1
|
Mironova E, Spiridonov S, Sotnikov D, Shpagina A, Savina K, Gopko M. How do trematode clones differ by fitness-related traits and interact within a host? Int J Parasitol 2025; 55:151-162. [PMID: 39638108 DOI: 10.1016/j.ijpara.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Polyclonal infections are widespread and provide evidence of facilitation, competition, and neutral interactions between parasite clones, even within the same host-parasite system. The outcome of coinfections is usually assessed by means of parasite infection intensities, while other important fitness-related traits, e.g., larval growth rates, are often ignored. We experimentally infected fish (Salvelinus malma) with different clones of the common trematode Diplostomum pseudospathaceum and pairs of clones. Clones were identified by microsatellite analysis. Their infectivity and growth rates within the fish were investigated in double-clone infections compared with single-clone ones. In total, 3838 parasite larvae (metacercariae) from 325 fish were measured. The growth rates of the D. pseudospathaceum clones were more variable than their infectivity. Relationships of these parasite traits with host mass were clone-specific. Some clones demonstrated higher infection intensities and growth rates in larger fish. Therefore, specialization toward different size groups of fish hosts may occur in this parasite species. Furthermore, we noticed a positive correlation between population density and parasite growth (Allee effect; rarely reported for parasites) but only in mixed infections. In double-clone infections, evidence of both interclonal facilitation and interclonal competition was found. When clones interacted, they either "cooperated" during infection of the host or competed while growing. There were no clone pairs in which interactions changed in type with time or were present constantly during development of the parasite.
Collapse
Affiliation(s)
- Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia.
| | - Sergei Spiridonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| | - Danila Sotnikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia; Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya St. 49, Moscow 127550, Russia
| | - Anastasia Shpagina
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya St. 49, Moscow 127550, Russia
| | - Kseniia Savina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| | - Mikhail Gopko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij Prosp. 33, Moscow 119071, Russia
| |
Collapse
|
2
|
Clement DT, Gallinson DG, Hamede RK, Jones ME, Margres MJ, McCallum H, Storfer A. Coevolution promotes the coexistence of Tasmanian devils and a fatal, transmissible cancer. Evolution 2024; 79:100-118. [PMID: 39382349 DOI: 10.1093/evolut/qpae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil-DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil-DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil-DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil-DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases.
Collapse
Affiliation(s)
- Dale T Clement
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Dylan G Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- CANECEV: Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Nathan, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
4
|
Duncan AB, Godoy O, Michalakis Y, Zélé F, Magalhães S. Interspecific interactions among parasites in multiple infections. Trends Parasitol 2024; 40:1042-1052. [PMID: 39428306 DOI: 10.1016/j.pt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species. We highlight that interspecific interactions affect the outcome of competition within hosts and that heterospecific parasites engage in cotransmission, gene exchange, and reproductive interference. Studies specifically comparing intra- and inter-specific coinfections and knowledge from community ecology may be instrumental to fully understand the consequences of interspecific multiple infections for parasite life history, ecology, and evolution.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Oscar Godoy
- Estación Biológica de Doñana, EBD, CSIC, Sevilla, 41092, Spain
| | - Yannis Michalakis
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Dziuba MK, McIntire KM, Davenport ES, Baird E, Huerta C, Jaye R, Corcoran F, McCreadie P, Nelson T, Duffy MA. Microsporidian coinfection reduces fitness of a fungal pathogen due to rapid host mortality. mBio 2024; 15:e0058324. [PMID: 39194186 PMCID: PMC11481536 DOI: 10.1128/mbio.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Infection outcomes can be strongly context dependent, shifting a host-symbiont relationship along a parasitism-mutualism continuum. Numerous studies show that under stressful conditions, symbionts that are typically mutualistic can become parasitic. The reverse possibility, a parasite becoming mutualistic, has received much less study. We investigated whether the parasitic microsporidium Ordospora pajunii can become beneficial for its host Daphnia dentifera in the presence of the more virulent fungal pathogen Metschnikowia bicuspidata. We found that, even though infection with O. pajunii reduces the frequency of penetration of M. bicuspidata spores into the host body cavity, it does not improve the survival or reproduction of the host; conversely, coinfection increased the mortality of Daphnia. This shorter lifespan of coinfected hosts disrupted the life cycle of M. bicuspidata, greatly reducing its fitness. Thus, coinfection with both pathogens was detrimental to the host at the individual level but might be beneficial for the host population as a result of greatly reduced production of M. bicuspidata spores. If so, this would mean that O. pajunii outbreaks should delay or