1
|
Yuan J, Wang Y, Wang D, Yan H, Wang N. Loxenatide Alleviates High Glucose-Induced Pancreatic β-Cell Senescence via Regulating the PERK/eIF2α Pathway. Horm Metab Res 2024; 56:890-899. [PMID: 39333044 DOI: 10.1055/a-2407-9360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective hypoglycemic agents for type 2 diabetes mellitus (T2DM). It was reported that T2DM was implicated in pancreatic β-cell senescence. Whether loxenatide regulates cellular senescence of pancreatic β-cells is to be investigated. Our results revealed that high glucose (HG)-induced cellular senescence and elevated expression of SASP factors inhibited cell proliferation and stimulated DNA damage, which were reversed by loxenatide treatment. In addition, HG induction resulted in promoted insulin secretion and insulin synthesis of pancreatic β-cells and loxenatide treatment further strengthened these influences. In addition, loxenatide could inactivate the PERK/eIF2α signaling pathway via decreasing the levels of p-PERK and p-eIF2α in HG-induced pancreatic β-cells. Furthermore, CCT020312, an activator of the PERK/eIF2α signaling pathway, abolished loxenatide-mediated inhibiting cellular senescence, elevating cell proliferation and improving DNA damage and enhancing insulin secretion of HG-induced pancreatic β-cells. In conclusion, our results indicated that loxenatide impeded cellular senescence, promoted cell proliferation, improved DNA damage, enhanced insulin secretion and insulin synthesis of HG-induced pancreatic β-cells through modulating the PERK/eIF2α signaling pathway.
Collapse
Affiliation(s)
- Junfang Yuan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Yuzhong Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Defeng Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Han Yan
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| | - Ning Wang
- Department of Endocrinology, Affiliated Hospital of Hebei University of Engineering, Handan City, Hebei Province, China
| |
Collapse
|
2
|
Zhao X, Zeng Q, Yu S, Zhu X, Bin Hu, Deng L, Zhang Y, Liu Y. GLP-1R mediates idebenone-reduced blood glucose in mice. Biomed Pharmacother 2024; 178:117202. [PMID: 39053424 DOI: 10.1016/j.biopha.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) are an innovative class of drugs with significant therapeutic value for type 2 diabetes mellitus (T2DM). The GLP-1RAs currently available on the market are biologic macromolecular peptide agents that are expensive to treat and not easy to take orally. Therefore, the development of small molecule GLP-1RAs is becoming one of the most sought-after research targets for hypoglycemic drugs. In this study, we sought to find a potential oral small molecule GLP-1RA and to evaluate its effect on insulin secretion in rat pancreatic β cells and on blood glucose in mice. We downloaded the mRNA expression profiles of GSE102194 and GSE37936 from the Gene Expression Omnibus database. Subsequently, the small molecule compound idebenone was screened through the connectivity map database. The results of molecular docking, biolayer interferometry, and cellular thermal shift assay indicated that idebenone could bind potently with GLP-1R. Furthermore, ibebenone elevated intracellular cAMP levels. The radioimmunoassay data showed that idebenone enhanced glucose-stimulated insulin secretion via agonism of GLP-1R. Moreover, the results of oral glucose tolerance tests in C57BL/6, Glp-1r-/-, and hGlp-1r mice demonstrated that the glucose-lowering effects of idebenone were mediated by GLP-1R and that there were no species differences in the agonistic effect of idebenone on GLP-1R. In summary, idebenone reduces blood glucose in mice by promoting insulin release through agonism of GLP-1R, suggesting that idebenone is probably a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qingxuan Zeng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Siting Yu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Berisha F, Blankenberg S, Nikolaev VO. Live Cell Monitoring of Phosphodiesterase Inhibition by Sulfonylurea Drugs. Biomolecules 2024; 14:985. [PMID: 39199373 PMCID: PMC11352370 DOI: 10.3390/biom14080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Sulfonylureas (SUs) are a class of antidiabetic drugs widely used in the management of diabetes mellitus type 2. They promote insulin secretion by inhibiting the ATP-sensitive potassium channel in pancreatic β-cells. Recently, the exchange protein directly activated by cAMP (Epac) was identified as a new class of target proteins of SUs that might contribute to their antidiabetic effect, through the activation of the Ras-like guanosine triphosphatase Rap1, which has been controversially discussed. We used human embryonic kidney (HEK) 293 cells expressing genetic constructs of various Förster resonance energy transfer (FRET)-based biosensors containing different versions of Epac1 and Epac2 isoforms, alone or fused to different phosphodiesterases (PDEs), to monitor SU-induced conformational changes in Epac or direct PDE inhibition in real time. We show that SUs can both induce conformational changes in the Epac2 protein but not in Epac1, and directly inhibit the PDE3 and PDE4 families, thereby increasing cAMP levels in the direct vicinity of these PDEs. Furthermore, we demonstrate that the binding site of SUs in Epac2 is distinct from that of cAMP and is located between the amino acids E443 and E460. Using biochemical assays, we could also show that tolbutamide can inhibit PDE activity through an allosteric mechanism. Therefore, the cAMP-elevating capacity due to allosteric PDE inhibition in addition to direct Epac activation may contribute to the therapeutic effects of SU drugs.
