1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024:1-12. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Khan H, Khanam A, Khan AA, Ahmad R, Husain A, Habib S, Ahmad S, Moinuddin. The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders. Protein J 2024; 43:425-436. [PMID: 38491250 DOI: 10.1007/s10930-024-10191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Hyperglycaemia is a life-threatening risk factor that occurs in both chronic and acute phases and has been linked to causing injury to many organs. Protein modification was triggered by hyperglycaemic stress, which resulted in pathogenic alterations such as impaired cellular function and tissue damage. Dysregulation in cellular function increases the condition associated with metabolic disorders, including cardiovascular diseases, nephropathy, retinopathy, and neuropathy. Hyperglycaemic stress also increases the proliferation of cancer cells. The major areas of experimental biomedical research have focused on the underlying mechanisms involved in the cellular signalling systems involved in diabetes-associated chronic hyperglycaemia. Reactive oxygen species and oxidative stress generated by hyperglycaemia modify many intracellular signalling pathways that result in insulin resistance and β-cell function degradation. The dysregulation of post translational modification in β cells is clinically associated with the development of diabetes mellitus and its associated diseases. This review will discuss the effect of hyperglycaemic stress on protein modification and the cellular signalling involved in it. The focus will be on the significant molecular changes associated with severe metabolic disorders.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India.
| | - Afreen Khanam
- Department of Biotechnology and Life Sciences, Mangalayatan University, Aligarh, India
| | - Adnan Ahmad Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| | - Arbab Husain
- Department of Biotechnology and Life Sciences, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| |
Collapse
|
3
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
4
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Dos Santos RM, Miyamoto JÉ, Siqueira BP, Araujo TR, Vettorazzi JF, Menta PLR, Denom J, Latorraca MQ, Cruciani-Guglielmacci C, Carneiro EM, Torsoni A, Torsoni M, Badan AP, Magnan C, Le Stunff H, Ignácio-Souza L, Milanski M. Interesterified palm oil promotes insulin resistance and altered insulin secretion and signaling in Swiss mice. Food Res Int 2024; 177:113850. [PMID: 38225125 DOI: 10.1016/j.foodres.2023.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by β-cells, characterizing insulin resistance in mice.
Collapse
Affiliation(s)
- Raísa Magno Dos Santos
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Josiane Érica Miyamoto
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Beatriz Piatezzi Siqueira
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Reis Araujo
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Foz do Iguaçu, Paraná, Brazil
| | - Penelope Lacrisio Reis Menta
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | | | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Torsoni
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio Torsoni
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Paula Badan
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | - Letícia Ignácio-Souza
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marciane Milanski
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
6
|
Li W, Li Z, Yan Y, Zhang J, Zhou Q, Wang R, He M. Association of urinary arsenic metabolism with type 2 diabetes and glucose homeostasis: Cross-sectional and longitudinal associations. ENVIRONMENTAL RESEARCH 2023; 239:117410. [PMID: 37858693 DOI: 10.1016/j.envres.2023.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Previous researches have assessed the relationships of urinary arsenic metabolism with type 2 diabetes (T2D) and glucose-insulin homeostasis, but the results were controversial, and potential mechanisms remain largely unclear. OBJECTIVES This study aimed to investigate the cross-sectional and longitudinal associations of urinary arsenic metabolism with T2D prevalence and glucose changes in relatively higher arsenic exposure, and further to evaluate the underlying roles of oxidative damage in these relationships. METHODS We included 796 participants at baseline, among them 509 participants were followed up after 2 years. Logistic regression model and leave-one-out approach were applied to evaluate the associations of arsenic metabolism with T2D prevalence. Linear mixed model was conducted to estimate the relationship of arsenic metabolism with glycemic changes over two years. The associations between arsenic metabolism and indicators of oxidative stress were assessed with a linear regression model. We further performed mediation analysis to investigate the role of oxidative stress in the associations of arsenic metabolism with 2-year change of glucose levels. RESULTS Higher urinary MMA% increased T2D prevalence and baseline glucose levels. MMA% was positively associated with 2-year change of glucose levels. Moreover, we observed significant dose-response relationship between MMA% and 8-hydroxy-2-deoxyguanosine (8-OHdG). However, the mediating role of 8-OHdG in the association of MMA% and 2-year change of glucose levels was not observed in this population. CONCLUSIONS In this population exposure to relatively higher arsenic levels, higher MMA% contributed to increased T2D prevalence and glucose homeostasis disorder. Arsenic metabolism also affected oxidative stress levels, especially 8-OHdG. Further studies are required to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
8
|
Huang L, Pan Y, Zhou K, Liu H, Zhong S. Correlation Between Glycemic Variability and Diabetic Complications: A Narrative Review. Int J Gen Med 2023; 16:3083-3094. [PMID: 37496596 PMCID: PMC10368016 DOI: 10.2147/ijgm.s418520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder with a complex etiology in which glycemic dynamics are disturbed and the body is unable to maintain the process of glucose homeostasis through the pancreas. Persistent symptoms of high blood glucose or low blood glucose may lead to diabetic complications, such as neuropathy, nephropathy, retinopathy, and cardiovascular diseases. Glycemic variability which can represent the presence of excessive glycemic excursions is an indicator for evaluating glucose homoeostasis. Limiting glycemic variability has gradually become an emerging therapeutic target in improve diabetes metabolism and prevent associated complications. This article reviews the progress of research on the various quantifiable parameters of glycemic variability and their relationships with vascular lesions and mechanisms.
Collapse
Affiliation(s)
- Lining Huang
- Department of Endocrinology, Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, 215300, People’s Republic of China
| | - Ying Pan
- Department of Endocrinology, Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, 215300, People’s Republic of China
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou, 510005, People’s Republic of China
| | - Hongying Liu
- Hangzhou Kang Ming Information Technology Co., Ltd, Hangzhou, 310000, People’s Republic of China
| | - Shao Zhong
- Department of Endocrinology, Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, 215300, People’s Republic of China
| |
Collapse
|
9
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
10
|
Li J, Yang K, Guo Y, Cao L, Cheng F, Zhang N. Material basis and action mechanism of Euryale Ferox Salisb in preventing and treating diabetic kidney disease. J Food Biochem 2022; 46:e14409. [PMID: 36165567 DOI: 10.1111/jfbc.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine the chemical structure and mechanism of action of Euryale ferox Salisb (ES) in the prevention and treatment of diabetic kidney disease (DKD). The TCMSP, SymMap V2, CTD, DisGeNET, and GeneCards databases were searched for ES components, targets, and DKD targets using the network pharmacology method to identify common drug-disease targets. PPI analysis was used to identify hub genes, which were then followed by DKD clinical relevance, GO, KEGG analysis, and transcription factor prediction. Finally, molecular docking was performed. We discovered 24 components of ES and 72 objectives of ES, 9 of which were clinically relevant and primarily regulated by transcription factors such as HNF4A and PPARG. They are involved primarily in signal transduction, inflammatory responses, TNF regulation, apoptosis, MAPK, and other signaling pathways. The main components are oleic acid targeting the protein encoded by PPARA, LPL, FABP1, and vitamin E binding the protein encoded by MAPK1, TGFB1. In general, this approach provides an effective strategy in which ES acts primarily against DKD through oleic acid and vitamin E, targeting the protein encoded by PPARA, LPL, FABP1, MAPK1 to regulate TNF, apoptosis, MAPK, and other signaling pathways. PRACTICAL APPLICATIONS: Euryale ferox Salisb (ES) is well known for its use in medicine and food. Furthermore, ES contains many nutrients, whose pharmacological properties, including antidepressant, antioxidant, and anti-diabetic action, have been extensively demonstrated by numerous studies. In this article, through network pharmacology combined with clinical correlation analysis and molecular docking, the target and mechanism of ES in the treatment of diabetic kidney disease (DKD) were discussed, which clarified its mechanism at the molecular level. Provides a reference for the further development and utilization of ES.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kaiping Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunhui Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lukang Cao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Fangling Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nannan Zhang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Hou Y, Ding W, Wu P, Liu C, Ding L, Liu J, Wang X. Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation. Stem Cell Res Ther 2022; 13:132. [PMID: 35365229 PMCID: PMC8973806 DOI: 10.1186/s13287-022-02760-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Type 1 diabetes mellitus (T1D) is a worldwide health priority due to autoimmune destruction and is associated with an increased risk of multiorgan complications. Among these complications, effective interventions for liver injury, which can progress to liver fibrosis and hepatocellular carcinoma, are lacking. Although stem cell injection has a therapeutic effect on T1D, whether it can cure liver injury and the underlying mechanisms need further investigation. Methods Sprague–Dawley rats with streptozotocin (STZ)-induced T1D were treated with adipose-derived stem cell (ADSC) or PBS via the tail vein formed the ADSC group or STZ group. Body weights and blood glucose levels were examined weekly for 6 weeks. RNA-seq and PCR array were used to detect the difference in gene expression of the livers between groups. Results In this study, we found that ADSCs injection alleviated hepatic oxidative stress and injury and improved liver function in rats with T1D; potential mechanisms included cytokine activity, energy metabolism and immune regulation were potentially involved, as determined by RNA-seq. Moreover, ADSC treatment altered the fibroblast growth factor 21 (FGF21) and transforming growth factor β (TGF-β) levels in T1D rat livers, implying its repair capacity. Disordered intracellular energy metabolism, which is closely related to mitochondrial stress and dysfunction, was inhibited by ADSC treatment. PCR array and ingenuity pathway analyses suggested that the ADSC-induced suppression of mitochondrial stress is related to decreased necroptosis and apoptosis. Moreover, mitochondria-related alterations caused liver inflammation, resulting in liver injury involving the T lymphocyte-mediated immune response. Conclusions Overall, these results improve our understanding of the curative effect of ADSCs on T1D complications: ADSCs attenuate liver injury by inhibiting mitochondrial stress (apoptosis and dysfunctional energy metabolism) and alleviating inflammation (inflammasome expression and immune disorder). These results are important for early intervention in liver injury and for delaying the development of liver lesions in patients with T1D. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02760-z.
