1
|
Chiang CF, Vanderstichel R, Stockman J, Larsen JA, Fascetti AJ. Diurnal variation of serum phosphorus concentrations in intact male adult domestic cats. J Vet Intern Med 2024. [PMID: 39325033 DOI: 10.1111/jvim.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Monitoring serum phosphorus concentrations is crucial in the management of chronic kidney disease in cats. The diurnal variation of serum phosphorus concentration may affect clinical assessment. HYPOTHESIS/OBJECTIVES Characterize the diurnal variation of serum phosphorus concentration in cats and determine the associations between changes in serum phosphorus concentration and several metabolites of phosphorus metabolism. ANIMALS Six apparently healthy, intact male, specific-pathogen-free cats were housed in a photoperiod, humidity, and temperature-controlled facility. METHODS Blood sampling was performed hourly for 24 hours to obtain the serum concentrations of phosphorus, ionized calcium, parathyroid hormone, and calcidiol. Results were analyzed using linear mixed-effect models to determine the significance of diurnal variation and associations between serum phosphorus concentrations and other metabolites over time. RESULTS Diurnal variation in serum phosphorus concentration was noted with an apex around 11:00 followed by gradually declining concentrations to reach the nadir around 23:00. The serum phosphorus concentration again increased through the early morning on the next day. An approximately 25% difference in serum phosphorus concentration at the apex and the nadir was documented. A non-linear relationship between the serum concentrations of phosphorus and ionized calcium over time was identified. CONCLUSIONS AND CLINICAL IMPORTANCE Diurnal variations of serum phosphorus concentration and associations between the trending of serum phosphorus and ionized calcium concentrations were evident in a group of clinically healthy adult cats housed in a controlled environment. These findings can help in the interpretation of clinical and research data regarding calcium and phosphorus metabolism and kidney health in cats.
Collapse
Affiliation(s)
- Chih-Fan Chiang
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Raphael Vanderstichel
- Department of Clinical Veterinary Sciences, College of Veterinary Medicine, Long Island University, Brooklyn, New York, USA
| | - Jonathan Stockman
- Department of Clinical Veterinary Sciences, College of Veterinary Medicine, Long Island University, Brooklyn, New York, USA
| | - Jennifer A Larsen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea J Fascetti
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Xie H, Linning-Duffy K, Demireva EY, Toh H, Abolibdeh B, Shi J, Zhou B, Iwase S, Yan L. CRISPR-based genome editing of a diurnal rodent, Nile grass rat (Arvicanthis niloticus). BMC Biol 2024; 22:144. [PMID: 38956550 PMCID: PMC11218167 DOI: 10.1186/s12915-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. The present study aims to address this major limitation by developing experimental procedures necessary for genome editing in a well-established diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). RESULTS A superovulation protocol was established, which yielded nearly 30 eggs per female grass rat. Fertilized eggs were cultured in a modified rat 1-cell embryo culture medium (mR1ECM), in which grass rat embryos developed from the 1-cell stage into blastocysts. A CRISPR-based approach was then used for gene editing in vivo and in vitro, targeting Retinoic acid-induced 1 (Rai1), the causal gene for Smith-Magenis Syndrome, a neurodevelopmental disorder. The CRISPR reagents were delivered in vivo by electroporation using an improved Genome-editing via Oviductal Nucleic Acids Delivery (i-GONAD) method. The in vivo approach produced several edited founder grass rats with Rai1 null mutations, which showed stable transmission of the targeted allele to the next generation. CRISPR reagents were also microinjected into 2-cell embryos in vitro. Large deletion of the Rai1 gene was confirmed in 70% of the embryos injected, demonstrating high-efficiency genome editing in vitro. CONCLUSION We have established a set of methods that enabled the first successful CRISPR-based genome editing in Nile grass rats. The methods developed will guide future genome editing of this and other diurnal rodent species, which will promote greater utility of these models in basic and translational research.
Collapse
Affiliation(s)
- Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Elena Y Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Bana Abolibdeh
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
3
|
Oda GA, Valentinuzzi VS. A clock for all seasons in the subterranean. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:677-689. [PMID: 37815602 DOI: 10.1007/s00359-023-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In 1976, Pittendrigh and Daan established a theoretical framework which has coordinated research on circadian clock entrainment and photoperiodism until today. The "wild clocks" approach, which concerns studying wild species in their natural habitats, has served to test their models, add new insights, and open new directions of research. Here, we review an integrated laboratory, field and modeling work conducted with subterranean rodents (Ctenomys sp.) living under an extreme pattern of natural daily light exposure. Tracking animal movement and light exposure with biologgers across seasons and performing laboratory experiments on running-wheel cages, we uncovered the mechanisms of day/night entrainment of the clock and of photoperiodic time measurement in this subterranean organism. We confirmed most of the features of Pittendrigh and Daan's models but highlighted the importance of integrating them with ecophysiological techniques, methodologies, and theories to get a full picture of the clock in the wild. This integration is essential to fully establish the importance of the temporal dimension in ecological studies and tackling relevant questions such as the role of the clock for all seasons in a changing planet.