Collapse
Affiliation(s)
- Filip Berisha
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.B.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Dimakos J, Cui Y, Platt RW, Renoux C, Filion KB, Douros A. Pharmacologic Heterogeneity and Risk of Severe Hypoglycemia with Concomitant Use of Sulfonylureas and DPP-4 Inhibitors: Population-Based Cohort Study. Clin Pharmacol Ther 2023; 114:712-720. [PMID: 37326010 DOI: 10.1002/cpt.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i) interact with sulfonylureas to increase their risk of hypoglycemia. Our population-based study assessed whether intraclass pharmacologic heterogeneity among sulfonylureas (long- vs. short-acting) and DPP-4i (peptidomimetic vs. non-peptidomimetic) modifies this interaction. We conducted a cohort study using the UK's Clinical Practice Research Datalink Aurum linked to hospitalization and vital statistics data. We assembled a cohort of patients initiating sulfonylureas (2007-2020). Using a time-varying exposure definition, we assessed the risk of severe hypoglycemia (hospitalization with or death due to hypoglycemia) associated with (i) concomitant use of long-acting sulfonylureas (glimepiride and glibenclamide) with DPP-4i compared with concomitant use of short-acting sulfonylureas (gliclazide and glipizide) with DPP-4i; and (ii) concomitant use of sulfonylureas with peptidomimetic DPP-4i (saxagliptin and vildagliptin) compared with concomitant use of sulfonylureas with non-peptidomimetic DPP-4i (sitagliptin, linagliptin, and alogliptin). Time-dependent Cox models estimated confounder-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs). Our cohort included 196,138 sulfonylurea initiators. During a median follow-up of 6 years, 8,576 events of severe hypoglycemia occurred. Compared with concomitant use of short-acting sulfonylureas with DPP-4i, concomitant use of long-acting sulfonylureas with DPP-4i was not associated with the risk of severe hypoglycemia (adjusted HR: 0.87, 95% CI: 0.65-1.16). Compared with concomitant use of sulfonylureas with non-peptidomimetic DPP-4i, concomitant use of sulfonylureas with peptidomimetic DPP-4i was also not associated with the risk of severe hypoglycemia (HR: 0.96, 95% CI: 0.76-1.22). Intra-class pharmacologic heterogeneity did not modify the association between concomitant use of sulfonylureas (short- vs. long-acting) and DPP-4i (peptidomimetic vs. non-peptidomimetic) and the risk of severe hypoglycemia.
Collapse
Affiliation(s)
- Jenny Dimakos
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ying Cui
- Centre for Clinical Epidemiology, Lady Davis Institute, Montreal, Quebec, Canada
| | - Robert W Platt
- Centre for Clinical Epidemiology, Lady Davis Institute, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Christel Renoux
- Centre for Clinical Epidemiology, Lady Davis Institute, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kristian B Filion
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Antonios Douros
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
6
|
Li S, Yuan H, Yang K, Li Q, Xiang M. Pancreatic sympathetic innervation disturbance in type 1 diabetes. Clin Immunol 2023; 250:109319. [PMID: 37024024 DOI: 10.1016/j.clim.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Pancreatic sympathetic innervation can directly affect the function of islet. The disorder of sympathetic innervation in islets during the occurrence of type 1 diabetes (T1D) has been reported to be controversial with the inducing factor unclarified. Several studies have uncovered the critical role that sympathetic signals play in controlling the local immune system. The survival and operation of endocrine cells can be regulated by immune cell infiltration in islets. In the current review, we focused on the impact of sympathetic signals working on islets cell regulation, and discussed the potential factors that can induce the sympathetic innervation disorder in the islets. We also summarized the effect of interference with the islet sympathetic signals on the T1D occurrence. Overall, complete understanding of the regulatory effect of sympathetic signals on islet cells and local immune system could facilitate to design better strategies to control inflammation and protect β cells in T1D therapy.
Collapse
Affiliation(s)
- Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Guo RB, Dong YF, Yin Z, Cai ZY, Yang J, Ji J, Sun YQ, Huang XX, Xue TF, Cheng H, Zhou XQ, Sun XL. Iptakalim improves cerebral microcirculation in mice after ischemic stroke by inhibiting pericyte contraction. Acta Pharmacol Sin 2022; 43:1349-1359. [PMID: 34697419 PMCID: PMC9160281 DOI: 10.1038/s41401-021-00784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pericytes are present tight around the intervals of capillaries, play an essential role in stabilizing the blood-brain barrier, regulating blood flow and immunomodulation, and persistent contraction of pericytes eventually leads to impaired blood flow and poor clinical outcomes in ischemic stroke. We previously show that iptakalim, an ATP-sensitive potassium (K-ATP) channel opener, exerts protective effects in neurons, and glia against ischemia-induced injury. In this study we investigated the impacts of iptakalim on pericytes contraction in stroke. Mice were subjected to cerebral artery occlusion (MCAO), then administered iptakalim (10 mg/kg, ip). We showed that iptakalim administration significantly promoted recovery of cerebral blood flow after cerebral ischemia and reperfusion. Furthermore, we found that iptakalim significantly inhibited pericytes contraction, decreased the number of obstructed capillaries, and improved cerebral microcirculation. Using a collagen gel contraction assay, we demonstrated that cultured pericytes subjected to oxygen-glucose deprivation (OGD) consistently contracted from 3 h till 24 h during reoxygenation, whereas iptakalim treatment (10 μM) notably restrained pericyte contraction from 6 h during reoxygenation. We further showed that iptakalim treatment promoted K-ATP channel opening via suppressing SUR2/EPAC1 complex formation. Consequently, it reduced calcium influx and ET-1 release. Taken together, our results demonstrate that iptakalim, targeted K-ATP channels, can improve microvascular disturbance by inhibiting pericyte contraction after ischemic stroke. Our work reveals that iptakalim might be developed as a promising pericyte regulator for treatment of stroke.