Collapse
Affiliation(s)
- Yanli Hou
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong First Medical University, Jinan, China
| | - Changqing Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
12
|
Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered 2021; 12:9356-9366. [PMID: 34823419 PMCID: PMC8810000 DOI: 10.1080/21655979.2021.2001240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is an important public health problem worldwide. Insulin deficiency caused by pancreatic β cell dysfunction is an important pathogenic factor of diabetes mellitus. This study evaluated whether empagliflozin (EMPA) protects the pancreas from diabetes mellitus-induced injury by downregulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/Gasdermin D (GSDMD) pyroptosis-related inflammasome pathway in vitro and in vivo. In vivo, animals were separated into blank control (control, C57/bl6j wild-type mice), diabetes model (db/db mice, BKS-Leprem2Cd479/Gpt mice), and db/db mice+EMPA (db/db+EMPA) groups. In vitro, pancreatic β cells were separated into low glucose (control), high glucose (HG), and HG+EMPA groups. The db/db+EMPA group were administered empagliflozin at 10 mg/(kg·day) by gavage for six months. Histological changes in the pancreatic tissues were observed by hematoxylin-eosin staining, and levels of the pyroptosis-related inflammatory factors NLPR3, caspase-1, and GSDMD were measured by immunohistochemistry and immunofluorescence staining methods. The Cell Counting Kit-8 assay was used to detect the effect of different concentrations of glucose and empagliflozin on the proliferation of mouse insulinoma islet β (β TC-6) cells. NLRP3/caspase-1/GSDMD expression was assessed by western blotting and immunofluorescent labeling in the β TC-6 cells. The results showed that empagliflozin reduced the pathological changes and inflammatory cell infiltration in the pancreatic tissues of db/db mice. Furthermore, empagliflozin not only reduced the expression levels of NLRP3/caspase-1/GSDMD in vitro, but also reduced their expression levels in vivo. In summary, our data suggested that empagliflozin protects the pancreatic tissues from diabetes mellitus-induced injury by downregulating the NLRP3/caspase-1/GSDMD pyroptosis-related inflammasome pathway.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Zhang Y, Aisker G, Dong H, Halemahebai G, Zhang Y, Tian L. Urolithin A suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153741. [PMID: 34656886 DOI: 10.1016/j.phymed.2021.153741] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pancreatic inflammation plays a key role in diabetes pathogenesis and progression. Urolithin A (UA), an intestinal flora metabolite of pomegranate, has anti-diabetic, anti-inflammatory and kidney protection effects among others. However, its effects on pancreatic inflammation and the potential mechanisms have not been clearly established. PURPOSE This study aimed at investigating the molecular mechanisms of UA anti-pancreatic inflammation under a diabetic environment. METHODS Diabetes induction in male C57BL/6 mice was achieved by a high fat diet and intraperitoneal streptozotocin injections. Then, diabetic mice were orally administered with UA for 8 weeks. In vitro, endoplasmic reticulum stress and MIN6 pancreatic β cell inflammation were induced using 25 mM glucose and 0.5 mM palmitic acid. The effects of UA were evaluated by immunohistochemistry, Western blot, and enzyme linked immunosorbent assays. Finally, the underlying mechanisms were elucidated using an autophagy inhibitor (chloroquine, CQ) and an AMPK inhibitor (dorsomorphin dihydrochloride). RESULTS UA significantly inhibited IL-1β secretion and TXNIP/NLRP3 expression in the pancreas of diabetic mice and in MIN6 pancreatic cells. UA downregulated the ER stress protein, p-PERK, and promoted AMPK phosphorylation. UA activated autophagy to inhibit TXNIP/NLRP3 IL-1β inflammatory signal, an effect that was reversed by CQ. Dorsomorphin 2HCL, reversed the autophagy-activation and anti-inflammatory effects of UA. Verapamil, clinically applied as an antiarrhythmic drug, is a TXNIP inhibitor for prevention of beta cell loss and diabetes development, but limited by its cardiac toxicity. In this study, verapamil (as positive control) inhibited NLRP3 /IL-1β signaling in MIN6 cells. Inhibitory effects of UA on TXNIP and IL-1β were weaker than those of verapamil (both at 50 μM, p < 0.05, p < 0.01). Conversely, inhibitory effects of UA on p62 were stronger, relative to those of verapamil (p < 0.05), and there were no differences in AMPK activation and LC3 enhancement effects between UA and verapamil. CONCLUSION UA is a potential anti-pancreatic inflammation agent that activates AMPK and autophagy to inhibit endoplasmic reticulum stress associated TXNIP/NLRP3/IL-1β signal pathway.
Collapse
Affiliation(s)
- YanZhi Zhang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Gulimila Aisker
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Huaiyang Dong
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Gulihaixia Halemahebai
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yan Zhang
- Department of Pediatrics, Xinjiang Military General Hospital, Urumqi, China
| | - Linai Tian
- Third Clinical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Nfe2l1 deficiency mitigates streptozotocin-induced pancreatic β-cell destruction and development of diabetes in male mice. Food Chem Toxicol 2021; 158:112633. [PMID: 34699923 DOI: 10.1016/j.fct.2021.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Streptozotocin (STZ) is a pancreatic β cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic β cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic β cell damage. Here, we found that pancreatic β cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic β cell specific Nfe2l1 knockout [Nfe2l1(β)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(β)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(β)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic β cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.
Collapse
|
15
|
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D’Alessandro V, Inoue C, D’Alessandro-Gabazza CN, Kobayashi T, Yano Y, Gabazza EC. Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus. Cells 2021; 10:2237. [PMID: 34571886 PMCID: PMC8470378 DOI: 10.3390/cells10092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Hypoglycemic Agents/administration & dosage
- Injections, Intraperitoneal
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins/administration & dosage
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Streptozocin
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thrombomodulin/administration & dosage
- Mice
Collapse
Affiliation(s)
- Yuko Okano
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| |
Collapse
|
16
|
Oke SL, Hardy DB. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism. Int J Mol Sci 2021; 22:6986. [PMID: 34209700 PMCID: PMC8268884 DOI: 10.3390/ijms22136986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring.
