sources to support the design, development, validation, application and interpretation of the models. The MPS-Db enables users to manage their multifactor, multichip studies, then upload, analyze, review, computationally model and share data. Here we discuss how the sharing of MPS study data in the MS-Db is under user control and can be kept private to the individual user, shared with a select group of collaborators, or be made accessible to the general scientific community. We also present a test case using our liver acinus MPS model (LAMPS) as an example and discuss the use of the MPS-Db in managing, designing, and analyzing MPS study data, assessing the reproducibility of MPS models, and evaluating the concordance of MPS model results with clinical findings. We introduce the Disease Portal module with links to resources for the design of MPS disease models and studies and discuss the integration of computational models for the prediction of PK/PD and disease pathways using data generated from MPS models.
Collapse
Affiliation(s)
- Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lawrence Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luke Bergenthal
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Quinn K Wolter
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Sandra Karcher
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Fabre K, Berridge B, Proctor WR, Ralston S, Will Y, Baran SW, Yoder G, Van Vleet TR. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. LAB ON A CHIP 2020; 20:1049-1057. [PMID: 32073020 DOI: 10.1039/c9lc01168d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role. Many gaps exist for potential target tissues of drugs that cannot be adequately modeled in vitro. Microphysiological systems (MPS) may help to better model these target tissues and provide an opportunity to better assess some aspects of human safety prior to clinical studies. There is hope that these systems can supplement current preclinical drug safety and disposition evaluations, filling gaps and enhancing our ability to predict and understand human relevant toxicities. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) MPS Affiliate is a group of pharmaceutical industry scientists who seek to expedite appropriate characterization and incorporation of MPS to potentially improve drug safety assessment and provide safer and more effective medicines to patients. In keeping with this mission, the IQ MPS Affiliate scientists have prepared a series of organotypic manuscripts for several key drug safety and disposition target tissues (lung, liver, kidney, skin, gastrointestinal, cardiovascular, and blood brain barrier/central nervous system). The goal of these manuscripts is to provide key information related to likely initial contexts of use (CoU) and key characterization data needed for incorporation of MPS in pharmaceutical safety screening including a list of characteristic functions, cell types, toxicities, and test agents (representing major mechanisms of toxicity) that can be used by MPS developers. Additional manuscripts focusing on testing biologically based therapeutics and ADME considerations have been prepared as part of this effort. These manuscripts focus on general needs for assessing biologics and ADME endpoints and include similar information to the tissue specific manuscripts where appropriate. The current manuscript is an introduction to several general concepts related to pharmaceutical industry needs with regard to MPS application and other MPS concepts that apply across the organ specific manuscripts.
Collapse
Affiliation(s)
- Kristin Fabre
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, USA and MPS Center of Excellence, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| | - Brian Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, 530 Davis Dr., Keystone Building, Durham, North Carolina, USA
| | - William R Proctor
- Investigative Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Sherry Ralston
- Department of Preclinical Safety, AbbVie, N Chicago, IL, USA.
| | - Yvonne Will
- Discovery, Product Development & Supply, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Szczepan W Baran
- Emerging Technologies, LAS, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gorm Yoder
- Analytical Development - Small Molecule Pharmaceutical Development, Janssen Research & Development, LLC, USA
| | | |
Collapse
|
10
|
Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S, Brendler-Schwaab S, Cirit M, David R, Dehne EM, Durieux I, Ewart L, Fitzpatrick SC, Frey O, Fuchs F, Griffith LG, Hamilton GA, Hartung T, Hoeng J, Hogberg H, Hughes DJ, Ingber DE, Iskandar A, Kanamori T, Kojima H, Kuehnl J, Leist M, Li B, Loskill P, Mendrick DL, Neumann T, Pallocca G, Rusyn I, Smirnova L, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tsyb S, Trapecar M, Van de Water B, Van den Eijnden-van Raaij J, Vulto P, Watanabe K, Wolf A, Zhou X, Roth A. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2020; 37:365-394. [PMID: 32113184 PMCID: PMC7863570 DOI: 10.14573/altex.2001241] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.