Collapse
Affiliation(s)
- Gisele A Oda
- Laboratório Binacional de Cronobiologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | |
Collapse
|
4
|
Sangma JT, Renthlei Z, Trivedi AK. Bright daylight produces negative effects on affective and cognitive outcomes in nocturnal rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112885. [PMID: 38460431 DOI: 10.1016/j.jphotobiol.2024.112885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3β (Gsk3β), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
5
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
6
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
7
|
Oosthuizen T, Pillay N, Oosthuizen MK. Wild mice in an urbanized world: Effects of light at night under natural and laboratory conditions in the single-striped grass mouse ( Lemniscomys rosalia). Chronobiol Int 2024; 41:347-355. [PMID: 38353271 DOI: 10.1080/07420528.2024.2317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
Urbanization, and the accompanying artificial light at night (ALAN), can disrupt the activity of animals. Such disruptions at the base of a food web can ripple through the ecosystem. Most studies of ALAN are performed in the laboratory. Thus, we lack basic information about the circadian responses of animals under natural environmental conditions to fully evaluate the impact of ALAN. We studied the behaviour and activity of wild-caught, peri-urban single-striped grass mice (Lemniscomys rosalia) under a natural treatment and in a standard laboratory treatment, including dim light at night to mimic conditions that they could experience. The species exhibited predominantly crepuscular activity under all experimental treatments. It showed the highest level of activity under the natural treatment, whereas ALAN significantly suppressed its activity. Males were more active than females under all experimental treatments. The marked changes in activity under ALAN is of particular concern since global change in combination with urbanization can lead to a change in vegetation density and composition that will decrease the number of suitable microhabitats and expose small mammals to novel habitat changes. We suggest that the single-striped mice could become vulnerable because of urbanization, leading to impacts on its ecosystem broadly.
Collapse
Affiliation(s)
- Tasha Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Maria K Oosthuizen
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
8
|
Aydin OE, Cicek K, Ceylan E, Tuzcu A, Pehlevan A, Demir N. Time-related variations in viability of random pattern skin flaps: An experimental study in rats. Chronobiol Int 2023; 40:1454-1466. [PMID: 37870174 DOI: 10.1080/07420528.2023.2270706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Chronobiological variations are in the fabric of life. The first ideas regarding the possible effects of circadian rhythm on surgical outcomes were published in the early 2000s. Some studies support and oppose this idea. The lack of experimental evidence in a controlled setting has led to this study. This study aimed to explore the chronobiological implications of surgical outcomes. The rats were divided into four groups. A random pattern dorsal skin flaps were elevated in all groups at six h intervals. Flap necrosis rates and melatonin, oxidant, and antioxidant factors were studied. Flap survival was better in the 06:00 h group. The flap necrosis was higher in the 18:00 h group. Some of the biochemical parameters displayed circadian variations. As an independent variable, the time of surgical intervention changed the flap survival rates. It should be noted that the study was held in a nocturnal animal model thus the pattern of flap survival can be in reversed fashion in a clinical scenario. This study is the first experimental evidence for "Chronosurgery" in a controlled setting. Further studies in all aspects of surgical disciplines are required.
Collapse
Affiliation(s)
- Osman Enver Aydin
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Kadir Cicek
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Ender Ceylan
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Ayca Tuzcu
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Anıl Pehlevan
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| | - Necati Demir
- Plastic Reconstructive and Aesthetic Surgery Department, Aydin Adnan Menderes University Faculty of Medicine, Aydin, Türkiye
| |
Collapse
|
9
|
Kowalko JE. Evolution: Out of the shadows and into the light. Curr Biol 2023; 33:R953-R955. [PMID: 37751707 DOI: 10.1016/j.cub.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
While many species are active during specific time periods throughout the day, there is significant variation across species in preferred daily temporal niche. A new study investigates the molecular changes that occurred in a mammal that has evolved diurnality.
Collapse
Affiliation(s)
- Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
10
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
11
|
Xie H, Linning-Duffy K, Demireva EY, Toh H, Abolibdeh B, Shi J, Zhou B, Iwase S, Yan L. CRISPR-based Genome Editing of a Diurnal Rodent, Nile Grass Rat ( Arvicanthis niloticus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.553600. [PMID: 37662225 PMCID: PMC10473663 DOI: 10.1101/2023.08.23.553600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. Here, we address this major limitation by demonstrating the first successful CRISPR genome editing of the Nile grass rat ( Arvicanthis niloticus ), a valuable diurnal rodent. We establish methods for superovulation; embryo development, manipulation, and culture; and pregnancy maintenance to guide future genome editing of this and other diurnal rodent species.
Collapse
|
12
|
Kim AB, Beaver EM, Collins SG, Kriegsfeld LJ, Lockley SW, Wong KY, Yan L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2023; 38:366-378. [PMID: 37222434 PMCID: PMC10364626 DOI: 10.1177/07487304231170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Beyond visual perception, light has non-image-forming effects mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study first used multielectrode array recordings to show that in a diurnal rodent, Nile grass rats (Arvicanthis niloticus), ipRGCs generate rod/cone-driven and melanopsin-based photoresponses that stably encode irradiance. Subsequently, two ipRGC-mediated non-image-forming effects, namely entrainment of daily rhythms and light-induced arousal, were examined. Animals were first housed under a 12:12 h light/dark cycle (lights-on at 0600 h) with the light phase generated by a low-irradiance fluorescent light (F12), a daylight spectrum (D65) stimulating all photoreceptors, or a narrowband 480 nm spectrum (480) that maximized melanopsin stimulation and minimized S-cone stimulation (λmax 360 nm) compared to D65. Daily rhythms of locomotor activities showed onset and offset closer to lights-on and lights-off, respectively, in D65 and 480 than in F12, and higher day/night activity ratio under D65 versus 480 and F12, suggesting the importance of S-cone stimulation. To assess light-induced arousal, 3-h light exposures using 4 spectra that stimulated melanopsin equally but S-cones differentially were superimposed on F12 background lighting: D65, 480, 480 + 365 (narrowband 365 nm), and D65 - 365. Compared to the F12-only condition, all four pulses increased in-cage activity and promoted wakefulness, with 480 + 365 having the greatest and longest-lasting wakefulness-promoting effects, again indicating the importance of stimulating S-cones as well as melanopsin. These findings provide insights into the temporal dynamics of photoreceptor contributions to non-image-forming photoresponses in a diurnal rodent that may help guide future studies of lighting environments and phototherapy protocols that promote human health and productivity.