Collapse
Affiliation(s)
- Shelby L. Oke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
17
|
Midha A, Pan H, Abarca C, Andle J, Carapeto P, Bonner-Weir S, Aguayo-Mazzucato C. Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes 2021; 70:1098-1116. [PMID: 33674410 PMCID: PMC8173799 DOI: 10.2337/db20-0553] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
The aging of pancreatic β-cells may undermine their ability to compensate for insulin resistance, leading to the development of type 2 diabetes (T2D). Aging β-cells acquire markers of cellular senescence and develop a senescence-associated secretory phenotype (SASP) that can lead to senescence and dysfunction of neighboring cells through paracrine actions, contributing to β-cell failure. In this study, we defined the β-cell SASP signature based on unbiased proteomic analysis of conditioned media of cells obtained from mouse and human senescent β-cells and a chemically induced mouse model of DNA damage capable of inducing SASP. These experiments revealed that the β-cell SASP is enriched for factors associated with inflammation, cellular stress response, and extracellular matrix remodeling across species. Multiple SASP factors were transcriptionally upregulated in models of β-cell senescence, aging, insulin resistance, and T2D. Single-cell transcriptomic analysis of islets from an in vivo mouse model of reversible insulin resistance indicated unique and partly reversible changes in β-cell subpopulations associated with senescence. Collectively, these results demonstrate the unique secretory profile of senescent β-cells and its potential implication in health and disease.
Collapse
Affiliation(s)
- Ayush Midha
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Boston, MA
| | - Cristian Abarca
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Joshua Andle
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Priscila Carapeto
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | | |
Collapse
|
18
|
Llavero-Valero M, Escalada San Martín J, Martínez-González MA, Alvarez-Mon MA, Alvarez-Alvarez I, Martínez-González J, Bes-Rastrollo M. Promoting exercise, reducing sedentarism or both for diabetes prevention: The "Seguimiento Universidad De Navarra" (SUN) cohort. Nutr Metab Cardiovasc Dis 2021; 31:411-419. [PMID: 33234383 DOI: 10.1016/j.numecd.2020.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Both physical activity (PA) and sedentary behaviors have demonstrated independent associations with the development of type 2 diabetes mellitus (T2DM). However, the combination of both, has been less explored. We aimed to compare the associations of PA-only versus the simultaneous effect of PA and sedentary behaviors on T2DM in a Mediterranean cohort. METHODS AND RESULTS Participants (n = 19,524) initially free of T2DM from the SUN Project were followed-up for a median of 10.4 years. Analyses were conducted in 2018. PA and sedentary parameters (TV viewing time and sitting time) were assessed through a validated questionnaire. The amount of each PA was expressed in METs-h/wk. After that, a previously developed 8-item active + sedentary lifestyle score was computed. T2DM was defined according to ADA criteria. To adjust for potential confounders, Cox regression models were adjusted. Among 19,524 participants, 175 cases of new-onset T2DM were observed during follow-up. After multivariable adjustment, higher PA was strongly inversely associated with T2DM, showing highly significant differences between extreme quartiles (HR = 0.51; 95% CI 0.32-0.79 p for trend<0.001). When considering not only PA, but also the more comprehensive active + sedentary lifestyle combined score, even stronger differences were found between the lowest and the highest categories (HR = 0.40; 95%CI 0.20-0.80; p for trend<0.001). CONCLUSION Sedentary lifestyles, in addition to PA patterns, should be included in the assessment of T2DM risk. Promoting PA should be coupled with the avoidance of a sedentary lifestyle to lower the risk of T2DM.
Collapse
Affiliation(s)
- María Llavero-Valero
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Department of Endocrinology and Nutrition, University of Navarra, Pamplona Spain
| | - Javier Escalada San Martín
- Department of Endocrinology and Nutrition, University of Navarra, Pamplona Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IDISNA, Healthcare Research Institute of Navarra, Pamplona, Spain
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IDISNA, Healthcare Research Institute of Navarra, Pamplona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Ismael Alvarez-Alvarez
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IDISNA, Healthcare Research Institute of Navarra, Pamplona, Spain.
| |
Collapse
|
19
|
Chen Y, Chen Y, Wang N, Gu S, Wang M, Fu Y, Wei C, Xu W. Doxycycline in Extremely Low Dose Improves Glycemic Control and Islet Morphology in Mice Fed a High-Fat Diet. Diabetes Metab Syndr Obes 2021; 14:637-646. [PMID: 33603428 PMCID: PMC7884939 DOI: 10.2147/dmso.s292264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Chronic low-grade inflammation is detected in obese and diabetic individuals. Tetracyclines, used as antibiotics for years, have been demonstrated to have diverse non-bactericidal effects, including anti-tumor and anti-inflammatory activities. This study aimed to investigate whether doxycycline at sub-antimicrobial concentrations could improve glycemic control in mice fed a high-fat diet, through its anti-inflammatory activities. METHODS C57BL/6J mice were fed with a high-fat diet to induce diabetic and obese conditions. Three sub-antimicrobial dosages of doxycycline (200, 20, and 2 μg/mL) were added to drinking water for 23 weeks during the housing phase. RESULTS Doxycycline at 200 μg/mL tended to increase body weight, islet mass, and the percentage of large islets (diameter >350 μm). At 20 μg/mL, doxycycline significantly improved glucose tolerance and decreased fasting blood glucose. At 2 μg/mL, doxycycline increased the percentage of small islets (diameter <80 μm). Serum C-reactive protein and lipopolysaccharide levels significantly decreased while the beta-cell ratio increased in all doxycycline-administered mice. CONCLUSION Our results suggest that doxycycline, even at an extremely low dose, could improve glycemic control and islet morphology via its anti-inflammatory activities.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yu Chen
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Na Wang
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
| | - Shanhong Gu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Meilin Wang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yucai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Chiju Wei
- Laboratory of Molecular Biology, Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, 515063, People’s Republic of China
- Correspondence: Chiju Wei Shantou University, 243 Daxue Road, Shantou, Guangdong, 515063, People’s Republic of China Email
| | - Wencan Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
- Wencan Xu Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, People’s Republic of China Email
| |
Collapse
|
20
|
Engin AB, Engin A. Protein Kinases Signaling in Pancreatic Beta-cells Death and Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:195-227. [PMID: 33539017 DOI: 10.1007/978-3-030-49844-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a worldwide serious public health problem. Insulin resistance and β-cell failure are the two major components of T2D pathology. In addition to defective endoplasmic reticulum (ER) stress signaling due to glucolipotoxicity, β-cell dysfunction or β-cell death initiates the deleterious vicious cycle observed in T2D. Although the primary cause is still unknown, overnutrition that contributes to the induction of the state of low-grade inflammation, and the activation of various protein kinases-related metabolic pathways are main factors leading to T2D. In this chapter following subjects, which have critical checkpoints regarding β-cell fate and protein kinases pathways are discussed; hyperglycemia-induced β-cell failure, chronic accumulation of unfolded protein in β-cells, the effect of intracellular reactive oxygen species (ROS) signaling to insulin secretion, excessive saturated free fatty acid-induced β-cell apoptosis, mitophagy dysfunction, proinflammatory responses and insulin resistance, and the reprogramming of β-cell for differentiation or dedifferentiation in T2D. There is much debate about selecting proposed therapeutic strategies to maintain or enhance optimal β-cell viability for adequate insulin secretion in T2D. However, in order to achieve an effective solution in the treatment of T2D, more intensive clinical trials are required on newer therapeutic options based on protein kinases signaling pathways.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
21
|
Locatelli CAA, Mulvihill EE. Islet Health, Hormone Secretion, and Insulin Responsivity with Low-Carbohydrate Feeding in Diabetes. Metabolites 2020; 10:E455. [PMID: 33187118 PMCID: PMC7697690 DOI: 10.3390/metabo10110455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022] Open
Abstract
Exploring new avenues to control daily fluctuations in glycemia has been a central theme for diabetes research since the Diabetes Control and Complications Trial (DCCT). Carbohydrate restriction has re-emerged as a means to control type 2 diabetes mellitus (T2DM), becoming increasingly popular and supported by national diabetes associations in Canada, Australia, the USA, and Europe. This approval comes from many positive outcomes on HbA1c in human studies; yet mechanisms underlying their success have not been fully elucidated. In this review, we discuss the preclinical and clinical studies investigating the role of carbohydrate restriction and physiological elevations in ketone bodies directly on pancreatic islet health, islet hormone secretion, and insulin sensitivity. Included studies have clearly outlined diet compositions, including a diet with 30% or less of calories from carbohydrates.