Collapse
Affiliation(s)
- Uwe Marx
- TissUse GmbH, Berlin, Germany.,Technische Universitaet Berlin, Germany
| | - Takafumi Akabane
- Stem Cell Evaluation Technology Research Association, Tokyo, Japan
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth Baker
- Physicians Committee for Responsible Medicine, Washington DC, USA
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Non-clinical Drug Safety, Biberach, Germany
| | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | | | - Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Lorna Ewart
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Suzanne C Fitzpatrick
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | | | - Florian Fuchs
- Novartis Institutes for BioMedical Research Chemical Biology & Therapeutics, Basel, Switzerland
| | | | | | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany.,AxoSim, Inc., New Orleans, LA, USA
| | - Julia Hoeng
- Philip Morris International R&D, Neuchâtel, Switzerland
| | - Helena Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Donald E Ingber
- Wyss Institute for Biology Inspired Engineering, Harvard University, Boston, USA
| | | | - Toshiyuki Kanamori
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hajime Kojima
- Japanese Center for Validation of Animal Methods, Tokyo, Japan
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Donna L Mendrick
- National Center for Toxicological Research, FDA, Silver Spring, MD, USA
| | | | - Giorgia Pallocca
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Ivan Rusyn
- Texas A&M University, College Station, TX, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Tonevitsky
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia.,National Research University Higher School of Economics, Russia
| | - Sergej Tsyb
- Russian Ministry of Production and Trade, Moscow, Russia
| | | | | | | | | | | | | | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
11
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
12
|
Karra N, Swindle E, Morgan H. Drug delivery for traditional and emerging airway models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ooc.2020.100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
de Mello CPP, Rumsey J, Slaughter V, Hickman JJ. A human-on-a-chip approach to tackling rare diseases. Drug Discov Today 2019; 24:2139-2151. [PMID: 31412288 PMCID: PMC6856435 DOI: 10.1016/j.drudis.2019.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Drug development for rare diseases, classified as diseases with a prevalence of < 200 000 patients, is limited by the high cost of research and low target population. Owing to a lack of representative disease models, research has been challenging for orphan drugs. Human-on-a-chip (HoaC) technology, which models human tissues in interconnected in vitro microfluidic devices, has the potential to lower the cost of preclinical studies and increase the rate of drug approval by introducing human phenotypic models early in the drug discovery process. Advances in HoaC technology can drive a new approach to rare disease research and orphan drug development.
Collapse
Affiliation(s)
| | | | - Victoria Slaughter
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Hesperos, Inc., Orlando, FL 32826, USA.
| |
Collapse
|
14
|
Bale SS, Manoppo A, Thompson R, Markoski A, Coppeta J, Cain B, Haroutunian N, Newlin V, Spencer A, Azizgolshani H, Lu M, Gosset J, Keegan P, Charest JL. A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions. Biotechnol Bioeng 2019; 116:3409-3420. [DOI: 10.1002/bit.26986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Alex Markoski
- DraperCambridge Massachusetts
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcester Massachusetts
| | | | | | | | | | | | | | - Mingjian Lu
- Pfizer Global Research and Development Cambridge Massachusetts
| | - James Gosset
- Pfizer Global Research and Development Cambridge Massachusetts
| | | | | |
Collapse
|
15
|
Mina SG, Alaybeyoglu B, Murphy WL, Thomson JA, Stokes CL, Cirit M. Assessment of Drug-Induced Toxicity Biomarkers in the Brain Microphysiological System (MPS) Using Targeted and Untargeted Molecular Profiling. Front Big Data 2019; 2:23. [PMID: 33693346 PMCID: PMC7931859 DOI: 10.3389/fdata.2019.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Early assessment of adverse drug effects in humans is critical to avoid long-lasting harm. However, current approaches for early detection of adverse effects still lack predictive and organ-specific biomarkers to evaluate undesired responses in humans. Microphysiological systems (MPSs) are in vitro representations of human tissues and provide organ-specific translational insights for physiological processes. In this study, a brain MPS was utilized to assess molecular signatures of neurotoxic and non-neurotoxic compounds using targeted and untargeted molecular approaches. The brain MPS comprising of human embryonic stem (ES) cell-derived neural progenitor cells seeded on three-dimensional (3D), chemically defined, polyethylene glycol hydrogels was treated with the neurotoxic drug, bortezomib and the non-neurotoxic drug, tamoxifen over 14-days. Possible toxic effects were monitored with human N-acetylaspartic acid (NAA) kinetics, which correlates the neuronal function/health and DJ-1/PARK7, an oxidative stress biomarker. Changes in NAA levels were observed as early as 2-days post-bortezomib treatment, while onset detection of oxidative stress (DJ-1) was delayed until 4-days post-treatment. Separately, the untargeted extracellular metabolomics approach revealed distinct fingerprints 2-days post-bortezomib treatment as perturbations in cysteine and glycerophospholipid metabolic pathways. These results suggest accumulation of reactive oxygen species associated with oxidative stress, and disruption of membrane structure and integrity. The NAA response was strongly correlated with changes in a subset of the detected metabolites at the same time point 2-days post-treatment. Moreover, these metabolite changes correlated strongly with DJ-1 levels measured at the later time point (4-days post-treatment). This suggests that early cellular metabolic dysfunction leads to later DJ-1 leakage and cell death, and that early measurement of this subset of metabolites could predict the later occurrence of cell death. While the approach demonstrated here provides an individual case study for proof of concept, we suggest that this approach can be extended for preclinical toxicity screening and biomarker discovery studies.