Collapse
Affiliation(s)
- Antony B. Kim
- Department of Architecture, University of California,
Berkeley, Berkeley, California
| | - Emma M. Beaver
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Stephen G. Collins
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California,
Berkeley, Berkeley, California
- Department of Integrative Biology, University of
California, Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of
California, Berkeley, Berkeley, California
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders,
Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston,
Massachusetts
| | - Kwoon Y. Wong
- Department of Ophthalmology & Visual Sciences, Kellogg
Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular &
Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University,
East Lansing, Michigan
- Neuroscience Program, Michigan State
University, East Lansing, Michigan
| |
Collapse
|
13
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
14
|
Brécier A, Li VW, Smith CS, Halievski K, Ghasemlou N. Circadian rhythms and glial cells of the central nervous system. Biol Rev Camb Philos Soc 2023; 98:520-539. [PMID: 36352529 DOI: 10.1111/brv.12917] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types - astrocytes, microglia, and oligodendrocytes - across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.
Collapse
Affiliation(s)
- Aurélie Brécier
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Vina W Li
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Chloé S Smith
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Katherine Halievski
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
- Department of Anesthesiology & Perioperative Medicine, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
- Centre for Neuroscience Studies, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
15
|
Costello A, Linning-Duffy K, Vandenbrook C, Lonstein JS, Yan L. Daytime Light Deficiency Leads to Sex- and Brain Region-Specific Neuroinflammatory Responses in a Diurnal Rodent. Cell Mol Neurobiol 2023; 43:1369-1384. [PMID: 35864429 PMCID: PMC10635710 DOI: 10.1007/s10571-022-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Seasonal changes in peripheral inflammation are well documented in both humans and animal models, but seasonal changes in neuroinflammation, especially the impact of seasonal lighting environment on neuroinflammation remain unclear. To address this question, the present study examined the effects of environmental lighting conditions on neuroinflammation in a diurnal rodent model, Nile grass rats (Arvicanthis niloticus). Male and female grass rats were housed in either bright (brLD) or dim (dimLD) light during the day to simulate a summer or winter light condition, respectively. After 4 weeks, microglia markers Iba-1 and CD11b, as well as pro-inflammatory cytokines TNF-α and IL-6, were examined in the anterior cingulate cortex (ACC), basolateral amygdala (BLA), and dorsal hippocampus (dHipp). The results revealed that winter-like dim light during the day leads to indicators of increased neuroinflammation in a brain site- and sex-specific manner. Specifically, relatively few changes in the neuroinflammatory markers were observed in the ACC, while numerous changes were found in the BLA and dHipp. In the BLA, winter-like dimLD resulted in hyper-ramified microglia morphology and increased expression of the pro-inflammatory cytokine IL-6, but only in males. In the dHipp, dimLD led to a higher number and hyper-ramified morphology of microglia as well as increased expression of CD11b and TNF-α, but only in females. Neuroinflammatory state is thus influenced by environmental light, differently in males and females, and could play a role in sex differences in the prevalence and symptoms of psychiatric or neurological disorders that are influenced by season or other environmental light conditions. Diurnal Nile grass rats were housed under bright or dim light during the day for 4 weeks, simulating seasonal fluctuations in daytime lighting environment. Dim light housing resulted in hyper-ramified morphology of microglia (scale bar, 15 μm) and altered expression of pro-inflammatory cytokines (TNF-α) in a sex- and brain region-specific manner.
Collapse
Affiliation(s)
- Allison Costello
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Katrina Linning-Duffy
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Carleigh Vandenbrook
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
| | - Joseph S Lonstein
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Lily Yan
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, 766, Service Road, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Feeding Behavior of Finishing Pigs under Diurnal Cyclic Heat Stress. Animals (Basel) 2023; 13:ani13050908. [PMID: 36899763 PMCID: PMC10000165 DOI: 10.3390/ani13050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The impact of cyclic heat stress (CHS) and turning the lights on and off on pig feeding behavior (FB) was investigated. The FB of 90 gilts was recorded in real-time under two ambient temperatures (AT): thermoneutrality (TN, 22 °C) or CHS (22/35 °C). The day was divided into four periods: PI (06-08 h); PII (08-18 h); PIII (18-20 h); and PIV (20-06 h). Automatic and Intelligent Precision Feeders recorded each feed event for each pig. An estimated meal criterion (49 min) was used to calculate the FB variables. Feed behavior in both ATs followed a circadian pattern. The CHS reduced the feed intake by 6.9%. The pigs prioritized feed intake during the coolest hours of the day; however, nocturnal cooling did not allow the pigs to compensate for the reduced meal size due to CHS. The highest meal size and most of the meals were observed during the lighting-on period. The pigs reduced their interval between meals during PII and PIII. The lighting program increased the meal size when the lights were switched on and reduced the meal size when the lights were switched off. Thus, the dynamics of the FB were largely influenced by AT, whereas the meal size was affected by the lighting program.