Collapse
Affiliation(s)
- Cassandra A. A. Locatelli
- Energy Substrate Laboratory, The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, ON KIY 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, ON K1H 8L1, Canada
| | - Erin E. Mulvihill
- Energy Substrate Laboratory, The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, ON KIY 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, ON K1H 8L1, Canada
- Montreal Diabetes Research Centre CRCHUM-Pavillion R, 900 Saint-Denis-Room R08.414, Montreal, QC H2X 0A9, Canada
- Centre for Infection, Immunity and Inflammation, The University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
22
|
Wu W, He S, Shen Y, Zhang J, Wan Y, Tang X, Liu S, Yao X. Natural Product Luteolin Rescues THAP-Induced Pancreatic β-Cell Dysfunction through HNF4α Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1435-1454. [PMID: 32907363 DOI: 10.1142/s0192415x20500706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.
Collapse
Affiliation(s)
- Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yuli Shen
- Nephrology Department, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, P. R. China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan 510080, P. R. China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
23
|
The Effect of a Non-Local Fractional Operator in an Asymmetrical Glucose-Insulin Regulatory System: Analysis, Synchronization and Electronic Implementation. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
For studying biological conditions with higher precision, the memory characteristics defined by the fractional-order versions of living dynamical systems have been pointed out as a meaningful approach. Therefore, we analyze the dynamics of a glucose-insulin regulatory system by applying a non-local fractional operator in order to represent the memory of the underlying system, and whose state-variables define the population densities of insulin, glucose, and β-cells, respectively. We focus mainly on four parameters that are associated with different disorders (type 1 and type 2 diabetes mellitus, hypoglycemia, and hyperinsulinemia) to determine their observation ranges as a relation to the fractional-order. Like many preceding works in biosystems, the resulting analysis showed chaotic behaviors related to the fractional-order and system parameters. Subsequently, we propose an active control scheme for forcing the chaotic regime (an illness) to follow a periodic oscillatory state, i.e., a disorder-free equilibrium. Finally, we also present the electronic realization of the fractional glucose-insulin regulatory model to prove the conceptual findings.
Collapse
|
24
|
Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-κB/NLRP3 pathway in rats. Neuroreport 2020; 30:893-900. [PMID: 31373969 DOI: 10.1097/wnr.0000000000001302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ginsenoside (GS Rg1), which has neuroprotection and anti-inflammation activities, is the main active ingredient of Radix Ginseng. However, its antidepressant-like effect in rats remains unclear. Our study was conducted to investigate whether GS Rg1 confers an antidepressant effect in rats exposed to a chronic unpredictable mild stress model of depression and to explore its possible mechanisms. Our results revealed that GS Rg1 treatments for 3 weeks alleviated the depression-related behaviors of chronic unpredictable mild stress-exposed rats, as indicated by increasing sucrose preference, improving locomotor activity and shortening immobile time in both the forced swimming tests and tail suspension tests. And these ameliorative effects of GS Rg1 treatment were involved with regulating chronic unpredictable mild stress-induced pro-inflammatory cytokine interleukin beta (IL-1β) related neuro-inflammation. In addition, we further found that GS Rg1 reversed chronic unpredictable mild stress-induced IL-1β elevation, possibly by inhibiting nuclear factor kappa B pathway activation and regulating nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome expression. In short, our results suggested that GS Rg1 exerted a potential antidepressant-like effect in chronic unpredictable mild stress rat model of depression, which may provide an insight into the potential of GS Rg1 in therapeutic implications for depression.
Collapse
|
25
|
Su JB, Wu YY, Xu F, Wang X, Cai HL, Zhao LH, Zhang XL, Chen T, Huang HY, Wang XQ. Serum complement C3 and islet β-cell function in patients with type 2 diabetes: A 4.6-year prospective follow-up study. Endocrine 2020; 67:321-330. [PMID: 31786774 DOI: 10.1007/s12020-019-02144-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Serum complement C3 has been shown to contribute to the incidence of type 2 diabetes (T2D), but how serum complement C3 affects islet β-cell function throughout the course of T2D is unclear. This study explored whether serum complement C3 is independently associated with changes in islet β-cell function over time in patients with T2D. METHODS Serum complement C3 was measured, and endogenous β-cell function was evaluated by area under the C-peptide curve (AUCcp) during an oral glucose tolerance test (OGTT) in 411 patients with T2D at baseline from 2011 to 2015. Next, 347 of those patients with available data were pooled for a final follow-up analysis from 2014 to 2018. Changes in islet β-cell function at follow-up were evaluated by AUCcp percentage changes (ΔAUCcp%). In addition, other possible clinical risks for diabetes were also examined. RESULTS The 347 patients included in the analysis had a diabetes duration of 4.84 ± 3.63 years at baseline. Baseline serum complement C3 (baseline C3) levels were positively correlated with baseline natural logarithm of AUCcp (lnAUCcp) (n = 347, r = 0.288, p < 0.001), and baseline C3 was independently associated with baseline lnAUCcp (β = 0.17, t = 3.52, p < 0.001) after adjustment for baseline glycemic status and other clinical confounders by multivariate liner regression analysis. Compared with the baseline values, complement C3 changes (ΔC3) and ΔAUCcp% was -0.15 ± 0.28 mg/ml and -17.2 ± 18.4%, respectively, at a follow-up visit 4.57 ± 0.78 years later. Moreover, ΔC3 was positively correlated with ΔAUCcp% (n = 347, r = 0.302, p < 0.001). Furthermore, each 0.1 mg/ml increase in ΔC3 was associated with a higher ΔAUCcp% (1.41% [95% CI, 0.82-2.00%]) after adjusting for changes in glycemic status and other clinical confounders at follow-up. CONCLUSIONS In addition to serum complement C3 being independently associated with islet β-cell function at baseline, its changes were also independently associated with changes in islet β-cell function over time in patients with T2D.
Collapse
Affiliation(s)
- Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China.
| | - Yun-Yu Wu
- Medical School of Nantong University, No. 19, Qixiu Road, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xing Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Hong-Li Cai
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6 North Haierxiang Road, Nantong, 226001, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China.
| |
Collapse
|
26
|
Troullinaki M, Chen LS, Witt A, Pyrina I, Phieler J, Kourtzelis I, Chmelar J, Sprott D, Gercken B, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Robo4-mediated pancreatic endothelial integrity decreases inflammation and islet destruction in autoimmune diabetes. FASEB J 2020; 34:3336-3346. [PMID: 31916652 DOI: 10.1096/fj.201900125rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
In Type 1 Diabetes Mellitus (T1DM), leukocyte infiltration of the pancreatic islets and the resulting immune-mediated destruction of beta cells precede hyperglycemia and clinical disease symptoms. In this context, the role of the pancreatic endothelium as a barrier for autoimmunity- and inflammation-related destruction of the islets is not well studied. Here, we identified Robo4, expressed on endothelial cells, as a regulator of pancreatic vascular endothelial permeability during autoimmune diabetes. Circulating levels of Robo4 were upregulated in mice subjected to the Multiple Low-Dose Streptozotocin (MLDS) model of diabetes. Upon MLDS induction, Robo4-deficiency resulted in increased pancreatic vascular permeability, leukocyte infiltration to the islets and islet apoptosis, associated with reduced insulin levels and faster diabetes development. On the contrary, in vivo administration of Slit2 in mice modestly delayed the emergence of hyperglycaemia and ameliorated islet inflammation in MLDS-induced diabetes. Thus, Robo4-mediated endothelial barrier integrity reduces insulitis and islet destruction in autoimmune diabetes. Our findings highlight the importance of the endothelium as gatekeeper of pancreatic inflammation during T1DM development and may pave the way for novel Robo4-related therapeutic approaches for autoimmune diabetes.