Collapse
Affiliation(s)
- Ruo-bing Guo
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yin-feng Dong
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Zhi Yin
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhen-yu Cai
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Jin Yang
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Juan Ji
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Yu-qin Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Xin-xin Huang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Teng-fei Xue
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China
| | - Hong Cheng
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xi-qiao Zhou
- grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Xiu-lan Sun
- grid.89957.3a0000 0000 9255 8984Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166 China ,grid.410745.30000 0004 1765 1045Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| |
Collapse
|
8
|
Ramu Y, Yamakaze J, Zhou Y, Hoshi T, Lu Z. Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic β cells and lowers blood glucose in diabetic mice. eLife 2022; 11:77026. [PMID: 35212627 PMCID: PMC8880991 DOI: 10.7554/elife.77026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-sensitive K+ (KATP) channels in pancreatic β cells are comprised of pore-forming subunits (Kir6.2) and modulatory sulfonylurea receptor subunits (SUR1). The ATP sensitivity of these channels enables them to couple metabolic state to insulin secretion in β cells. Antidiabetic sulfonylureas such as glibenclamide target SUR1 and indirectly suppress Kir6.2 activity. Glibenclamide acts as both a primary and a secondary secretagogue to trigger insulin secretion and potentiate glucose-stimulated insulin secretion, respectively. We tested whether blocking Kir6.2 itself causes the same effects as glibenclamide, and found that the Kir6.2 pore-blocking venom toxin SpTx1 acts as a strong secondary, but not a strong primary, secretagogue. SpTx1 triggered a transient rise of plasma insulin and lowered the elevated blood glucose of diabetic mice overexpressing Kir6.2 but did not affect those of nondiabetic mice. This proof-of-concept study suggests that blocking Kir6.2 may serve as an effective treatment for diabetes and other diseases stemming from KATP hyperactivity that cannot be adequately suppressed with sulfonylureas.
Collapse
Affiliation(s)
- Yajamana Ramu
- Department of Physiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, United States
| | - Jayden Yamakaze
- Department of Physiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, United States
| | - Yufeng Zhou
- Department of Physiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, United States
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, United States
| | - Zhe Lu
- Department of Physiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Iida R, Ueki M, Yasuda T. Deficiency of M-LP/Mpv17L leads to development of β-cell hyperplasia and improved glucose tolerance via activation of the Wnt and TGF-β pathways. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166318. [PMID: 34883249 DOI: 10.1016/j.bbadis.2021.166318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
M-LP/Mpv17L is a protein that was initially identified during screening of age-dependently expressed genes in mice. We have recently demonstrated that M-LP/Mpv17L-knockout (M-LP/Mpv17L-KO) in human hepatoma cells leads to a reduction of cellular cyclic nucleotide phosphodiesterase (PDE) activity, and that in vitro-synthesized M-LP/Mpv17L possesses PDE activity. These findings suggest that M-LP/Mpv17L functions as an atypical PDE, even though it has none of the well-conserved catalytic region or other structural motifs characteristic of the PDE family. In this study, we found that M-LP/Mpv17L-KO mice developed β-cell hyperplasia and improved glucose tolerance. Deficiency of M-LP/Mpv17L in islets from KO mice at early postnatal stages or siRNA-mediated suppression of M-LP/Mpv17L in rat insulinoma cells led to marked upregulation of lymphoid enhancer binding factor 1 (Lef1) and transcription factor 7 (Tcf7), key nuclear effectors in the Wnt signaling pathway, and some of the factors essential for the development and maintenance of β-cells. Moreover, at the protein level, increases in the levels of phosphorylated β-catenin and glycogen synthase kinase-3β (GSK-3β) were observed, indicating activation of the Wnt and TGF-β signaling pathways. Taken together, these findings suggest that protein kinase A (PKA)-dependent phosphorylations of β-catenin and GSK-3β, the key mediators of the Wnt and/or TGF-β signaling pathways, are the most upstream events triggering β-cell hyperplasia and improved glucose tolerance caused by M-LP/Mpv17L deficiency.
Collapse
Affiliation(s)
- Reiko Iida
- Life Science Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
10
|
Pang W, Yao W, Dai X, Zhang A, Hou L, Wang L, Wang Y, Huang X, Meng X, Li L. Pancreatic cancer-derived exosomal microRNA-19a induces β-cell dysfunction by targeting ADCY1 and EPAC2. Int J Biol Sci 2021; 17:3622-3633. [PMID: 34512170 PMCID: PMC8416731 DOI: 10.7150/ijbs.56271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 08/08/2021] [Indexed: 12/21/2022] Open
Abstract
New-onset diabetes mellitus has a rough correlation with pancreatic cancer (PaC), but the underlying mechanism remains unclear. This study aimed to explore the exosomal microRNAs and their potential role in PaC-induced β-cell dysfunction. The pancreatic β cells were treated with isolated exosomes from PaC cell lines, SW1990 and BxPC-3, before measuring the glucose-stimulated insulin secretion (GSIS), validating that SW1990 and BxPC-3 might disrupt GSIS of both β cell line MIN6 and primary mouse pancreatic islets. The difference in expression profiles between exosomes and exosome-free medium of PaC cell lines was further defined, revealing that miR-19a secreted by PaC cells might be an important signaling molecule in this process. Furthermore, adenylyl cyclase 1 (Adcy1) and exchange protein directly activated by cAMP 2 (Epac2) were verified as the direct targets of exogenous miR-19a, which was involved in insulin secretion. These results indicated that exosomes might be an important mediator in the pathogenesis of PaC-DM, and miR-19a might be the effector molecule. The findings shed light on the pathogenesis of PaC-DM.
