1
|
Scott KJ, Speers LJ, Bilkey DK. Maternal immune activation alters bout structure of rat 50-kHz ultrasonic vocalizations. Behav Brain Res 2025; 488:115596. [PMID: 40252701 DOI: 10.1016/j.bbr.2025.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Dysfunctional sequencing of behaviour and cognition is observed in schizophrenia across multiple domains, including during communication. We examined whether maternal immune activation (MIA), a risk factor for schizophrenia, disrupted the sequential organization of ultrasonic vocalizations (USVs) in a rat model. We analysed the structure of bursts of 50-kHz USVs (bouts) in two independent datasets (paired-rat: 19 control, 18 MIA; reward paradigm: 18 control, 20 MIA), using a Damerau-Levenshtein analysis with a k-fold cross-validation procedure. MIA animals showed greater variability in their bout sequences in both datasets, with lower Levenshtein similarity index (LSI) scores compared to control animals. Notably, MIA set median sequences were more similar to control bout sequences than to their own group's sequences, suggesting a breakdown in sequential organization. Additionally, we found an alteration to 50-kHz USV transitional preferences in MIA in a reward context. While sequence structure was altered, basic call production and call-type distribution remained largely intact across groups. These findings demonstrate that MIA specifically appears to affect the organization of vocal sequences at the bout level, while largely preserving basic vocalization patterns. This work extends our understanding of the effects of maternal infection during pregnancy, and how this can lead to altered communication sequences that are relevant to schizophrenia risk.
Collapse
Affiliation(s)
- K Jack Scott
- Department of Psychology, University of Otago, New Zealand
| | - Lucinda J Speers
- Department of Psychology, University of Otago, New Zealand; Grenoble Institut des Neurosciences, Inserm, France
| | - David K Bilkey
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
2
|
Biggar E, Thomas R, Lave ML, Jaju Bhattad G, Rajakumar N, Renaud SJ. Maternal immune activation elicits rapid and sex-dependent changes in gene expression and vascular dysfunction in the rat placenta. Placenta 2025; 163:51-60. [PMID: 40081234 DOI: 10.1016/j.placenta.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION Maternal immune activation (MIA), characterized by increased circulating inflammatory mediators during pregnancy, is associated with adverse pregnancy outcomes and neurodevelopmental deficits in offspring. These health outcomes often manifest differently depending on fetal-placental sex. A well-established model of MIA involves administration of a viral mimetic, polyinosinic:polycytidilic acid (PolyI:C), to pregnant rodents. Placental responses to PolyI:C contribute to the detrimental effects of MIA on offspring, but these responses have not yet been well characterized. In the present study, we profiled acute gene expression changes in male and female placentas following PolyI:C administration to pregnant rats during late gestation. METHODS Pregnant rats received 4 mg/kg PolyI:C or saline intravenously on gestational day 18.5, and tissues were harvested 4-5 h later. Gene expression profiling on placental tissue was performed. Enzyme immunoassays and immunohistochemistry were conducted to determine levels of select proteins in maternal blood and placental tissue, respectively. RESULTS Maternal PolyI:C exposure caused a robust increase in levels of inflammatory mediators in maternal blood and placental tissue. There were more genes differentially expressed in female placentas after PolyI:C exposure (765) than male placentas (221), including reduced expression of genes associated with maternal-fetal communication. Placentas also had increased expression of genes linked with vascular dysfunction after PolyI:C-induced MIA. DISCUSSION PolyI:C elicited a powerful inflammatory response in the placenta along with vascular dysfunction, likely contributing to the adverse pregnancy outcomes triggered by MIA. Female placentas responded to PolyI:C more vigorously than male placentas, which could underlie the differential outcomes of MIA depending on sex.
Collapse
Affiliation(s)
- Erin Biggar
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Ruth Thomas
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Megan L Lave
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, MSB428, 1151 Richmond Street, London, ON, N6A 5C1, Canada; Children's Health Research Institute, London Health Sciences Centre Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
Patterson TMR, Dunn REA, Bilkey DK. Sequence learning following maternal immune activation. Behav Brain Res 2025; 482:115433. [PMID: 39828089 DOI: 10.1016/j.bbr.2025.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Maternal immune activation (MIA) is a risk factor for schizophrenia. Since memory for sequence and stimulus order are disrupted in individuals with schizophrenia, we tested whether MIA animals showed deficits in a sequence learning and object-place recency memory task. In experiment one, control and MIA-challenged rats were required to nose poke five ports in a cued sequence. The sequences were presented randomly except for one structured sequence that was repetitive and initiated from the same port. Both groups were more accurate on the structured sequence and learned the task at similar rates. When a new structured sequence was presented, control animals were able to respond flexibly and take advantage of the structure, whereas the performance of MIA animals was similar for random and structured sequences. Experiment two tested MIA and control rats were evaluated in a Temporal Ordering for Spatial Locations task (TOSL). Control animals had a significant preference for the object in the least-recent location, indicating a novelty preference, while MIA animals did not, although the between-group difference failed to reach significance. Exploration patterns changed differentially over time, possibly because of variation in habituation processes. As a result, MIA animals were significantly less likely to explore the object at the least-recent location during the second half of the exploration session, compared to control animals. Collectively these studies indicate that while MIA animals are unimpaired in simple sequence learning, they display changes in behaviour compared to controls. Differences may result from habituation rate or inflexibility when responding to change.
Collapse
Affiliation(s)
| | - Rebecca E A Dunn
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Griego E, Cerna C, Sollozo-Dupont I, Fuenzalida M, Galván EJ. Maternal immune activation alters temporal Precision of spike generation of CA1 pyramidal neurons by Unbalancing GABAergic inhibition intheOffspring. Brain Behav Immun 2025; 123:211-228. [PMID: 39293693 DOI: 10.1016/j.bbi.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Infection during pregnancy represents a risk factor for neuropsychiatric disorders associated with neurodevelopmental alterations. A growing body of evidence from rodents and non-human primates shows that maternal inflammation induced by viral or bacterial infections results in several neurobiological alterations in the offspring. These changes may play an important role in the pathophysiology of psychiatric disorders like schizophrenia and autism spectrum disorders, whose clinical features include impairments in cognitive processing and social performance. Such alterations are causally associated with the maternal inflammatory response to infection rather than with the infection itself. Previously, we reported that CA1 pyramidal neurons of mice exposed to MIA exhibit increased excitability accompanied by a reduction in dendritic complexity. However, potential alterations in cellular and synaptic rules that shape the neuronal computational properties of the offspring remain to be determined. In this study, using mice as subjects, we identified a series of cellular and synaptic alterations endured by CA1 pyramidal neurons of the dorsal hippocampus in a lipopolysaccharide-induced maternal immune activation (MIA) model. Our data indicate that MIA reshapes the excitation-inhibition balance by decreasing the perisomatic GABAergic inhibition predominantly mediated by cholecystokinin-expressing Interneurons but not parvalbumin-expressing interneurons impinging on CA1 pyramidal neurons. These alterations yield a dysregulated amplification of the temporal and spatial synaptic integration. In addition, MIA-exposed offspring displayed social and anxiety-like abnormalities. These findings collectively contribute to understanding the cellular and synaptic alterations underlying the behavioral symptoms present in neurodevelopmental disorders associated with MIA.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav, Ciudad de México, México; Current Address: Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Camila Cerna
- Centro de Neurobiología y Fisiopatología Integrativa, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Isabel Sollozo-Dupont
- Instituto Nacional de Perinatología, Isidro Espinosa de los Reyes. Ciudad de México, México
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav, Ciudad de México, México; Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, México.
