1
|
Zhao Y, Lv H, Yu C, Liang J, Yu H, Du Z, Zhang R. Systemic inhibition of mitochondrial fatty acid β-oxidation impedes zebrafish ventricle regeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167442. [PMID: 39059593 DOI: 10.1016/j.bbadis.2024.167442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid β-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.
Collapse
Affiliation(s)
- Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongbo Lv
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Chunxiao Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hong Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Zhenyu Du
- School of Life Sciences, East China Normal University, Shanghai, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
2
|
Zhao J, Han L, Zhang YR, Liu SM, Ji DR, Wang R, Yu YR, Jia MZ, Chai SB, Tang HF, Huang W, Qi YF. Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1204. [PMID: 39338366 PMCID: PMC11435185 DOI: 10.3390/ph17091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Wang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yan-Rong Yu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Mo-Zhi Jia
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing 102206, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Wei Huang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
3
|
Sobhy MH, Ismail A, Abdel-Hamid MS, Wagih M, Kamel M. 2-Methoxyestradiol ameliorates doxorubicin-induced cardiotoxicity by regulating the expression of GLUT4 and CPT-1B in female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7129-7139. [PMID: 38652282 PMCID: PMC11422279 DOI: 10.1007/s00210-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
The clinical usage of doxorubicin (DOX) is hampered due to cardiomyopathy. Studies reveal that estrogen (E2) modulates DOX-induced cardiotoxicity. Yet, the exact mechanism is unclear. The objective of the current study is to evaluate the influence of E2 and more specifically its metabolite 2-methoxyestradiol (2ME) on cardiac remodeling and the reprogramming of cardiac metabolism in rats subjected to DOX cardiotoxicity. Seventy-two female rats were divided into groups. Cardiotoxicity was induced by administering DOX (2.5 mg/kg three times weekly for 2 weeks). In some groups, the effect of endogenous E2 was abolished by ovariectomy (OVX) or by using the estrogen receptor (ER) blocker Fulvestrant (FULV). The effect of administering exogenous E2 or 2ME in the OVX group was studied. Furthermore, the influence of entacapone (COMT inhibitor) on induced cardiotoxicity was investigated. The evaluated cardiac parameters included ECG, histopathology, cardiac-related enzymes (creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH)), and lipid profile markers (total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL)). The expression levels of key metabolic enzymes (glucose transporter-4 (GLUT4) and carnitine palmitoyltransferase-1B (CPT-1B)) were assessed. Our results displayed that co-treatment of E2 and/or 2ME with DOX significantly reduced DOX-induced cardiomyopathy and enhanced the metabolism of the heart through the maintenance of GLUT4 and CPT-1B enzymes. On the other hand, co-treatment of DOX with OVX, entacapone, or FULV increased the toxic effect of DOX by further reducing these important metabolic enzymes. E2 and 2ME abrogate DOX-induced cardiomyopathy partly through modulation of GLUT 4 and CPT-1B enzymes.
Collapse
Affiliation(s)
- Mohamed H Sobhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Abdel-Hamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mohamed Wagih
- Department of Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Niu N, Miao H, Ren H. Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells. ESC Heart Fail 2024. [PMID: 39010664 DOI: 10.1002/ehf2.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
AIMS This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology. METHODS RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification. RESULTS GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models. CONCLUSIONS This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.
Collapse
Affiliation(s)
- Nan Niu
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Huangtai Miao
- Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongmei Ren
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
5
|
Deogharia M, Gurha P. Fueling cardiac myocyte proliferation. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:2. [PMID: 38455511 PMCID: PMC10919903 DOI: 10.20517/jca.2023.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Liao X, Zhou S, Zeng D, Ying W, Lian D, Zhang M, Ge J, Chen M, Liu Y, Lin Y. Roles of the crucial mitochondrial DNA in hypertrophic cardiomyopathy prognosis and diagnosis: A review. Medicine (Baltimore) 2023; 102:e36368. [PMID: 38050313 PMCID: PMC10695538 DOI: 10.1097/md.0000000000036368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Mitochondrial DNA is implicated in hypertrophic cardiomyopathy (HCM) development. We aimed to identify valuable mtDNAs that contribute to the development of HCM. Differentially expressed mitochondrial DNAs (DEMGs) between HCM and controls were screened. GO and KEGG functional enrichment analyses were performed, and the optimum genes were explored using the LASSO regression mode and SVM-RFE model. A diagnostic scoring model was constructed and verified using ROC curves. Mitochondria-based subtypes were identified. Immune performance among the subtypes including immune cells, immune checkpoint genes, and HLA family genes was analyzed. Finally, an mRNA-transcription factor (TF)-miRNA network was constructed using Cytoscape software. Twelve DEMGs in HCM were selected. Among them, 6 DEMGs, including PDK4, MGST1, TOMM40, LYPLAL1, GATM, and CPT1B were demonstrated as DEMGs at the point of intersection of Lasso regression and SVM-RFE. The ROC of the model for the training and validation datasets was 0.999 and 0.958, respectively. Two clusters were divided, and 4 immune cell types were significantly different between the 2 clusters, including resting mast cells, macrophages M2, and plasma cells. Nine upregulated KEGG pathways were enriched in cluster 1 vs. cluster 2 including O-glycan biosynthesis, the ErbB signaling pathway, and the GnRH signaling pathway. Meanwhile, 49 down-regulated pathways were enriched such as the toll-like signaling pathway and natural killer cell-mediated cytotoxicity pathway. The 6 gene-based mRNA-TF-miRNA networks included other 133 TFs and 18 miRNAs. Six DEMGs in HCM, including PDK4, MGST1, TOMM40, LYPLAL1, GATM, and CPT1B, can be indicative of HCM prognosis or disease progression.