Collapse
Affiliation(s)
- Maria Troullinaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lan-Sun Chen
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Phieler
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jindrich Chmelar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Wang F, Mo Z. NLRP3 inflammasome in metabolic syndrome. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Fang Wang
- Central South University, People’s Republic of China
| | - Zhaohui Mo
- Central South University, People’s Republic of China
| |
Collapse
|
28
|
Pang H, Luo S, Huang G, Xia Y, Xie Z, Zhou Z. Advances in Knowledge of Candidate Genes Acting at the Beta-Cell Level in the Pathogenesis of T1DM. Front Endocrinol (Lausanne) 2020; 11:119. [PMID: 32226409 PMCID: PMC7080653 DOI: 10.3389/fendo.2020.00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
T1DM (type 1 diabetes mellitus), which results from the irreversible elimination of beta-cells mediated by autoreactive T cells, is defined as an autoimmune disease. It is widely accepted that T1DM is caused by a combination of genetic and environmental factors, but the precise underlying molecular mechanisms are still unknown. To date, more than 50 genetic risk regions contributing to the pathogenesis of T1DM have been identified by GWAS (genome-wide association studies). Notably, more than 60% of the identified candidate genes are expressed in islets and beta-cells, which makes it plausible that these genes act at the beta-cell level and play a key role in the pathogenesis of T1DM. In this review, we focus on the current status of candidate genes that act at the beta-cell level by regulating the innate immune response and antiviral activity, affecting susceptibility to proapoptotic stimuli and influencing the pancreatic beta-cell phenotype.
Collapse
Affiliation(s)
- Haipeng Pang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Ying Xia
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- *Correspondence: Zhiguo Xie
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- Zhiguang Zhou
| |
Collapse
|
29
|
Jang HB, Go MJ, Park SI, Lee HJ, Cho SB. Chronic heavy alcohol consumption influences the association between genetic variants of GCK or INSR and the development of diabetes in men: A 12-year follow-up study. Sci Rep 2019; 9:20029. [PMID: 31882596 PMCID: PMC6934767 DOI: 10.1038/s41598-019-56011-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic heavy alcohol consumption is a risk factor for diabetes, which is characterized by impaired β-cell function and insulin resistance. We aimed to determine whether the longitudinal associations between genetic variants of glucokinase (GCK) and insulin receptor (INSR) and the risk of developing diabetes were influenced by chronic heavy alcohol consumption. Data were obtained from the Korean Genome and Epidemiology Study. To identify candidate variants, 1,520 subjects (726 non-drinkers and 794 heavy drinkers) were included in the baseline cross-sectional study. After excluding patients with diabetes at baseline and those with insufficient data on diabetes incidence, prospective analyses were conducted in 773 subjects (353 non-drinkers and 420 heavy drinkers). In the baseline cross-sectional study, one SNP (rs758989) in GCK and four SNPs (rs7245757, rs1035942, rs1035940, and rs2042901) in INSR were selected as candidate SNPs that interact with alcohol to affect prediabetes and diabetes. We identified that these GCK and INSR polymorphisms are affected by chronic heavy alcohol consumption and have an effect on the incidence of diabetes. The incidence of diabetes was increased in chronic heavy alcohol drinkers carrying the C allele of GCK compared with never-drinkers with the C allele (HR, 2.15; 95% CI 1.30-3.57), and was increased in chronic heavy alcohol drinkers who were not carrying the INSR haplotype (-/-) compared with never-drinkers carrying the AACT haplotype (HR, 1.98; 95% CI 1.24-3.18). Moreover, we observed that the aggravating effects on the late insulin secretion (I/G120 and I/G AUC 60-120) in individuals who were chronic heavy drinkers with C allele of GCK. In the INSR haplotype, chronic heavy drinkers not carrying AACT were associated with lower disposition index. These results potentially suggest that chronic heavy alcohol consumption induce β-cell dysfunction partially mediated by decreased GCK expression or decline of insulin sensitivity via inhibition of INSR, thereby contributing to the development of diabetes.
Collapse
Affiliation(s)
- Han Byul Jang
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Min Jin Go
- Center for Genome Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sang Ick Park
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Hye-Ja Lee
- Center for Biomedical Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea.
| | - Seong Beom Cho
- Center for Genome Science, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
30
|
Kim MT, Kim KB, Ko J, Murry N, Levine D, Lee JY. The Differential Role of Vitamin D in Type 2 Diabetes Management and Control in Minority Populations. J Immigr Minor Health 2019; 21:1266-1274. [PMID: 30747313 PMCID: PMC6689459 DOI: 10.1007/s10903-019-00857-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vitamin D deficiency is associated with incidence of type 2 diabetes (T2DM) as well as poor glycemic control among T2DM patients, yet comparative studies of its association among ethnic minority populations are scarce. Using baseline data from a behavioral intervention study of Korean Americans (KAs) with T2DM (N = 250 KAs) and the NHANES data set, we explored differential roles of vitamin D on HbA1C level or T2DM control in several racial groups. Significantly more KAs (55.2%) were vitamin D-deficient (U.S. average, 37.8%). Both common and unique correlates of vitamin D deficiency in minority populations were identified, including significant associations between Vitamin D and HbA1C in both non-diabetic and diabetic populations. Future studies are warranted to explain the causal mechanism of the effect of vitamin D and glycemic control as well as to examine contextual factors associated with vitamin D deficiency in certain minority groups.Clinical Trials Registry: Identifier NCT01264796.
Collapse
Affiliation(s)
- Miyong To Kim
- School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - Kim Byeng Kim
- Korean Resource Center, 3454 Ellicott Center Dr., Ellicott City, MD, 21043, USA.
| | - Jisook Ko
- School of Nursing, UT Health Science San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229-3900, USA
| | - Nicole Murry
- School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - David Levine
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ju-Young Lee
- College of Nursing, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
31
|
Gao L, Sun N, Xu Q, Jiang Z, Li C. Comparative analysis of mRNA expression profiles in Type 1 and Type 2 diabetes mellitus. Epigenomics 2019; 11:685-699. [PMID: 31016992 DOI: 10.2217/epi-2018-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: We aimed to understand the individual and shared features of Type 1 diabetes (T1D) and Type 2 diabetes (T2D) by analyzing the gene expression profile. Materials & methods: An integrated analysis was performed with microarray datasets for T1D and T2D. Compared with normal control, shared and specific differentially expressed genes (DEGs) in T1D and T2D were obtained. Functional annotation, further validation and receiver operating characteristic curve analysis were performed. Results: Five and three datasets for T1D and T2D were downloaded, respectively. In total, 141 (85 T1D vs 56 normal controls) and 70 (29 T2D vs 41 normal controls) peripheral blood samples were included in T1D and T2D group, respectively. Compared with normal controls, 119 and 146 DEGs were found in T1D and T2D, respectively. PNP and CCR1 have great diagnostic value for both T1D and T2D. MGAM and NAMPT had great diagnostic value for T2D. Conclusion: Our finding provided clues for developing biomarkers for diabetes.
Collapse
Affiliation(s)
- Li Gao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Nannan Sun
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Qinglei Xu
- Department of Endocrinology, Lanshan District Diabetes Hospital of LinYi, Shandong University of Traditional Chinese Medicine, Linyi 276038, China
| | - Zhiming Jiang
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Chong Li
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| |
Collapse
|
32
|
Wu L, Wang CC. Genetic variants in promoter regions associated with type 2 diabetes mellitus: A large-scale meta-analysis and subgroup analysis. J Cell Biochem 2019; 120:13012-13025. [PMID: 30860284 DOI: 10.1002/jcb.28572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Promoter plays important roles in regulating transcription of genes. Association studies of genetic variants in promoter region with type 2 diabetes (T2D) risk have been reported, but most were limited to small number of individual genetic variants and insufficient sample sizes. In addition, the effect of study populations and demographic characteristics were often neglected. METHODS In this study, we conducted a large-scale meta-analysis and subgroup analysis of T2D associated genetic variants in the promoter regions to evaluate their contribution to the susceptibility in T2D. Alleles and genotypes from cohort or case-controlled studies were extracted for future study. Total 41 742 cases and 50 493 controls for three loci were involved in 70 articles. RESULTS Seventy case-controlled studies of three genes with 41 742 cases and 50 493 controls were included. Meta-analysis showed only rs266729 and rs17300539 of ADIPOQ, and rs1884613, rs2144908, and rs4810424 of HNF4A were significantly associated with T2D risk. Subgroup analysis showed that both rs266729 and rs17300539 of ADIPOQ were associated with the risk of T2D in Caucasian population, but only rs266729 of ADIPOQ in Asian population and rs2144908 in other population including multinational North American. For diagnostic criteria, rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when WHO/ADA diagnostic criteria were used. For genotyping methods, both rs266729 of ADIPOQ and rs2144908 of HNF4A were associated with T2D risk when other than Taqman and Sequencing methods were used. CONCLUSIONS T2D was significantly associated with promoter rs266729, rs17300539, rs1884613, rs2144908, and rs4810424, and the association of T2D risk were affected by study population, diagnostic criteria, and genotype methods.