Collapse
Affiliation(s)
- Sara G. Mina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Begum Alaybeyoglu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - James A. Thomson
- Regenerative Biology, The Morgridge Institute for Research, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | | | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Ribeiro AJS, Yang X, Patel V, Madabushi R, Strauss DG. Liver Microphysiological Systems for Predicting and Evaluating Drug Effects. Clin Pharmacol Ther 2019; 106:139-147. [PMID: 30993668 PMCID: PMC6771674 DOI: 10.1002/cpt.1458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Liver plays a major role in drug metabolism and is one of the main sites of drug adverse effects. Microphysiological systems (MPS), also known as organs‐on‐a‐chip, are a class of microfluidic platforms that recreate properties of tissue microenvironments. Among different properties, the liver microenvironment is three‐dimensional, fluid flows around its cells, and different cell types regulate its function. Liver MPS aim to recreate these properties and enable drug testing and measurement of functional endpoints. Tests with these systems have demonstrated their potential for predicting clinical drug effects. Properties of liver MPS that improve the physiology of cell culture are reviewed, specifically focusing on the importance of recreating a physiological microenvironment to evaluate and model drug effects. Advances in modeling hepatic function by leveraging MPS are addressed, noting the need for standardization in the use, quality control, and interpretation of data from these systems.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Vikram Patel
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rajnikanth Madabushi
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
17
|
Tan K, Keegan P, Rogers M, Lu M, Gosset JR, Charest J, Bale SS. A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. LAB ON A CHIP 2019; 19:1556-1566. [PMID: 30855604 DOI: 10.1039/c8lc01262h] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microphysiological systems (MPSs) are dynamic cell culture systems that provide micro-environmental and external cues to support physiologically relevant, organ-specific functions. Recent progresses in MPS fabrication technologies have enabled the development of advanced models to capture microenvironments with physiological relevance, while increasing throughput and reducing material-based artefacts. In addition to conventional cell culture systems, advanced MPSs are emerging as ideal contenders for disease modeling and incorporation into drug screening. Since liver is a central organ for drug metabolism, liver-on-chip models have been developed to recapitulate hepatic microenvironment with varying complexities, while allowing long-term culture. Recently, we have developed a novel thermoplastic, oxygen-permeable MPS for primary human hepatocyte (PHH) culture. Herein, we have adapted and extended the MPS to a) a 96 microfluidic array (PREDICT-96 array) and b) integrated a novel, ultra-low volume, re-circulating pumping system (PREDICT-96 pump) - collectively known as the PREDICT-96 platform. The PREDICT-96 platform conforms to the industrial standard 96-well footprint and enables media re-circulation. First, we demonstrate the introduction of PHHs into the PREDICT-96 array using standard handling procedures for multi-well plates and allow cells to stabilize in static conditions. Next, we introduce recirculating flow into the bottom channel (using PREDICT-96 pump) to mimic mass transport in vivo. Our results indicate an increase in metabolic and secretory functions of PHHs in the PREDICT-96 platform, and their maintenance over 10 days of flow. Furthermore, long-term culture with fluid flow allows for the periodic introduction of media components (e.g., fatty acids, cytokines) and capture cellular responses to chronic stimuli. The low-volume footprint of the pump and small media volume in the MPS allow for the interrogation of hepatic responses incorporating secretion feedback to a stimulus, which is essential for disease model development and drug interrogation. We envision future development of this liver model to incorporate key primary hepatic cells, multi-cellular co-cultures and adaptation, integration with high-throughput analytical tools.