Collapse
Affiliation(s)
- Xuewen Liao
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou City, China
| | - Shunkai Zhou
- Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Dehua Zeng
- Department of Pathology, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Wenmin Ying
- Department of Radiotherapy, Fuding Hospital, Fuding City, China
| | - Duohuang Lian
- Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Meiqing Zhang
- Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Jianjun Ge
- Department of Thoracic Surgery, No. 2 Hospital of Nanping City, Nanping City, China
| | - Mengmeng Chen
- Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Yaming Liu
- Department of Thoracic and Cardiac Surgery, 900th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Fuzhou City, China
| | - Yazhou Lin
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou City, China
| |
Collapse
|
7
|
Li X, Wu F, Günther S, Looso M, Kuenne C, Zhang T, Wiesnet M, Klatt S, Zukunft S, Fleming I, Poschet G, Wietelmann A, Atzberger A, Potente M, Yuan X, Braun T. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 2023; 622:619-626. [PMID: 37758950 PMCID: PMC10584682 DOI: 10.1038/s41586-023-06585-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fan Wu
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ting Zhang
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marion Wiesnet
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Klatt
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Astrid Wietelmann
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centres, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Yang Y, Lin C, Zheng Q, Zhang L, Li Y, Huang Q, Wu T, Zhao Z, Li L, Luo J, Jiang Y, Zhang Q, Wang X, Xia C, Pang J. L-carnitine attenuated hyperuricemia-associated left ventricular remodeling through ameliorating cardiomyocytic lipid deposition. Front Pharmacol 2023; 14:1016633. [PMID: 36817129 PMCID: PMC9929955 DOI: 10.3389/fphar.2023.1016633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Hyperuricemia (HUA) is associated with left ventricular remodeling (LVR) and thereby causes the initiation and development of a large number of cardiovascular diseases. LVR is typically accompanied by cardiomyocyte energy metabolic disorder. The energy supply of cardiomyocytes is provided by glucose and fatty acid (FA) metabolism. Currently, the effect of HUA on cardiomyocytic FA metabolism is unclear. In this study, we demonstrate that UA-induced cardiomyocyte injury is associated with cytoplasmic lipid deposition, which can be ameliorated by the FA metabolism-promoting drug L-carnitine (LC). UA suppresses carnitine palmitoyl transferase 1B (CPT1B), thereby inhibiting FA transport into the mitochondrial inner matrix for elimination. LC intervention can ameliorate HUA-associated left ventricular anterior wall thickening in mice. This study showed that FA transport dysfunction plays is a critical mechanism in both cardiomyocytic injury and HUA-associated LVR and promoting cytoplasmic FA transportation through pharmacological treatment by LC is a valid strategy to attenuate HUA-associated LVR.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China,NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leqi Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghua Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zean Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xing Wang
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Jianxin Pang, ; Chenglai Xia,
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Jianxin Pang, ; Chenglai Xia,
| |
Collapse
|
9
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
11
|
Kushwaha P, Alekos NS, Kim SP, Li Z, Wolfgang MJ, Riddle RC. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice. Front Physiol 2022; 13:997358. [PMID: 36187756 PMCID: PMC9515402 DOI: 10.3389/fphys.2022.997358] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal remodeling is an energy demanding process that is linked to nutrient availability and the levels of metabolic hormones. While recent studies have examined the metabolic requirements of bone formation by osteoblasts, much less is known about the energetic requirements of bone resorption by osteoclasts. The abundance of mitochondria in mature osteoclasts suggests that the production of an acidified micro-environment conducive to the ionization of hydroxyapatite, secretion of matrix-degrading enzymes, and motility during resorption requires significant energetic capacity. To investigate the contribution of mitochondrial long chain fatty acid β-oxidation to osteoclast development, we disrupted the expression of carnitine palmitoyltransferase-2 (Cpt2) in myeloid-lineage cells. Fatty acid oxidation increases dramatically in bone marrow cultures stimulated with RANKL and M-CSF and microCT analysis revealed that the genetic inhibition of long chain fatty acid oxidation in osteoclasts significantly increases trabecular bone volume in female mice secondary to reduced osteoclast numbers. In line with these data, osteoclast precursors isolated from Cpt2 mutants exhibit reduced capacity to form large-multinucleated osteoclasts, which was not rescued by exogenous glucose or pyruvate, and signs of an energetic stress response. Together, our data demonstrate that mitochondrial long chain fatty acid oxidation by the osteoclast is required for normal bone resorption as its inhibition produces an intrinsic defect in osteoclast formation.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nathalie S. Alekos
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Soohyun P. Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhu Li
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States,Baltimore Veterans Administration Medical Center, Baltimore, MD, United States,*Correspondence: Ryan C. Riddle,
| |
Collapse
|
12
|
Chen L, Yu D, Ling S, Xu JW. Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure. Front Cardiovasc Med 2022; 9:988360. [PMID: 36172573 PMCID: PMC9510640 DOI: 10.3389/fcvm.2022.988360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
According to traditional Chinese medicine (TCM), chronic heart failure has the basic pathological characteristics of “heart-kidney yang deficiency.” Chronic heart failure with heart- and kidney-Yang deficiency has good overlap with New York Heart Association (NYHA) classes III and IV. Traditional Chinese medicine classical prescriptions for the treatment of chronic heart failure often take “warming and tonifying kidney-Yang” as the core, supplemented by herbal compositions with functions of “promoting blood circulation and dispersing blood stasis.” Nowadays, there are still many classical and folk prescriptions for chronic heart failure treatment, such as Zhenwu decoction, Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili Qiangxin capsule. This review focuses on classical formulations and their active constituents that play a key role in preventing chronic heart failure by suppressing inflammation and modulating immune and neurohumoral factors. In addition, given that mitochondrial metabolic reprogramming has intimate relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory role of classical prescriptions and their active components in metabolic reprogramming, including glycolysis and lipid β-oxidation, is also presented. Although the exact mechanism is unknown, the classical TCM prescriptions still have good clinical effects in treating chronic heart failure. This review will provide a modern pharmacological explanation for its mechanism and offer evidence for clinical medication by combining TCM syndrome differentiation with chronic heart failure clinical stages.
Collapse
|
13
|
Exploring the Pattern of Metabolic Alterations Causing Energy Imbalance via PPARα Dysregulation in Cardiac Muscle During Doxorubicin Treatment. Cardiovasc Toxicol 2022; 22:436-461. [PMID: 35157213 DOI: 10.1007/s12012-022-09725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.