Collapse
Affiliation(s)
- Ling Wu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Daems C, Welsch S, Boughaleb H, Vanderroost J, Robert A, Sokal E, Lysy PA. Early Treatment with Empagliflozin and GABA Improves β-Cell Mass and Glucose Tolerance in Streptozotocin-Treated Mice. J Diabetes Res 2019; 2019:2813489. [PMID: 31467926 PMCID: PMC6701376 DOI: 10.1155/2019/2813489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Abstract
While the autoimmune character of T1D (type 1 diabetes) is being challenged, it is currently recognized that inflammation plays a key role in its development. We hypothesized that glucotoxicity could contribute to β-cell mass destruction through participation in islet inflammation. We evaluated the potential of empagliflozin (EMPA) and GABA (gamma-aminobutyric acid) to protect β-cell mass against glucotoxicity and to increase β-cell mass after diagnosis of T1D. Empagliflozin is a SGLT2 (sodium-dependent glucose cotransporter) inhibitor which thereby blocks glucose recapture by the kidney and promotes glucose excretion in urine. GABA is an inhibitory neurotransmitter, which stimulates α-to-β cell transdifferentiation. In streptozotocin-treated mice, empagliflozin and/or GABA were delivered for a period of five days or three weeks. As compared to untreated T1D mice, EMPA-treated T1D mice had decreased FFA (free fatty acid) levels and improved glucose homeostasis. EMPA-treated T1D mice had higher islet density, with preserved architecture, compared to T1D mice, and EMPA-treated T1D mice also differed from T1D mice by the total absence of immune cell infiltration within islets. Islets from EMPA-treated mice were also less subjected to ER (endoplasmic reticulum) stress and inflammation, as shown by qPCR analysis. Glucose homeostasis parameters and islet area/pancreas area ratio improved, as compared to diabetic controls, when T1D mice were treated for three weeks with GABA and EMPA. T1D EMPA+GABA mice had higher glucagon levels than T1D mice, without modifications of glucagon area/islet area ratios. In conclusion, empagliflozin and GABA, used in monotherapy in streptozotocin-induced diabetic mice, have positive effects on β-cell mass preservation or proliferation through an indirect effect on islet cell inflammation and ER stress. Further research is mandatory to evaluate whether empagliflozin and GABA may be a potential therapeutic target for the protection of β-cell mass after new-onset T1D.
Collapse
Affiliation(s)
- Caroline Daems
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Sophie Welsch
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Hasnae Boughaleb
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Juliette Vanderroost
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Annie Robert
- Pôle d'Epidémiologie et Biostatistique, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Etienne Sokal
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| |
Collapse
|
34
|
Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol Res 2018; 137:179-192. [PMID: 30315968 DOI: 10.1016/j.phrs.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulative evidence shows that chronic hyperglycaemia is a major factor implicated in the development of pancreatic β-cell dysfunction in diabetic patients. Furthermore, most of these patients display impaired insulin signalling that is responsible for accelerated pancreatic β-cell damage. Indeed, prominent pathways involved in glucose metabolism such as phosphatidylinositol 3-kinase/ protein kinase B (PI3-K/AKT) and 5' AMP-activated protein kinase (AMPK) are impaired in an insulin resistant state. The impairment of this pathway is associated with over production of reactive oxygen species and pro-inflammatory factors that supersede pancreatic β-cell damage. Although several antidiabetic drugs can improve β-cell function by modulating key regulators such as PI3-K/AKT and AMPK, evidence of their β-cell regenerative and protective effect is scanty. As a result, there has been continued exploration of novel antidiabetic therapeutics with abundant antioxidant and antiinflammatory properties that are essential in protecting against β-cell damage. Such therapies include triterpenes, which have displayed robust effects to improve glycaemic tolerance, insulin secretion, and pancreatic β-cell function. This review summarises most relevant effects of various triterpenes on improving pancreatic β-cell function in both in vitro and in vivo experimental models. A special focus falls on studies reporting on the ameliorative properties of these compounds against insulin resistance, oxidative stress and inflammation, the well-known factors involved in hyperglycaemia associated tissue damage.
Collapse
Affiliation(s)
- Sihle E Mabhida
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Stellenbosch, South Africa
| | - Musawenkosi Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Rebamang A Mosa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
35
|
Chang YH, Lin HC, Hwu DW, Chang DM, Lin KC, Lee YJ. Elevated serum cytokeratin-18 concentration in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Ann Clin Biochem 2018; 56:141-147. [PMID: 30089409 DOI: 10.1177/0004563218796259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum cytokeratin-18 is believed to be a marker of hepatic cell damage. However, few studies have discussed about the serum cytokeratin-18 concentration in type 2 diabetes mellitus patients and investigated its association with non-alcoholic fatty liver disease as well as metabolic biomarkers. METHODS Healthy participants and type 2 diabetes mellitus patients were enrolled. Physical and metabolic factors were recorded, and non-alcoholic fatty liver disease was screened by abdominal ultrasound and the fatty liver index. The cytokeratin-18 concentration was detected using two commercially available immunoassay kits (M30 and M65 ELISA kit, Previa AB, Sweden). RESULTS Overall, 22.8% (29/127) and 35.9% (42/117) of the participants were diagnosed with non-alcoholic fatty liver disease in the non-diabetes mellitus group and type 2 diabetes mellitus group, respectively. In the non-diabetes mellitus group and type 2 diabetes mellitus group, our result showed that participants with non-alcoholic fatty liver disease had a higher serum cytokeratin-18 M30 and cytokeratin-18 M65 concentration as compared with participants without non-alcoholic fatty liver disease. Interestingly, as compared with healthy participants without non-alcoholic fatty liver disease, our result also demonstrated that type 2 diabetes mellitus patients without non-alcoholic fatty liver disease had a higher serum cytokeratin-18 M30 (108.4 ± 66.2 vs. 87.1 ± 34.6 U/L; P = 0.038) and cytokeratin-18 M65 concentration (285.4 ± 115.3 vs. 248.5 ± 111.3 U/L; P = 0.031). The independent relationship between type 2 diabetes mellitus and cytokeratin-18 was further strengthened by the significant positive association between fasting plasma glucose and serum cytokeratin-18 concentration via multivariate regression analyses (cytokeratin-18 M30: β = 0.034, P = 0.029; cytokeratin-18 M65: β = 0.044, P = 0.002). CONCLUSIONS Independent of non-alcoholic fatty liver disease, our results suggested that the cytokeratin-18 concentration is closely associated with the hyperglycaemic milieu. The association between serum cytokeratin-18 and type 2 diabetes mellitus may be worthy of further investigation.
