1
|
Broni E, Ashley C, Velazquez M, Khan S, Striegel A, Sakyi PO, Peracha S, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Miller WA. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int J Mol Sci 2023; 24:12612. [PMID: 37628792 PMCID: PMC10454645 DOI: 10.3390/ijms241612612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
2
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
3
|
Nakahama T, Kawahara Y. Deciphering the Biological Significance of ADAR1-Z-RNA Interactions. Int J Mol Sci 2021; 22:ijms222111435. [PMID: 34768866 PMCID: PMC8584189 DOI: 10.3390/ijms222111435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-3827
| |
Collapse
|
4
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Barbon A, Magri C. RNA Editing and Modifications in Mood Disorders. Genes (Basel) 2020; 11:genes11080872. [PMID: 32752036 PMCID: PMC7464464 DOI: 10.3390/genes11080872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) is a major health problem with significant limitations in functioning and well-being. The World Health Organization (WHO) evaluates MDD as one of the most disabling disorders in the world and with very high social cost. Great attention has been given to the study of the molecular mechanism underpinning MDD at the genetic, epigenetic and proteomic level. However, the importance of RNA modifications has attracted little attention until now in this field. RNA molecules are extensively and dynamically altered by a variety of mechanisms. Similar to "epigenomic" changes, which modify DNA structure or histones, RNA alterations are now termed "epitranscriptomic" changes and have been predicted to have profound consequences for gene expression and cellular functionality. Two of these modifications, adenosine to inosine (A-to-I) RNA editing and m6A methylations, have fascinated researchers over the last years, showing a new level of complexity in gene expression. In this review, we will summary the studies that focus on the role of RNA editing and m6A methylation in MDD, trying to underline their potential breakthroughs and pitfalls.
Collapse
|
6
|
Tanaka M, Watanabe Y. RNA Editing of Serotonin 2C Receptor and Alcohol Intake. Front Neurosci 2020; 13:1390. [PMID: 32009879 PMCID: PMC6971223 DOI: 10.3389/fnins.2019.01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/30/2023] Open
Abstract
Serotonin 2C receptor (5-HT2 CR) belongs to the superfamily of seven transmembrane domain receptors coupled to G proteins (GPCR). It is broadly distributed in the CNS and its expression is relatively high in the limbic system including the amygdala, nucleus accumbens (NAc), hippocampus, and hypothalamus. Based on its expression patterns and numerous pharmacological studies, 5-HT2 CR is thought to be involved in various brain functions including emotion, appetite, and motor behavior. Here, we review 5-HT2 CR and its relationship with alcohol intake with a particular focus on the involvement of 5-HT2 CR mRNA editing and its association with alcohol preference in mice. RNA editing is a post-transcriptional modification mechanism. In mammals, adenosine is converted to inosine by the deamination enzymes ADAR1 and ADAR2. 5-HT2 CR is the only GPCR subjected to RNA editing within the coding region. It has five editing sites in exon 5 that encode the second intracellular loop. Consequently, three amino acids residues (I156, N158, and I160) of the unedited receptor (INI) may be altered to differently edited isoforms, resulting in a change of receptor activity such as 5-HT potency and G-protein coupling. 5-HT2 CR in the NAc is involved in enhanced alcohol drinking after chronic alcohol exposure and alterations in 5-HT2 CR mRNA editing is important in determining the alcohol preference using different strains of mice and genetically modified mice. RNA editing of this receptor may participate in the development of alcoholism.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
van de Wouw M, Stilling RM, Peterson VL, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF, Schellekens H. Host Microbiota Regulates Central Nervous System Serotonin Receptor 2C Editing in Rodents. ACS Chem Neurosci 2019; 10:3953-3960. [PMID: 31415146 DOI: 10.1021/acschemneuro.9b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microbial colonization of the gastrointestinal tract plays a crucial role in the development of enteric and central nervous system functionality. The serotonergic system has been heavily implicated in microbiota-gut-brain axis signaling, particularly in proof-of-principle studies in germ-free (GF) animals. One aspect of the serotonergic system that has been left unexplored in relation to the microbiota is the unique ability of the serotonin receptor 2C (5-HT2C) to undergo post-transcriptional editing, which has been implicated in decreased receptor functionality. We investigated whether GF mice, with absent microbiota from birth, have altered 5-HT2C receptor expression and editing in the brain, and if colonization of the microbiota is able to restore editing patterns. Next, we investigated whether microbiota depletion later in life using a chronic antibiotic treatment could affect 5-HT2C receptor editing patterns in rats. We found that GF mice have an increased prevalence of the edited 5-HT2C receptor isoforms in the amygdala, hypothalamus, prefrontal cortex, and striatum, which was partially normalized upon colonization post-weaning. However, no alterations were observed in the hypothalamus after microbiota depletion using an antibiotic treatment in adult rats. This suggests that alterations in the microbiome during development, but not later in life, could influence 5-HT2C receptor editing patterns. Overall, these results demonstrate that the microbiota affects 5-HT2C receptor editing in the brain and may inform novel therapeutic strategies in conditions in which 5-HT2C receptor editing is altered, such as depression.