Collapse
|
14
|
Puca F, Yu F, Bartolacci C, Pettazzoni P, Carugo A, Huang-Hobbs E, Liu J, Zanca C, Carbone F, Del Poggetto E, Gumin J, Dasgupta P, Seth S, Srinivasan S, Lang FF, Sulman EP, Lorenzi PL, Tan L, Shan M, Tolstyka ZP, Kachman M, Zhang L, Gao S, Deem AK, Genovese G, Scaglioni PP, Lyssiotis CA, Viale A, Draetta GF. Medium-Chain Acyl-CoA Dehydrogenase Protects Mitochondria from Lipid Peroxidation in Glioblastoma. Cancer Discov 2021; 11:2904-2923. [PMID: 34039636 PMCID: PMC8711129 DOI: 10.1158/2159-8290.cd-20-1437] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is highly resistant to chemotherapies, immune-based therapies, and targeted inhibitors. To identify novel drug targets, we screened orthotopically implanted, patient-derived glioblastoma sphere-forming cells using an RNAi library to probe essential tumor cell metabolic programs. This identified high dependence on mitochondrial fatty acid metabolism. We focused on medium-chain acyl-CoA dehydrogenase (MCAD), which oxidizes medium-chain fatty acids (MCFA), due to its consistently high score and high expression among models and upregulation in GBM compared with normal brain. Beyond the expected energetics impairment, MCAD depletion in primary GBM models induced an irreversible cascade of detrimental metabolic effects characterized by accumulation of unmetabolized MCFAs, which induced lipid peroxidation and oxidative stress, irreversible mitochondrial damage, and apoptosis. Our data uncover a novel protective role for MCAD to clear lipid molecules that may cause lethal cell damage, suggesting that therapeutic targeting of MCFA catabolism may exploit a key metabolic feature of GBM. SIGNIFICANCE: MCAD exerts a protective role to prevent accumulation of toxic metabolic by-products in glioma cells, actively catabolizing lipid species that would otherwise affect mitochondrial integrity and induce cell death. This work represents a first demonstration of a nonenergetic role for dependence on fatty acid metabolism in cancer.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Francesca Puca
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Fei Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caterina Bartolacci
- Department of Internal Medicine Division of Hematology & Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Piergiorgio Pettazzoni
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandro Carugo
- The Translational Research to Advance Therapeutics and Innovation in Oncology Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emmet Huang-Hobbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jintan Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ciro Zanca
- The Translational Research to Advance Therapeutics and Innovation in Oncology Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Federica Carbone
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edoardo Del Poggetto
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pushan Dasgupta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sahil Seth
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Translational Research to Advance Therapeutics and Innovation in Oncology Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Zachary P Tolstyka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela K Deem
- The Translational Research to Advance Therapeutics and Innovation in Oncology Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pier Paolo Scaglioni
- Department of Internal Medicine Division of Hematology & Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Angelini A, Saha PK, Jain A, Jung SY, Mynatt RL, Pi X, Xie L. PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes. Cell Rep 2021; 37:109767. [PMID: 34610308 PMCID: PMC8658754 DOI: 10.1016/j.celrep.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and β-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA β-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Long-Chain Acyl-Carnitines Interfere with Mitochondrial ATP Production Leading to Cardiac Dysfunction in Zebrafish. Int J Mol Sci 2021; 22:ijms22168468. [PMID: 34445174 PMCID: PMC8395116 DOI: 10.3390/ijms22168468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
In the human heart, the energy supplied by the production of ATP is predominately accomplished by ß-oxidation in mitochondria, using fatty acids (FAs) as the primary fuel. Long-chain acylcarnitines (LCACs) are intermediate forms of FA transport that are essential for FA delivery from the cytosol into mitochondria. Here, we analyzed the impact of the LCACs C18 and C18:1 on mitochondrial function and, subsequently, on heart functionality in the in vivo vertebrate model system of zebrafish (Danio rerio). Since LCACs are formed and metabolized in mitochondria, we assessed mitochondrial morphology, structure and density in C18- and C18:1-treated zebrafish and found no mitochondrial alterations compared to control-treated (short-chain acylcarnitine, C3) zebrafish embryos. However, mitochondrial function and subsequently ATP production was severely impaired in C18- and C18:1-treated zebrafish embryos. Furthermore, we found that C18 and C18:1 treatment of zebrafish embryos led to significantly impaired cardiac contractile function, accompanied by reduced heart rate and diminished atrial and ventricular fractional shortening, without interfering with cardiomyocyte differentiation, specification and growth. In summary, our findings provide insights into the direct role of long-chain acylcarnitines on vertebrate heart function by interfering with regular mitochondrial function and thereby energy allocation in cardiomyocytes.
Collapse
|
17
|
Chiang DY, Lahiri S, Wang G, Karch J, Wang MC, Jung SY, Heck AJR, Scholten A, Wehrens XHT. Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart. Proteomes 2021; 9:proteomes9020027. [PMID: 34200203 PMCID: PMC8293434 DOI: 10.3390/proteomes9020027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperphosphorylation of the calcium release channel/ryanodine receptor type 2 (RyR2) at serine 2814 (S2814) is associated with multiple cardiac diseases including atrial fibrillation and heart failure. Despite recent advances, the molecular mechanisms driving pathological changes associated with RyR2 S2814 phosphorylation are still not well understood. Methods: Using affinity-purification coupled to mass spectrometry (AP-MS), we investigated the RyR2 interactome in ventricles from wild-type (WT) mice and two S2814 knock-in mutants: the unphosphorylated alanine mutant (S2814A) and hyperphosphorylated mimic aspartic acid mutant (S2814D). Western blots were used for validation. Results: In WT mouse ventricular lysates, we identified 22 proteins which were enriched with RyR2 pull-down relative to both IgG control and no antibody (beads-only) pull-downs. Parallel AP-MS using WT, S2814A, and S2814D mouse ventricles identified 72 proteins, with 20 being high confidence RyR2 interactors. Of these, 14 had an increase in their binding to RyR2 S2814A but a decrease in their binding to RyR2 S2814D. We independently validated three protein hits, Idh3b, Aifm1, and Cpt1b, as RyR2 interactors by western blots and showed that Aifm1 and Idh3b had significantly decreased binding to RyR2 S2814D compared to WT and S2814A, consistent with MS findings. Conclusion: By applying state-of-the-art proteomic approaches, we discovered a number of novel RyR2 interactors in the mouse heart. In addition, we found and defined specific alterations in the RyR2 interactome that were dependent on the phosphorylation status of RyR2 at S2814. These findings yield mechanistic insights into RyR2 regulation which may guide future drug designs.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Satadru Lahiri