Collapse
Affiliation(s)
| | | | - Der-Wei Hwu
- 1 Lee's Endocrinology Clinic, Pingtung, Taiwan
| | | | | | | |
Collapse
|
36
|
Xiao L, Zhou Y, Ma J, Sun W, Cao L, Wang B, Zhu C, Yang S, Wang D, Yuan J, Chen W. Oxidative DNA damage mediates the association between urinary metals and prevalence of type 2 diabetes mellitus in Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1327-1333. [PMID: 30857096 DOI: 10.1016/j.scitotenv.2018.01.317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 06/09/2023]
Abstract
Previous publications have indicated that some metals are associated with an increased prevalence of type 2 diabetes mellitus (T2DM); however, the mechanisms remain largely unknown. This study aimed to quantify the associations of oxidative DNA damage with urinary metals and prevalence of T2DM among the general population, and further to assess the role of oxidative DNA damage in mediating the association of urinary metals with prevalence of T2DM. Diagnoses of T2DM were performed clinically or by measuring fasting levels of plasma glucose ≥7.0mmol/L. Concentrations of urinary metals and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in 2127 participants were measured using inductively coupled plasma-mass spectrometry and high-performance liquid chromatography. Relationships among urinary metals, 8-OHdG (a biomarker for oxidative DNA damage), and prevalence of T2DM were analyzed using mediation analysis. After adjusting for covariates, we found that the log-transformed levels of urinary copper, arsenic, selenium, molybdenum, and antimony were positively associated with prevalence of T2DM. Urinary 8-OHdG was not only positively correlated with copper, arsenic, selenium, and antimony in an upwardly trending, dose-responsive manner but was also positively associated with prevalence of T2DM (odds ratio (OR): 1.95; 95% CI: 1.17-3.24). Mediation analysis estimated that urinary 8-OHdG mediated 13.22% and 8.84% of associations between prevalence of T2DM and concentrations of urinary arsenic and antimony, respectively (all P value<0.05). Our findings suggested that urinary arsenic and antimony concentrations were associated with an increased prevalence of T2DM by a mechanism partly involving oxidative DNA damage.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weiwei Sun
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
37
|
Skog O, Korsgren O. Aetiology of type 1 diabetes: Physiological growth in children affects disease progression. Diabetes Obes Metab 2018; 20:775-785. [PMID: 29083510 DOI: 10.1111/dom.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
The prevailing view is that type 1 diabetes (T1D) develops as a consequence of a severe decline in β-cell mass resulting from T-cell-mediated autoimmunity; however, progression from islet autoantibody seroconversion to overt diabetes and finally to total loss of C-peptide production occurs in most affected individuals only slowly over many years or even decades. This slow disease progression should be viewed in relation to the total β-cell mass of only 0.2 to 1.5 g in adults without diabetes. Focal lesions of acute pancreatitis with accumulation of leukocytes, often located around the ducts, are frequently observed in people with recent-onset T1D, and most patients display extensive periductal fibrosis, the end stage of inflammation. An injurious inflammatory adverse event, occurring within the periductal area, may have negative implications for islet neogenesis, dependent on stem cells residing within or adjacent to the ductal epithelium. This could in part prevent the 30-fold increase in β-cell mass that would normally occur during the first 20 years of life. This increase occurs in order to maintain glucose metabolism during the physiological increases in insulin production that are required to balance the 20-fold increase in body weight during childhood and increased insulin resistance during puberty. Failure to expand β-cell mass during childhood would lead to clinically overt T1D and could help to explain the apparently more aggressive form of T1D occurring in growing children when compared with that observed in affected adults.
Collapse
Affiliation(s)
- Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Su WJ, Peng W, Gong H, Liu YZ, Zhang Y, Lian YJ, Cao ZY, Wu R, Liu LL, Wang B, Wang YX, Jiang CL. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation 2017; 14:210. [PMID: 29084550 PMCID: PMC5663104 DOI: 10.1186/s12974-017-0985-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Abundant reports indicated that depression was often comorbid with type 2 diabetes and even metabolic syndrome. Considering they might share common biological origins, it was tentatively attributed to the chronic cytokine-mediated inflammatory response which was induced by dysregulation of HPA axis and overactivation of innate immunity. However, the exact mechanisms remain obscure. Herein, we mainly focused on the function of the NLRP3 inflammasome to investigate this issue. Methods Male C57BL/6 mice were subjected to 12 weeks of chronic unpredictable mild stress (CUMS), some of which were injected with glyburide or fluoxetine. After CUMS procedure, behavioral and metabolic tests were carried out. In order to evaluate the systemic inflammation associated with inflammasome activation, IL-1β and inflammasome components in hippocampi and pancreases, as well as corticosterone and IL-1β in serum were detected separately. Moreover, immunostaining was performed to assess morphologic characteristics of pancreases. Results In the present study, we found that 12 weeks’ chronic stress resulted in depressive-like behavior comorbid with insulin resistance. Furthermore, antidiabetic drug glyburide, an inhibitor of the NLRP3 inflammasome, was discovered to be effective in preventing the experimental comorbidity. In brief, it improved behavioral performance, ameliorated insulin intolerance as well as insulin signaling in the hippocampus possibly through inhibiting NLRP3 inflammasome activation by suppressing the expression of TXNIP. Conclusions All these evidence supported our hypothesis that chronic stress led to comorbidity of depressive-like behavior and insulin resistance via long-term mild inflammation. More importantly, based on the beneficial effects of blocking the activation of the NLRP3 inflammasome, we provided a potential therapeutic target for clinical comorbidity and a new strategy for management of both diabetes and depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Wei Peng
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Hong Gong
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yong-Jie Lian
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Zhi-Yong Cao
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China.,Department of Psychiatry, The 102nd Hospital of PLA, 55 North Heping Road, Changzhou, China
| | - Ran Wu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Lin-Lin Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Bo Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China.
| |
Collapse
|
39
|
Liu H, Yin JJ, Cao MM, Liu GD, Su Y, Li YB. Endoplasmic reticulum stress induced by lipopolysaccharide is involved in the association between inflammation and autophagy in INS‑1 cells. Mol Med Rep 2017; 16:5787-5792. [PMID: 28849211 PMCID: PMC5865759 DOI: 10.3892/mmr.2017.7350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is a chronic inflammatory disease. Autophagy, the dynamic process of lysosomal degradation of damaged organelles and proteins, may protect β‑cells from destruction by inflammation in type 2 diabetes. The present study investigated the role of autophagy, inflammation and endoplasmic reticulum (ER) stress in type 2 diabetes. INS‑1 cells were incubated with lipopolysaccharide. The chemical chaperone 4‑phenylbutyric acid was used to inhibit ER stress, and 3‑methyadenine (3‑MA) was used to inhibit autophagy. Apoptosis was detected by flow cytometry and cell proliferation using Cell Counting kit‑8 solution. Light chain‑3B, interleukin (IL) 1β, caspase‑1 and C/EBP homologous protein production were assessed by western blotting, and rat activating transcription factor 4 and rat binding immunoglobulin heavy chain protein gene expression were determined by real‑time reverse transcription‑polymerase chain reaction. The results showed that inhibiting autophagy with 3‑MA unexpectedly contributed to cell death in β‑cells. This response was associated with an increase in inflammatory cytokines, including IL1β and caspase‑1. Inhibiting ER stress with 4‑phenylbutyric acid led to a decrease in cell apoptosis. These results showed that autophagy may have a protective effect by reducing inflammatory cytokines in β‑cells. In addition, the inositol‑requiring enzyme 1 pathway mediated the ER stress associated with autophagy and inflammatory cytokines (IL1β and caspase‑1). Therefore, inflammatory cytokines may be critical signalling nodes, which are associated with ER stress‑mediated β‑cell death.
Collapse
Affiliation(s)
- Han Liu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia-Jing Yin
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming-Ming Cao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guo-Dong Liu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Su
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan-Bo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
40
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
41
|
Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, Turkmen K. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res 2017; 144:515-524. [PMID: 28256459 PMCID: PMC5345297 DOI: 10.4103/0971-5916.200887] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM.
Collapse
Affiliation(s)
- Levent Demirtas
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Aydin Guclu
- Division of Nephrology, Kırsehir Training and Research Hospital, Kırsehir, Turkey
| | - Fatih Mehmet Erdur
- Department of Internal Medicine, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| | - Emin Murat Akbas
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Adalet Ozcicek
- Department of Internal Medicine, Erzincan University, Erzincan, Turkey
| | - Didem Onk
- Department of Reanimation & Anesthesiology, Erzincan University, Erzincan, Turkey
| | - Kultigin Turkmen
- Department of Internal Medicine, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
42
|
Yang JS, Lu CC, Kuo SC, Hsu YM, Tsai SC, Chen SY, Chen YT, Lin YJ, Huang YC, Chen CJ, Lin WD, Liao WL, Lin WY, Liu YH, Sheu JC, Tsai FJ. Autophagy and its link to type II diabetes mellitus. Biomedicine (Taipei) 2017; 7:8. [PMID: 28612706 PMCID: PMC5479440 DOI: 10.1051/bmdcn/2017070201] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting survival. Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, neurodegeneration, infection disease and aging. DM is a metabolic and chronic disorder and has a higher prevalence in the world as well as in Taiwan. The character of diabetes mellitus is hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and failure of producing insulin on pancreatic beta cells. In T2DM, autophagy is not only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, lipids and miss-folded proteins. In addition, autophagy plays an important role in pancreatic beta cell dysfunction and insulin resistance. In this review, we summarize the roles of autophagy in T2DM.