Collapse
Affiliation(s)
- Kelly Tan
- Draper, 555 Technology Square, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Yeung CK, Himmelfarb J. Kidneys on Chips: Emerging Technology for Preclinical Drug Development. Clin J Am Soc Nephrol 2019; 14:144-146. [PMID: 30274990 PMCID: PMC6364539 DOI: 10.2215/cjn.06690518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Catherine K. Yeung
- Department of Pharmacy and
- Kidney Research Institute, School of Medicine, Division of Nephrology, University of Washington, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, School of Medicine, Division of Nephrology, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Cohen Hubal EA, Wetmore BA, Wambaugh JF, El-Masri H, Sobus JR, Bahadori T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:11-20. [PMID: 30116055 PMCID: PMC6760598 DOI: 10.1038/s41370-018-0046-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/22/2023]
Abstract
Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages. Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and predict potential human health impact. Development of a suite of tools for predicting internal exposure, including physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed "fit for purpose" to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate and build confidence in use of these for improved decisions that promote safe use of chemicals.
Collapse
Affiliation(s)
| | - Barbara A Wetmore
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - John F Wambaugh
- National Center for Computational Toxicology (NCCT), US EPA, Washington, USA
| | - Hisham El-Masri
- National Health and Environmental Effects Laboratory (NHEERL), US EPA, Washington, USA
| | - Jon R Sobus
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - Tina Bahadori
- National Center for Environmental Assessment (NCEA), US EPA, Washington, USA
| |
Collapse
|
20
|
Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov 2018; 14:47-57. [DOI: 10.1080/17460441.2019.1551873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jasmin C. Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
21
|
Rudmann DG. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology. Toxicol Pathol 2018; 47:4-10. [PMID: 30407146 DOI: 10.1177/0192623318809065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microphysiological systems (MPS), commonly known as organs-on-chips, are a rapidly advancing technology that promises to impact many areas of medical and toxicological pathology. In this minireview, the history of MPS and its potential utility in safety assessment are described with the toxicologic pathologist in mind. Several MPS development focus areas are defined, and recent progress in the area is highlighted. MPS will likely become an important tool for the toxicologic pathologist as part of our role in the safety assessment process within the pharmaceutical, biotechnology, medical device, and cosmetic and agrichemical industries.
Collapse
|
22
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
|
23
|
Cirit M, Stokes CL. Maximizing the impact of microphysiological systems with in vitro-in vivo translation. LAB ON A CHIP 2018; 18:1831-1837. [PMID: 29863727 PMCID: PMC6019627 DOI: 10.1039/c8lc00039e] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microphysiological systems (MPS) hold promise for improving therapeutic drug approval rates by providing more physiological, human-based, in vitro assays for preclinical drug development activities compared to traditional in vitro and animal models. Here, we first summarize why MPSs are needed in pharmaceutical development, and examine how MPS technologies can be utilized to improve preclinical efforts. We then provide the perspective that the full impact of MPS technologies will be realized only when robust approaches for in vitro-in vivo (MPS-to-human) translation are developed and utilized, and explain how the burgeoning field of quantitative systems pharmacology (QSP) can fill that need.