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoliang Wang
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C. Wang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Y. Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-4261
| |
Collapse
|
18
|
Damen FW, Salvas JP, Pereyra AS, Ellis JM, Goergen CJ. Improving characterization of hypertrophy-induced murine cardiac dysfunction using four-dimensional ultrasound-derived strain mapping. Am J Physiol Heart Circ Physiol 2021; 321:H197-H207. [PMID: 34085843 DOI: 10.1152/ajpheart.00133.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mouse models of cardiac disease have become essential tools in the study of pathological mechanisms, but the small size of rodents makes it challenging to quantify heart function with noninvasive imaging. Building off recent developments in high-frequency four-dimensional ultrasound (4DUS) imaging, we have applied this technology to study cardiac dysfunction progression in a murine model of metabolic cardiomyopathy. Cardiac knockout of carnitine palmitoyltransferase 2 (Cpt2M-/-) in mice hinders cardiomyocyte bioenergetic metabolism of long-chain fatty acids, and leads to progressive cardiac hypertrophy and heart failure. The proposed analysis provides a standardized approach to measure localized wall kinematics and simultaneously extracts metrics of global cardiac function, LV morphometry, regional circumferential strain, and regional longitudinal strain from an interpolated 4-D mesh of the endo- and epicardial boundaries. Comparison of metric changes due to aging suggests that circumferential strain at the base and longitudinal strain along the posterior wall are most sensitive to disease progression. We further introduce a novel hybrid strain index (HSI) that incorporates information from these two regions and may have greater utility to characterize disease progression relative to other extracted metrics. Potential applications to additional disease models are discussed that could further demonstrate the utility of metrics derived from 4DUS imaging and strain mapping.NEW & NOTEWORTHY High-frequency four-dimensional ultrasound can be used in conjunction with standardized analysis procedures to simultaneously extract left-ventricular global function, morphometry, and regional strain metrics. Furthermore, a novel hybrid strain index (HSI) formula demonstrates greater performance compared with all other metrics in characterizing disease progression in a model of metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - John P Salvas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Andrea S Pereyra
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Jessica M Ellis
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
19
|
Ali MM, McMillan RP, Fausnacht DW, Kavanaugh JW, Harvey MM, Stevens JR, Wu Y, Mynatt RL, Hulver MW. Muscle-Specific Deletion of Toll-like Receptor 4 Impairs Metabolic Adaptation to Wheel Running in Mice. Med Sci Sports Exerc 2021; 53:1161-1169. [PMID: 33315811 DOI: 10.1249/mss.0000000000002579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Toll-like receptor 4 (TLR4) is an inflammatory receptor expressed ubiquitously in immune cells as well as skeletal muscle and other metabolic tissues. Skeletal muscle develops favorable inflammation-mediated metabolic adaptations from exercise training. Multiple inflammatory myokines, downstream from TLR4, are proposed links to the metabolic benefits of exercise. In addition, activation of TLR4 alters skeletal muscle substrate preference. The role of skeletal muscle TLR4 (mTLR4) in exercise metabolism has not previously been investigated. Herein, we aimed to specifically test the significance of mTLR4 to exercise-induced metabolic adaptations. METHODS We developed a novel muscle-specific TLR4 knockout (mTLR4-/-) mouse model on C57BL/6J background. Male mTLR4-/- mice and wild-type (WT) littermates were compared under sedentary (SED) and voluntary wheel running (WR) conditions for 4 wk. RESULTS mTLR4 deletion revealed marked reductions in downstream interleukin-1 receptor-associated kinase-4 (IRAK4) phosphorylation. In addition, the disruption of mTLR4 signaling prominently blunted the metabolic adaptations in WR-mTLR4-/- mice as opposed to substantial improvements exhibited by the WT counterparts. Voluntary WR in WT mice, relative to SED, resulted in significant increases in skeletal muscle fatty acid oxidation, glucose oxidation, and associated mitochondrial enzyme activities, all of which were not significantly changed in mTLR4-/- mice. CONCLUSIONS This study introduces a novel mTLR4-/- mouse model and identifies mTLR4 as an immunomodulatory effector of exercise-induced metabolic adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Mostafa M Ali
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Dane W Fausnacht
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - John W Kavanaugh
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Mordecai M Harvey
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Joseph R Stevens
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Yaru Wu
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | | |
Collapse
|
20
|
Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. J Lipid Res 2021; 62:100069. [PMID: 33757734 PMCID: PMC8082564 DOI: 10.1016/j.jlr.2021.100069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Kate L Harris
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Quin A Waterbury
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.
| |
Collapse
|
21
|
Aitken-Buck HM, Krause J, Zeller T, Jones PP, Lamberts RR. Long-Chain Acylcarnitines and Cardiac Excitation-Contraction Coupling: Links to Arrhythmias. Front Physiol 2020; 11:577856. [PMID: 33041874 PMCID: PMC7518131 DOI: 10.3389/fphys.2020.577856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
A growing number of metabolomic studies have associated high circulating levels of the amphiphilic fatty acid metabolites, long-chain acylcarnitines (LCACs), with cardiovascular disease (CVD) risk. These studies show that plasma LCAC levels can be correlated with the stage and severity of CVD and with indices of cardiac hypertrophy and ventricular function. Complementing these recent clinical associations is an extensive body of basic research that stems mostly from the twentieth century. These works, performed in cardiomyocyte and multicellular preparations from animal and cell models, highlight stereotypical derangements in cardiac electrophysiology induced by exogenous LCAC treatment that promote arrhythmic muscle behavior. In many cases, this is coupled with acute inotropic modulation; however, whether LCACs increase or decrease contractility is inconclusive. Linked to the electromechanical alterations induced by LCAC exposure is an array of effects on cardiac excitation-contraction coupling mechanisms that overload the cardiomyocyte cytosol with Na+ and Ca2+ ions. The aim of this review is to revisit this age-old literature and collate it with recent findings to provide a pathophysiological context for the growing body of metabolomic association studies that link circulating LCACs with CVD.