Collapse
Affiliation(s)
- Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman M. Stilling
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Feargal J. Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Alan E. Hoban
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Popova NK, Naumenko VS. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets 2019; 23:227-239. [DOI: 10.1080/14728222.2019.1572747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nina K. Popova
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
9
|
Dick ALW, Khermesh K, Paul E, Stamp F, Levanon EY, Chen A. Adenosine-to-Inosine RNA Editing Within Corticolimbic Brain Regions Is Regulated in Response to Chronic Social Defeat Stress in Mice. Front Psychiatry 2019; 10:277. [PMID: 31133890 PMCID: PMC6512728 DOI: 10.3389/fpsyt.2019.00277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a co-/posttranscriptional modification of double-stranded RNA, catalyzed by the adenosine deaminase acting on RNA (ADAR) family of enzymes, which results in recognition of inosine as guanosine by translational and splicing machinery causing potential recoding events in amino acid sequences. A-to-I editing is prominent within brain-specific transcripts, and dysregulation of editing at several well-studied loci (e.g., Gria2, Htr2c) has been implicated in acute and chronic stress in rodents as well as neurological (e.g., Alzheimer's) and psychopathological disorders such as schizophrenia and major depressive disorder. However, only a small fraction of recoding sites has been investigated within the brain following stress, and our understanding of the role of RNA editing in transcriptome regulation following environmental stimuli remains poorly understood. Thus, we aimed to investigate A-to-I editing at hundreds of loci following chronic social defeat stress (CSDS) in mice within corticolimbic regions responsive to chronic stress regulation. Adult male mice were subjected to CSDS or control conditions for 21 days and dynamic regulation of A-to-I editing was investigated 2 and 8 days following the final defeat within both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). Employing a targeted resequencing approach, which utilizes microfluidics-based multiplex polymerase chain reaction (PCR) coupled with next-generation sequencing, we analyzed A-to-I editing at ∼100 high-confidence editing sites within the mouse brain. CSDS resulted in acute regulation of transcripts encoding several ADAR enzymes, which normalized 8 days following the final defeat and was specific for susceptible mice. In contrast, sequencing analysis revealed modest and dynamic regulation of A-to-I editing within numerous transcripts in both the mPFC and BLA of resilient and susceptible mice at both 2 and 8 days following CSDS with minimal overlap between regions and time points. Editing within the Htr2c transcript and relative abundance of Htr2c messenger RNA (mRNA)variants were also observed within the BLA of susceptible mice 2 days following CSDS. These results indicate dynamic RNA editing within discrete brain regions following CSDS in mice, further implicating A-to-I editing as a stress-sensitive molecular mechanism within the brain of potential relevance to resiliency and susceptibility to CSDS.
Collapse
Affiliation(s)
- Alec L W Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Evan Paul
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabian Stamp
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of LifeSciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Jinnah H, Ulbricht RJ. Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods 2018; 156:40-45. [PMID: 30827465 DOI: 10.1016/j.ymeth.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022] Open
Abstract
The deamination of adenosine to inosine by RNA editing is a widespread post-transcriptional process that expands genetic diversity. Selective substitution of inosine for adenosine in pre-mRNA transcripts can alter splicing, mRNA stability, and the amino acid sequence of the encoded protein. The functional consequences of RNA editing-dependent amino acid substitution are known for only a handful of RNA editing substrates. Many of these studies began in heterologous mammalian expression systems; however, the gold-standard for determining the functional significance of transcript-specific re-coding A-to-I editing events is the generation of a mouse model that expresses only one RNA editing-dependent isoform. The frequency of site-specific RNA editing varies spatially, temporally, and in some diseases, therefore, determining the profile of RNA editing frequency is also an important element of research. Here we review the strengths and weaknesses of existing mouse models for the study of RNA editing, as well as methods for quantifying RNA editing frequencies in vivo. Importantly, we highlight opportunities for future RNA editing studies in mice, projecting that improvements in genome editing and high-throughput sequencing technologies will allow the field to excel in coming years.
