1
|
Clavel-Henry M, Bahamon N, Aguzzi J, Navarro J, López M, Company JB. Indicators to assess temporal variability in marine connectivity processes: A semi-theoretical approach. PLoS One 2024; 19:e0297730. [PMID: 38950009 PMCID: PMC11216624 DOI: 10.1371/journal.pone.0297730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
Oceanographic connectivity in an effective network of protected areas is crucial for restoring and stabilising marine populations. However, temporal variability in connectivity is rarely considered as a criterion in designing and evaluating marine conservation planning. In this study, indicators were defined to characterise the temporal variability in occurrence, flux, and frequency of connectivity in a northwestern Mediterranean Sea area. Indicators were tested on semi-theoretically-estimated connections provided by the runs of a passive particle transport model in a climatological year and in three years between 2006-2020, showing large deviation from the climatological year. The indicators allowed comparing the temporal variability in connectivity of four zones, highlighted differences in connectivity due to their locations and the mesoscale hydrodynamics, and identified areas that require further investigation. The three indicators also showed that the temporal variability in connectivity was influenced by the duration and depth of particle transport, although no consistent pattern was observed in the indicator variations of the compared zones. Provided that specific objectives will be given when parameterising transport models (i.e., selection of focus species and time period), indicators of temporal variability in connectivity have potential to support spatial conservation planning, prioritise the protection of marine resources, and measure the effectiveness of Marine Protected Areas, in line with a long-term vision of ocean management.
Collapse
Affiliation(s)
- Morane Clavel-Henry
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Nixon Bahamon
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Jacopo Aguzzi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Miguel López
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Joan B. Company
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Institut Català de Recerca per a la Governança del Mar, Barcelona, Spain
| |
Collapse
|
2
|
Gustafsson M, Strand Å, Laugen AT, Albretsen J, André C, Broström G, Jorde PE, Knutsen H, Ortega‐Martinez O, Sodeland M, Waern M, Wrange A, De Wit P. Unlocking the secret life of blue mussels: Exploring connectivity in the Skagerrak through biophysical modeling and population genomics. Evol Appl 2024; 17:e13704. [PMID: 38770102 PMCID: PMC11104481 DOI: 10.1111/eva.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.
Collapse
Affiliation(s)
- Malin Gustafsson
- Environmental IntelligenceIVL Swedish Environmental Research InstituteGothenburgSweden
| | - Åsa Strand
- Environmental IntelligenceIVL Swedish Environmental Research InstituteFiskebäckskilSweden
| | - Ane T. Laugen
- Department of EcologySwedish University of Agricultural Sciences‐SLUUppsalaSweden
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | - Carl André
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
| | - Göran Broström
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | | | - Halvor Knutsen
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Olga Ortega‐Martinez
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
| | - Marte Sodeland
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | - Malin Waern
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
- Leibniz‐Institute for Baltic Sea Research WarnemündeRostockGermany
| | - Anna‐Lisa Wrange
- Environmental IntelligenceIVL Swedish Environmental Research InstituteFiskebäckskilSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Pierre De Wit
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Berkström C, Wennerström L, Bergström U. Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs. AMBIO 2022; 51:1485-1503. [PMID: 34964951 PMCID: PMC9005595 DOI: 10.1007/s13280-021-01684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 05/31/2023]
Abstract
Marine protected areas (MPAs) have become a key component of conservation and fisheries management to alleviate anthropogenic pressures. For MPA networks to efficiently promote persistence and recovery of populations, ecological connectivity, i.e. dispersal and movement of organisms and material across ecosystems, needs to be taken into account. To improve the ecological coherence of MPA networks, there is hence a need to evaluate the connectivity of species spreading through active migration and passive dispersal. We reviewed knowledge on ecological connectivity in the Baltic Sea, Kattegat and Skagerrak in the northeast Atlantic and present available information on species-specific dispersal and migration distances. Studies on genetic connectivity are summarised and discussed in relation to dispersal-based analyses. Threats to ecological connectivity, limiting dispersal of populations and lowering the resilience to environmental change, were examined. Additionally, a review of studies evaluating the ecological coherence of MPA networks in the Baltic Sea, Kattegat and Skagerrak was performed, and suggestions for future evaluations to meet management needs are presented.