prevent M. bicuspidata outbreaks. In support of this, in an analysis of dynamics of naturally occurring outbreaks in two lakes where these pathogens co-occur, we found a time lag in occurrence between O. pajunii and M. bicuspidata, with M. bicuspidata epidemics only occurring after the collapse of O. pajunii epidemics. Thus, these results suggest that the interaction between co-occurring symbionts, and the net impact of a symbiont on a host, might be qualitatively different at different scales.IMPORTANCEUnderstanding the factors that modify infection probability and virulence is crucial for identifying the drivers of infection outbreaks and modeling disease epidemic progression, and increases our ability to control diseases and reduce the harm they cause. One factor that can strongly influence infection probability and virulence is the presence of other pathogens. However, while coexposures and coinfections are incredibly common, we still have only a limited understanding of how pathogen interactions alter infection outcomes or whether their impacts are scale dependent. We used a system of one host and two pathogens to show that sequential coinfection can have a tremendous impact on the host and the infecting pathogens and that the outcome of (co-)infection can be negative or positive depending on the focal organization level.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige McCreadie
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taleah Nelson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Cabuslay C, Wertz JT, Béchade B, Hu Y, Braganza S, Freeman D, Pradhan S, Mukhanova M, Powell S, Moreau C, Russell JA. Domestication and evolutionary histories of specialized gut symbionts across cephalotine ants. Mol Ecol 2024; 33:e17454. [PMID: 39005142 DOI: 10.1111/mec.17454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.
Collapse
Affiliation(s)
- Christian Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, USA
| | - Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
- State key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sonali Braganza
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel Freeman
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shreyansh Pradhan
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Maria Mukhanova
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Corrie Moreau
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Godinho DP, Rodrigues LR, Lefèvre S, Magalhães S, Duncan AB. Coinfection accelerates transmission to new hosts despite no effects on virulence and parasite growth. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230139. [PMID: 38913066 PMCID: PMC11391289 DOI: 10.1098/rstb.2023.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Diogo P Godinho
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
- Current address, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Sophie Lefèvre
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Alison B Duncan
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
8
|
Franz M, Regoes RR, Rolff J. How infection-triggered pathobionts influence virulence evolution. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230067. [PMID: 38497269 PMCID: PMC10945393 DOI: 10.1098/rstb.2023.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/28/2023] [Indexed: 03/19/2024] Open
Abstract
Host-pathogen interactions can be influenced by the host microbiota, as the microbiota can facilitate or prevent pathogen infections. In addition, members of the microbiota can become virulent. Such pathobionts can cause co-infections when a pathogen infection alters the host immune system and triggers dysbiosis. Here we performed a theoretical investigation of how pathobiont co-infections affect the evolution of pathogen virulence. We explored the possibility that the likelihood of pathobiont co-infection depends on the evolving virulence of the pathogen. We found that, in contrast to the expectation from classical theory, increased virulence is not always selected for. For an increasing likelihood of co-infection with increasing pathogen virulence, we found scenario-specific selection for either increased or decreased virulence. Evolutionary changes, however, in pathogen virulence do not always translate into similar changes in combined virulence of the pathogen and the pathobiont. Only in one of the scenarios where pathobiont co-infection is triggered above a specific virulence level we found a reduction in combined virulence. This was not the case when the probability of pathobiont co-infection linearly increased with pathogen virulence. Taken together, our study draws attention to the possibility that host-microbiota interactions can be both the driver and the target of pathogen evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
9
|
Vega-Heredia S, Giffard-Mena I, Reverter M. Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment. DISEASES OF AQUATIC ORGANISMS 2024; 158:1-20. [PMID: 38602294 DOI: 10.3354/dao03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
Collapse
Affiliation(s)
- Sarahí Vega-Heredia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México, Egresada del Programa de Ecología Molecular y Biotecnología, carretera transpeninsular Ensenada-Tijuana No. 3917, C.P. 22860, México
| | - Ivone Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México
| | - Miriam Reverter
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Devon PL4 8AA, UK
| |
Collapse
|
10
|
Dekaj E, Gjini E. Pneumococcus and the stress-gradient hypothesis: A trade-off links R 0 and susceptibility to co-colonization across countries. Theor Popul Biol 2024; 156:77-92. [PMID: 38331222 DOI: 10.1016/j.tpb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization μ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.