Collapse
Affiliation(s)
- Hussain Jinnah
- Vanderbilt University, Department of Pharmacology, 8140 Medical Research Building 3, Nashville, TN 37240-1104, United States.
| | - Randi J Ulbricht
- Missouri State University, Department of Biomedical Sciences, 901 South National Avenue, Springfield, MO 65897, United States.
| |
Collapse
|
11
|
Zaidan H, Ramaswami G, Barak M, Li JB, Gaisler-Salomon I. Pre-reproductive stress and fluoxetine treatment in rats affect offspring A-to-I RNA editing, gene expression and social behavior. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy021. [PMID: 30109132 PMCID: PMC6084559 DOI: 10.1093/eep/dvy021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 05/04/2023]
Abstract
Adenosine to inosine RNA editing is an epigenetic process that entails site-specific modifications in double-stranded RNA molecules, catalyzed by adenosine deaminases acting on RNA (ADARs). Using the multiplex microfluidic PCR and deep sequencing technique, we recently showed that exposing adolescent female rats to chronic unpredictable stress before reproduction affects editing in the prefrontal cortex and amygdala of their newborn offspring, particularly at the serotonin receptor 5-HT2c (encoded by Htr2c). Here, we used the same technique to determine whether post-stress, pre-reproductive maternal treatment with fluoxetine (5 mg/kg, 7 days) reverses the effects of stress on editing. We also examined the mRNA expression of ADAR enzymes in these regions, and asked whether social behavior in adult offspring would be altered by maternal exposure to stress and/or fluoxetine. Maternal treatment with fluoxetine altered Htr2c editing in offspring amygdala at birth, enhanced the expression of Htr2c mRNA and RNA editing enzymes in the prefrontal cortex, and reversed the effects of pre-reproductive stress on Htr2c editing in this region. Furthermore, maternal fluoxetine treatment enhanced differences in editing of glutamate receptors between offspring of control and stress-exposed rats, and led to enhanced social preference in adult offspring. Our findings indicate that pre-gestational fluoxetine treatment affects patterns of RNA editing and editing enzyme expression in neonatal offspring brain in a region-specific manner, in interaction with pre-reproductive stress. Overall, these findings imply that fluoxetine treatment affects serotonergic signaling in offspring brain even when treatment is discontinued before gestation, and its effects may depend upon prior exposure to stress.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jin B Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
12
|
Grieco SF, Velmeshev D, Magistri M, Eldar-Finkelman H, Faghihi MA, Jope RS, Beurel E. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3. World J Biol Psychiatry 2017; 18:445-456. [PMID: 27723376 PMCID: PMC5386835 DOI: 10.1080/15622975.2016.1224927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. METHODS We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. RESULTS Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. CONCLUSIONS These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.
Collapse
Affiliation(s)
- Steven F Grieco
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Dmitry Velmeshev
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Marco Magistri
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Hagit Eldar-Finkelman
- c Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Mohammad A Faghihi
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Richard S Jope
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Eleonore Beurel
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| |
Collapse
|
13
|
Palacios JM, Pazos A, Hoyer D. A short history of the 5-HT 2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology (Berl) 2017; 234:1395-1418. [PMID: 28265714 DOI: 10.1007/s00213-017-4545-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5-HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5-HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in the GPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5-HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain.