Collapse
Affiliation(s)
- Charlotte Berkström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| |
Collapse
|
4
|
Rafajlović M, Alexander JM, Butlin RK, Johannesson K. Introduction to the theme issue 'Species' ranges in the face of changing environments'. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210002. [PMID: 35184596 PMCID: PMC8859519 DOI: 10.1098/rstb.2021.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding where, when and how species' ranges will be modified is both a fundamental problem and essential to predicting how spatio-temporal environmental changes in abiotic and biotic factors impact biodiversity. Notably, different species may respond disparately to similar environmental changes: some species may overcome an environmental change only with difficulty or not at all, while other species may readily overcome the same change. Ranges may contract, expand or move. The drivers and consequences of this variability in species' responses remain puzzling. Importantly, changes in a species' range creates feedbacks to the environmental conditions, populations and communities in its previous and current range, rendering population genetic, population dynamic and community processes inextricably linked. Understanding these links is critical in guiding biodiversity management and conservation efforts. This theme issue presents current thinking about the factors and mechanisms that limit and/or modify species' ranges. It also outlines different approaches to detect changes in species' distributions, and illustrates cases of range modifications in several taxa. Overall, this theme issue highlights the urgency of understanding species' ranges but shows that we are only just beginning to disentangle the processes involved. One way forward is to unite ecology with evolutionary biology and empirical with modelling approaches. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jake M. Alexander
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Roger K. Butlin
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, 452 96 Strömstad, Sweden
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, 452 96 Strömstad, Sweden
| |
Collapse
|
5
|
Vandamme S, Raeymaekers JAM, Maes GE, Cottenie K, Calboli FCF, Diopere E, Volckaert FAM. Reconciling seascape genetics and fisheries science in three codistributed flatfishes. Evol Appl 2021; 14:536-552. [PMID: 33664793 PMCID: PMC7896710 DOI: 10.1111/eva.13139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Uncertainty hampers innovative mixed-fisheries management by the scales at which connectivity dynamics are relevant to management objectives. The spatial scale of sustainable stock management is species-specific and depends on ecology, life history and population connectivity. One valuable approach to understand these spatial scales is to determine to what extent population genetic structure correlates with the oceanographic environment. Here, we compare the level of genetic connectivity in three codistributed and commercially exploited demersal flatfish species living in the North East Atlantic Ocean. Population genetic structure was analysed based on 14, 14 and 10 neutral DNA microsatellite markers for turbot, brill and sole, respectively. We then used redundancy analysis (RDA) to attribute the genetic variation to spatial (geographical location), temporal (sampling year) and oceanographic (water column characteristics) components. The genetic structure of turbot was composed of three clusters and correlated with variation in the depth of the pycnocline, in addition to spatial factors. The genetic structure of brill was homogenous, but correlated with average annual stratification and spatial factors. In sole, the genetic structure was composed of three clusters, but was only linked to a temporal factor. We explored whether the management of data poor commercial fisheries, such as in brill and turbot, might benefit from population-specific information. We conclude that the management of fish stocks has to consider species-specific genetic structures and may benefit from the documentation of the genetic seascape and life-history traits.
Collapse
Affiliation(s)
- Sara Vandamme
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
- Animal Sciences Unit ‐ Fisheries and Aquatic ProductionFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
- Department of Animal Sciences and Aquatic EcologyGhent UniversityOostendeBelgium
| | - Joost A. M. Raeymaekers
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Gregory E. Maes
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and AquacultureComparative Genomics CentreCollege of Sciences and EngineeringJames Cook UniversityTownsvilleQLDAustralia
- Center for Human GeneticsGenomics CoreKU LeuvenLeuvenBelgium
| | - Karl Cottenie
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | | | - Eveline Diopere
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
- CeMEBDepartment of Marine SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
6
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
7
|
Jahnke M, Moksnes PO, Olsen JL, Serra Serra N, Nilsson Jacobi M, Kuusemäe K, Corell H, Jonsson PR. Integrating genetics, biophysical, and demographic insights identifies critical sites for seagrass conservation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02121. [PMID: 32159897 DOI: 10.1002/eap.2121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.