Collapse
Affiliation(s)
- Ermanda Dekaj
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
11
|
O'Keeffe FE, Pendleton RC, Holland CV, Luijckx P. Increased virulence due to multiple infection in Daphnia leads to limited growth in 1 of 2 co-infecting microsporidian parasites. Parasitology 2024; 151:58-67. [PMID: 37981808 PMCID: PMC10941049 DOI: 10.1017/s0031182023001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Recent outbreaks of various infectious diseases have highlighted the ever-present need to understand the drivers of the outbreak and spread of disease. Although much of the research investigating diseases focuses on single infections, natural systems are dominated by multiple infections. These infections may occur simultaneously, but are often acquired sequentially, which may alter the outcome of infection. Using waterfleas (Daphnia magna) as a model organism, we examined the outcome of sequential and simultaneous multiple infections with 2 microsporidian parasites (Ordospora colligata and Hamiltosporidium tvaerminnensis) in a fully factorial design with 9 treatments and 30 replicates. We found no differences between simultaneous and sequential infections. However, H. tvaerminnensis fitness was impeded by multiple infection due to increased host mortality, which gave H. tvaerminnensis less time to grow. Host fecundity was also reduced across all treatments, but animals infected with O. colligata at a younger age produced the fewest offspring. As H. tvaerminnensis is both horizontally and vertically transmitted, this reduction in offspring may have further reduced H. tvaerminnensis fitness in co-infected treatments. Our findings suggest that in natural populations where both species co-occur, H. tvaerminnensis may evolve to higher levels of virulence following frequent co-infection by O. colligata.
Collapse
Affiliation(s)
- Floriane E. O'Keeffe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C. Pendleton
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Chen H, Zhang G, Ding G, Huang J, Zhang H, Vidal MC, Corlett RT, Liu C, An J. Interspecific Host Variation and Biotic Interactions Drive Pathogen Community Assembly in Chinese Bumblebees. INSECTS 2023; 14:887. [PMID: 37999086 PMCID: PMC10672019 DOI: 10.3390/insects14110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Bumblebees have been considered one of the most important pollinators on the planet. However, recent reports of bumblebee decline have raised concern about a significant threat to ecosystem stability. Infectious diseases caused by multiple pathogen infections have been increasingly recognized as an important mechanism behind this decline worldwide. Understanding the determining factors that influence the assembly and composition of pathogen communities among bumblebees can provide important implications for predicting infectious disease dynamics and making effective conservation policies. Here, we study the relative importance of biotic interactions versus interspecific host resistance in shaping the pathogen community composition of bumblebees in China. We first conducted a comprehensive survey of 13 pathogens from 22 bumblebee species across China. We then applied joint species distribution modeling to assess the determinants of pathogen community composition and examine the presence and strength of pathogen-pathogen associations. We found that host species explained most of the variations in pathogen occurrences and composition, suggesting that host specificity was the most important variable in predicting pathogen occurrences and community composition in bumblebees. Moreover, we detected both positive and negative associations among pathogens, indicating the role of competition and facilitation among pathogens in determining pathogen community assembly. Our research demonstrates the power of a pluralistic framework integrating field survey of bumblebee pathogens with community ecology frameworks to understand the underlying mechanisms of pathogen community assembly.
Collapse
Affiliation(s)
- Huanhuan Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Guangshuo Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Hong Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jiandong An
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| |
Collapse
|
13
|
Herman JM, Fiorini VD, Crudele I, Reboreda JC, Pladas SA, Watson AP, Bush SE, Clayton DH. Co-parasitism in the face of predation: Effects of natural enemies on a neotropical mockingbird. J Anim Ecol 2023; 92:1992-2004. [PMID: 37583129 DOI: 10.1111/1365-2656.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Co-parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co-infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations. We measured the separate and combined effects of Philornis seguyi nest flies and shiny cowbirds Molothrus bonariensis on the fitness of a shared host, the chalk-browed mockingbird (Mimus saturninus) in Argentina. Using a two-factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds. Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive. In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co-parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co-parasitism are complex, especially in the context of community-level interactions.