Collapse
Affiliation(s)
- Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
24
|
|
25
|
Cummings J, Reiber C, Kumar P. The price of progress: Funding and financing Alzheimer's disease drug development. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:330-343. [PMID: 30175227 PMCID: PMC6118094 DOI: 10.1016/j.trci.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Advancing research and treatment for Alzheimer's disease (AD) and the search for effective treatments depend on a complex financial ecosystem involving federal, state, industry, advocacy, venture capital, and philanthropy funding approaches. METHODS We conducted an expert review of the literature pertaining to funding and financing of translational research and drug development for AD. RESULTS The federal government is the largest public funder of research in AD. The National Institute on Aging, National Institute of Mental Health, National Institute of General Medical Sciences, and National Center for Advancing Translational Science all fund aspects of research in AD drug development. Non-National Institutes of Health federal funding comes from the National Science Foundation, Veterans Administration, Food and Drug Administration, and the Center for Medicare and Medicaid Services. Academic Medical Centers host much of the federally funded basic science research and are increasingly involved in drug development. Funding of the "Valley of Death" involves philanthropy and federal funding through small business programs and private equity from seed capital, angel investors, and venture capital companies. Advocacy groups fund both basic science and clinical trials. The Alzheimer Association is the advocacy organization with the largest research support portfolio relevant to AD drug development. Pharmaceutical companies are the largest supporters of biomedical research worldwide; companies are most interested in late stage de-risked drugs. Drugs progressing into phase II and III are candidates for pharmaceutical industry support through licensing, mergers and acquisitions, and co-development collaborations. DISCUSSION Together, the funding and financing entities involved in supporting AD drug development comprise a complex, interactive, dynamic financial ecosystem. Funding source interaction is largely unstructured and available funding is insufficient to meet all demands for new therapies. Novel approaches to funding such as mega-funds have been proposed and more integration of component parts would assist in accelerating drug development.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | | |
Collapse
|
26
|
Chung HH, Mireles M, Kwarta BJ, Gaborski TR. Use of porous membranes in tissue barrier and co-culture models. LAB ON A CHIP 2018; 18:1671-1689. [PMID: 29845145 PMCID: PMC5997570 DOI: 10.1039/c7lc01248a] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Porous membranes enable the partitioning of cellular microenvironments in vitro, while still allowing physical and biochemical crosstalk between cells, a feature that is often necessary for recapitulating physiological functions. This article provides an overview of the different membranes used in tissue barrier and cellular co-culture models with a focus on experimental design and control of these systems. Specifically, we discuss how the structural, mechanical, chemical, and even the optical and transport properties of different membranes bestow specific advantages and disadvantages through the context of physiological relevance. This review also explores how membrane pore properties affect perfusion and solute permeability by developing an analytical framework to guide the design and use of tissue barrier or co-culture models. Ultimately, this review offers insight into the important aspects one must consider when using porous membranes in tissue barrier and lab-on-a-chip applications.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | |
Collapse
|
27
|
Marshall LJ, Austin CP, Casey W, Fitzpatrick SC, Willett C. Recommendations toward a human pathway-based approach to disease research. Drug Discov Today 2018; 23:1824-1832. [PMID: 29870792 DOI: 10.1016/j.drudis.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Failures in the current paradigm for drug development have resulted in soaring research and development costs and reduced numbers of new drug approvals. Over 90% of new drug programs fail, the majority terminated at the level of Phase 2/3 clinical trials, largely because of efficacy failures or unexplained toxicity. A recent workshop brought together members from research institutions, regulatory agencies, industry, academia, and nongovernmental organizations to discuss how existing programs could be better applied to understanding human biology and improving drug discovery. Recommendations include increased emphasis on human relevance, better access and curation of data, and improved interdisciplinary and international collaboration.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| | - Christopher P Austin
- Office of the Director, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20817, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, USA; National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, FDA, Harvey W. Wiley Building, 5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - Catherine Willett
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| |
Collapse
|
28
|
Low LA, Tagle DA. ‘You-on-a-chip’ for precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1456333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lucie A. Low
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Thomas RS, Paules RS, Simeonov A, Fitzpatrick SC, Crofton KM, Casey WM, Mendrick DL. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018. [PMID: 29529324 DOI: 10.14573/altex.1803011] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional approaches to toxicity testing have posed multiple challenges for evaluating the safety of commercial chemicals, pesticides, food additives/contaminants, and medical products.The challenges include number of chemicals that need to be tested, time and resource intensive nature of traditional toxicity tests, and unexpected adverse effects that occur in pharmaceutical clinical trials despite the extensive toxicological testing.Over a decade ago, the U.S. Environmental Protection Agency (EPA), National Toxicology Program (NTP), National Center for Advancing Translational Sciences (NCATS), and the Food and Drug Administration (FDA) formed a federal consortium for "Toxicology in the 21st Century" (Tox21) with a focus on developing and evaluating in vitro high-throughput screening (HTS) methods for hazard identification and providing mechanistic insights.The Tox21 consortium generated data on thousands of pharmaceuticals and datapoor chemicals, developed better understanding of the limits and applications of in vitro methods, and enabled incorporation of HTS data into regulatory decisions. To more broadly address the challenges in toxicology, Tox21 has developed a new strategic and operational plan that expands the focus of its research activities. The new focus areas include developing an expanded portfolio of alternative test systems, addressing technical limitations of in vitrotest systems, curating legacy in vivo toxicity testing data, establishing scientific confidence in the in vitrotest systems, and refining alternative methods for characterizing pharmacokinetics and in vitro assay disposition.The new Tox21 strategic and operational plan addresses key challenges to advance toxicology testing and will benefit both the organizations involved and the toxicology community.