Collapse
Affiliation(s)
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, Universidad de Cantabria, CSIC, SODERCAN, Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Santander, 39011, Spain
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. .,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28296064 DOI: 10.1002/wrna.1417] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. WIREs RNA 2017, 8:e1417. doi: 10.1002/wrna.1417 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse; UPS and CNRS, LMBE, Toulouse, France
| |
Collapse
|
15
|
Chen W, An D, Xu H, Cheng X, Wang S, Yu W, Yu D, Zhao D, Sun Y, Deng W, Tang Y, Yin S. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice. PeerJ 2016; 4:e2306. [PMID: 27602277 PMCID: PMC4994079 DOI: 10.7717/peerj.2306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022] Open
Abstract
It has been reported that social isolation stress could be a key factor that leads to cognitive deficit for both humans and rodent models. However, detailed mechanisms are not yet clear. ADAR1 (Adenosine deaminase acting on RNA) is an enzyme involved in RNA editing that has a close relation to cognitive function. We have hypothesized that social isolation stress may impact the expression of ADAR1 in the brain of mice with cognitive deficit. To test our hypothesis, we evaluated the cognition ability of mice isolated for different durations (2, 4, and 8 weeks) using object recognition and object location tests; we also measured ADAR1 expression in hippocampus and cortex using immunohistochemistry and western blot. Our study showed that social isolation stress induced spatial and non-spatial cognition deficits of the tested mice. In addition, social isolation significantly increased both the immunoreactivity and protein expression of ADAR1 (p110) in the hippocampus and frontal cortex. Furthermore, re-socialization could not only recover the cognition deficits, but also bring ADAR1 (p110) immunoreactivity of hippocampus and frontal cortex, as well as ADAR1 (p110) protein expression of hippocampus back to the normal level for the isolated mice in adolescence. In conclusion, social isolation stress significantly increases ADAR1 (p110) expression in the hippocampus and frontal cortex of the mice with cognitive deficit. This finding may open a window to better understand the reasons (e.g., epigenetic change) that are responsible for social isolation-induced cognitive deficit and help the development of novel therapies for the resulted diseases.
Collapse
Affiliation(s)
- Wei Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dong An
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Xu
- Department of Physiology Laboratory, Dalian Medical University, Dalian, China
| | - Xiaoxin Cheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shiwei Wang
- Menzies Research Institute, University of Tasmania, Tasmania, Australia
| | - Weizhi Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Deqin Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yiping Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yiyuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, United States
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Aoki M, Watanabe Y, Yoshimoto K, Tsujimura A, Yamamoto T, Kanamura N, Tanaka M. Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair. Eur J Neurosci 2016; 43:1219-28. [PMID: 26950265 DOI: 10.1111/ejn.13233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour. Here, we examined the behavioural phenotype and molecular changes of INI mice on a C57BL/6J background. INI mice showed an enhanced behavioural despair in the forced swimming test, elevated sensitivity to the tricyclic antidepressant desipramine, and significantly decreased serotonin in the nucleus accumbens (NAc), amygdala, and striatum. They also showed reduced expression of neuropeptide Y (NPY) mRNA in the NAc. In addition, by stereotactic injection of adeno-associated virus encoding NPY into the NAc, we demonstrated that accumbal NPY overexpression relieved behavioural despair. Our results suggest that accumbal NPY expression may be regulated by 5-HT2 C R RNA editing, and its impairment may be linked to mood disorders.
Collapse
Affiliation(s)
- Miku Aoki
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yoshimoto
- Department of Food Science and Biotechnology, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Basic Geriatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98. [PMID: 25925636 DOI: 10.1111/jne.12287] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health.
Collapse
Affiliation(s)
- L K Burke
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - L K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
18
|
Tohda M. Serotonin 2C receptor as a superhero: diversities and talents in the RNA universe for editing, variant, small RNA and other expected functional RNAs. J Pharmacol Sci 2014; 126:321-8. [PMID: 25427431 DOI: 10.1254/jphs.14r06cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The serotonin 2C receptor subtype (5-HT2C) has a unique profession and continues to provide exciting and critical new information. The 5-HT2C is modulated at the RNA level by several mechanisms, including editing, short variant generation, and small RNAs. Recently, these phenomena, which had been demonstrated individually, were shown to be associated with each other. At present, many reports provide information about the influence of RNA regulation on receptor protein activities and expression, which was thought to be the final functional product. However, complicated behavior at the RNA stage allows us to imagine that the RNA itself has functional roles in the RNA universe. The 5-HT2C RNA may play several roles. This review will outline previous 5-HT2C studies and prospects for future studies.
Collapse
Affiliation(s)
- Michihisa Tohda
- Division of Medicinal Pharmacology, Institute of Natural Medicine, and Wakanyaku Theory-Based Integrated Pharmacology, Graduate School of Innovative Life Science, University of Toyama, Japan
| |
Collapse
|