Collapse
Affiliation(s)
- Jordan M Herman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Vanina D Fiorini
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, IEGEBA-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Crudele
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, IEGEBA-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Reboreda
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, IEGEBA-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shawn A Pladas
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - André P Watson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sarah E Bush
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dale H Clayton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Carvalho T, Medina D, P Ribeiro L, Rodriguez D, Jenkinson TS, Becker CG, Toledo LF, Hite JL. Coinfection with chytrid genotypes drives divergent infection dynamics reflecting regional distribution patterns. Commun Biol 2023; 6:941. [PMID: 37709833 PMCID: PMC10502024 DOI: 10.1038/s42003-023-05314-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
By altering the abundance, diversity, and distribution of species-and their pathogens-globalization may inadvertently select for more virulent pathogens. In Brazil's Atlantic Forest, a hotspot of amphibian biodiversity, the global amphibian trade has facilitated the co-occurrence of previously isolated enzootic and panzootic lineages of the pathogenic amphibian-chytrid (Batrachochytrium dendrobatidis, 'Bd') and generated new virulent recombinant genotypes ('hybrids'). Epidemiological data indicate that amphibian declines are most severe in hybrid zones, suggesting that coinfections are causing more severe infections or selecting for higher virulence. We investigated how coinfections involving these genotypes shapes virulence and transmission. Overall, coinfection favored the more virulent and competitively superior panzootic genotype, despite dampening its transmission potential and overall virulence. However, for the least virulent and least competitive genotype, coinfection increased both overall virulence and transmission. Thus, by integrating experimental and epidemiological data, our results provide mechanistic insight into how globalization can select for, and propel, the emergence of introduced hypervirulent lineages, such as the globally distributed panzootic lineage of Bd.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
- Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Thomas S Jenkinson
- Department of Biological Sciences, California State University-East Bay, Hayward, CA, 94542, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Jessica L Hite
- School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
15
|
Genné D, Jiricka W, Sarr A, Voordouw MJ. Tick-to-host transmission differs between Borrelia afzelii strains. Microbiol Spectr 2023; 11:e0167523. [PMID: 37676027 PMCID: PMC10580945 DOI: 10.1128/spectrum.01675-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 09/08/2023] Open
Abstract
Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Whitney Jiricka
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Le TMT, Gjini E, Madec S. Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits. J Math Biol 2023; 87:48. [PMID: 37640832 DOI: 10.1007/s00285-023-01977-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Understanding the interplay of different traits in a co-infection system with multiple strains has many applications in ecology and epidemiology. Because of high dimensionality and complex feedback between traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain parameters simultaneously and advance analytically to obtain their explicit collective dynamics. We consider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N strains, which vary in 5 fitness dimensions: transmissibility, clearance rate of single- and co-infection, transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral system, while the slow dynamics are governed by an N-dimensional replicator equation, describing the time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fitnesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality and exposes critical features for the maintenance of diversity.
Collapse
Affiliation(s)
- Thi Minh Thao Le
- Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Lisbon, Portugal
| | - Sten Madec
- Laboratory of Mathematics, Institut Denis Poisson, University of Tours, Tours, France.
| |
Collapse
|
17
|
Pike VL, Stevens EJ, Griffin AS, King KC. Within- and between-host dynamics of producer and non-producer pathogens. Parasitology 2023; 150:805-812. [PMID: 37394480 PMCID: PMC10478067 DOI: 10.1017/s0031182023000586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023]
Abstract
For infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.
Collapse
Affiliation(s)
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Ashrafi R, Bruneaux M, Sundberg LR, Hoikkala V, Karvonen A. Multispecies coinfections and presence of antibiotics shape resistance and fitness costs in a pathogenic bacterium. Mol Ecol 2023; 32:4447-4460. [PMID: 37303030 DOI: 10.1111/mec.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Matthieu Bruneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Man I, Benincà E, Kretzschmar ME, Bogaards JA. Reconstructing multi-strain pathogen interactions from cross-sectional survey data via statistical network inference. J R Soc Interface 2023; 20:20220912. [PMID: 37553995 PMCID: PMC10410213 DOI: 10.1098/rsif.2022.0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Infectious diseases often involve multiple pathogen species or multiple strains of the same pathogen. As such, knowledge of how different pathogens interact is key to understand and predict the outcome of interventions targeting only a subset of species or strains involved in disease. Population-level data may be useful to infer pathogen strain interactions, but most previously used inference methods only consider uniform interactions between all strains or focus on marginal pairwise interactions. As such, these methods are prone to bias induced by indirect interactions through other strains. Here, we evaluated statistical network inference for reconstructing heterogeneous interactions from cross-sectional surveys detecting joint presence/absence patterns of pathogen strains within hosts. We applied various network models to simulated survey data, representing endemic infection states of multiple pathogen strains with potential interactions in acquisition or clearance of infection. Satisfactory performance was demonstrated by the estimators converging to the true interactions. Accurate reconstruction of interaction networks was achieved by regularization or penalization for sample size. Although performance deteriorated in the presence of host heterogeneity, this was overcome by correcting for individual-level risk factors. Our work demonstrates how statistical network inference could prove useful for detecting multi-strain pathogen interactions and may have applications beyond epidemiology.