Collapse
Affiliation(s)
- Hamish M Aitken-Buck
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Julia Krause
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Hamburg, Germany
| | - Tanja Zeller
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Hamburg, Germany
| | - Peter P Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Nassar ZD, Mah CY, Dehairs J, Burvenich IJG, Irani S, Centenera MM, Helm M, Shrestha RK, Moldovan M, Don AS, Holst J, Scott AM, Horvath LG, Lynn DJ, Selth LA, Hoy AJ, Swinnen JV, Butler LM. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife 2020; 9:e54166. [PMID: 32686647 PMCID: PMC7386908 DOI: 10.7554/elife.54166] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Collapse
Grants
- Early Career Fellowship,1138648 National Health and Medical Research Council
- Project Grants C16/15/073 and C32/17/052 KU Leuven
- Future Fellowship,FT130101004 Australian Research Council
- Beat Cancer Fellowship,PRF1117 Cancer Council South Australia
- Revolutionary Team Award,MRTA3 Movember Foundation
- Project Grant,1121057 National Health and Medical Research Council
- Project Grant,1100626 National Health and Medical Research Council
- Fellowship,1084178 National Health and Medical Research Council
- Young Investigator Award,YI 1417 Prostate Cancer Foundation of Australia
- Project Grant,1164798 Cure Cancer Australia Foundation
- Group Leader Award EMBL Australia
- Robinson Fellowship University of Sydney
- Project Grants G.0841.15 and G.0C22.19N Fonds Wetenschappelijk Onderzoek
- 1138648 National Health and Medical Research Council
- 1121057 National Health and Medical Research Council
- 1100626 National Health and Medical Research Council
- 1084178 National Health and Medical Research Council
- YI 1417 Prostate Cancer Foundation of Australia
- 1164798 Cure Cancer Australia Foundation
- FT130101004 Australian Research Council
- PRF1117 Cancer Council South Australia
- MRTA3 Movember Foundation
- Freemasons Foundation Centre for Men's Health, University of Adelaide
Collapse
Affiliation(s)
- Zeyad D Nassar
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jonas Dehairs
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Ingrid JG Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Swati Irani
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Margaret M Centenera
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Madison Helm
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Raj K Shrestha
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
| | - Max Moldovan
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Anthony S Don
- NHMRC Clinical Trials Centre, and Centenary Institute, The University of SydneyCamperdownAustralia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW SydneySydneyAustralia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, NSW 2010; University of Sydney, NSW 2006; and University of New South WalesDarlinghurstAustralia
| | - David J Lynn
- South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Luke A Selth
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of SydneyCamperdownAustralia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Lisa M Butler
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
23
|
Mereweather LJ, Montes Aparicio CN, Heather LC. Positioning Metabolism as a Central Player in the Diabetic Heart. J Lipid Atheroscler 2020; 9:92-109. [PMID: 32821724 PMCID: PMC7379068 DOI: 10.12997/jla.2020.9.1.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
In type 2 diabetes (T2D), the leading cause of death is cardiovascular complications. One mechanism contributing to cardiac pathogenesis is alterations in metabolism, with the diabetic heart exhibiting increased fatty acid oxidation and reduced glucose utilisation. The processes classically thought to underlie this metabolic shift include the Randle cycle and changes to gene expression. More recently, alternative mechanisms have been proposed, most notably, changes in post-translational modification of mitochondrial proteins in the heart. This increased understanding of how metabolism is altered in the diabetic heart has highlighted new therapeutic targets, with an aim to improve cardiac function in T2D. This review focuses on metabolism in the healthy heart and how this is modified in T2D, providing evidence for the mechanisms underlying this shift. There will be emphasis on the current treatments for the heart in diabetes, alongside efforts for metabocentric pharmacological therapies.
Collapse
Affiliation(s)
- Laura J Mereweather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Sun Y, Fan W, Xue R, Dong B, Liang Z, Chen C, Li J, Wang Y, Zhao J, Huang H, Jiang J, Wu Z, Dai G, Fang R, Yan Y, Yang T, Huang ZP, Dong Y, Liu C. Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). Hypertension 2019; 75:79-90. [PMID: 31735087 DOI: 10.1161/hypertensionaha.119.13173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.
Collapse
Affiliation(s)
- Yu Sun
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Cardiology, the Second People's Hospital of Guangdong Province, Guangzhou, Guangdong, China (Y.S.).,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Wendong Fan
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Ruicong Xue
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Bin Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zhuomin Liang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Chen
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jiayong Li
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yan Wang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingjing Zhao
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Huiling Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingzhou Jiang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zexuan Wu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Gang Dai
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Rong Fang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhan-Peng Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yugang Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Liu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| |
Collapse
|
25
|
Karkhanis A, Leow JWH, Hagen T, Chan ECY. Dronedarone-Induced Cardiac Mitochondrial Dysfunction and Its Mitigation by Epoxyeicosatrienoic Acids. Toxicol Sci 2019; 163:79-91. [PMID: 29385569 DOI: 10.1093/toxsci/kfy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dronedarone and amiodarone are structurally similar antiarrhythmic drugs. Dronedarone worsens cardiac adverse effects with unknown causes while amiodarone has no cardiac adversity. Dronedarone induces preclinical mitochondrial toxicity in rat liver and exhibits clinical hepatotoxicity. Here, we further investigated the relative potential of the antiarrhythmic drugs in causing mitochondrial injury in cardiomyocytes. Differentiated rat H9c2 cardiomyocytes were treated with dronedarone, amiodarone, and their respective metabolites namely N-desbutyldronedarone (NDBD) and N-desethylamiodarone (NDEA). Intracellular ATP content, mitochondrial membrane potential (Δψm), and inhibition of carnitine palmitoyltransferase I (CPT1) activity and arachidonic acid (AA) metabolism were measured in H9c2 cells. Inhibition of electron transport chain (ETC) activities and uncoupling of ETC were further studied in isolated rat heart mitochondria. Dronedarone, amiodarone, NDBD and NDEA decreased intracellular ATP content significantly (IC50 = 0.49, 1.84, 1.07, and 0.63 µM, respectively) and dissipated Δψm potently (IC50 = 0.5, 2.94, 12.8, and 7.38 µM, respectively). Dronedarone, NDBD, and NDEA weakly inhibited CPT1 activity while amiodarone (IC50 > 100 µM) yielded negligible inhibition. Only dronedarone inhibited AA metabolism to its regioisomeric epoxyeicosatrienoic acids (EETs) consistently and potently. NADH-supplemented ETC activity was inhibited by dronedarone, amiodarone, NDBD and NDEA (IC50 = 3.07, 5.24, 11.94, and 16.16 µM, respectively). Cytotoxicity, ATP decrease and Δψm disruption were ameliorated via exogenous pre-treatment of H9c2 cells with 11, 12-EET and 14, 15-EET. Our study confirmed that dronedarone causes mitochondrial injury in cardiomyocytes by perturbing Δψm, inhibiting mitochondrial complex I, uncoupling ETC and dysregulating AA-EET metabolism. We postulate that cardiac mitochondrial injury is one potential contributing factor to dronedarone-induced cardiac failure exacerbation.