| |
Collapse
|
5
|
Munarriz‐Cuezva E, Meana JJ. Poly (I:C)-induced maternal immune activation generates impairment of reversal learning performance in offspring. J Neurochem 2025; 169:e16212. [PMID: 39183542 PMCID: PMC11657921 DOI: 10.1111/jnc.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Maternal immune activation (MIA) induces a variety of behavioral and brain abnormalities in offspring of rodent models, compatible with neurodevelopmental disorders, such as schizophrenia or autism. However, it remains controversial whether MIA impairs reversal learning, a basic expression of cognitive flexibility that seems to be altered in schizophrenia. In the present study, MIA was induced by administration of a single dose of polyriboinosinic-polyribocytidylic acid (Poly (I:C) (5 mg/kg i.p.)) or saline to mouse pregnant dams in gestational day (GD) 9.5. Immune activation was monitored through changes in weight and temperature. The offspring were evaluated when they reached adulthood (8 weeks) using a touchscreen-based system to investigate the effects of Poly (I:C) on discrimination and reversal learning performance. After an initial pre-training, mice were trained to discriminate between two different stimuli, of which only one was rewarded (acquisition phase). When the correct response reached above 80% values for two consecutive days, the images were reversed (reversal phase) to assess the adaptation capacity to a changing environment. Maternal Poly (I:C) treatment did not interfere with the learning process but induced deficits in reversal learning compared to control saline animals. Thus, the accuracy in the reversal phase was lower, and Poly (I:C) animals required more sessions to complete it, suggesting impairments in cognitive flexibility. This study advances the knowledge of how MIA affects behavior, especially cognitive domains that are impaired in schizophrenia. The findings support the validity of the Poly (I:C)-based MIA model as a tool to develop pharmacological treatments targeting cognitive deficits associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eva Munarriz‐Cuezva
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
| | - Jose Javier Meana
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque CountryLeioaBizkaiaSpain
- Centro de Investigación Biomédica en Red de Salud MentalLeioaBizkaiaSpain
- Biobizkaia Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
6
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Gogos A, Thomson S, Drummond K, Holland L, O'Hely M, Dawson S, Marx W, Mansell T, Burgner D, Saffery R, Sly P, Collier F, Tang ML, Symeonides C, Vuillermin P, Ponsonby AL. Socioeconomic adversity, maternal nutrition, and the prenatal programming of offspring cognition and language at two years of age through maternal inflammation. Brain Behav Immun 2024; 122:471-482. [PMID: 39163911 DOI: 10.1016/j.bbi.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Increasing rates of child neurodevelopmental vulnerability are a significant public health challenge. The adverse effect of socioeconomic adversity on offspring cognition may be mediated through elevated prenatal maternal systemic inflammation, but the role of modifiable antecedents such as maternal nutrition has not yet been clarified. This study aimed to examine (1) whether prenatal factors, with an emphasis on maternal nutrition, were associated with prenatal maternal systemic inflammation at 28 weeks' gestation, including the metabolomic marker glycoprotein acetyls (GlycA); (2) the extent to which the association between prenatal maternal nutrition and child cognition and language at age two years was mediated by elevated maternal inflammation in pregnancy; (3) the extent to which the associations between prenatal socioeconomic adversity and child neurodevelopment were mediated through prenatal maternal nutrition and GlycA levels. We used a prospective population-derived pre-birth longitudinal cohort study, the Barwon Infant Study (Barwon region of Victoria, Australia), where 1074 mother-child pairs were recruited by 28 weeks' gestation using an unselected sampling frame. Exposures included prenatal factors such as maternal diet measured by a validated food frequency questionnaire at 28 weeks' gestation and dietary patterns determined by principal component analysis. The main outcome measures were maternal inflammatory biomarkers (GlycA and hsCRP levels) at 28 weeks' gestation, and offspring Bayley-III cognition and language scores at age two years. Results showed that the 'modern wholefoods' and 'processed' maternal dietary patterns were independently associated with reduced and elevated maternal inflammation respectively (GlycA or hsCRP p < 0.001), and also with higher and reduced offspring Bayley-III scores respectively (cognition p ≤ 0.004, language p ≤ 0.009). Associations between dietary patterns and offspring cognition and language were partially mediated by higher maternal GlycA (indirect effect: cognition p ≤ 0.036, language p ≤ 0.05), but were less evident for hsCRP. The maternal dietary patterns mediated 22 % of the association between socioeconomic adversity (lower maternal education and/or lower household income vs otherwise) and poorer offspring cognition (indirect effect p = 0.001). Variation in prenatal GlycA levels that were independent of these dietary measures appeared less important. In conclusion, modifiable prenatal maternal dietary patterns were associated with adverse child neurocognitive outcomes through their effect on maternal inflammation (GlycA). Maternal diet may partially explain the association between socioeconomic adversity and child neurocognitive vulnerability. Maternal diet-by-inflammation pathways are an attractive target for future intervention studies.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lada Holland
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Samantha Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia; Barwon Health, Geelong, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
King C, Plakke B. Maternal choline supplementation modulates cognition and induces anti-inflammatory signaling in the prefrontal cortices of adolescent rats exposed to maternal immune activation. Brain Behav Immun Health 2024; 40:100836. [PMID: 39206430 PMCID: PMC11350509 DOI: 10.1016/j.bbih.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal infection has long been described as a risk factor for neurodevelopmental disorders, especially autism spectrum disorders (ASD) and schizophrenia. Although many pathogens do not cross the placenta and infect the developing fetus directly, the maternal immune response to them is sufficient to alter fetal neurodevelopment, a phenomenon termed maternal immune activation (MIA). Low maternal choline is also a risk factor for neurodevelopmental disorders, and most pregnant people do not receive enough of it. In addition to its role in neurodevelopment, choline is capable of inducing anti-inflammatory signaling through a nicotinic pathway. Therefore, it was hypothesized that maternal choline supplementation would blunt the neurodevelopmental impact of MIA in offspring through long-term instigation of cholinergic anti-inflammatory signaling. To model MIA in rats, the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)) was used to elicit a maternal antiviral innate immune response in dams both with and without choline supplementation. Offspring were reared to both early and late adolescent stages (postnatal days 28 and 50, respectively), where anxiety-related behaviors and cognition were examined. After behavioral testing, animals were euthanized, and their prefrontal cortices (PFCs) were collected for analysis. MIA offspring demonstrated sex-specific patterns of altered cognition and repetitive behaviors, which were modulated by maternal choline supplementation. Choline supplementation also bolstered anti-inflammatory signaling in the PFCs of MIA animals at both early and late adolescent stages. These findings suggest that maternal choline supplementation may be sufficient to blunt some of the behavioral and neurobiological impacts of inflammatory exposures in utero, indicating that it may be a cheap, safe, and effective intervention for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| |
Collapse
|
9
|
Sal-Sarria S, Conejo NM, González-Pardo H. Maternal immune activation and its multifaceted effects on learning and memory in rodent offspring: A systematic review. Neurosci Biobehav Rev 2024; 164:105844. [PMID: 39106940 DOI: 10.1016/j.neubiorev.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment. Furthermore, this review underscores the complex effects of sex, with males often exhibiting more pronounced cognitive impairment compared to females. Notably, a small subset of studies report enhanced cognitive function following MIA, suggesting complex, context-dependent outcomes of prenatal immune challenges. This review also highlights sex differences caused by the effects of MIA in terms of cytokine responses, alterations in gene expression, and differences in microglial responses as factors that contribute to the cognitive outcomes observed.