Collapse
Affiliation(s)
- Irene Man
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Julius Centre, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Johannes A. Bogaards
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J Fungi (Basel) 2023; 9:766. [PMID: 37504754 PMCID: PMC10381279 DOI: 10.3390/jof9070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Five Aspergillus sections have members that are established agricultural pests and producers of different metabolites, threatening global food safety. Most of these pathogenic Aspergillus species have been isolated from almost all major biomes. The soil remains the primary habitat for most of these cryptic fungi. This review explored some of the ecological attributes that have contributed immensely to the success of the pathogenicity of some members of the genus Aspergillus over time. Hence, the virulence factors of the genus Aspergillus, their ecology and others were reviewed. Furthermore, some biological control techniques were recommended. Pathogenic effects of Aspergillus species are entirely accidental; therefore, the virulence evolution prediction model in such species becomes a challenge, unlike their obligate parasite counterparts. In all, differences in virulence among organisms involved both conserved and species-specific genetic factors. If the impacts of climate change continue, new cryptic Aspergillus species will emerge and mycotoxin contamination risks will increase in all ecosystems, as these species can metabolically adjust to nutritional and biophysical challenges. As most of their gene clusters are silent, fungi continue to be a source of underexplored bioactive compounds. The World Soil Charter recognizes the relevance of soil biodiversity in supporting healthy soil functions. The question of how a balance may be struck between supporting healthy soil biodiversity and the control of toxic fungi species in the field to ensure food security is therefore pertinent. Numerous advanced strategies and biocontrol methods so far remain the most environmentally sustainable solution to the control of toxigenic fungi in the field.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
21
|
Hamede R, Fountain‐Jones NM, Arce F, Jones M, Storfer A, Hohenlohe PA, McCallum H, Roche B, Ujvari B, Thomas F. The tumour is in the detail: Local phylogenetic, population and epidemiological dynamics of a transmissible cancer in Tasmanian devils. Evol Appl 2023; 16:1316-1327. [PMID: 37492149 PMCID: PMC10363845 DOI: 10.1111/eva.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023] Open
Abstract
Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade-offs can drive host-pathogen coexistence, even when disease-induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long-term epidemic dynamics and evaluating disease control strategies.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
| | | | - Fernando Arce
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
| | - Hamish McCallum
- Centre for Planetary Health and Food SecurityGriffith University, Nathan CampusNathanQueenslandAustralia
| | - Benjamin Roche
- CREEC, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpelierFrance
| | - Beata Ujvari
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Frédéric Thomas
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le CancerMontpellierFrance
- CREEC, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpelierFrance
| |
Collapse
|
22
|
McCormick EC, Cohen OR, Dolezal AG, Sadd BM. Consequences of microsporidian prior exposure for virus infection outcomes and bumble bee host health. Oecologia 2023:10.1007/s00442-023-05394-x. [PMID: 37284861 DOI: 10.1007/s00442-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Host-parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host-parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection.
Collapse
Affiliation(s)
- Elyse C McCormick
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Olivia R Cohen
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Adam G Dolezal
- School of Integrated Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
23
|
Nkhoma SC, Ahmed AOA, Porier D, Rashid S, Bradford R, Molestina RE, Stedman TT. Dynamics of parasite growth in genetically diverse Plasmodium falciparum isolates. Mol Biochem Parasitol 2023; 254:111552. [PMID: 36731750 PMCID: PMC10149587 DOI: 10.1016/j.molbiopara.2023.111552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Multiple parasite lineages with different proliferation rates or fitness may coexist within a clinical malaria isolate, resulting in complex growth interactions and variations in phenotype. To elucidate the dynamics of parasite growth in multiclonal isolates, we measured growth rates (GRs) of three Plasmodium falciparum Cambodian isolates, including IPC_3445 (MRA-1236), IPC_5202 (MRA-1240), IPC_6403 (MRA-1285), and parasite lineages previously cloned from each of these isolates by limiting dilution. Following synchronization, in vitro cultures of each parasite line were maintained over four consecutive asexual cycles (192 h), with thin smears prepared at each 48-h cycle to estimate GR and fold change in parasitemia (FCP). Cell cycle time (CCT), the duration it takes for ring-stage parasites to develop into mature schizonts, was measured by monitoring the development of 0-3-h post-invasion rings for up to 52 h post-incubation. Laboratory lines 3D7 (MRA-102) and Dd2 (MRA-150) were used as controls. Significant differences in GR, FCP, and CCT were observed between parasite isolates and clonal lineages from each isolate. The parasite lines studied here have well-defined growth phenotypes and will facilitate basic malaria research and development of novel malaria interventions. These lines are available to malaria researchers through the MR4 collection of NIAID's BEI Resources Program.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA.