Collapse
Affiliation(s)
- Aneesh Karkhanis
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543
- Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, National University of Singapore, Singapore 117609
| |
Collapse
|
26
|
Abstract
The emergence of bone as an endocrine organ able to influence whole body metabolism, together with comorbid epidemics of obesity, diabetes, and osteoporosis, have prompted a renewed interest in the intermediary metabolism of the osteoblast. To date, most studies have focused on the utilization of glucose by this specialized cell, but the oxidation of fatty acids results in a larger energy yield. Osteoblasts express the requisite receptors and catabolic enzymes to take up and then metabolize fatty acids, which appears to be required during later stages of differentiation when the osteoblast is dedicated to matrix production and mineralization. In this article, we provide an overview of fatty acid β-oxidation and highlight studies demonstrating that the skeleton plays a significant role in the clearance of circulating lipoproteins and non-esterified fatty acids. Additionally, we review the requirement for long-chain fatty acid metabolism during post-natal bone development and the effects of anabolic stimuli on fatty acid utilization by osteoblasts. These recent findings may help to explain the skeletal manifestations of human diseases associated with impaired lipid metabolism while also providing additional insights into the metabolic requirements of skeletal homeostasis.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
27
|
Ma Q, Liu Y, Chen L. JIP3 deficiency attenuates cardiac hypertrophy by suppression of JNK pathway. Biochem Biophys Res Commun 2018; 503:1-7. [PMID: 29604277 DOI: 10.1016/j.bbrc.2018.03.208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023]
Abstract
Pathological cardiac hypertrophy is a leading cause of morbidity and mortality worldwide; however, our understanding of the molecular mechanisms revealing the disease is still unclear. In the present study, we suggested that c-Jun N-terminal kinase (JNK)-interacting protein 3 (JIP3), involved in various cellular processes, played an essential role in regulating pathological cardiac hypertrophy through in vivo and in vitro studies. JIP3 was highly expressed in human hearts with hypertrophic cardiomyopathy (HCM), and in mouse hypertrophic hearts. Following, the wild type (WT) and JIP3-knockout (KO) mice subjected to aortic banding (AB) challenge were used as animal models with cardiac hypertrophy. The results showed that JIP3-KO mice after AB operation exhibited attenuated cardiac function, reduced fibrosis levels and decreased hypertrophic marker proteins, including atrial natriuretic peptides (Anp) and brain/B-type natriuretic peptides (Bnp) and β-myosin heavy chain (β-Mhc). Loss of JIP3 also ameliorated oxidative stress, inflammatory response, apoptosis and endoplasmic reticulum (ER) stress in hearts of mice after AB surgery. Consistently, the expressions of ER stress-related molecules, such as phosphorylated-α-subunit of the eukaryotic initiation factor-2 (eIF2α), glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP), were markedly decreased by JIP3-deficiency in hearts of AB-operated mice. JNK and its down-streaming signal of p90rsk was highly activated by AB operation in WT mice, while being significantly reversed by JIP3-ablation. Intriguingly, the in vitro results showed that promoting JNK activation by using its activator of anisomycin enhanced AngII-stimulated ER stress, oxidative stress, apoptosis and inflammatory response in cardiomyocytes isolated from WT mice. However, JIP3-KO-attenuated these pathologies was rescued by anisomycin treatment in AngII-incubated cardiomyocytes. Together, the findings indicated that blockage of JIP3 could alleviate cardiac hypertrophy via inactivating JNK pathway, and thus might be a promising strategy to prevent pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qinghua Ma
- Department of Cardiology, Linyi Central Hospital of Shandong Province, Linyi 276400, China
| | - Yuxiu Liu
- Department of Geriatric Medicine, Linyi Central Hospital of Shandong Province, Linyi 276400, China
| | - Lianghua Chen
- Department of Cardiology, Shandong Provincial Hospital, Jinan 250021, China.
| |
Collapse
|
28
|
Gene delivery of medium chain acyl-coenzyme A dehydrogenase induces physiological cardiac hypertrophy and protects against pathological remodelling. Clin Sci (Lond) 2018; 132:381-397. [PMID: 29358507 DOI: 10.1042/cs20171269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown. To examine the role of MCAD in the heart and to assess the therapeutic potential of increasing MCAD in the failing heart, we developed a gene therapy tool using recombinant adeno-associated viral vectors (rAAV) encoding MCAD. We hypothesised that increasing MCAD expression may recapitulate the cardioprotective properties of PI3K(p110α). rAAV6:MCAD or rAAV6:control was delivered to healthy adult mice and to mice with pre-existing pathological hypertrophy and cardiac dysfunction due to transverse aortic constriction (TAC). In healthy mice, rAAV6:MCAD induced physiological hypertrophy (increase in heart size, normal systolic function and increased capillary density). In response to TAC (~15 weeks), heart weight/tibia length increased by ~60% in control mice and ~45% in rAAV6:MCAD mice compared with sham. This was associated with an increase in cardiomyocyte cross-sectional area in both TAC groups which was similar. However, hypertrophy in TAC rAAV6:MCAD mice was associated with less fibrosis, a trend for increased capillary density and a more favourable molecular profile compared with TAC rAAV6:control mice. In summary, MCAD induced physiological cardiac hypertrophy in healthy adult mice and attenuated features of pathological remodelling in a cardiac disease model.
Collapse
|
29
|
Arpón A, Milagro FI, Razquin C, Corella D, Estruch R, Fitó M, Marti A, Martínez-González MA, Ros E, Salas-Salvadó J, Riezu-Boj JI, Martínez JA. Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids. Nutrients 2017; 10:E15. [PMID: 29295516 PMCID: PMC5793243 DOI: 10.3390/nu10010015] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
DNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group. Methylation was assessed at baseline and at five-year follow-up. Ingenuity pathway analysis showed routes with differentially methylated CpG sites (CpGs) related to intermediate metabolism, diabetes, inflammation, and signal transduction. Two CpGs were specifically selected: cg01081346-CPT1B/CHKB-CPT1B and cg17071192-GNAS/GNASAS, being associated with intermediate metabolism. Furthermore, cg01081346 was associated with PUFAs intake, showing a role for specific fatty acids on epigenetic modulation. Specific components of MedDiet, particularly nuts and EVOO, were able to induce methylation changes in several PWBCs genes. These changes may have potential benefits in health; especially those changes in genes related to intermediate metabolism, diabetes, inflammation and signal transduction, which may contribute to explain the role of MedDiet and fat quality on health outcomes.