Collapse
Affiliation(s)
- Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
10
|
Chen J, Zeng R, Chen H, Cao M, Peng Y, Tong J, Huang J. Microbial reconstitution reverses prenatal stress-induced cognitive impairment and synaptic deficits in rat offspring. Brain Behav Immun 2024; 120:231-247. [PMID: 38851306 DOI: 10.1016/j.bbi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Stress during pregnancy is often linked with increased incidents of neurodevelopmental disorders, including cognitive impairment. Here, we report that stress during pregnancy leads to alterations in the intestinal flora, which negatively affects the cognitive function of offspring. Cognitive impairment in stressed offspring can be reproduced by transplantation of cecal contents of stressed pregnant rats (ST) to normal pregnant rats. In addition, gut microbial dysbiosis results in an increase of β-guanidinopropionic acid in the blood, which leads to an activation of the adenosine monophosphate-activated protein kinase (AMPK) and signal transducer and activator of transcription 3 (STAT3) in the fetal brain. Moreover, β-guanidinopropionic acid supplementation in pregnant rats can reproduce pregnancy stress-induced enhanced glial differentiation of the fetal brain, resulting in impaired neural development. Using probiotics to reconstruct maternal microbiota can correct the cognitive impairment in the offspring of pregnant stressed rats. These findings suggest that microbial reconstitution reverses gestational stress-induced cognitive impairment and synaptic deficits in male rat offspring.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Huimin Chen
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, No.127, Jinbi Road, Xishan District, Kunming, Yunnan, China
| | - Mengya Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 172th Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
11
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
LaMonica Ostrem BE, Domínguez-Iturza N, Stogsdill JA, Faits T, Kim K, Levin JZ, Arlotta P. Fetal brain response to maternal inflammation requires microglia. Development 2024; 151:dev202252. [PMID: 38775708 PMCID: PMC11190434 DOI: 10.1242/dev.202252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/09/2024] [Indexed: 06/23/2024]
Abstract
In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal brain infection, is associated with an increased risk of neuropsychiatric disorders in affected offspring. The cell types mediating the fetal brain response to maternal inflammation are largely unknown, hindering the development of novel treatment strategies. Here, we show that microglia, the resident phagocytes of the brain, highly express receptors for relevant pathogens and cytokines throughout embryonic development. Using a rodent maternal immune activation (MIA) model in which polyinosinic:polycytidylic acid is injected into pregnant mice, we demonstrate long-lasting transcriptional changes in fetal microglia that persist into postnatal life. We find that MIA induces widespread gene expression changes in neuronal and non-neuronal cells; importantly, these responses are abolished by selective genetic deletion of microglia, indicating that microglia are required for the transcriptional response of other cortical cell types to MIA. These findings demonstrate that microglia play a crucial durable role in the fetal response to maternal inflammation, and should be explored as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Bridget Elaine LaMonica Ostrem
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A. Stogsdill
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler Faits
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Z. Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
14
|
Gogos A, Sbisa A, van den Buuse M. Disruption of NMDA receptor-mediated regulation of PPI in the maternal immune activation model of schizophrenia is restored by 17β-estradiol and raloxifene. Schizophr Res 2024; 267:432-440. [PMID: 38642484 DOI: 10.1016/j.schres.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17β-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17β-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17β-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alyssa Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
15
|
Liu Y, Hang X, Zhang Y, Fang Y, Yuan S, Zhang Y, Wu B, Kong Y, Kuang Z, Sun W. Maternal immune activation induces sex-dependent behavioral differences in a rat model of schizophrenia. Front Psychiatry 2024; 15:1375999. [PMID: 38659461 PMCID: PMC11040086 DOI: 10.3389/fpsyt.2024.1375999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Background Maternal immune activation (MIA) is a mature means to construct a schizophrenia model. However, some preclinical studies have reported that a MIA-induced schizophrenia model seemed to have gender heterogeneity in behavioral phenotype. On the other hand, the MIA's paradigms were diverse in different studies, and many details could affect the effect of MIA. To some extent, it is not credible and scientific to directly compare the gender differences of different MIA programs. Therefore, it is necessary to study whether the sex of the exposed offspring leads to behavioral differences on the premise of maintaining a consistent MIA mode. Methods An animal model of schizophrenia was established by the administration of 10 mg/kg Poly (I: C) when dams were on day 9 of gestation. Then, a number of female and male offspring completed a series of behavioral tests during postnatal days 61-75. Results Compared with the female control group (n = 14), female MIA offspring (n = 12) showed a longer movement distance (d = 1.07, p < 0.05) and higher average speed (d = 1.08, p < 0.05) in the open field test (OFT). In the Y maze test, the percentage of entering the novel arm of female MIA offspring was lower (d = 0.92, p < 0.05). Compared with the male control group (n = 14), male MIA offspring (n = 13) displayed less movement distance (d = 0.93, p < 0.05) and a lower average speed (d = 0.94, p < 0.05) in the OFT. In the Y maze test, the proportion of exploration time in the novel arm of male MIA offspring was lower (d = 0.96, p < 0.05). In the EPM, male MIA offspring showed less time (d = 0.85, p < 0.05) and a lower percentage of time spent in the open arms (d = 0.85, p < 0.05). Male MIA offspring also had a lower PPI index (76 dB + 120 dB, d = 0.81, p < 0.05; 80 dB + 120 dB, d = 1.45, p < 0.01). Conclusions Our results showed that the behavioral phenotypes induced by prenatal immune activation were highly dependent on the sex of the offspring.
Collapse
Affiliation(s)
- Yunxia Liu
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyi Hang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Zhang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yilin Fang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Shanfang Yuan
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Encephalopathy, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Bin Wu
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Kong
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Kuang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjun Sun
- Department of Encephalopathy, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
16
|
Griffin A, Bowles T, Solis L, Railey T, Beauti S, Robinson R, Spencer SK, Shaffery JP, Wallace K. Maternal immune suppression during pregnancy does not prevent abnormal behavior in offspring. Biol Sex Differ 2024; 15:27. [PMID: 38532505 DOI: 10.1186/s13293-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Offspring of hypertensive disorders of pregnancy are at an increased risk of developing neurodevelopmental and neurobehavioral disorders compared to offspring from non-affected pregnancies. Using rodent models of Preeclampsia (PreE; new onset of hypertension after 20 weeks gestation) and HELLP (hemolysis, elevated liver enzymes, and low platelets), we studied the behavioral outcome of their offspring in adolescence. METHODS A subset of dams received Orencia, a T-cell activation inhibitor, as T cells have been associated with the induction of hypertension and inflammation during pregnancy. We hypothesized that offspring from hypertensive dams would experience adverse behavioral outcomes in social, cognitive, locomotor, and anxiety tests, and offspring from dams treated with Orencia would demonstrate less adverse behaviors. RESULTS Male offspring of PreE + Orencia dams (p < 0.05) and female offspring from HELLP + Orencia dams (p < 0.05) spent more time playing compared to normal pregnant offspring. All offspring from hypertensive and Orencia-treated dams performed worse on the Barnes Maze test compared to normal pregnant. We also measured adult (postnatal day > 60) myelin basic protein (MBP) and NeuN expression in both the prefrontal cortex and hippocampus. In the hippocampus and prefrontal cortex, there was no difference in expression of either MBP or NeuN in all groups regardless of sex. CONCLUSION The results from this study suggest that offspring of hypertensive disorders of pregnancy have behavioral changes, specifically cognitive differences. This study has shown that there is a sex dependent difference in offspring neurobehavioral development, influenced in part by the type of hypertensive disorder of pregnancy, and alterations in the maternal immune system.