Collapse
Affiliation(s)
- Marlene Jahnke
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, SE-45296, Strömstad, Sweden
| | - Per-Olav Moksnes
- Department of Marine Science, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences, Section: Ecology and Evolutionary Genomics in Nature (GREEN), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Núria Serra Serra
- Groningen Institute for Evolutionary Life Sciences, Section: Ecology and Evolutionary Genomics in Nature (GREEN), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Martin Nilsson Jacobi
- Complex Systems Group, Department of Energy and Environment, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | | | - Hanna Corell
- DHI Sverige, Svartmangatan 18, SE-111 29, Stockholm, Sweden
| | - Per R Jonsson
- Department of Marine Sciences - Tjärnö Marine Laboratory, University of Gothenburg, SE-45296, Strömstad, Sweden
| |
Collapse
|
8
|
Aiken CM, Navarrete SA. Incorporating the Connectivity Timescale in Metapopulation Partitioning. Am Nat 2020; 196:145-156. [PMID: 32673099 DOI: 10.1086/709548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The often complex spatial patterns of propagule dispersal across a metapopulation present a challenge for species management, motivating efforts to represent the connectivity in simpler but meaningful ways. The reduction of complexity may be achieved by partitioning the metapopulation into groups of highly connected patches called "subpopulations." To have relevance for management, these subunits must be defined from ecological or evolutionary principles. The probabilities of dispersal-mediated propagule interchange between sites, commonly organized into a connectivity matrix, entail a timescale that is usually ignored in subpopulation analyses, limiting their utility and possibly leading to misinterpretation and wrong management decisions. Recognition of the essentially dynamical role played by metapopulation connectivity naturally leads to the incorporation of the generational timescale into the partitioning analysis. An algorithm is proposed to determine the subpopulations-both their cardinality and their composition-as a function of the generational timescale and of a limiting probability of connection, illustrated with a novel empirical estimate of mesopelagic connectivity. The proposed framework allows the unambiguous determination of the timescales corresponding to dispersal barriers and the identification of effective ecological units across the spectrum of management-relevant time horizons.
Collapse
|
9
|
De Wit P, Jonsson PR, Pereyra RT, Panova M, André C, Johannesson K. Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evol Appl 2020; 13:974-990. [PMID: 32431747 PMCID: PMC7232771 DOI: 10.1111/eva.12914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean Idotea balthica, using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for I. balthica from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.
Collapse
Affiliation(s)
- Pierre De Wit
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Per R. Jonsson
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| | | | - Marina Panova
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Carl André
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | | |
Collapse
|
10
|
Jahnke M, Jonsson PR, Moksnes P, Loo L, Nilsson Jacobi M, Olsen JL. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak-Kattegat region of the eastern North Sea. Evol Appl 2018; 11:645-661. [PMID: 29875808 PMCID: PMC5979629 DOI: 10.1111/eva.12589] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023] Open
Abstract
Maintaining and enabling evolutionary processes within meta-populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z. marina in the Skagerrak-Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single-generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping-stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial-temporal scale, and extant genetic connectivity strongly reflects the "ghost of dispersal past" sensu Benzie, 1999. The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.
Collapse
Affiliation(s)
- Marlene Jahnke
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
- Groningen Institute for Evolutionary Life SciencesSection: Ecology and Evolutionary Genomics in Nature (GREEN)University of GroningenGroningenThe Netherlands
| | - Per R. Jonsson
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Per‐Olav Moksnes
- Department of Marine ScienceUniversity of GothenburgGothenburgSweden
| | - Lars‐Ove Loo
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Martin Nilsson Jacobi
- Complex Systems GroupDepartment of Energy and EnvironmentChalmers University of TechnologyGothenburgSweden
| | - Jeanine L. Olsen
- Groningen Institute for Evolutionary Life SciencesSection: Ecology and Evolutionary Genomics in Nature (GREEN)University of GroningenGroningenThe Netherlands
| |
Collapse
|
11
|
Reusch TBH, Dierking J, Andersson HC, Bonsdorff E, Carstensen J, Casini M, Czajkowski M, Hasler B, Hinsby K, Hyytiäinen K, Johannesson K, Jomaa S, Jormalainen V, Kuosa H, Kurland S, Laikre L, MacKenzie BR, Margonski P, Melzner F, Oesterwind D, Ojaveer H, Refsgaard JC, Sandström A, Schwarz G, Tonderski K, Winder M, Zandersen M. The Baltic Sea as a time machine for the future coastal ocean. SCIENCE ADVANCES 2018; 4:eaar8195. [PMID: 29750199 PMCID: PMC5942908 DOI: 10.1126/sciadv.aar8195] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/27/2018] [Indexed: 05/21/2023]
Abstract
Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.
Collapse
Affiliation(s)
- Thorsten B. H. Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology, Germany
- Corresponding author.