| | - Amel O A Ahmed
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Danielle Porier
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Sujatha Rashid
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Rebecca Bradford
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Robert E Molestina
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Timothy T Stedman
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| |
Collapse
|
24
|
Lindsay RJ, Holder PJ, Talbot NJ, Gudelj I. Metabolic efficiency reshapes the seminal relationship between pathogen growth rate and virulence. Ecol Lett 2023; 26:896-907. [PMID: 37056166 PMCID: PMC10947253 DOI: 10.1111/ele.14218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
A cornerstone of classical virulence evolution theories is the assumption that pathogen growth rate is positively correlated with virulence, the amount of damage pathogens inflict on their hosts. Such theories are key for incorporating evolutionary principles into sustainable disease management strategies. Yet, empirical evidence raises doubts over this central assumption underpinning classical theories, thus undermining their generality and predictive power. In this paper, we identify a key component missing from current theories which redefines the growth-virulence relationship in a way that is consistent with data. By modifying the activity of a single metabolic gene, we engineered strains of Magnaporthe oryzae with different nutrient acquisition and growth rates. We conducted in planta infection studies and uncovered an unexpected non-monotonic relationship between growth rate and virulence that is jointly shaped by how growth rate and metabolic efficiency interact. This novel mechanistic framework paves the way for a much-needed new suite of virulence evolution theories.
Collapse
Affiliation(s)
| | | | - Nicholas J. Talbot
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Ivana Gudelj
- Biosciences and Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
25
|
Guissou E, Da DF, Hien DFDS, Yameogo KB, Yerbanga SR, Ouédraogo GA, Dabiré KR, Lefèvre T, Cohuet A. Intervention reducing malaria parasite load in vector mosquitoes: No impact on Plasmodium falciparum extrinsic incubation period and the survival of Anopheles gambiae. PLoS Pathog 2023; 19:e1011084. [PMID: 37195964 PMCID: PMC10191285 DOI: 10.1371/journal.ppat.1011084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In the fight against malaria, transmission blocking interventions (TBIs) such as transmission blocking vaccines or drugs, are promising approaches to complement conventional tools. They aim to prevent the infection of vectors and thereby reduce the subsequent exposure of a human population to infectious mosquitoes. The effectiveness of these approaches has been shown to depend on the initial intensity of infection in mosquitoes, often measured as the mean number of oocysts resulting from an infectious blood meal in absence of intervention. In mosquitoes exposed to a high intensity of infection, current TBI candidates are expected to be ineffective at completely blocking infection but will decrease parasite load and therefore, potentially also affect key parameters of vector transmission. The present study investigated the consequences of changes in oocyst intensity on subsequent parasite development and mosquito survival. To address this, we experimentally produced different intensities of infection for Anopheles gambiae females from Burkina Faso by diluting gametocytes from three natural Plasmodium falciparum local isolates and used a newly developed non-destructive method based on the exploitation of mosquito sugar feeding to track parasite and mosquito life history traits throughout sporogonic development. Our results indicate the extrinsic incubation period (EIP) of P. falciparum and mosquito survival did not vary with parasite density but differed significantly between parasite isolates with estimated EIP50 of 16 (95% CI: 15-18), 14 (95% CI: 12-16) and 12 (95% CI: 12-13) days and median longevity of 25 (95% CI: 22-29), 15 (95% CI: 13-15) and 18 (95% CI: 17-19) days for the three isolates respectively. Our results here do not identify unintended consequences of the decrease of parasite loads in mosquitoes on the parasite incubation period or on mosquito survival, two key parameters of vectorial capacity, and hence support the use of transmission blocking strategies to control malaria.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Ecole Normale Supérieure, Koudougou, Burkina Faso
| | - Dari Frédéric Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | | | | | | | | | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| |
Collapse
|
26
|
Kun Á, Hubai AG, Král A, Mokos J, Mikulecz BÁ, Radványi Á. Do pathogens always evolve to be less virulent? The virulence–transmission trade-off in light of the COVID-19 pandemic. Biol Futur 2023:10.1007/s42977-023-00159-2. [PMID: 37002448 PMCID: PMC10066022 DOI: 10.1007/s42977-023-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
AbstractThe direction the evolution of virulence takes in connection with any pathogen is a long-standing question. Formerly, it was theorized that pathogens should always evolve to be less virulent. As observations were not in line with this theoretical outcome, new theories emerged, chief among them the transmission–virulence trade-off hypotheses, which predicts an intermediate level of virulence as the endpoint of evolution. At the moment, we are very much interested in the future evolution of COVID-19’s virulence. Here, we show that the disease does not fulfill all the assumptions of the hypothesis. In the case of COVID-19, a higher viral load does not mean a higher risk of death; immunity is not long-lasting; other hosts can act as reservoirs for the virus; and death as a consequence of viral infection does not shorten the infectious period. Consequently, we cannot predict the short- or long-term evolution of the virulence of COVID-19.