Collapse
|
18
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
19
|
Milićević N, Bergen AA, Felder-Schmittbuhl MP. Per1 mutation enhances masking responses in mice. Chronobiol Int 2022; 39:1533-1538. [PMID: 36189750 DOI: 10.1080/07420528.2022.2126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light can restrict the activity of an animal to a diurnal or nocturnal niche by synchronizing its endogenous clock (entrainment) which controls the sleep wake cycle. Light can also directly change an animal's activity level (masking). In mice, high illumination levels decrease activity, i.e. negative masking occurs. To investigate the role of core circadian clock genes Per1 and Per2 in masking, we used a 5-day behavioral masking protocol consisting of 3 h pulses of light given in the night at various illuminances (4-5 lux, 20 lux and 200 lux). Mice lacking the Per1 gene had decreased locomotion in the presence of a light pulse compared to wild-type, Per2 and Per1 Per2 double mutant mice. Per2 single mutant and Per1 Per2 double mutant mice did not show significantly different masking responses compared to wild-type controls. This suggests that Per1 suppresses negative masking responses in mice.
Collapse
Affiliation(s)
- Nemanja Milićević
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Queen Emma Centre for Personalized Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Bilu C, Einat H, Zimmet P, Kronfeld-Schor N. Circadian rhythms-related disorders in diurnal fat sand rats under modern lifestyle conditions: A review. Front Physiol 2022; 13:963449. [PMID: 36160856 PMCID: PMC9489903 DOI: 10.3389/fphys.2022.963449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Modern lifestyle reduces environmental rhythmicity and may lead to circadian desynchrony. We are exposed to poor day-time lighting indoors and excessive night-time artificial light. We use air-conditioning to reduce ambient temperature cycle, and food is regularly available at all times. These disruptions of daily rhythms may lead to type 2 diabetes mellitus (T2DM), obesity, cardiometabolic diseases (CMD), depression and anxiety, all of which impose major public health and economic burden on societies. Therefore, we need appropriate animal models to gain a better understanding of their etiologic mechanisms, prevention, and management.We argue that the fat sand rat (Psammomys obesus), a diurnal animal model, is most suitable for studying the effects of modern-life conditions. Numerous attributes make it an excellent model to study human health disorders including T2DM, CMD, depression and anxiety. Here we review a comprehensive series of studies we and others conducted, utilizing the fat sand rat to study the underlying interactions between biological rhythms and health. Understanding these interactions will help deciphering the biological basis of these diseases, which often occur concurrently. We found that when kept in the laboratory (compared with natural and semi-wild outdoors conditions where they are diurnal), fat sand rats show low amplitude, nocturnal or arrhythmic activity patterns, dampened daily glucose rhythm, glucose intolerance, obesity and decreased survival rates. Short photoperiod acclimation exacerbates these pathologies and further dampens behavioral and molecular daily rhythms, resulting in CMD, T2DM, obesity, adipocyte dysfunction, cataracts, depression and anxiety. Increasing environmental rhythmicity by morning bright light exposure or by access to running wheels strengthens daily rhythms, and results in higher peak-to-trough difference in activity, better rhythmicity in clock genes expression, lower blood glucose and insulin levels, improved glucose tolerance, lower body and heart weight, and lower anxiety and depression. In summary, we have demonstrated that fat sand rats living under the correspondent of “human modern lifestyle” conditions exhibit dampened behavioral and biological rhythms and develop circadian desynchrony, which leads to what we have named “The Circadian Syndrome”. Environmental manipulations that increase rhythmicity result in improvement or prevention of these pathologies. Similar interventions in human subjects could have the same positive results and further research on this should be undertaken.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
- *Correspondence: Carmel Bilu,
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
21
|
The Mediation Effect of Peripheral Biomarkers of Calcium Metabolism and Chronotypes in Bipolar Disorder Psychopathology. Metabolites 2022; 12:metabo12090827. [PMID: 36144231 PMCID: PMC9505716 DOI: 10.3390/metabo12090827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium (Ca++) metabolism may be impaired in several psychiatric diseases. We hypothesize that calcium imbalance might also correlate with a specific chronotype and could be recognized as a marker of illness severity in bipolar disorder (BD). We aimed to (1) identify the association between calcium imbalance and a specific chronotype in a cohort of BD patients, and (2) test the mediation role of high parathyroid hormone (PTH) levels towards a specific chronotype and illness severity in BD patients. Patients’ socio-demographic and clinical characteristics were collected with an ad-hoc schedule. We administered the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Young Mania Rating Scale (YMRS), and the Morningness Eveningness Questionnaire (MEQ). 100 patients affected by BD were recruited. The Kruskal-Wallis test showed a significant difference between the three MEQ groups in PTH levels (p < 0.001) and vitamin D levels (p = 0.048) but not in Ca++ levels (p = 0.426). Dwass-Steel-Critchlow-Fligner Pairwise analyses performed concerning three MEQ groups revealed significantly higher scores on PTH levels in MEQ-E subjects compared to MEQ-M and MEQ-I (in both cases, p < 0.001). No differences emerged between calcium levels among the three chronotypes. The mediation analysis has shown that elevated PTH levels are directly influenced by more severe HAM-A, HAM-D, and YMRS scores. MEQ-E could be a marker related to BD and predispose to various factors influencing mood symptoms. The combination of vitamin D therapy in MEQ-E may help to improve prognosis in this subtype of patients affected by BD.