Collapse
Affiliation(s)
- Wenjing Pang
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai Ruijin Hospital, Shanghai, China
| | - Xin Dai
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai Ruijin Hospital, Shanghai, China
| | - Aisen Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical, Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Department of Gerontology, Jiangsu People's Hospital affiliating to Nanjing Medical University, Nanjing, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Xin Huang
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine affiliating Shanghai 9th People's Hospital, Shanghai, China.,Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Pydi SP, Barella LF, Meister J, Wess J. Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models. Trends Endocrinol Metab 2021; 32:118-129. [PMID: 33358450 PMCID: PMC7855863 DOI: 10.1016/j.tem.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
β-Arrestin-1 and -2 are intracellular proteins that are able to inhibit signaling via G protein-coupled receptors (GPCRs). However, both proteins can also modulate cellular functions in a G protein-independent fashion. During the past few years, studies with mutant mice selectivity lacking β-arrestin-1 and/or -2 in metabolically important cell types have led to novel insights into the mechanisms through which β-arrestins regulate key metabolic processes in vivo, including whole-body glucose and energy homeostasis. The novel information gained from these studies should inform the development of novel drugs, including β-arrestin- or G protein-biased GPCR ligands, that could prove useful for the therapy of several important pathophysiological conditions, including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
12
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
13
|
Yarwood SJ. Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview. Cells 2020; 9:cells9102274. [PMID: 33053803 PMCID: PMC7599692 DOI: 10.3390/cells9102274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotides 3′,5′-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.
Collapse
Affiliation(s)
- Stephen John Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|
14
|
Gheibi S, Ghasemi A. Insulin secretion: The nitric oxide controversy. EXCLI JOURNAL 2020; 19:1227-1245. [PMID: 33088259 PMCID: PMC7573190 DOI: 10.17179/excli2020-2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a gas that serves as a ubiquitous signaling molecule participating in physiological activities of various organ systems. Nitric oxide is produced in the endocrine pancreas and contributes to synthesis and secretion of insulin. The potential role of NO in insulin secretion is disputable - both stimulatory and inhibitory effects have been reported. Available data indicate that effects of NO critically depend on its concentration. Different isoforms of NO synthase (NOS) control this and have the potential to decrease or increase insulin secretion. In this review, the role of NO in insulin secretion as well as the possible reasons for discrepant findings are discussed. A better understanding of the role of NO system in the regulation of insulin secretion may facilitate the development of new therapeutic strategies in the management of diabetes.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
Lv W, Wang X, Xu Q, Lu W. Mechanisms and Characteristics of Sulfonylureas and Glinides. Curr Top Med Chem 2020; 20:37-56. [PMID: 31884929 DOI: 10.2174/1568026620666191224141617] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex progressive endocrine disease characterized by hyperglycemia and life-threatening complications. It is the most common disorder of pancreatic cell function that causes insulin deficiency. Sulfonylurea is a class of oral hypoglycemic drugs. Over the past half century, these drugs, together with the subsequent non-sulfonylureas (glinides), have been the main oral drugs for insulin secretion. OBJECTIVE Through in-depth study, the medical profession considers it as an important drug for improving blood sugar control. METHODS The mechanism, characteristics, efficacy and side effects of sulfonylureas and glinides were reviewed in detail. RESULTS Sulfonylureas and glinides not only stimulated the release of insulin from pancreatic cells, but also had many extrapanular hypoglycemic effect, such as reducing the clearance rate of insulin in liver, reducing the secretion of glucagon, and enhancing the sensitivity of peripheral tissues to insulin in type 2 diabetes mellitus. CONCLUSION Sulfonylureas and glinides are effective first-line drugs for the treatment of diabetes mellitus. Although they have the risk of hypoglycemia, weight gain and cardiovascular disease, their clinical practicability and safety can be guaranteed as long as they are reasonably used.
Collapse
Affiliation(s)
- Wei Lv
- School of Materials Science and Engineering, Shanghai University, Shanghai, China.,Shanghai Huayi Resins Co., Ltd., Shanghai, China
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Wencong Lu
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
17
|
He S, Wu W, Wan Y, Nandakumar KS, Cai X, Tang X, Liu S, Yao X. GLP-1 Receptor Activation Abrogates β-Cell Dysfunction by PKA Cα-Mediated Degradation of Thioredoxin Interacting Protein. Front Pharmacol 2019; 10:1230. [PMID: 31708773 PMCID: PMC6824261 DOI: 10.3389/fphar.2019.01230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) agonist (Exendin-4) is a well-known agent used to improve β-cell dysfunctions via protein kinase A (PKA), but the detailed downstream molecular mechanisms are still elusive. We have now found that PKA Cα mediated- TXNIP phosphorylation and degradation played a vital role in the β-cell protective role of exendin-4. After PKA activator (Exendin-4 or FSK) treatment, PKA Cα could directly interact with TXNIP by bimolecular fluorescence complementation and Co-IP assays in INS-1 cells. And PKA Cα overexpression decreased TXNIP level, whereas TXNIP level was largely increased in PKA Cα-KO β-cells by CRISPR-Cas9. Interestingly, TXNIP overexpression or PKA Cα-KO has impaired β-cell functions, including loss of insulin secretion and activation of inflammation. PKA Cα directly phosphorylated TXNIP at Ser307 and Ser308 positions, leading to its degradation via activation of cellular proteasome pathway. Consistent with this observation, TXNIP (S307/308A) mutant resisted the degradation effects of PKA Cα. However, exendin-4 neither affected TXNIP level in TXNIP (S307/308A) mutant overexpressed β-cells nor in PKA Cα-KO β-cells. Moreover, exendin-4 treatment reduced the inflammation gene expression in TXNIP overexpressed β-cells, but exendin-4 treatment has no effect on the inflammation gene expression in TXNIP (S307/308A) overexpressed β-cells. In conclusion, our study reveals the integral role of PKA Cα/TXNIP signaling in pancreatic β-cells and suggests that PKA Cα-mediated TXNIP degradation is vital in β-cell protective effects of exendin-4.