Collapse
Affiliation(s)
- Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC,USA
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin M Crofton
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC,USA
| | - Warren M Casey
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
30
|
Vishwakarma SK, Bardia A, Lakkireddy C, Nagarapu R, Habeeb MA, Khan AA. Bioengineered humanized livers as better three-dimensional drug testing model system. World J Hepatol 2018; 10:22-33. [PMID: 29399275 PMCID: PMC5787681 DOI: 10.4254/wjh.v10.i1.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To develop appropriate humanized three-dimensional ex-vivo model system for drug testing.
METHODS Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses.
RESULTS The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs.
CONCLUSION The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Raju Nagarapu
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
31
|
Yang B, Papoian T. Preclinical approaches to assess potential kinase inhibitor-induced cardiac toxicity: Past, present and future. J Appl Toxicol 2018; 38:790-800. [DOI: 10.1002/jat.3584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Baichun Yang
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue Silver Spring MD 20993 USA
| | - Thomas Papoian
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; 10903 New Hampshire Avenue Silver Spring MD 20993 USA
| |
Collapse
|
32
|
Mining the Potential of Label-Free Biosensors for In Vitro Antipsychotic Drug Screening. BIOSENSORS-BASEL 2018; 8:bios8010006. [PMID: 29315269 PMCID: PMC5872054 DOI: 10.3390/bios8010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
The pharmaceutical industry is facing enormous challenges due to high drug attribution rates. For the past decades, novel methods have been developed for safety and efficacy testing, as well as for improving early development stages. In vitro screening methods for drug-receptor binding are considered to be good alternatives for decreasing costs in the identification of drug candidates. However, these methods require lengthy and troublesome labeling steps. Biosensors hold great promise due to the fact that label-free detection schemes can be designed in an easy and low-cost manner. In this paper, for the first time in the literature, we aimed to compare the potential of label-free optical and impedimetric electrochemical biosensors for the screening of antipsychotic drugs (APDs) based on their binding properties to dopamine receptors. Particularly, we have chosen a currently-used atypical antipsychotic drug (Buspirone) for investigating its dopamine D3 receptor (D3R) binding properties using an impedimetric biosensor and a nanoplasmonic biosensor. Both biosensors have been specifically functionalized and characterized for achieving a highly-sensitive and reliable analysis of drug-D3R binding. Our biosensor strategies allow for comparing different affinities against the D3R, which facilitates the identification of strong or weak dopamine antagonists via in vitro assays. This work demonstrates the unique potential of label-free biosensors for the implementation of cost-efficient and simpler analytical tools for the screening of antipsychotic drugs.
Collapse
|
33
|
Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS JOURNAL 2017; 19:1499-1512. [PMID: 28752430 DOI: 10.1208/s12248-017-0122-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/08/2017] [Indexed: 01/05/2023]
Abstract
Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in multi-organ in vitro systems along with the collection of high-content quantitative data. This platform was employed here to integrate a gut and a liver MPS together in continuous communication, and investigate simultaneously different PK processes taking place after oral drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measurement of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically coupled with circulating common medium without compromising their functionality. The PK of diclofenac and hydrocortisone was investigated under different experimental perturbations, and results illustrate the robustness of this integrated system for quantitative PK studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK processes taking place in each MPS. Although these processes were not substantially affected by the gut-liver interaction, our results indicate that inter-MPS communication can have a modulating effect (hepatic metabolism upregulation). We envision that our integrative approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantitative mechanistic modeling, will have broad applicability in pre-clinical drug development.
Collapse
Affiliation(s)
- Nikolaos Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Wen Li Kelly Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Collin D Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Room 16-429, Building 16, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|