Collapse
Affiliation(s)
- Ana Arpón
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; (A.A.); (F.I.M.); (A.M.); (J.-I.R.-B.)
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; (A.A.); (F.I.M.); (A.M.); (J.-I.R.-B.)
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
| | - Cristina Razquin
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain
| | - Dolores Corella
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain
| | - Ramón Estruch
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Department of Internal Medicine, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Montserrat Fitó
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Institut de Recerca Hospital del Mar de Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Amelia Marti
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; (A.A.); (F.I.M.); (A.M.); (J.-I.R.-B.)
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain
| | - Miguel A. Martínez-González
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain
| | - Emilio Ros
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Salas-Salvadó
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Human Nutrition Department, Hospital Universitari Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - José-Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; (A.A.); (F.I.M.); (A.M.); (J.-I.R.-B.)
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; (A.A.); (F.I.M.); (A.M.); (J.-I.R.-B.)
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain; (C.R.); (D.C.); (R.E.); (M.F.); (M.A.M.-G.); (E.R.); (J.S.-S.)
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain
- Madrid Institute of Advanced Studies (IMDEA), IMDEA Food, 28049 Madrid, Spain
| |
Collapse
|
30
|
A low fat diet ameliorates pathology but retains beneficial effects associated with CPT1b knockout in skeletal muscle. PLoS One 2017; 12:e0188850. [PMID: 29240830 PMCID: PMC5730174 DOI: 10.1371/journal.pone.0188850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Inhibiting fatty acid oxidation is one approach to lowering glucose levels in diabetes. Skeletal muscle specific Carnitine Palmitoyltransferase 1b knockout mice (Cpt1bm-/-) comprise a model of impaired fat oxidation; and have decreased fat mass and enhanced glucose disposal and muscle oxidative capacity compared to controls. However, unfavorable effects occur relative to controls when Cpt1bm-/- mice are fed a 25% fat diet, including decreased activity and fat free mass and increased intramuscular lipid and serum myoglobin. In this study we explore if a low fat, high carbohydrate diet can ablate the unfavorable effects while maintaining the favorable phenotype in Cpt1bm-/- mice. Mice were fed either 10% fat (low fat) or 25% fat (chow) diet. Body composition was measured biweekly and indirect calorimetry was performed. Low fat diet abolishes the decreased activity, fat, and fat free mass seen in Cpt1bm-/- mice fed chow diet. Low fat diet also reduces serum myoglobin levels in Cpt1bm-/- mice and diminishes differences in IGF-1 seen between Cpt1bm-/- mice and control mice fed chow diet. Glucose tolerance tests reveal that glucose clearance is improved in Cpt1bm-/- mice relative to controls regardless of diet, and serum analysis shows increased levels of muscle derived FGF21. Electron microscopic analyses and measurements of mRNA transcripts show increased intramuscular lipids, FGF21, mitochondrial and oxidative capacity markers regardless of diet. The favorable metabolic phenotype of Cpt1bm-/- mice therefore remains consistent regardless of diet; and a combination of a low fat diet and pharmacological inhibition of CPT1b may offer remedies to reduce blood glucose.
Collapse
|
31
|
CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol 2017; 13:769-781. [DOI: 10.1038/nrneph.2017.126] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 2017; 292:18443-18456. [PMID: 28916721 DOI: 10.1074/jbc.m117.800839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2M-/-) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M-/- mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M-/- hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M-/- mice. Lysine acetylation was reduced by ∼50% in Cpt2M-/- hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M-/- hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M-/- hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.
Collapse
Affiliation(s)
| | | | | | - Alycia G Berman
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Frederick W Damen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Craig J Goergen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
33
|
Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE, Kushwaha P, Ryan KA, Goh BC, Scafidi S, Pickett JE, Faugere MC, Kershaw EE, Thorek DLJ, Clemens TL, Wolfgang MJ, Riddle RC. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2017; 2:92704. [PMID: 28814665 DOI: 10.1172/jci.insight.92704] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Postnatal bone formation is influenced by nutritional status and compromised by disturbances in metabolism. The oxidation of dietary lipids represents a critical source of ATP for many cells but has been poorly studied in the skeleton, where the prevailing view is that glucose is the primary energy source. Here, we examined fatty acid uptake by bone and probed the requirement for fatty acid catabolism during bone formation by specifically disrupting the expression of carnitine palmitoyltransferase 2 (Cpt2), an obligate enzyme in fatty acid oxidation, in osteoblasts and osteocytes. Radiotracer studies demonstrated that the skeleton accumulates a significant fraction of postprandial fatty acids, which was equal to or in excess of that acquired by skeletal muscle or adipose tissue. Female, but not male, Cpt2 mutant mice exhibited significant impairments in postnatal bone acquisition, potentially due to an inability of osteoblasts to modify fuel selection. Intriguingly, suppression of fatty acid utilization by osteoblasts and osteocytes also resulted in the development of dyslipidemia and diet-dependent modifications in body composition. Taken together, these studies demonstrate a requirement for fatty acid oxidation during bone accrual and suggest a role for the skeleton in lipid homeostasis.