Collapse
Affiliation(s)
- Ashley Griffin
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Teylor Bowles
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lucia Solis
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Teryn Railey
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Samer Beauti
- Master's in Biomedical Science program, School of Graduate Studies in Health Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Reanna Robinson
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Shauna-Kay Spencer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Kedra Wallace
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
17
|
Mayne P, Das J, Zou S, Sullivan RKP, Burne THJ. Perineuronal nets are associated with decision making under conditions of uncertainty in female but not male mice. Behav Brain Res 2024; 461:114845. [PMID: 38184206 DOI: 10.1016/j.bbr.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Biological sex influences decision-making processes in significant ways, differentiating the responses animals choose when faced with a range of stimuli. The neurobiological underpinnings that dictate sex differences in decision-making tasks remains an important open question, yet single-sex studies of males form most studies in behavioural neuroscience. Here we used female and male BALB/c mice on two spatial learning and memory tasks and examined the expression of perineuronal nets (PNNs) and parvalbumin interneurons (PV) in regions correlated with spatial memory. Mice underwent the aversive active place avoidance (APA) task or the appetitive trial-unique nonmatching-to-location (TUNL) touchscreen task. Mice in the APA cohort learnt to avoid the foot-shock and no differences were observed on key measures of the task nor in the number and intensity of PNNs and PV. On the delay but not separation manipulation in the TUNL task, females received more incorrect trials and less correct trials compared to males. Furthermore, females in this cohort exhibited higher intensity PNNs and PV cells in the agranular and granular retrosplenial cortex, compared to males. These data show that female and male mice perform similarly on spatial learning tasks. However, sex differences in neural circuitry may underly differences in making decisions under conditions of uncertainty on an appetitive task. These data emphasise the importance of using mice of both sexes in studies of decision-making neuroscience.
Collapse
Affiliation(s)
- Phoebe Mayne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia.
| |
Collapse
|
18
|
López-Aranda MF, Bach K, Bui R, Phan M, Lu O, Thadani C, Luchetti A, Mandanas R, Herrera I, López-Ávalos MD, Silva AJ. Early Post-Natal Immune Activation Leads to Object Memory Deficits in Female Tsc2+/- Mice: The Importance of Including Both Sexes in Neuroscience Research. Biomedicines 2024; 12:203. [PMID: 38255309 PMCID: PMC10813674 DOI: 10.3390/biomedicines12010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
There is evidence that viral infections during pre-natal development constitute a risk factor for neuropsychiatric disorders and lead to learning and memory deficits. However, little is known about why viral infections during early post-natal development have a different impact on learning and memory depending on the sex of the subject. We previously showed that early post-natal immune activation induces hippocampal-dependent social memory deficits in a male, but not in a female, mouse model of tuberous sclerosis complex (TSC; Tsc2+/- mice). Here, we explored the impact of a viral-like immune challenge in object memory. We demonstrate that early post-natal immune activation (during the first 2 weeks of life) leads to object memory deficits in female, but not male, mice that are heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/- mice), while no effect was observed in wild type (WT) mice. Moreover, we found that the same immune activation in Tsc2+/- adult mice was not able to cause object memory deficits in females, which suggests that the early post-natal development stage constitutes a critical window for the effects of immune challenge on adult memory. Also, our results suggest that mTOR plays a critical role in the observed deficit in object memory in female Tsc2+/- mice. These results, together with previous results published by our laboratory, showing sex-specific memory deficits due to early post-natal immune activation, reinforce the necessity of using both males and females for research studies. This is especially true for studies related to immune activation, since the higher levels of estrogens in females are known to affect inflammation and to provide neuroprotection.
Collapse
Affiliation(s)
- Manuel F. López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Karen Bach
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Raymond Bui
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Miranda Phan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Odilia Lu
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Chirag Thadani
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Rochelle Mandanas
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Isaiah Herrera
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Alcino J. Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| |
Collapse
|
19
|
Shao Y, Cai Y, Chen T, Hao K, Luo B, Wang X, Guo W, Su X, Lv L, Yang Y, Li W. Impaired erythropoietin-producing hepatocellular B receptors signaling in the prefrontal cortex and hippocampus following maternal immune activation in male rats. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12863. [PMID: 37575018 PMCID: PMC10733575 DOI: 10.1111/gbb.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
An environmental risk factor for schizophrenia (SZ) is maternal infection, which exerts longstanding effects on the neurodevelopment of offspring. Accumulating evidence suggests that synaptic disturbances may contribute to the pathology of the disease, but the underlying molecular mechanisms remain poorly understood. Erythropoietin-producing hepatocellular B (EphB) receptor signaling plays an important role in synaptic plasticity by regulating the formation and maturation of dendritic spines and regulating excitatory neurotransmission. We examined whether EphB receptors and downstream associated proteins are susceptible to environmental risk factors implicated in the etiology of synaptic disturbances in SZ. Using an established rodent model, which closely imitates the characteristics of SZ, we observed the behavioral performance and synaptic structure of male offspring in adolescence and early adulthood. We then analyzed the expression of EphB receptors and associated proteins in the prefrontal cortex and hippocampus. Maternal immune activation offspring showed significantly progressive cognitive impairment and pre-pulse inhibition deficits together with an increase in the expression of EphB2 receptors and NMDA receptor subunits. We also found changes in EphB receptor downstream signaling, in particular, a decrease in phospho-cofilin levels which may explain the reduced dendritic spine density. Besides, we found that the AMPA glutamate, another glutamate ionic receptor associated with cofilin, decreased significantly in maternal immune activation offspring. Thus, alterations in EphB signaling induced by immune activation during pregnancy may underlie disruptions in synaptic plasticity and function in the prefrontal cortex and hippocampus associated with behavioral and cognitive impairment. These findings may provide insight into the mechanisms underlying SZ.
Collapse
Affiliation(s)
- Yiqian Shao
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Yaqi Cai
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Tengfei Chen
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Keke Hao
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Binbin Luo
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Xiujuan Wang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Weiyun Guo
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Stem Cell and Biological Treatment Engineering Research Center of Henan, College of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Xi Su
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
20
|
Jaehne EJ, Semaan H, Grosman A, Xu X, Schwarz Q, van den Buuse M. Enhanced methamphetamine sensitisation in a rat model of the brain-derived neurotrophic factor Val66Met variant: Sex differences and dopamine receptor gene expression. Neuropharmacology 2023; 240:109719. [PMID: 37742717 DOI: 10.1016/j.neuropharm.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and the Val66Met polymorphism may play a role in the development of psychosis and schizophrenia. The aim of this study was to investigate long-term effects of methamphetamine (Meth) on psychosis-like behaviour and dopamine receptor and dopamine transporter gene expression in a novel rat model of the BDNF Val66Met polymorphism. At the end of a 7-day subchronic Meth treatment, female rats with the Met/Met genotype selectively showed locomotor hyperactivity sensitisation to the acute effect of Meth. Male rats showed tolerance to Meth irrespective of Val66Met genotype. Two weeks later, female Met/Met rats showed increased locomotor activity following both saline treatment or a low dose of Meth, a hyperactivity which was not observed in other genotypes or in males. Baseline PPI did not differ between the groups but the disruption of PPI by acute treatment with apomorphine was absent in Meth-pretreated Met/Met rats. Female Met/Met rats selectively showed down-regulation of dopamine D2 receptor gene expression in striatum. Behavioural effects of MK-801 or its locomotor sensitisation by prior Meth pretreatment were not influenced by genotype. These data suggest a selective vulnerability of female Met/Met rats to short-term and long-term effects of Meth, which could model increased vulnerability to psychosis development associated with the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hayette Semaan
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Adam Grosman
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
21
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
22
|
Bennett D, Nakamura J, Vinnakota C, Sokolenko E, Nithianantharajah J, van den Buuse M, Jones NC, Sundram S, Hill R. Mouse Behavior on the Trial-Unique Nonmatching-to-Location (TUNL) Touchscreen Task Reflects a Mixture of Distinct Working Memory Codes and Response Biases. J Neurosci 2023; 43:5693-5709. [PMID: 37369587 PMCID: PMC10401633 DOI: 10.1523/jneurosci.2101-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM) deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N = 163 across three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM, or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assumptions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases. These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behavior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative behavioral strategies in the TUNL task.SIGNIFICANCE STATEMENT Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behavioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.