Collapse
|
27
|
Bellah H, Seiler NF, Croll D. Divergent Outcomes of Direct Conspecific Pathogen Strain Interaction and Plant Co-Infection Suggest Consequences for Disease Dynamics. Microbiol Spectr 2023; 11:e0444322. [PMID: 36749120 PMCID: PMC10101009 DOI: 10.1128/spectrum.04443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Plant diseases are often caused by co-infections of multiple pathogens with the potential to aggravate disease severity. In genetically diverse pathogen species, co-infections can also be caused by multiple strains of the same species. However, the outcome of such mixed infections by different conspecific genotypes is poorly understood. The interaction among pathogen strains with complex lifestyles outside and inside of the host are likely shaped by diverse traits, including metabolic capacity and the ability to overcome host immune responses. To disentangle competitive outcomes among pathogen strains, we investigated the fungal wheat pathogen Zymoseptoria tritici. The pathogen infects wheat leaves in complex strain assemblies, and highly diverse populations persist between growing seasons. We investigated a set of 14 genetically different strains collected from the same field to assess both competitive outcomes under culture conditions and on the host. Growth kinetics of cocultured strains (~100 pairs) significantly deviated from single strain expectations, indicating competitive exclusion depending on the strain genotype. We found similarly complex outcomes of lesion development on plant leaves following co-infections by the same pairs of strains. While some pairings suppressed overall damage to the host, other combinations exceeded expectations of lesion development based on single strain outcomes. Strain competition outcomes in the absence of the host were poor predictors of outcomes on the host, suggesting that the interaction with the plant immune system adds significant complexity. Intraspecific co-infection dynamics likely make important contributions to disease outcomes in the wild. IMPORTANCE Plants are often attacked by a multitude of pathogens simultaneously, and different species can facilitate or constrain the colonization by others. To what extent simultaneous colonization by different strains of the same species matters, remains unclear. We focused on intra-specific interactions between strains of the major fungal wheat pathogen Zymoseptoria tritici. The pathogen persists in the environment before infecting plant leaves early in the growing season. Leaves are typically colonized by a multitude of strains. Strains cultured in pairs without host were growing differently compared to strains cultured alone. Wheat leaves infected either with single or pairs of strains, we found also highly variable outcomes. Interactions between strains outside of the host were only poorly explaining how strains would interact when on the host, suggesting that pathogen strains engage in complex interactions dependent on the environment. Better understanding within-species interactions will improve our ability to manage crop infections.
Collapse
Affiliation(s)
- Hadjer Bellah
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nicolas F. Seiler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
28
|
Barroso P, Acevedo P, Risalde MA, García-Bocanegra I, Montoro V, Martínez-Padilla AB, Torres MJ, Soriguer RC, Vicente J. Co-exposure to pathogens in wild ungulates from Doñana National Park, South Spain. Res Vet Sci 2023; 155:14-28. [PMID: 36608374 DOI: 10.1016/j.rvsc.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Multiple infections or co-exposure to pathogens should be considered systematically in wildlife to better understand the ecology and evolution of host-pathogen relationships, so as to better determine the potential use of multiple pathogens as indicators to guide health management. We describe the pattern of co-exposure to several pathogens (i.e. simultaneous positive diagnosis to pathogens in an individual considering Mycobacterium tuberculosis complex lesions, and the presence of antibodies against Toxoplasma gondii, bluetongue virus, and hepatitis E virus) and assessed their main drivers in the wild ungulate community from Doñana National Park (red deer, fallow deer, and wild boar) for a 13-years longitudinal study. The lower-than-expected frequency of co-exposure registered in all species was consistent with non-mutually exclusive hypotheses (e.g. antagonism or disease-related mortality), which requires further investigation. The habitat generalist species (red deer and wild boar) were exposed to a greater diversity of pathogens (frequency of co-exposure around 50%) and/or risk factors than fallow deer (25.0% ± CI95% 4.9). Positive relationships between pathogens were evidenced, which may be explained by common risk factors favouring exposure. The specific combination of pathogens in individuals was mainly driven by different groups of factors (individual, environmental, stochastic, and populational), as well as its interaction, defining a complex eco-epidemiological landscape. To deepen into the main determinants and consequences of co-infections in a complex assemblage of wild hosts, and at the interface with humans and livestock, there also is needed to expand the range of pathogens and compare diverse assemblages of hosts under different environmental and management circumstances.