Collapse
Affiliation(s)
- Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuchao Cai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
19
|
Hameed A, Hafizur RM, Khan MI, Jawed A, Wang H, Zhao M, Matsunaga K, Izumi T, Siddiqui S, Khan F, Adhikari A, Sharma KR. Coixol amplifies glucose-stimulated insulin secretion via cAMP mediated signaling pathway. Eur J Pharmacol 2019; 858:172514. [PMID: 31265841 DOI: 10.1016/j.ejphar.2019.172514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Recently, we reported the role of coixol (6-methoxy-2(3H)-benzoxazolone), an alkaloid from Scoparia dulcis, in glucose-dependent insulin secretion; however, its insulin secretory mechanism(s) remained unknown. Here, we explored the insulinotropic mechanism(s) of coixol in vitro and in vivo. Mice islets were batch incubated, perifused with coixol in the presence of agonists/antagonists, and insulin secretion was measured by ELISA. Intracellular cAMP levels were measured using enzyme immunoassay. K+- and Ca2+-currents were recorded in MIN6 cells using whole-cell patch-clamp technique. The in vivo glucose tolerance and the insulinogenic index were evaluated in diabetic rats treated with coixol at 25 and 50 mg/kg, respectively. Coixol, unlike sulfonylurea, enhanced insulin secretion in batch incubated and perifused islets at high glucose, with no effect at basal glucose concentrations. Coixol showed no pronounced effect on the inward rectifying K+- and Ca2+-currents in whole-cell patch recordings. Moreover, coixol-induced insulin secretion was further amplified in the depolarized islets. Coixol showed an additive effect with forskolin (10 μM)-induced cAMP level, and in insulin secretion; however, no additive effect was observed with isobutylmethylxanthine (IBMX, 100 μM)-induced cAMP level, nor in insulin secretion. The PKA inhibitor H-89 (50 μM), and Epac2 inhibitor MAY0132 (50 μM) significantly inhibited the coixol-induced insulin secretion (P < 0.01). Furthermore, insulin secretory kinetics revealed that coixol potentiates insulin secretion in both early and late phases of insulin secretion. In diabetic animals, coixol showed significant improvement in glucose tolerance and on fasting blood glucose levels. These data suggest that coixol amplifies glucose-stimulated insulin secretion by cAMP-mediated signaling pathways.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan; Centre for Advanced Drug Research (CADR), COMSATS University Islamabad (CUI), Abbottabad, 22060, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Abira Jawed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miaomiao Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Sonia Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Achyut Adhikari
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
20
|
Zhou J, Kang X, Luo Y, Yuan Y, Wu Y, Wang M, Liu D. Glibenclamide-Induced Autophagy Inhibits Its Insulin Secretion-Improving Function in β Cells. Int J Endocrinol 2019; 2019:1265175. [PMID: 31511772 PMCID: PMC6714319 DOI: 10.1155/2019/1265175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a metabolic disease, partly due to hypoinsulinism, which affects ∼8% of the world's adult population. Glibenclamide is known to promote insulin secretion by targeting β cells. Autophagy as a self-protective mechanism of cells has been widely studied and has particular physiological effects in different tissues or cells. However, the interaction between autophagy and glibenclamide is unclear. In this study, we investigated the role of autophagy in glibenclamide-induced insulin secretion in pancreatic β cells. Herein, we showed that glibenclamide promoted insulin release and further activated autophagy through the adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) pathway in MIN-6 cells. Inhibition of autophagy with autophagy inhibitor 3-methyladenine (3-MA) potentiated the secretory function of glibenclamide further. These results suggest that glibenclamide-induced autophagy plays an inhibitory role in promoting insulin secretion by activating the AMPK pathway instead of altering the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
- Jiali Zhou
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Yushuang Luo
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Yuju Yuan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Meijun Wang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
21
|
Mendes CP, Postal BG, Oliveira GTC, Castro AJG, Frederico MJS, Moraes ALL, Neuenfeldt PD, Nunes RJ, Menegaz D, Silva FRMB. Insulin stimulus‐secretion coupling is triggered by a novel thiazolidinedione/sulfonylurea hybrid in rat pancreatic islets. J Cell Physiol 2018; 234:509-520. [DOI: 10.1002/jcp.26746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/13/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Camila P. Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Bárbara G. Postal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Geisel T. C. Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Allisson J. G. Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Marisa J. S. Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Ana L. L. Moraes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Patrícia D. Neuenfeldt
- Universidade Federal de Santa Catarina, Departamento de Química, Centro de Ciências Físicas e MatemáticasCampus UniversitárioBairro Trindade, FlorianópolisSanta CatarinaBrazil
| | - Ricardo J. Nunes
- Universidade Federal de Santa Catarina, Departamento de Química, Centro de Ciências Físicas e MatemáticasCampus UniversitárioBairro Trindade, FlorianópolisSanta CatarinaBrazil
| | - Danusa Menegaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| | - Fátima R. M. B. Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
- Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaCampus UniversitárioTrindade, FlorianópolisSanta CatarinaBrazil
| |
Collapse
|
22
|
Xiao C, Wu Q, Xie Y, Tan J, Ding Y, Bai L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ. Food Funct 2018; 9:6495-6507. [DOI: 10.1039/c8fo01656a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study provides insight into the system-level hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 by the integrative analysis of transcriptomics and proteomics data.