Collapse
Affiliation(s)
- Jai-Sing Yang
-
Department of Medical Research, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| | - Chi-Cheng Lu
-
Department of Medical Research, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| | - Sheng-Chu Kuo
-
School of Pharmacy, China Medical University Taichung
404 Taiwan
| | - Yuan-Man Hsu
-
Department of Biological Science and Technology, China Medical University Taichung
404 Taiwan
| | - Shih-Chang Tsai
-
Department of Biological Science and Technology, China Medical University Taichung
404 Taiwan
| | - Shih-Yin Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yng-Tay Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Ying-Ju Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yu-Chuen Huang
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Chao-Jung Chen
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wei-De Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wen-Lin Liao
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Wei-Yong Lin
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Yu-Huei Liu
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
| | - Jinn-Chyuan Sheu
-
Institute of Biomedical Sciences, National Sun Yat-sen University Kaohsiung
804 Taiwan
| | - Fuu-Jen Tsai
-
Genetics Center, Department of Medical Research, China Medical University Hospital Taichung
404 Taiwan
-
School of Chinese Medicine, China Medical University Taichung
404 Taiwan
-
Department of Medical Genetics, China Medical University Hospital, China Medical University Taichung
404 Taiwan
| |
Collapse
|
43
|
Hui Q, Asadi A, Park YJ, Kieffer TJ, Ao Z, Warnock GL, Marzban L. Amyloid formation disrupts the balance between interleukin-1β and interleukin-1 receptor antagonist in human islets. Mol Metab 2017; 6:833-844. [PMID: 28752047 PMCID: PMC5518725 DOI: 10.1016/j.molmet.2017.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives β-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and β-cell death in T2D. We recently showed the role of interleukin-1β (IL-1β)/Fas/caspase-8 apoptotic pathway in amyloid-induced β-cell death. In this study, we used human islets in culture as an ex vivo model of amyloid formation to: (1) investigate the effects of amyloid on islet levels of the natural IL-1 receptor antagonist (IL-1Ra); (2) examine if modulating the IL-1β/IL-1Ra balance can prevent amyloid-induced β-cell Fas upregulation and apoptosis. Methods Isolated human islets (n = 10 donors) were cultured in elevated glucose (to form amyloid) with or without a neutralizing human IL-1β antibody for up to 7 days. Parallel studies were performed with human islets in which amyloid formation was prevented by adeno-siRNA-mediated suppression of hIAPP expression (as control). β-cell levels of IL-1Ra, Fas, apoptosis as well as islet function, insulin- and amyloid-positive areas, and IL-1Ra release were assessed. Results Progressive amyloid formation in human islets during culture was associated with alterations in IL-1Ra. Islet IL-1Ra levels were higher at early stages but were markedly reduced at later stages of amyloid formation. Furthermore, IL-1Ra release from human islets was reduced during 7-day culture in a time-dependent manner. These changes in IL-1Ra production and release from human islets during amyloid formation adversely correlated with islet IL-1β levels, β-cell Fas expression and apoptosis. Treatment with IL-1β neutralizing antibody markedly reduced amyloid-induced β-cell Fas expression and apoptosis, thereby improving islet β-cell survival and function during culture. Conclusions These data suggest that amyloid formation impairs the balance between IL-1β and IL-1Ra in islets by increasing IL-1β production and reducing IL-1Ra levels thereby promoting β-cell dysfunction and death. Restoring the IL-1β/IL-1Ra ratio may provide an effective strategy to protect islet β-cells from amyloid toxicity in T2D. Endogenous amyloid formation alters IL-1Ra levels in human islet β-cells. Amyloid impairs islet IL-1β/IL-1Ra balance by promoting IL-1β and reducing IL-1Ra. Restoring IL-1β/IL-1Ra ratio by blocking IL-1β protects human islets against amyloid.
Collapse
Key Words
- Amylin
- BSA, bovine serum albumin
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- IL-1R1, IL-1 receptor type I
- IL-1Ra, IL-1 receptor antagonist
- IL-1β, interleukin-1β
- Interleukin-1 receptor antagonist
- Interleukin-1β
- Islet amyloid
- Islet amyloid polypeptide
- Islet inflammation
- KRB, Krebs–Ringer bicarbonate
- PFA, paraformaldehyde
- T2D, type 2 diabetes
- Type 2 diabetes
- hIAPP, human islet amyloid polypeptide
- nIL1β, neutralizing IL-1β
- rIAPP, rat islet amyloid polypeptide
- β-cell apoptosis
Collapse
Affiliation(s)
- Queenie Hui
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ali Asadi
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Garth L Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
A novel PTP1b inhibitor vanadium-flavone complex: synthesis and pharmacodynamic evaluation in streptozotocin-induced diabetic mice. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1895-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Abstract
In this review, we present findings that support autocrine cell protection by C-peptide in the context of clinical studies of type 1 diabetes (T1D), which universally measure C-peptide serum levels as a surrogate for β cell functional mass. Over the last decade, evidence has accumulated that supports models in which C-peptide, cosecreted with insulin by pancreatic β cells, acts on peripheral targets including the vascular endothelium to reduce oxidative stress and apoptosis subsequent to exposure to diabetic insults. In parallel, as assays have become more sensitive, C-peptide has been detected in the circulation of most subjects with T1D where higher C-peptide levels are associated with fewer and slower development of diabetic microvascular complications, consistent with antioxidant protection by C-peptide. Clinical trials investigating C-peptide-replacement therapy effects have demonstrated amelioration of T1D nephropathy and neuropathy. Recently, the antioxidant action of C-peptide was extended to the β cells secreting it, that is an autocrine mechanism. Autocrine protection has major implications for the treatment of diabetes because the more C-peptide secreted, the more protection provided to the same β cells resulting in a slower decay in β cell functional mass over the time course of disease. Why β cells evolved to cosecrete an antioxidant C-peptide hormone together with the glycaemia-lowering insulin hormone is explored in the context of proposed evolutionary advantages of physiologically transient oxidative stress and insulin resistance as an adaptation for survival through times of fuel scarcity. The importance of recognizing autocrine C-peptide protection of functional β cell mass in observational clinical studies, and its therapeutic implications in interventional C-peptide-replacement studies, will be discussed.
Collapse
Affiliation(s)
- P Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. Int Urol Nephrol 2016; 49:837-844. [DOI: 10.1007/s11255-016-1488-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
|
47
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
48
|
Morris JL, Bridson TL, Alim MA, Rush CM, Rudd DM, Govan BL, Ketheesan N. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes. Biol Open 2016; 5:1149-62. [PMID: 27402965 PMCID: PMC5004603 DOI: 10.1242/bio.016790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D.
Collapse
Affiliation(s)
- Jodie L Morris
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Tahnee L Bridson
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Md Abdul Alim
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Catherine M Rush
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Donna M Rudd
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Brenda L Govan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Natkunam Ketheesan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
49
|
Liu J, Wang Y, Hu Y, Leng S, Wang G. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study. J Diabetes Complications 2016; 30:898-902. [PMID: 27012460 DOI: 10.1016/j.jdiacomp.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/13/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
AIM To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. METHODS In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. RESULTS 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. CONCLUSIONS HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese.
Collapse
Affiliation(s)
- Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Physical Examination Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yanjin Hu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, Guggino G, Berardicurti O, Carubbi F, Triolo G, Cipriani P. IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol 2016; 12:849-55. [PMID: 26999417 DOI: 10.1586/1744666x.2016.1168293] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although in the past the prevention of joint destruction in rheumatoid arthritis (RA) was strongly emphasized, now a great interest is focused on associated comorbidities in these patients. Multiple data suggest that a large percentage of RA patients are affected by Type 2 Diabetes (T2D), whose incidence has reached epidemic levels in recent years, thus increasing the health care costs. A better knowledge about the pathogenesis of these diseases as well as the mechanisms of action of drugs may allow both policy designers and physicians to choose the most effective treatments, thus lowering the costs. This review will focus on the role of Interleukin (IL)-1β in the pathogenesis of both the diseases, the efficacy of IL-1 blocking molecules in controlling these diseases, and will provide information suggesting that targeting IL-1β, in patients affected by both RA and T2D, may be a promising therapeutic choice.
Collapse
Affiliation(s)
- Roberto Giacomelli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Piero Ruscitti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Saverio Alvaro
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Ciccia
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Vasiliki Liakouli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Paola Di Benedetto
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giuliana Guggino
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Onorina Berardicurti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Carubbi
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giovanni Triolo
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Paola Cipriani
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| |
Collapse
|