Collapse
|
22
|
Schoonderwoerd RA, de Torres Gutiérrez P, Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH, Meijer JH. Inhibitory responses to retinohypothalamic tract stimulation in the circadian clock of the diurnal rodent Rhabdomys pumilio. FASEB J 2022; 36:e22415. [PMID: 35867045 PMCID: PMC9544711 DOI: 10.1096/fj.202200477r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
In both diurnal and nocturnal mammals, the timing of activity is regulated by the central circadian clock of the suprachiasmatic nucleus (SCN). The SCN is synchronized to the external light cycle via the retinohypothalamic tract (RHT). To investigate potential differences in light processing between nocturnal mice and the diurnal rodent Rhabdomys pumilio, we mimicked retinal input by stimulation of the RHT ex vivo. Using Ca2+ imaging, we observed excitations as well as inhibitions of SCN neurons in response to electrical RHT stimulation. In mice, the vast majority of responses were excitatory (85%), whereas in Rhabdomys, the proportion of excitatory and inhibitory responses was similar (51% excitatory, 49% inhibitory). Glutamate blockers AP5 and CNQX blocked the excitatory responses to RHT stimulation but did not abolish the inhibitory responses in mice or Rhabdomys, indicating that the inhibitions were monosynaptically transmitted via the RHT. Simultaneous application of glutamate blockers with the GABAA antagonist gabazine blocked all inhibitory responses in mice, but not in Rhabdomys. Collectively, our results indicate that in Rhabdomys, considerably more inhibitory responses to light are present and that these responses are driven directly by the RHT. We propose that this increased proportion of inhibitory input could reflect a difference in the entrainment mechanism employed by diurnal rodents.
Collapse
Affiliation(s)
- Robin A Schoonderwoerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ruben Blommers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tineke C J J Coenen
- Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathan J Klett
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan H Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Early Time-Restricted Feeding Amends Circadian Clock Function and Improves Metabolic Health in Male and Female Nile Grass Rats. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9020015. [PMID: 35200758 PMCID: PMC8877212 DOI: 10.3390/medicines9020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Lengthening the daily eating period contributes to the onset of obesity and metabolic syndrome. Dietary approaches, including energy restriction and time-restricted feeding, are promising methods to combat metabolic disorders. This study explored the effect of early and late time-restricted feeding (TRF) on weight and adiposity, food consumption, glycemic control, clock gene expression, and liver metabolite composition in diurnal Nile grass rats (NGRs). Adult male and female Nile grass rats were randomly assigned to one of three groups: (1) access to a 60% high-fat (HF) diet ad-libitum (HF-AD), (2) time-restricted access to the HF diet for the first 6 h of the 12 h light/active phase (HF-AM) or (3) the second 6 h of the 12 h light/active phase (HF-PM). Animals remained on their respective protocols for six weeks. TRF reduced total energy consumption and weight gain, and early TRF (HF-AM) reduced fasting blood glucose, restored Per1 expression, and reduced liver lipid levels. Although sex-dependent differences were observed for fat storage and lipid composition, TRF improved metabolic parameters in both male and female NGRs. In conclusion, this study demonstrated that early TRF protocol benefits weight management, improves lipid and glycemic control, and restores clock gene expression in NGRs.
Collapse
|
24
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
25
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
26
|
Jekl V, Brinek A, Zikmund T, Jeklova E, Kaiser J. Use of Micro-CT Imaging to Assess Ventral Mandibular Cortical Thickness and Volume in an Experimental Rodent Model With Chronic High-Phosphorus Intake. Front Vet Sci 2021; 8:759093. [PMID: 34957278 PMCID: PMC8695870 DOI: 10.3389/fvets.2021.759093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adverse effects of high dietary phosphorus on bone health have been observed in both animal and human studies. The aim of the investigation was to examine chronic effects of high phosphorus diet on the apical mandibular cortical thickness and volume in a hystricomorph rodent (Octodon degus) using microcomputed tomography. Male degus were randomly divided into two groups fed by different mineral contents from the age of 12 weeks till the age of 17 months. The micro-CT scanning and wall thickness analysis were applied on the region of the mandible exactly under the apices of the 4th premolar tooth, first molar tooth, and second molar tooth in two animals from each group. General overview and mapping of the ventral mandibular bone thickness revealed pronounced bony mandibular protrusions in all the animals fed a high-phosphorus diet with obvious bone thinning apically to the 4th premolar and first and second molar tooth apices. Mandibular bone volume and thickness located apically to the premolar and molars were statistically significantly smaller/thinner in the group fed by a high phosphorus diet. The thinnest bone measured 0.004 mm, where the mandibular 4th premolar tooth almost perforated the mandibular cortex. Similar studies of metabolic bone disease and its influence on alveolar bone were also published in rats and mice. The influence of different environmental, infectious, or metabolic factors on the growing tooth, alveolar bone formation, and bone pathologies must be done experimentally on growing animals. In contrast, degus have continuously growing dentition, and the effect of any of the above listed factors can be studied in this animal model at any age and for longer time periods.