Collapse
Affiliation(s)
- Daniel Bennett
- School of Psychological Sciences, Monash University, Melbourne, Victoria 3180, Australia
| | - Jay Nakamura
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Chitra Vinnakota
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Neurology, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Mental Health Program, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| |
Collapse
|
23
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
24
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
25
|
Raymann S, Schalbetter SM, Schaer R, Bernhardt AC, Mueller FS, Meyer U, Weber-Stadlbauer U. Late prenatal immune activation in mice induces transgenerational effects via the maternal and paternal lineages. Cereb Cortex 2023; 33:2273-2286. [PMID: 36857721 DOI: 10.1093/cercor/bhac207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Prenatal exposure to infectious or noninfectious immune activation is an environmental risk factor for neurodevelopmental disorders and mental illnesses. Recent research using animal models suggests that maternal immune activation (MIA) during early to middle stages of pregnancy can induce transgenerational effects on brain and behavior, likely via inducing stable epigenetic modifications across generations. Using a mouse model of viral-like MIA, which is based on gestational treatment with poly(I:C), the present study explored whether transgenerational effects can also emerge when MIA occurs in late pregnancy. Our findings demonstrate that the direct descendants born to poly(I:C)-treated mothers display deficits in temporal order memory, which are similarly present in second- and third-generation offspring. These transgenerational effects were mediated via both the maternal and paternal lineages and were accompanied by transient changes in maternal care. In addition to the cognitive effects, late prenatal immune activation induced generation-spanning effects on the prefrontal expression of gamma-aminobutyric acid (GABA)ergic genes, including parvalbumin and distinct alpha-subunits of the GABAA receptor. Together, our results suggest that MIA in late pregnancy has the potential to affect cognitive functions and prefrontal gene expression patterns in multiple generations, highlighting its role in shaping disease risk across generations.
Collapse
Affiliation(s)
- Stephanie Raymann
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Ron Schaer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Alexandra C Bernhardt
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. The effect of schizophrenia risk factors on mismatch responses in a rat model. Psychophysiology 2023; 60:e14175. [PMID: 36087044 PMCID: PMC10909418 DOI: 10.1111/psyp.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023]
Abstract
Reduced mismatch negativity (MMN), a robust finding in schizophrenia, has prompted interest in MMN as a preclinical biomarker of schizophrenia. The rat brain can generate human-like mismatch responses (MMRs) which therefore enables the exploration of the neurobiology of reduced MMRs. Given epidemiological evidence that two developmental factors, maternal infection and adolescent cannabis use, increase the risk of schizophrenia, we determined the effect of these two developmental risk factors on rat MMR amplitude in different auditory contexts. MMRs were assessed in awake adult male and female Wistar rats that were offspring of pregnant dams treated with either a viral infection mimetic (poly I:C) inducing maternal immune activation (MIA) or saline control. In adolescence, subgroups of the prenatal treatment groups were exposed to either a synthetic cannabinoid (adolescent cannabinoid exposure: ACE) or vehicle. The context under which MMRs were obtained was manipulated by employing two different oddball paradigms, one that manipulated the physical difference between rare and common auditory stimuli, and another that manipulated the probability of the rare stimulus. The design of the multiple stimulus sequences across the two paradigms also allowed an investigation of context on MMRs to two identical stimulus sequences. Male offspring exposed to each of the risk factors for schizophrenia (MIA, ACE or both) showed a reduction in MMR, which was evident only in the probability paradigm, with no effects seen in the physical difference. Our findings highlight the importance of contextual factors induced by paradigm manipulations and sex for modeling schizophrenia-like MMN impairments in rats.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Juanita Todd
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Patricia T. Michie
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Deborah M. Hodgson
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Lauren Harms
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
27
|
Zengeler KE, Shapiro DA, Bruch KR, Lammert CR, Ennerfelt H, Lukens JR. SSRI treatment modifies the effects of maternal inflammation on in utero physiology and offspring neurobiology. Brain Behav Immun 2023; 108:80-97. [PMID: 36343752 PMCID: PMC10291741 DOI: 10.1016/j.bbi.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Perturbations to the in utero environment can dramatically change the trajectory of offspring neurodevelopment. Insults commonly encountered in modern human life such as infection, toxins, high-fat diet, prescription medications, and others are increasingly linked to behavioral alterations in prenatally-exposed offspring. While appreciation is expanding for the potential consequence that these triggers can have on embryo development, there is a paucity of information concerning how the crucial maternal-fetal interface (MFI) responds to these various insults and how it may relate to changes in offspring neurodevelopment. Here, we found that the MFI responds both to an inflammatory state and altered serotonergic tone in pregnant mice. Maternal immune activation (MIA) triggered an acute inflammatory response in the MFI dominated by interferon signaling that came at the expense of ordinary development-related transcriptional programs. The major MFI compartments, the decidua and the placenta, each responded in distinct manners to MIA. MFIs exposed to MIA were also found to have disrupted sex-specific gene expression and heightened serotonin levels. We found that offspring exposed to MIA had sex-biased behavioral changes and that microglia were not transcriptionally impacted. Moreover, the combination of maternal inflammation in the presence of pharmacologic inhibition of serotonin reuptake further transformed MFI physiology and offspring neurobiology, impacting immune and serotonin signaling pathways alike. In all, these findings highlight the complexities of evaluating diverse environmental impacts on placental physiology and neurodevelopment.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Daniel A Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine R Bruch
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hannah Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Casquero-Veiga M, Lamanna-Rama N, Romero-Miguel D, Rojas-Marquez H, Alcaide J, Beltran M, Nacher J, Desco M, Soto-Montenegro ML. The Poly I:C maternal immune stimulation model shows unique patterns of brain metabolism, morphometry, and plasticity in female rats. Front Behav Neurosci 2023; 16:1022622. [PMID: 36733452 PMCID: PMC9888250 DOI: 10.3389/fnbeh.2022.1022622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Prenatal infections are associated with an increased risk of the onset of schizophrenia. Rodent models of maternal immune stimulation (MIS) have been extensively used in preclinical studies. However, many of these studies only include males, omitting pathophysiological features unique to females. The aim of this study is to characterize the MIS model in female rats using positron emission tomography (PET), structural magnetic resonance imaging (MR), and neuroplasticiy studies. Methods: In gestational day 15, Poly I:C (or Saline) was injected into pregnant Wistar rats to induce the MIS model. Imaging studies: [18F]-fluoro-2-deoxy-D-glucose-PET scans of female-offspring were acquired at post-natal day (PND) 35 and PND100. Furthermore, T2-MR brain images were acquired in adulthood. Differences in FDG uptake and morphometry between groups were assessed with SPM12 and Regions of Interest (ROI) analyses. Ex vivo study: The density of parvalbumin expressing interneurons (PV), perineuronal nets (PNN), and parvalbumin expressing interneurons surrounded by perineuronal nets (PV-PNN) were evaluated in the prelimbic cortex and basolateral amygdala using confocal microscopy. ROIs and neuroplasticity data were analyzed by 2-sample T-test and 2-way-ANOVA analyses, respectively. Results: A significant increase in brain metabolism was found in all animals at adulthood compared to adolescence. MIS hardly modified brain glucose metabolism in females, highlighting a significant hypometabolism in the thalamus at adulthood. In addition, MIS induced gray matter (GM) enlargements in the pituitary, hippocampus, substantia nigra, and cingulate cortex, and GM shrinkages in some thalamic nuclei, cerebelar areas, and brainstem. Moreover, MIS induced white matter shrinkages in the cerebellum, brainstem and corpus callosum, along with cerebrospinal fluid enlargements in the lateral and 4th ventricles. Finally, MIS reduced the density of PV, PNN, and PV-PNN in the basolateral amygdala. Conclusion: Our work showed in vivo the differential pattern of functional and morphometric affectation in the MIS model in females, as well as the deficits caused at the synaptic level according to sex. The differences obtained highlight the relevance of including both sexes in psychiatric research in order to consider their pathophysiological particularities and successfully extend the benefits obtained to the entire patient population.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nicolás Lamanna-Rama