Collapse
Affiliation(s)
| | - Zhu Li
- Department of Orthopaedic Surgery
| | | | | | | | | | | | | | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie E Pickett
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L J Thorek
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cancer Molecular and Functional Imaging Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | | | - Ryan C Riddle
- Department of Orthopaedic Surgery.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Zhang Y, Fang X, Dai M, Cao Q, Tan T, He W, Huang Y, Chu L, Bao M. Cardiac-specific down-regulation of carnitine palmitoyltransferase-1b (CPT-1b) prevents cardiac remodeling in obese mice. Obesity (Silver Spring) 2016; 24:2533-2543. [PMID: 27804274 DOI: 10.1002/oby.21665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine whether inhibiting cardiac carnitine palmitoyltransferase-1b (CPT-1b) improves obesity-related cardiomyopathy. METHODS Four-week-old male C57BL/6J mice were fed with high-fat diet (HFD) for 12 weeks to induce obesity. At 6 weeks of age, mice were subjected to intramyocardial injection with lentivirus to down-regulate the expression of either cardiac CPT-1b or green fluorescent protein. Morphological, biochemical, functional, histological, and ultrastructural profiles were assessed at 16 weeks of age. RESULTS HFD administration elicited obesity, cardiac hypertrophy, and systolic dysfunction accompanied with altered biochemical parameters. In addition, HFD consumption promoted lipid accumulation and reactive oxygen species generation in cardiomyocytes and damaged myocardial ultrastructure. Cardiac CPT-1b silencing protected against HFD-induced cardiac remodeling by decreasing heart weight/tibial length ratio and increasing left ventricular ejection fraction and fractional shortening, as well as normalizing left ventricular diameter. Meanwhile, CPT-1b inhibition mitigated the changes in biochemical parameters, aggravated myocardial lipid accumulation, reduced intramyocardial reactive oxygen species production, and partly amended myocardial ultrastructural alterations in obese mice. CONCLUSIONS Cardiac CPT-1b suppression protects against the aggravation of cardiac morphology and function associated with HFD feeding. CPT-1b represents a potential therapeutic target for the treatment of cardiac dysfunction related to metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Tuantuan Tan
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenbo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
35
|
Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice. Sci Rep 2016; 6:37941. [PMID: 27892502 PMCID: PMC5124994 DOI: 10.1038/srep37941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammation, lipotoxicity and mitochondrial dysfunction have been implicated in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes. However, how these factors are intertwined in the development of obesity/insulin resistance remains unclear. Here, we examine the role of mitochondrial fat oxidation on lipid-induced inflammation in skeletal muscle. We used skeletal muscle-specific Cpt1b knockout mouse model where the inhibition of mitochondrial fatty acid oxidation results in accumulation of lipid metabolites in muscle and elevated circulating free fatty acids. Gene expression of pro-inflammatory cytokines, chemokines, and cytokine- and members of TLR-signalling pathways were decreased in Cpt1bm−/− muscle. Inflammatory signalling pathways were not activated when evaluated by multiplex and immunoblot analysis. In addition, the inflammatory response to fatty acids was reduced in primary muscle cells derived from Cpt1bm−/− mice. Gene expression of Cd11c, the M1 macrophage marker, was decreased; while Cd206, the M2 macrophage marker, was increased in skeletal muscle of Cpt1bm−/− mice. Finally, expression of pro-inflammatory markers was decreased in white adipose tissue of Cpt1bm−/− mice. We show that the inflammatory response elicited by elevated intracellular lipids in skeletal muscle is repressed in Cpt1bm−/− mice, strongly supporting the hypothesis that mitochondrial processing of fatty acids is essential for the lipid-induction of inflammation in muscle.
Collapse
|
36
|
Kolwicz SC. Lipid partitioning during cardiac stress. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1472-80. [PMID: 27040509 DOI: 10.1016/j.bbalip.2016.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
It is well documented that fatty acids serve as the primary fuel substrate for the contracting myocardium. However, extensive research has identified significant changes in the myocardial oxidation of fatty acids during acute or chronic cardiac stress. As a result, the redistribution or partitioning of fatty acids due to metabolic derangements could have biological implications. Fatty acids can be stored as triacylglycerols, serve as critical components for biosynthesis of phospholipid membranes, and form the potent signaling molecules, diacylglycerol and ceramides. Therefore, the contribution of lipid metabolism to health and disease is more intricate than a balance of uptake and oxidation. In this review, the available data regarding alterations that occur in endogenous cardiac lipid pathways during the pathological stressors of ischemia-reperfusion and pathological hypertrophy/heart failure are highlighted. In addition, changes in endogenous lipids observed in exercise training models are presented for comparison. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, School of Medicine, 850 Republican St., Seattle, WA 98109, United States.
| |
Collapse
|
37
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
38
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
39
|
Abstract
Although diabetes is mainly diagnosed based on elevated glucose levels, dyslipidemia is also observed in these patients. Chronic kidney disease (CKD), a frequent occurrence in patients with diabetes, is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. At baseline, most renal epithelial cells rely on fatty acids as their energy source. CKD, including that which occurs in diabetes, is characterized by tubule epithelial lipid accumulation. Whether this is due to increased uptake or greater local fatty acid synthesis is unknown. We have recently shown that CKD also leads to decreased fatty acid oxidation, which might be an additional mechanism leading to lipid accumulation. Defective fatty acid utilization causes energy depletion resulting in increased apoptosis and dedifferentiation, which in turn contributes to fibrosis and CKD progression. Enhanced fatty acid oxidation in the kidney induced by fenofibrate, a peroxisomal proliferator-activated receptor (PPAR)-α agonist, showed benefit in mouse models of CKD. Fenofibrate treatment also reduced albuminuria in patients with diabetes in multiple clinical trials. Taken together, these findings suggest that further understanding of lipid metabolism in diabetic kidney disease may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York, NY, USA
| | - Katalin Susztak
- Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, 405 Clinical Research Building, 415 CRB, 415 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism. Proc Natl Acad Sci U S A 2015; 112:E3300-9. [PMID: 26056297 DOI: 10.1073/pnas.1418560112] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.
Collapse
|
41
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
42
|
Abdurrachim D, Luiken JJFP, Nicolay K, Glatz JFC, Prompers JJ, Nabben M. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015; 106:194-205. [PMID: 25765936 DOI: 10.1093/cvr/cvv105] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
43
|
Cardiomyocyte lipotoxicity is mediated by Il-6 and causes down-regulation of PPARs. Biochem Biophys Res Commun 2015; 459:54-9. [DOI: 10.1016/j.bbrc.2015.02.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
|
44
|
Lee J, Ellis JM, Wolfgang MJ. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep 2015; 10:266-79. [PMID: 25578732 PMCID: PMC4359063 DOI: 10.1016/j.celrep.2014.12.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/04/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2(A-/-)), an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2(A-/-) mice became hypothermic after an acute cold challenge, and CPT2(A-/-) brown adipose tissue (BAT) failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in diet-dependent changes in adiposity but did not result in changes in body weight on low- or high-fat diets. Additionally, CPT2(A-/-) mice had suppressed high-fat diet-induced oxidative stress and inflammation in visceral white adipose tissue (WAT); however, high-fat diet-induced glucose intolerance was not improved. These data show that fatty acid oxidation is required for cold-induced thermogenesis in BAT and high-fat diet-induced oxidative stress and inflammation in WAT.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica M Ellis
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2014; 77:53-63. [PMID: 25280781 DOI: 10.1016/j.yjmcc.2014.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/20/2022]
Abstract
The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy.
Collapse
|