Collapse
Affiliation(s)
- Chun Xiao
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Jianbin Tan
- Department of Toxicology
- Center for Disease Control and Prevention of Guangdong Province
- Guangzhou 510020
- China
| | - YinRun Ding
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Lijuan Bai
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| |
Collapse
|
23
|
Hameed A, Hafizur RM, Hussain N, Raza SA, Rehman M, Ashraf S, Ul-Haq Z, Khan F, Abbas G, Choudhary MI. Eriodictyol stimulates insulin secretion through cAMP/PKA signaling pathway in mice islets. Eur J Pharmacol 2017; 820:245-255. [PMID: 29229531 DOI: 10.1016/j.ejphar.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
Eriodictyol, a flavonoid isolated from Lyonia ovalifolia, was found to be the most potent insulin secretagogue in our preliminary studies. Here, we explored mechanism(s) of insulin secretory activity of eriodictyol in vitro and in vivo. Mice islets and MIN6 cells were incubated in basal and stimulatory glucose containing eriodictyol with or without agonist/antagonist. Secreted insulin and cAMP contents were measured using ELISA kits. K+- and Ca2+-channels currents were recorded with patch-clamp technique. Oral glucose tolerance test and plasma insulin was evaluated in non-diabetic and diabetic rats. Eriodictyol stimulated insulin secretion from mice islets and MIN6 cells only at stimulatory glucose concentrations with maximum effect at 200μM. Eriodictyol showed no pronounced effect on inward rectifying K+ and Ca2+ currents. Furthermore, in KCl depolarized islets, in the presence of diazoxide, insulin secretory ability of eriodictyol was enhanced. IBMX, a phosphodiesterase inhibitor, significantly (P<0.001) enhanced eriodictyol-induced insulin secretion at 16.7mM glucose in comparison to eriodictyol or IBMX alone. The cAMP content after eriodictyol exposure was also increased. Eriodictyol-induced insulin secretion was partially inhibited by adenylate cyclase inhibitor (SQ22536) and completely inhibited by PKA inhibitor (H-89), suggesting that the eriodictyol effect is more on PKA. Molecular docking studies showed the best binding affinities of eriodictyol with PKA. Eriodictyol improved glucose tolerance and enhanced plasma insulin in non-diabetic and diabetic rats. Eriodictyol also lowered blood glucose in diabetic rats upon chronic treatment. Taken together, it can be concluded that eriodictyol, a novel insulin secretagogue, exerts an exclusive glucose-dependent insulinotropic effect through cAMP/PKA pathway.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | - Nusrat Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Sayed Ali Raza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ghulam Abbas
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21412, Saudi Arabia
| |
Collapse
|
24
|
Seino S, Sugawara K, Yokoi N, Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes Obes Metab 2017; 19 Suppl 1:22-29. [PMID: 28880474 DOI: 10.1111/dom.12995] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Insulin secretagogues including sulfonylureas, glinides and incretin-related drugs such as dipeptidyl peptidase 4 (DPP-4) inhibitors and glucagon-like peptide-1 receptor agonists are widely used for treatment of type 2 diabetes. In addition, glucokinase activators and G-protein-coupled receptor 40 (GPR40) agonists also have been developed, although the drugs are not clinically usable. These different drugs exert their effects on insulin secretion by different mechanisms. Recent advances in β-cell signalling studies have not only deepened our understanding of insulin secretion but also revealed novel mechanisms of insulin secretagogues. Clarification of the signalling mechanisms of the insulin secretagogues will contribute to improved drug therapy for diabetes.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M. Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 2017; 19:1061-1070. [PMID: 28116849 DOI: 10.1111/dom.12887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022]
Abstract
AIMS To understand better the control of insulin secretion by human β cells and to identify similarities to and differences from rodent models. METHODS Dynamic insulin secretion was measured in perifused human islets treated with pharmacological agents of known modes of action. RESULTS Glucokinase activation (Ro28-1675) lowered the glucose threshold for stimulation of insulin secretion to 1 mmol/L (G1), augmented the response to G3-G5 but not to G8-G15, whereas tolbutamide remained active in G20, which indicates that not all KATP channels were closed by high glucose concentrations. An almost 2-fold greater response to G15 than to supramaximal tolbutamide in G3 or to KCl+diazoxide in G15 vs G3 quantified the contribution of metabolic amplification to insulin secretion. Both disruption (latrunculin-B) and stabilization (jasplakinolide) of microfilaments augmented insulin secretion without affecting metabolic amplification. Tolbutamide-induced insulin secretion was consistently greater in G10 than G3, with a threshold at 1 and maximum at 10 µmol/L tolbutamide in G10, vs 10 and 25 µmol/L in G3. Sulphonylurea effects were thus clearly glucose-dependent. Insulin secretion was also increased by inhibiting K channels other than KATP channels: Kv or BK channels (tetraethylammonium), TASK-1 channels (ML-365) and SK4 channels (TRAM-34). Opening KATP channels with diazoxide inhibited glucose-induced insulin secretion with half maximum inhibitory concentrations of 9.6 and 24 µmol/L at G7 and G15. Blockade of L-type Ca channels (nimodipine) abolished insulin secretion, whereas a blocker of T-type Ca channels (NNC-55-0396) was ineffective at specific concentrations. Blockade of Na channels (tetrodotoxin) did not affect glucose-induced insulin secretion. CONCLUSIONS In addition to sharing a KATP channel-dependent triggering pathway and a metabolic amplifying pathway, human and rodent β cells were found to display more similarities than differences in the control of insulin secretion.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium
| | - Valery Gmyr
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Julie Kerr-Conte
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
26
|
Transcription regulation mechanism of the syntaxin 1A gene via protein kinase A. Biochem J 2017; 474:2465-2473. [PMID: 28559304 DOI: 10.1042/bcj20170249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
Syntaxin 1A (Stx1a) is primarily involved in the docking of synaptic vesicles at active zones in neurons. Its gene is a TATA-less gene, with several transcription initiation sites, which is activated by the binding of Sp1 and acetylated histone H3 (H3) in the core promoter region (CPR) through the derepression of class I histone deacetylase (HDAC). In the present study, to clarify the factor characterizing Stx1a gene expression via the protein kinase A (PKA) pathway inducing the Stx1a mRNA, we investigated whether the epigenetic process is involved in the Stx1a gene transcription induced by PKA signaling. We found that the PKA activator forskolin induced Stx1a expression in non-neuronal cells, FRSK and 3Y1, which do not endogenously express Stx1a, unlike PC12. HDAC8 inhibition by shRNA knockdown and specific inhibitors induced Stx1a expression in FRSK. The PKA inhibitor H89 suppressed HDAC8-Ser39 phosphorylation, H3 acetylation and Stx1a induction by forskolin in FRSK cells. Finally, we also found that forskolin led to the dissociation of HDAC8-CPR interaction and the association of Sp1 and Ac-H3 to CPR in FRSK. The results of the current study suggest that forskolin phosphorylates HDAC8-Ser39 via the PKA pathway and increases histone H3 acetylation in cells expressing HDAC8, resulting in the induction of the Stx1a gene.
Collapse
|
27
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
28
|
Shigeto M, Cha CY, Rorsman P, Kaku K. A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion. J Mol Med (Berl) 2017; 95:361-368. [PMID: 28097390 DOI: 10.1007/s00109-017-1508-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 11/19/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous glucose-lowering hormone and GLP-1 receptor agonists are currently being used as antidiabetic drugs clinically. The canonical signalling pathway (including cAMP, Epac2, protein kinase A (PKA) and KATP channels) is almost universally accepted as the main mechanism of GLP-1-stimulated insulin secretion. This belief is based on in vitro studies that used nanomolar (1-100 nM) concentrations of GLP-1. Recently, it was found that the physiological concentrations (1-10 pM) of GLP-1 also stimulate insulin secretion from isolated islets, induce membrane depolarization and increase of intracellular [Ca2+] in isolated β cells/pancreatic islets. These responses were unaffected by PKA inhibitors and occurred without detectable increases in intracellular cAMP and PKA activity. These PKA-independent actions of GLP-1 depend on protein kinase C (PKC), involve activation of the standard GLP-1 receptor (GLP1R) and culminate in activation of phospholipase C (PLC), leading to an elevation of diacylglycerol (DAG), increased L-type Ca2+ and TRPM4/TRPM5 channel activities. Here, we review these recent data and contrast them against the effects of nanomolar concentrations of GLP-1. The differential intracellular signalling activated by low and high concentrations of GLP-1 could provide a clue to explain how GLP-1 exerts different function in the central nervous system and peripheral organs.
Collapse
Affiliation(s)
- Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK. .,Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Chae Young Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
29
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
30
|
Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochem Soc Trans 2016; 43:901-7. [PMID: 26517901 PMCID: PMC4613533 DOI: 10.1042/bst20150096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K+ channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitory effect via modulation of nucleotide-dependent channel gating. In this review, we summarize current knowledge and recent advances in our understanding of the molecular mechanism of action of these drugs.
Collapse
|
31
|
Pharmacogenomics in type 2 diabetes: oral antidiabetic drugs. THE PHARMACOGENOMICS JOURNAL 2016; 16:399-410. [DOI: 10.1038/tpj.2016.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
|
32
|
Nenquin M, Henquin JC. Sulphonylurea receptor-1, sulphonylureas and amplification of insulin secretion by Epac activation in β cells. Diabetes Obes Metab 2016; 18:698-701. [PMID: 26584950 DOI: 10.1111/dom.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/26/2022]
Abstract
Amplification of insulin secretion by cyclic AMP involves activation of protein kinase A (PKA) and Epac2 in pancreatic β cells. Recent hypotheses suggest that sulphonylurea receptor-1 (SUR1), the regulatory subunit of ATP-sensitive potassium channels, is implicated in Epac2 effects and that direct activation of Epac2 by hypoglycaemic sulphonylureas contributes to the stimulation of insulin secretion by these drugs. In the present experiments, using islets from Sur1KO mice, we show that dibutyryl-cAMP and membrane-permeant selective activators of Epac or PKA normally amplify insulin secretion in β cells lacking SUR1. In contrast to Epac activator, sulphonylureas (glibenclamide and tolbutamide) did not increase insulin secretion in Sur1KO islets, as would be expected if they were activating Epac2 directly. Furthermore, glibenclamide and tolbutamide did not augment the amplification of insulin secretion produced by Epac activator or dibutyryl-cAMP. Collectively, the results show that SUR1 is dispensable for amplification of insulin secretion by Epac2 activation and that direct activation of Epac2 is unimportant for the action of therapeutic concentrations of sulphonylureas in β cells.