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Escuela Técnica Superior de Ingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Diego Romero-Miguel
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Escuela Técnica Superior de Ingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Henar Rojas-Marquez
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Julia Alcaide
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marc Beltran
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Manuel Desco
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Campus de Getafe, Madrid, Spain,*Correspondence: Manuel Desco Maria Luisa Soto-Montenegro
| | - Maria Luisa Soto-Montenegro
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain,*Correspondence: Manuel Desco Maria Luisa Soto-Montenegro
| |
Collapse
|
30
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
31
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
32
|
Chen X, Liu L, Zeng Y, Li D, Liu X, Hu C. Olanzapine induces weight gain in offspring of prenatally exposed poly I:C rats by reducing brown fat thermogenic activity. Front Pharmacol 2022; 13:1001919. [PMID: 36249777 PMCID: PMC9561095 DOI: 10.3389/fphar.2022.1001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Olanzapine (OLZ) is an antipsychotic with a high risk of metabolic syndrome, and its induced metabolic disturbance may be related to the thermogenic function of brown adipose tissue (BAT). Of note is that schizophrenia itself appears to be associated with a higher incidence of metabolic syndrome. However, whether OLZ affects metabolic disorders by regulating BAT function and its mechanism in animal models of schizophrenia have not been reported. Methods: We induced maternal immune activation (MIA) in pregnant rodents by injection of synthetic double-stranded RNA-poly I:C (a virus-like substance), and rats were injected with poly I:C, 10 mg/kg) or saline on day 13 of gestation. Rat offspring received OLZ (1 mg/kg, tid) or vehicle from adulthood for 28 days, and body weight and food intake were recorded. Morphological alterations of white adipose tissue (WAT) and BAT were analyzed by HE and oil red staining, and expression of BAT-specific marker proteins/genes was detected by western blot and qRT-PCR. In addition, embryonic stem cells C3H10T1/2 were used to direct differentiation into brown-like adipocytes, and C3H10T1/2 cells were treated with OLZ for the differentiation process. The effects of OLZ on brown-like adipocyte differentiation and activity were analyzed using oil red staining, immunofluorescence and flow cytometry. Results: Compared with the Veh (saline) group, the TG, pWAT weight, adipocyte size and liver weight of the Veh (poly I:C) group were significantly increased, suggesting that the offspring of Poly I:C rats had obvious dyslipidemia and lipid accumulation, which were risk factors for metabolic abnormalities such as obesity. In addition, OLZ treatment resulted in altered WAT and BAT morphology in poly I:C or saline exposed offspring, causing lipid accumulation and weight gain and reducing the expression of the BAT-specific marker molecule UCP1 protein/gene. At the same time, OLZ inhibited the directional differentiation and mitochondrial activity of C3H10T1/2 brown-like adipocytes. Conclusion: Poly I:C-elicited MIA and OLZ differentially inhibited BAT activity and mitochondrial biogenesis, leading to weight gain in adult rats, a process involving PPAR-γ/UCP1-related thermogenic proteins.
Collapse
Affiliation(s)
- Xiaoying Chen
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
- The Second Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lu Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
- Department of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanping Zeng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Dejuan Li
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xuemei Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Changhua Hu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
- *Correspondence: Changhua Hu,
| |
Collapse
|
33
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
34
|
Lian J, Han M, Su Y, Hodgson J, Deng C. The long-lasting effects of early antipsychotic exposure during juvenile period on adult behaviours - A study in a poly I:C rat model. Pharmacol Biochem Behav 2022; 219:173453. [PMID: 36029928 DOI: 10.1016/j.pbb.2022.173453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/16/2022]
Abstract
Second generation antipsychotic drugs including aripiprazole, olanzapine and risperidone are prescribed increasingly (mostly off-label) to treat various mental disorders in children and adolescents. Early treatment with antipsychotics during this period may have long-lasting behavioural impacts, but to date there have been only limited investigations. Maternal infection could be implicated in the aetiology of various mental disorders including schizophrenia. Exposure of pregnant rodents to polyriboinosinic-polyribocytidylic acid (Poly I:C) causes schizophrenia-like behavioural abnormalities and neurodevelopmental conditions such as autism spectrum disorders in offspring. This study, using a Poly I:C rat model, investigated the long-lasting effects of early aripiprazole, olanzapine and risperidone treatment in the childhood/adolescent period (postnatal day 22-50) on adult behaviours of male rats. The study showed that early treatment with three antipsychotics had different effects on long-term behavioural changes in adults. Prenatal Poly I:C exposure (5 mg/kg) at gestation day 15 caused deficits in pre-pulse inhibition and social interaction, as well as cognitive impairments, that could be partially improved by early antipsychotic treatment in the juvenile period. Early antipsychotic treatment during the childhood-adolescent period resulted in similar long-lasting effects on pre-pulse inhibition, anxiety- and depressive-related behaviours in both Poly I:C and healthy (control) male rats. Overall, these results suggest that both prenatal Poly I:C exposure and early antipsychotic treatment in the childhood/adolescent period had long-lasting effects on adult behaviours of male rats, while early antipsychotic treatment could partly prevent the onset of behavioural abnormalities resulting from prenatal insult.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Yueqing Su
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia; Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia; School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| |
Collapse
|
35
|
Jaehne EJ, Smith JD, van den Buuse M. Analysis of striatum and brain levels reveals sex differences in conversion of methamphetamine to amphetamine in mice. Neurosci Lett 2022; 783:136722. [PMID: 35691438 DOI: 10.1016/j.neulet.2022.136722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to compare methamphetamine (Meth) and amphetamine (Amph) levels in the brain of male and female mice. Meth and Amph levels were significantly higher at 30 min after systemic administration of 2 mg/kg of Meth than at 120 min. Meth levels were similar in striatum as in the rest of the brain and there was no sex difference. However, females showed significantly higher levels of Amph compared to males in both regions. The ratio of Amph to Meth levels was significantly higher in female mice than in males at 120 min after Meth administration. In a separate cohort of mice, treatment with 3 mg/kg of Meth induced significant locomotor hyperactivity which was maximum in the first 60 min after injection and not different between male and female mice. Treatment with 1 mg/kg Meth induced mild hyperactivation in female, but not male mice at 60-120 min post-injection. These data show sex differences in conversion of Meth to Amph in mice, which could play a role in sex differences in the behavioural, addictive and neurotoxic properties of Meth in rodents as well as in humans.
Collapse
Affiliation(s)
- Emily J Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Joel D Smith
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia.
| |
Collapse
|
36
|
Effects of Risperidone and Prenatal Poly I:C Exposure on GABA A Receptors and AKT-GSK3β Pathway in the Ventral Tegmental Area of Female Juvenile Rats. Biomolecules 2022; 12:biom12050732. [PMID: 35625659 PMCID: PMC9139019 DOI: 10.3390/biom12050732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA. Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3β in the VTA. Pregnant female Sprague-Dawley rats were administered Poly I:C (5mg/kg; i.p) or saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased mRNA expression of GABAA receptor β3 subunits and glutamic acid decarboxylase (GAD2) in the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C exposure led to increased expression of AKT2 and GSK3β. Risperidone decreased GABAA receptor β2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic neurotransmission and AKT-GSK3β signaling in the VTA of adolescent rats.