Collapse
Affiliation(s)
- Vladimir Jekl
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, Veterinary University Brno, Brno, Czechia.,Jekl & Hauptman Veterinary Clinic, Brno, Czechia
| | - Adam Brinek
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Edita Jeklova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, v.v.i., Brno, Czechia
| | - Josef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
27
|
Bano-Otalora B, Moye MJ, Brown T, Lucas RJ, Diekman CO, Belle MD. Daily electrical activity in the master circadian clock of a diurnal mammal. eLife 2021; 10:68179. [PMID: 34845984 PMCID: PMC8631794 DOI: 10.7554/elife.68179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/09/2021] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms in mammals are orchestrated by a central clock within the suprachiasmatic nuclei (SCN). Our understanding of the electrophysiological basis of SCN activity comes overwhelmingly from a small number of nocturnal rodent species, and the extent to which these are retained in day-active animals remains unclear. Here, we recorded the spontaneous and evoked electrical activity of single SCN neurons in the diurnal rodent Rhabdomys pumilio, and developed cutting-edge data assimilation and mathematical modeling approaches to uncover the underlying ionic mechanisms. As in nocturnal rodents, R. pumilio SCN neurons were more excited during daytime hours. By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive response that is not present in the SCN of nocturnal rodents. Our modeling revealed and subsequent experiments confirmed transient subthreshold A-type potassium channels as the primary determinant of this response, and suggest a key role for this ionic mechanism in optimizing SCN function to accommodate R. pumilio's diurnal niche.
Collapse
Affiliation(s)
- Beatriz Bano-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew J Moye
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,Department of Quantitative Pharmacology and Pharmacometrics (QP2), Kenilworth, United States
| | - Timothy Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,EPSRC Centre for Predictive Modelling in Healthcare, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Mino Dc Belle
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Andreatta G, Allen CN. How neurons adjust to diurnality. eLife 2021; 10:e74704. [PMID: 34845985 PMCID: PMC8631939 DOI: 10.7554/elife.74704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Being active during the day requires a slow-closing ion channel that dampens the activity of neurons in a specific area of the brain.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of ViennaViennaAustria
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Department of Behavioral NeurosciencePortlandUnited States
| |
Collapse
|
29
|
Zhu RT, Jia Z, Zhou L. Light therapy improved depression-like behavior induced by chronic unpredictable mild stress in Mongolian gerbils. Neurosci Lett 2021; 765:136256. [PMID: 34543679 DOI: 10.1016/j.neulet.2021.136256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022]
Abstract
Progress has been made in elucidating the mechanism by which light modulates depressive-like behaviors. However, almost all of these studies ignore an important issue, namely, that examining the effects of light therapy in nocturnal animals may be difficult because the influences of light on behavioral responses differ between nocturnal and diurnal animals. To date, few diurnal rodents have been utilized to establish animal models that closely mimic clinical depression. Herein, the chronic unpredictable mild stress model, which is the most representative, reliable, and effective rodent model of depression, was implemented in diurnal Mongolian gerbils for the first time. The gerbils were subjected to two hours of light therapy or fluoxetine treatment for 2 weeks. Our work revealed that Mongolian gerbils subjected to chronic unpredictable mild stress showed depression-like behaviors. Interestingly, we also found that light therapy improved anhedonic behavior more effectively than fluoxetine after two weeks of treatment. In summary, our study is the first to use diurnal Mongolian gerbils, which have the same circadian rhythm as humans, to establish an effective, economical, and practical animal model of depression and confirmed that light therapy could improve depression-like behavior more effectively than fluoxetine to some extent in diurnal Mongolian gerbils, which establishes a good foundation for clarifying the neural mechanism of light therapy for depression.
Collapse
Affiliation(s)
- Rong-Ting Zhu
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhouxin Jia
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; School of Public and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Zhou
- Department of Social Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
30
|
Enlightened: addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl Psychiatry 2021; 11:373. [PMID: 34226504 PMCID: PMC8257630 DOI: 10.1038/s41398-021-01494-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorders (BDs) exhibit high heritability and symptoms typically first occur during late adolescence or early adulthood. Affected individuals may experience alternating bouts of mania/hypomania and depression, with euthymic periods of varying lengths interspersed between these extremes of mood. Clinical research studies have consistently demonstrated that BD patients have disturbances in circadian and seasonal rhythms, even when they are free of symptoms. In addition, some BD patients display seasonal patterns in the occurrence of manic/hypomanic and depressive episodes as well as the time of year when symptoms initially occur. Finally, the age of onset of BD symptoms is strongly influenced by the distance one lives from the equator. With few exceptions, animal models useful in the study of BD have not capitalized on these clinical findings regarding seasonal patterns in BD to explore molecular mechanisms associated with the expression of mania- and depression-like behaviors in laboratory animals. In particular, animal models would be especially useful in studying how rates of change in photoperiod that occur during early spring and fall interact with risk genes to increase the occurrence of mania- and depression-like phenotypes, respectively. Another unanswered question relates to the ways in which seasonally relevant changes in photoperiod affect responses to acute and chronic stressors in animal models. Going forward, we suggest ways in which translational research with animal models of BD could be strengthened through carefully controlled manipulations of photoperiod to enhance our understanding of mechanisms underlying seasonal patterns of BD symptoms in humans. In addition, we emphasize the value of incorporating diurnal rodent species as more appropriate animal models to study the effects of seasonal changes in light on symptoms of depression and mania that are characteristic of BD in humans.
Collapse
|
31
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
32
|
Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021; 126:3-14. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
Nearly all mammals display robust daily rhythms of physiology and behavior. These approximately 24-h cycles, known as circadian rhythms, are driven by a master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and affect biological processes ranging from metabolism to immune function. Perhaps the most overt output of the circadian clock is the sleep-wake cycle, the integrity of which is critical for health and homeostasis of the organism. In this review, we summarize our current understanding of the circadian regulation of sleep. We discuss the neural circuitry and molecular mechanisms underlying daily sleep timing, and the trajectory of circadian regulation of sleep across development. We conclude by proposing future research priorities for the field that will significantly advance our mechanistic understanding of the circadian regulation of sleep.