Collapse
Affiliation(s)
- M Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - J-C Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Vettorazzi JF, Ribeiro RA, Borck PC, Branco RCS, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism 2016; 65:54-63. [PMID: 26892516 DOI: 10.1016/j.metabol.2015.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE While bile acids are important for the digestion process, they also act as signaling molecules in many tissues, including the endocrine pancreas, which expresses specific bile acid receptors that regulate several cell functions. In this study, we investigated the effects of the conjugated bile acid TUDCA on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. METHODS Pancreatic islets were isolated from 90-day-old male mice. Insulin secretion was measured by radioimmunoassay, protein phosphorylation by western blot, Ca(2+) signals by fluorescence microscopy and ATP-dependent K(+) (KATP) channels by electrophysiology. RESULTS TUDCA dose-dependently increased GSIS in fresh islets at stimulatory glucose concentrations but remained without effect at low glucose levels. This effect was not associated with changes in glucose metabolism, Ca(2+) signals or KATP channel activity; however, it was lost in the presence of a cAMP competitor or a PKA inhibitor. Additionally, PKA and CREB phosphorylation were observed after 1-hour incubation with TUDCA. The potentiation of GSIS was blunted by the Gα stimulatory, G protein subunit-specific inhibitor NF449 and mimicked by the specific TGR5 agonist INT-777, pointing to the involvement of the bile acid G protein-coupled receptor TGR5. CONCLUSION Our data indicate that TUDCA potentiates GSIS through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil; Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Rosane Aparecida Ribeiro
- Integrated Laboratory of Morphology, Centre for Ecology and Socio-Environmental - NUPEM, Federal University of Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, Brazil
| | - Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Sergi Soriano
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03080 Alicante, Spain
| | - Beatriz Merino
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Antônio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Angel Nadal
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Ivan Quesada
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
34
|
|
35
|
Hivelin C, Béraud-Dufour S, Devader C, Abderrahmani A, Moreno S, Moha ou Maati H, Djillani A, Heurteaux C, Borsotto M, Mazella J, Coppola T. Potentiation of Calcium Influx and Insulin Secretion in Pancreatic Beta Cell by the Specific TREK-1 Blocker Spadin. J Diabetes Res 2016; 2016:3142175. [PMID: 28105440 PMCID: PMC5220496 DOI: 10.1155/2016/3142175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Inhibition of the potassium channels TREK-1 by spadin (SPA) is currently thought to be a promising therapeutic target for the treatment of depression. Since these channels are expressed in pancreatic β-cells, we investigated their role in the control of insulin secretion and glucose homeostasis. In this study, we confirmed the expression of TREK-1 channels in the insulin secreting MIN6-B1 β-cell line and in mouse islets. We found that their blockade by SPA potentiated insulin secretion induced by potassium chloride dependent membrane depolarization. Inhibition of TREK-1 by SPA induced a decrease of the resting membrane potential (ΔVm ~ 12 mV) and increased the cytosolic calcium concentration. In mice, administration of SPA enhanced the plasma insulin level stimulated by glucose, confirming its secretagogue effect observed in vitro. Taken together, this work identifies SPA as a novel potential pharmacological agent able to control insulin secretion and glucose homeostasis.
Collapse
Affiliation(s)
- Céline Hivelin
- CNRS, Inserm, IPMC, Université Côte d'Azur, Valbonne, France
| | | | | | - Amar Abderrahmani
- CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199-EGID, Université Lille, 59000 Lille, France
| | | | - Hamid Moha ou Maati
- Département de Physiologie, Institut de Génomique Fonctionnelle (IGF), CNRS/INSERM UMR5203, Université de Montpellier, Montpellier, France
| | | | | | - Marc Borsotto
- CNRS, Inserm, IPMC, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- CNRS, Inserm, IPMC, Université Côte d'Azur, Valbonne, France
| | - Thierry Coppola
- CNRS, Inserm, IPMC, Université Côte d'Azur, Valbonne, France
- *Thierry Coppola:
| |
Collapse
|
36
|
Abstract
Type 2 diabetes (T2DM) is one of the most serious global health problems and is mainly a result of the drastic increase in East Asia, which includes over a fourth of the global diabetes population. Lifestyle factors and ethnicity are two determinants in the etiology of T2DM, and lifestyle changes such as higher fat intake and less physical activity link readily to T2DM in East Asians. It is widely recognized that T2DM in East Asians is characterized primarily by β cell dysfunction, which is evident immediately after ingestion of glucose or meal, and less adiposity compared to the disease in Caucasians. These pathophysiological differences have an important impact on therapeutic approaches. Here, we revisit the pathogenesis of T2DM in light of β cell dysfunction versus insulin resistance in East Asians and discuss ethnic differences in the contributions of insulin secretion and insulin resistance, together with incretin secretin and action, to glucose intolerance.
Collapse
Affiliation(s)
- Daisuke Yabe
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka, 553-0003, Japan,
| | | | | | | |
Collapse
|