Collapse
|
37
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
38
|
Sandoval KC, Thackray SE, Wong A, Niewinski N, Chipak C, Rehal S, Dyck RH. Lack of Vesicular Zinc Does Not Affect the Behavioral Phenotype of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation Mice. Front Behav Neurosci 2022; 16:769322. [PMID: 35273483 PMCID: PMC8902171 DOI: 10.3389/fnbeh.2022.769322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother’s immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60–75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.
Collapse
Affiliation(s)
- Katy Celina Sandoval
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sarah E. Thackray
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Alison Wong
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Nicole Niewinski
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Colten Chipak
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Suhkjinder Rehal
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Richard H. Dyck
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- *Correspondence: Richard H. Dyck,
| |
Collapse
|
39
|
Santoni M, Frau R, Pistis M. Transgenerational Sex-dependent Disruption of Dopamine Function Induced by Maternal Immune Activation. Front Pharmacol 2022; 13:821498. [PMID: 35211019 PMCID: PMC8861303 DOI: 10.3389/fphar.2022.821498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Several epidemiological studies suggest an association between maternal infections during pregnancy and the emergence of neurodevelopmental disorders in the offspring, such as autism and schizophrenia. Animal models broadened the knowledge about the pathophysiological mechanisms that develop from prenatal infection to the onset of psychopathological phenotype. Mounting evidence supports the hypothesis that detrimental effects of maternal immune activation might be transmitted across generations. Here, we explored the transgenerational effects on the dopamine system of a maternal immune activation model based on the viral mimetic polyriboinosinic-polyribocytidilic acid. We assessed dopamine neurons activity in the ventral tegmental area by in vivo electrophysiology. Furthermore, we studied two behavioral tests strictly modulated by the mesolimbic dopamine system, i.e., the open field in response to amphetamine and the prepulse inhibition of the startle reflex in response to the D2 agonist apomorphine. Second-generation adult male rats did not display any deficit in sensorimotor gating; however, they displayed an altered activity of ventral tegmental area dopamine neurons, indexed by a reduced spontaneous firing rate and a heightened motor activation in response to amphetamine administration in the open field. On the other hand, second-generation female rats were protected from ancestors' polyriboinosinic-polyribocytidilic acid treatment, as they did not show any alteration in dopamine cell activity or in behavioral tests. These results confirm that maternal immune activation negatively influences, in a sex-dependent manner, neurodevelopmental trajectories of the dopamine system across generations.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- “Guy Everett” Laboratory, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
40
|
Tronson NC. Puberty reverses sex differences in learning. Nat Neurosci 2022; 25:134-135. [PMID: 35087247 DOI: 10.1038/s41593-021-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Maternal immune activation with high molecular weight poly(I:C) in Wistar rats leads to elevated immune cell chemoattractants. J Neuroimmunol 2022; 364:577813. [DOI: 10.1016/j.jneuroim.2022.577813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022]
|
42
|
Su Y, Lian J, Hodgson J, Zhang W, Deng C. Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. Int J Neuropsychopharmacol 2021; 25:160-171. [PMID: 34893855 PMCID: PMC8832231 DOI: 10.1093/ijnp/pyab087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to polyriboinosinic-polyribocytidylic acid (Poly I:C) in pregnant rats has been reported to cause schizophrenia-like behaviors and abnormal neurotransmissions in adult, particularly male, offspring. However, what is less well understood are the effects of maternal Poly I:C exposure on adolescent behaviors and neurotransmission in female juvenile rats. METHODS Female adolescent Poly I:C offspring were constructed by treating with 5 mg/kg Poly I:C on timed pregnant rats (gestation day 15). A battery of behavioral tests was conducted during postnatal day 35-60. Neurotransmitter receptors and inflammation markers in brain regions were evaluated by RT-qPCR on postnatal day 60. RESULTS Open field, elevated plus maze, and forced swimming tests revealed that prenatal Poly I:C exposure led to elevated anxiety-like and depression-like behaviors in female adolescent offspring. Deficits in pre-pulse inhibition and social interaction were also observed. However, the Poly I:C rats had better performance than the controls in the novel object recognition memory test, which demonstrated a behavioral phenotype with improved cognitive function. Prenatal Poly I:C exposure caused brain region-specific elevation of the P2X7 receptor- and NF-κB-NLRP3-IL-1β inflammatory signaling in female juvenile rats. Prenatal Poly I:C exposure decreased expression of GABAA receptor subunits Gabrb3 in the prefrontal cortex and Gabrb1 and dopamine D2 receptor in the hippocampus, but increased NMDA receptor subunit Grin2a in the prefrontal cortex, 5-HT2A in the hippocampus, and Gabrb3 and D2 receptor in the nucleus accumben. CONCLUSIONS Prenatal Poly I:C challenge causes behavioral deficits and brain-specific neurotransmission changes via elevated neuroinflammation responses in female adolescent offspring rats.
Collapse
Affiliation(s)
- Yueqing Su
- The School of Public Health, Fujian Medical University, Fuzhou, China,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Wenchang Zhang
- The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia,Correspondence: Chao Deng, PhD, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia ()
| |
Collapse
|
43
|
Jaehne EJ, Chong EMS, Sbisa A, Gillespie B, Hill R, Gogos A, van den Buuse M. TrkB agonist 7,8-dihydroxyflavone reverses an induced prepulse inhibition deficit selectively in maternal immune activation offspring: implications for schizophrenia. Behav Pharmacol 2021; 32:404-412. [PMID: 33883449 DOI: 10.1097/fbp.0000000000000632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reduced brain-derived neurotrophic factor (BDNF) signalling has been implicated in schizophrenia endophenotypes, including deficits in prepulse inhibition (PPI). Maternal immune activation (MIA) is a widely used neurodevelopmental animal model for schizophrenia but it is unclear if BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are involved in PPI regulation in this model. Pregnant Long Evans rats were treated with the viral mimetic, polyinosinic-polycytidylic acid (poly I:C; 4 mg/kg i.v.), and nine male offspring from these dams were compared in adulthood to 11 male Long Evans controls. Offspring underwent PPI testing following injection with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) (10 mg/kg i.p.), with or without the dopamine receptor agonist, apomorphine (APO; 1 mg/kg s.c.), or the dopamine releasing drug, methamphetamine (METH; 2 mg/kg s.c.). Acute administration of APO and METH caused the expected significant reduction of PPI. Acute administration of 7,8-DHF did not alter PPI on its own; however, it significantly reversed the effect of APO on PPI in poly I:C rats, but not in controls. A similar trend was observed in combination with METH. Western blot analysis of frontal cortex revealed significantly increased levels of BDNF protein, but not TrkB or phosphorylated TrkB/TrkB levels, in poly I:C rats. These findings suggest that, selectively in MIA offspring, 7,8-DHF has the ability to reverse PPI deficits caused by dopaminergic stimulation. This effect could be associated with increased BDNF expression in the frontal cortex. These data suggest that targeting BDNF signalling may have therapeutic potential for the treatment of certain symptoms of schizophrenia.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
| | - Elaine Mei San Chong
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
| | - Alyssa Sbisa
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
- Florey Institute of Neuroscience and Mental Health, University of Melbourne
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University
| | - Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
- Department of Pharmacology, University of Melbourne, Melbourne
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
44
|
Zhao X, Tran H, DeRosa H, Roderick RC, Kentner AC. Hidden talents: Poly (I:C)-induced maternal immune activation improves mouse visual discrimination performance and reversal learning in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2021; 20:e12755. [PMID: 34056840 DOI: 10.1111/gbb.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