Collapse
Affiliation(s)
- Raymond E A Sanchez
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| | - Franck Kalume
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
34
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
35
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
36
|
Adams KL, Sun EF, Alaidrous W, de Roode JC. Constant Light and Frequent Schedule Changes Do Not Impact Resistance to Parasites in Monarch Butterflies. J Biol Rhythms 2021; 36:286-296. [PMID: 33445989 DOI: 10.1177/0748730420985312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Organisms have evolved internal biological clocks to regulate their activities based on external environmental cues, such as light, temperature, and food. Environmental disruption of these rhythms, such as caused by constant light or frequent light schedule changes, has been shown to impair development, reduce survival, and increase infection susceptibility and disease progression in numerous organisms. However, the precise role of the biological clock in host-parasite interactions is understudied and has focused on unnatural host-parasite combinations in lab-adapted inbred models. Here, we use the natural interaction between monarch butterflies (Danaus plexippus) and their virulent protozoan parasite, Ophryocystis elektroscirrha, to investigate the effects of constant light and frequent light schedule changes on development, survival, and parasite susceptibility. We show that constant light exposure slows the monarchs' rate of development but does not increase susceptibility to parasitic infection. Furthermore, frequent schedule changes decrease parasite growth, but have no effect on egg-to-adult survival of infected monarchs. Interestingly, these conditions are usually disruptive to the biological clock, but do not significantly impact the clock of monarch larvae. These unexpected findings show that constant light and frequent schedule changes can uncouple host and parasite performance and highlight how natural relationships are needed to expand our understanding of clocks in host-parasite interactions.
Collapse
Affiliation(s)
- Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Wajd Alaidrous
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
37
|
Furtado A, Astaburuaga R, Costa A, Duarte AC, Gonçalves I, Cipolla-Neto J, Lemos MC, Carro E, Relógio A, Santos CRA, Quintela T. The Rhythmicity of Clock Genes is Disrupted in the Choroid Plexus of the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 77:795-806. [PMID: 32741824 DOI: 10.3233/jad-200331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, was recently identified as an important component of the circadian clock system. OBJECTIVE The fact that circadian rhythm disruption is closely associated to Alzheimer's disease (AD) led us to investigate whether AD pathology can contribute to disturbances of the circadian clock in the CP. METHODS For this purpose, we evaluated the expression of core-clock genes at different time points, in 6- and 12-month-old female and male APP/PS1 mouse models of AD. In addition, we also assessed the effect of melatonin pre-treatment in vitro before amyloid-β stimulus in the daily pattern of brain and muscle Arnt-like protein 1 (Bmal1) expression. RESULTS Our results showed a dysregulation of circadian rhythmicity of Bmal1 expression in female and male APP/PS1 transgenic 12-month-old mice and of Period 2 (Per2) expression in male mice. In addition, a significant circadian pattern of Bmal1 was measured the intermittent melatonin pre-treatment group, showing that melatonin can reset the CP circadian clock. CONCLUSION These results demonstrated a connection between AD and the disruption of circadian rhythm in the CP, representing an attractive target for disease prevention and/or treatment.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Rosario Astaburuaga
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
| | - Ana Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - José Cipolla-Neto
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Manuel C Lemos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Spain
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Medical Department of Hematology, Oncology, and Tumor Immunology and Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Germany
- Department of Human Medicine, Institute for Systems Medicine and Bioinformatics, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
38
|
Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci 2020; 51:531-550. [PMID: 30402904 PMCID: PMC6504624 DOI: 10.1111/ejn.14255] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as "circadian disruption", but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
39
|
Gall AJ, Goodwin AM, Khacherian OS, Teal LB. Superior Colliculus Lesions Lead to Disrupted Responses to Light in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2019; 35:45-57. [PMID: 31619104 DOI: 10.1177/0748730419881920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The circadian system regulates daily rhythms of physiology and behavior. Although extraordinary advances have been made to elucidate the brain mechanisms underlying the circadian system in nocturnal species, less is known in diurnal species. Recent studies have shown that retinorecipient brain areas such as the intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPT) are critical for the display of normal patterns of daily activity in diurnal grass rats (Arvicanthis niloticus). Specifically, grass rats with IGL and OPT lesions respond to light in similar ways to intact nocturnal animals. Importantly, both the IGL and OPT project to one another in nocturnal species, and there is evidence that these 2 brain regions also project to the superior colliculus (SC). The SC receives direct retinal input, is involved in the triggering of rapid eye movement sleep in nocturnal rats, and is disproportionately large in the diurnal grass rat. The objective of the current study was to use diurnal grass rats to test the hypothesis that the SC is critical for the expression of diurnal behavior and physiology. We performed bilateral electrolytic lesions of the SC in female grass rats to examine behavioral patterns and acute responses to light. Most grass rats with SC lesions expressed significantly reduced activity in the presence of light. Exposing these grass rats to constant darkness reinstated activity levels during the subjective day, suggesting that light masks their ability to display a diurnal activity profile in 12:12 LD. Altogether, our data suggest that the SC is critical for maintaining normal responses to light in female grass rats.