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology, Germany
| | | | | | | | - Michele Casini
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | | | - Berit Hasler
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Klaus Hinsby
- Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | | | - Seifeddine Jomaa
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research-UFZ Magdeburg, Germany
| | | | - Harri Kuosa
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Sara Kurland
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Brian R. MacKenzie
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Piotr Margonski
- National Marine Fisheries Research Institute, Gdynia, Poland
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology, Germany
| | - Daniel Oesterwind
- Thuenen Institute–Institute of Baltic Sea Fisheries, Rostock, Germany
| | - Henn Ojaveer
- Estonian Marine Institute, University of Tartu, Tartu, Estonia
| | | | | | - Gerald Schwarz
- Thuenen Institute of Farm Economics, Braunschweig, Germany
| | | | - Monika Winder
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Marianne Zandersen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
12
|
Jonsson PR, Kotta J, Andersson HC, Herkül K, Virtanen E, Sandman AN, Johannesson K. High climate velocity and population fragmentation may constrain climate-driven range shift of the key habitat former Fucus vesiculosus. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12733] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Per R. Jonsson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Jonne Kotta
- Estonian Marine Institute; University of Tartu; Tallinn Estonia
| | | | - Kristjan Herkül
- Estonian Marine Institute; University of Tartu; Tallinn Estonia
| | - Elina Virtanen
- Marine Research Centre; Finnish Environment Institute; Helsinki Finland
| | | | - Kerstin Johannesson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| |
Collapse
|
13
|
Álvarez-Romero JG, Munguía-Vega A, Beger M, Del Mar Mancha-Cisneros M, Suárez-Castillo AN, Gurney GG, Pressey RL, Gerber LR, Morzaria-Luna HN, Reyes-Bonilla H, Adams VM, Kolb M, Graham EM, VanDerWal J, Castillo-López A, Hinojosa-Arango G, Petatán-Ramírez D, Moreno-Baez M, Godínez-Reyes CR, Torre J. Designing connected marine reserves in the face of global warming. GLOBAL CHANGE BIOLOGY 2018; 24:e671-e691. [PMID: 29274104 DOI: 10.1111/gcb.13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/27/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.
Collapse
Affiliation(s)
- Jorge G Álvarez-Romero
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Adrián Munguía-Vega
- Comunidad y Biodiversidad, A.C., Guaymas, Sonora, México
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
- Australian Research Council Centre of Excellence for Environmental Decisions, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Georgina G Gurney
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Robert L Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Leah R Gerber
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Hem Nalini Morzaria-Luna
- Intercultural Center for the Study of Deserts and Oceans Inc., Tucson, AZ, USA
- Visiting Researcher at Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - Vanessa M Adams
- Australian Research Council Centre of Excellence for Environmental Decisions, University of Queensland, Brisbane, QLD, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melanie Kolb
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, Distrito Federal, México
- Instituto de Geografía, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Erin M Graham
- Centre for Tropical Biodiversity and Climate Change, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- eResearch Centre, Division of Research and Innovation, James Cook University, Townsville, QLD, Australia
| | - Jeremy VanDerWal
- Centre for Tropical Biodiversity and Climate Change, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- eResearch Centre, Division of Research and Innovation, James Cook University, Townsville, QLD, Australia
| | | | - Gustavo Hinojosa-Arango
- Centro para la Biodiversidad Marina y la Conservación, A.C., La Paz, Baja California Sur, México
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Oaxaca, México
| | | | - Marcia Moreno-Baez
- Department of Environmental Studies, University of New England, Biddeford, ME, USA
| | - Carlos R Godínez-Reyes
- Comisión Nacional de Áreas Naturales Protegidas: Reserva de la Biosfera Bahía de Los Ángeles, Canales de Ballenas y Salsipuedes, Bahía de los Ángeles, Baja California, México
- Comisión Nacional de Áreas Naturales Protegidas: Parque Nacional Cabo Pulmo, La Ribera, Baja California Sur, México
| | - Jorge Torre
- Comunidad y Biodiversidad, A.C., Guaymas, Sonora, México
| |
Collapse
|
14
|
Fox AD, Henry LA, Corne DW, Roberts JM. Sensitivity of marine protected area network connectivity to atmospheric variability. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160494. [PMID: 28018633 PMCID: PMC5180131 DOI: 10.1098/rsos.160494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/18/2016] [Indexed: 05/21/2023]
Abstract
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Collapse
Affiliation(s)
- Alan D. Fox
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Author for correspondence: Alan D. Fox e-mail:
| | - Lea-Anne Henry
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - David W. Corne
- Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - J. Murray Roberts
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
- Center for Marine Science, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403-5928, USA
| |
Collapse
|
15
|
Fox AD, Henry LA, Corne DW, Roberts JM. Sensitivity of marine protected area network connectivity to atmospheric variability. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 28018633 DOI: 10.5061/dryad.2hf38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Collapse
Affiliation(s)
- Alan D Fox
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK; Department of Computer Science, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| | - Lea-Anne Henry
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences , Heriot-Watt University , Riccarton Campus, Edinburgh EH14 4AS , UK
| | - David W Corne
- Department of Computer Science , Heriot-Watt University , Riccarton Campus, Edinburgh EH14 4AS , UK
| | - J Murray Roberts
- Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK; Center for Marine Science, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403-5928, USA
| |
Collapse
|