While there is a strong focus on the negative consequences of maternal immune activation (MIA) on developing brains, very little attention is directed towards potential advantages of early life challenges. In this study, we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual pairwise discrimination (PD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA reduced the latency for males to make a correct choice in the PD task while females reached criterion sooner, made fewer errors, and utilized fewer correction trials in RL compared to saline controls. These surprising improvements were accompanied by the sex-specific upregulation of several genes critical to cognitive functioning, indicative of compensatory plasticity in response to MIA. In contrast, when exposed to a 'two-hit' stress model (MIA + loss of the social component of environmental enrichment [EE]), mice did not display anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the prefrontal cortex. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in, delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right 'dose', early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Altered circadian rhythms in a mouse model of neurodevelopmental disorders based on prenatal maternal immune activation. Brain Behav Immun 2021; 93:119-131. [PMID: 33412254 DOI: 10.1016/j.bbi.2020.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Individuals with neurodevelopmental disorders, such as schizophrenia and autism spectrum disorder, exhibit various sleep and circadian rhythm disturbances that often persist and worsen throughout the lifespan. To study the interaction between circadian rhythm disruption and neurodevelopmental disorders, we utilized a mouse model based on prenatal maternal immune activation (MIA). We hypothesized that MIA exposure would lead to impaired circadian locomotor activity rhythms in adult mouse offspring. We induced MIA by injecting pregnant dams with polyinosinic:polycytidylic acid (poly IC) at embryonic day 9.5, then aged resulting offspring to adulthood. We first confirmed that poly IC injection in pregnant dams elevated plasma levels of pro- and anti-inflammatory cytokines and chemokines. We then placed adult offspring in running wheels and subjected them to various lighting conditions. Overall, poly IC-exposed male offspring exhibited altered locomotor activity rhythms, reminiscent of individuals with neurodevelopmental disorders. In particular, we report increased (subjective) day activity across 3 different lighting conditions: 12 h of light, 12 h of dark (12:12LD), constant darkness (DD) and constant light. Further data analysis indicated that this was driven by increased activity in the beginning of the (subjective) day in 12:12LD and DD, and at the end of the day in 12:12LD. This effect was sex-dependent, as in utero poly IC exposure led overall to much milder alterations in locomotor activity rhythms in female offspring than in male offspring. We also confirmed that the observed behavioral impairments in adult poly IC-exposed offspring were not due to differences in maternal behavior. These data further our understanding of the link between circadian rhythm disruption and neurodevelopmental disorders and may have implications for mitigating risk to the disorders and/or informing the development of circadian-based therapies.
Collapse
|
47
|
Kalish BT, Kim E, Finander B, Duffy EE, Kim H, Gilman CK, Yim YS, Tong L, Kaufman RJ, Griffith EC, Choi GB, Greenberg ME, Huh JR. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat Neurosci 2021; 24:204-213. [PMID: 33361822 PMCID: PMC7854524 DOI: 10.1038/s41593-020-00762-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin Finander
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyunju Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Casey K Gilman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yeong Shin Yim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lilin Tong
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randal J Kaufman
- Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eric C Griffith
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Greenberg
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
48
|
Nakamura JP, Gillespie B, Gibbons A, Jaehne EJ, Du X, Chan A, Schroeder A, van den Buuse M, Sundram S, Hill RA. Maternal immune activation targeted to a window of parvalbumin interneuron development improves spatial working memory: Implications for autism. Brain Behav Immun 2021; 91:339-349. [PMID: 33096253 DOI: 10.1016/j.bbi.2020.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022] Open
Abstract
Maternal immune activation (MIA) increases risk for neuropsychiatric disorders such as autism spectrum disorder (ASD) in offspring later in life through unknown causal mechanisms. Growing evidence implicates parvalbumin-containing GABAergic interneurons as a key target in rodent MIA models. We targeted a specific neurodevelopmental window of parvalbumin interneurons in a mouse MIA model to examine effects on spatial working memory, a key domain in ASD that can manifest as either impairments or improvements both clinically and in animal models. Pregnant dams received three consecutive intraperitoneal injections of Polyinosinic:polycytidylic acid (poly(I:C), 5 mg/kg) at gestational days 13, 14 and 15. Spatial working memory was assessed in young adult offspring using touchscreen operant chambers and the Trial-Unique Non-matching to Location (TUNL) task. Anxiety, novelty seeking and short-term memory were assessed using Elevated Plus Maze (EPM) and Y-maze novelty preference tasks. Fluorescent immunohistochemistry was used to assess hippocampal parvalbumin cell density, intensity and co-expression with perineuronal nets. qPCR was used to assess the expression of putatively implicated gene pathways. MIA targeting a window of parvalbumin interneuron development increased spatial working memory performance on the TUNL touchscreen task which was not influenced by anxiety or novelty seeking behaviour. The model reduced fetal mRNA levels of Gad1 and adult hippocampal mRNA levels of Pvalb and the distribution of low intensity parvalbumin interneurons was altered. We speculate a specific timing window for parvalbumin interneuron development underpins the apparently paradoxical improved spatial working memory phenotype found both across several rodent models of autism and clinically in ASD.
Collapse
Affiliation(s)
- Jay P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Emily J Jaehne
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Aaron Chan
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia; Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
49
|
Sbisa A, Kusljic S, Zethoven D, van den Buuse M, Gogos A. The effect of 17β-estradiol on maternal immune activation-induced changes in prepulse inhibition and dopamine receptor and transporter binding in female rats. Schizophr Res 2020; 223:249-257. [PMID: 32878698 DOI: 10.1016/j.schres.2020.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is associated with an increased risk of development of schizophrenia in later life. 17β-estradiol treatment may improve schizophrenia symptoms, but little is known about its efficacy on MIA-induced psychosis-like behavioural deficits in animals. Therefore, in this study we used the poly(I:C) neurodevelopmental model of schizophrenia to examine whether MIA-induced psychosis-like behavioural and neurochemical changes can be attenuated by chronic treatment (2-6 weeks) with 17β-estradiol. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15 and adult female offspring were tested for changes in prepulse inhibition (PPI) and density of dopamine D1 and D2 receptors and dopamine transporters in the forebrain compared to control offspring. Poly(I:C)-treated offspring exhibited significantly disrupted PPI, an effect which was reversed by chronic treatment with 17β-estradiol. In control offspring, but not poly(I:C) offspring, PPI was significantly reduced by acute treatment with either the dopamine D1/D2 receptor agonist, apomorphine, or dopamine releaser, methamphetamine. 17β-estradiol restored the effect of apomorphine, but not methamphetamine, on PPI in poly(I:C) offspring. There was a strong trend for a dopamine D2 receptor binding density increase in the nucleus accumbens core region in poly(I:C) offspring, and this was reversed by chronic 17β-estradiol treatment. No changes were found in the nucleus accumbens shell, caudate putamen or frontal cortex or in the density of dopamine D1 receptors or transporters. These findings suggest that 17β-estradiol may improve some symptoms of schizophrenia, an effect that may be mediated by selective changes in dopamine D2 receptor density.
Collapse
Affiliation(s)
- Alyssa Sbisa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Snezana Kusljic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Nursing, University of Melbourne, Parkville, VIC, Australia
| | - Damon Zethoven
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia; Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
50
|
Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A, Pomierny B, Krzyżanowska W, Bryniarska N, Basta-Kaim A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation 2020; 17:247. [PMID: 32829711 PMCID: PMC7444338 DOI: 10.1186/s12974-020-01923-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1β, Tnf-α, Arg1, Tgf-β and Il-10, as well as IBA1, IL-1β and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-β, Il-10, and IBA1, IL-1β, TNF-α, IL-6, TGF-β and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Katarzyna Kotarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Alicja Skórkowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Bartosz Pomierny
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Weronika Krzyżanowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna St, 30-688, Kraków, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|