Collapse
Affiliation(s)
- Andrew J Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, Michigan
| | - Alyssa M Goodwin
- Department of Psychology and Neuroscience Program, Hope College, Holland, Michigan
| | - Ohanes S Khacherian
- Department of Psychology and Neuroscience Program, Hope College, Holland, Michigan
| | - Laura B Teal
- Department of Psychology and Neuroscience Program, Hope College, Holland, Michigan
| |
Collapse
|
40
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
41
|
Shuboni-Mulligan DD, Cavanaugh BL, Tonson A, Shapiro EM, Gall AJ. Functional and anatomical variations in retinorecipient brain areas in Arvicanthis niloticus and Rattus norvegicus: implications for the circadian and masking systems. Chronobiol Int 2019; 36:1464-1481. [PMID: 31441335 DOI: 10.1080/07420528.2019.1651325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Daily rhythms in light exposure influence the expression of behavior by entraining circadian rhythms and through its acute effects on behavior (i.e., masking). Importantly, these effects of light are dependent on the temporal niche of the organism; for diurnal organisms, light increases activity, whereas for nocturnal organisms, the opposite is true. Here we examined the functional and morphological differences between diurnal and nocturnal rodents in retinorecipient brain regions using Nile grass rats (Arvicanthis niloticus) and Sprague-Dawley (SD) rats (Rattus norvegicus), respectively. We established the presence of circadian rhythmicity in cFOS activation in retinorecipient brain regions in nocturnal and diurnal rodents housed in constant dark conditions to highlight different patterns between the temporal niches. We then assessed masking effects by comparing cFOS activation in constant darkness (DD) to that in a 12:12 light/dark (LD) cycle, confirming light responsiveness of these regions during times when masking occurs in nature. The intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPN) exhibited significant variation among time points in DD of both species, but their expression profiles were not identical, as SD rats had very low expression levels for most timepoints. Light presentation in LD conditions induced clear rhythms in the IGL of SD rats but eliminated them in grass rats. Additionally, grass rats were the only species to demonstrate daily rhythms in LD for the habenula and showed a strong response to light in the superior colliculus. Structurally, we also analyzed the volumes of the visual brain regions using anatomical MRI, and we observed a significant increase in the relative size of several visual regions within diurnal grass rats, including the lateral geniculate nucleus, superior colliculus, and optic tract. Altogether, our results suggest that diurnal grass rats devote greater proportions of brain volume to visual regions than nocturnal rodents, and cFOS activation in these brain regions is dependent on temporal niche and lighting conditions.
Collapse
Affiliation(s)
- Dorela D Shuboni-Mulligan
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | | | - Anne Tonson
- Department of Physiology, Michigan State University , East Lansing , MI , USA
| | - Erik M Shapiro
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | - Andrew J Gall
- Department of Psychology, Hope College , Holland , MI , USA.,Neuroscience Program, Hope College , Holland , MI , USA
| |
Collapse
|
42
|
Yamakawa GR, Weerawardhena H, Eyolfson E, Griep Y, Antle MC, Mychasiuk R. Investigating the Role of the Hypothalamus in Outcomes to Repetitive Mild Traumatic Brain Injury: Neonatal Monosodium Glutamate Does Not Exacerbate Deficits. Neuroscience 2019; 413:264-278. [DOI: 10.1016/j.neuroscience.2019.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
43
|
Yan L, Lonstein JS, Nunez AA. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Horm Behav 2019; 111:78-86. [PMID: 30244030 PMCID: PMC6456444 DOI: 10.1016/j.yhbeh.2018.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in humans is that the level of illumination during the day positively contributes to affective well-being and cognitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g., light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the mechanisms through which light modulates affect and cognition must differ between the chronotypes. To further understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Antonio A Nunez
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Soler JE, Stumpfig M, Tang YP, Robison AJ, Núñez AA, Yan L. Daytime Light Intensity Modulates Spatial Learning and Hippocampal Plasticity in Female Nile Grass Rats (Arvicanthis niloticus). Neuroscience 2019; 404:175-183. [PMID: 30690136 DOI: 10.1016/j.neuroscience.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/15/2022]
Abstract
Light has pervasive effects on the physiology and behavior of mammals. Several human studies have shown that light modulates cognitive functions; however, the mechanisms responsible for the effects of light remain unclear. Our previous work using diurnal male Nile grass rats (Arvicanthis niloticus) revealed that reduced illuminance during the day leads to impairments in hippocampal-dependent spatial learning/memory, reduced CA1 dendritic spine density, and attenuated hippocampal brain-derived neurotrophic factor (BDNF) expression in males. The present study examined the impact of ambient light intensity on hippocampal functions in female grass rats and explored sex differences in behavioral and hippocampal responses. Female grass rats were housed in either a 12:12-hr bright light-dark (brLD, 1000 lx) or dim light-dark (dimLD, 50 lx) cycle for four weeks. The dimLD group showed impaired spatial memory in the Morris water maze task and reduced CA1 apical dendritic spine density, similar to prior observations in males. However, the behavioral deficits seen in females were more severe than those seen in males, with dimLD females showing no evidence of long-term retention over the 24-hour periods between training sessions. In contrast to the attenuated hippocampal BDNF expression found in dimLD males, there was no significant difference in the expression of BDNF and of its receptor TrkB between females in brLD and dimLD. The results suggest that, as seen in male grass rats, reduced illuminance during the day impairs hippocampal-dependent spatial memory and hippocampal plasticity in female diurnal grass rats, but the underlying signaling pathways responsible for the effects of light restriction may differ between the sexes.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Margaret Stumpfig
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Yu-Ping Tang
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|