Collapse
Affiliation(s)
- Patricia Barroso
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - María A Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Vidal Montoro
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| | | | - María J Torres
- Departamento de Microbiología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ramón C Soriguer
- Estación Biológica Doñana, CSIC, 41092 Seville, Spain; Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP). Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
29
|
Hiillos AL, Rony I, Rueckert S, Knott KE. Coinfection patterns of two marine apicomplexans are not associated with genetic diversity of their polychaete host. J Eukaryot Microbiol 2023; 70:e12932. [PMID: 35711085 PMCID: PMC10084031 DOI: 10.1111/jeu.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/13/2023]
Abstract
Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfecting parasites. Here, we investigate for the first time the association of coinfection patterns of two marine apicomplexans, Rhytidocystis sp. and Selenidium pygospionis, with the genetic diversity of their host, the polychaete Pygospio elegans, from natural populations. Host genetic diversity was determined with seven microsatellite loci and summarized as allelic richness, inbreeding coefficient, and individual heterozygosity. We detected nonsignificant correlations between infection loads and both individual host heterozygosity and population genetic diversity. Prevalence and infection load of Rhytidocystis sp. were higher than those of S. pygospionis, and both varied spatially. Coinfections were common, and almost all hosts infected by S. pygospionis were also infected by Rhytidocystis sp. Rhytidocystis sp. infection load was significantly higher in dual infections. Our results suggest that factors other than host genetic diversity might be more important in marine apicomplexan infection patterns and experimental approaches would be needed to further determine how interactions between the apicomplexans and their host influence infection.
Collapse
Affiliation(s)
- Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Irin Rony
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
30
|
Azizan A, Alfaro AC, Jaramillo D, Venter L, Young T, Frost E, Lee K, Van Nguyen T, Kitundu E, Archer SDJ, Ericson JA, Foxwell J, Quinn O, Ragg NLC. Pathogenicity and virulence of bacterial strains associated with summer mortality in marine mussels (Perna canaliculus). FEMS Microbiol Ecol 2022; 98:6855225. [PMID: 36449667 DOI: 10.1093/femsec/fiac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The occurrence of pathogenic bacteria has emerged as a plausible key component of summer mortalities in mussels. In the current research, four bacterial isolates retrieved from moribund Greenshell࣪ mussels, Perna canaliculus, from a previous summer mortality event, were tentatively identified as Vibrio and Photobacterium species using morpho-biochemical characterization and MALDI-TOF MS and confirmed as V. celticus, P. swingsii, P. rosenbergii, and P. proteolyticum using whole genome sequencing. These isolates were utilized in a laboratory challenge where mussels were injected with cell concentrations ranging from 105 to 109 CFU/mussel. Of the investigated isolates, P. swingsii induced the highest mortality. Additionally, results from quantitative polymerase chain reaction analysis, focusing on known virulence genes were detected in all isolates grown under laboratory conditions. Photobacterium rosenbergii and P. swingsii showed the highest expression levels of these virulence determinants. These results indicate that Photobacterium spp. could be a significant pathogen of P. canaliculus, with possible importance during summer mortality events. By implementing screening methods to detect and monitor Photobacterium concentrations in farmed mussel populations, a better understanding of the host-pathogen relationship can be obtained, aiding the development of a resilient industry in a changing environment.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Diana Jaramillo
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Emily Frost
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Kevin Lee
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao Van Nguyen
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Eileen Kitundu
- Department of Food Sciences and Microbiology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Stephen D J Archer
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Jessica A Ericson
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Oliver Quinn
- Animal Health Laboratory, Ministry for Primary Industries, New Zealand PO Box 2526, Wellington 6140, New Zealand
| | - Norman L C Ragg
- Aquaculture Department, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| |
Collapse
|
31
|
Votavová A, Trněný O, Staveníková J, Dybová M, Brus J, Komzáková O. Prevalence and Distribution of Three Bumblebee Pathogens from the Czech Republic. INSECTS 2022; 13:insects13121121. [PMID: 36555033 PMCID: PMC9785318 DOI: 10.3390/insects13121121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 05/12/2023]
Abstract
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015-2020 (Bombus terrestris/lucorum) and 2015-2017 (Bombus lapidarius). The greatest prevalence was in the case of Crithidia bombi, where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum. In the case of B. lapidarius, 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum. Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi. The greatest prevalence of C. bombi was found in urban or woodland areas.
Collapse
Affiliation(s)
- Alena Votavová
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
- Correspondence:
| | - Oldřich Trněný
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Jana Staveníková
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Magdaléna Dybová
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 771 46 Olomouc, Czech Republic
| | - Olga Komzáková
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| |
Collapse
|
32
|
Ford SA, Drew GC, King KC. Immune-mediated competition benefits protective microbes over pathogens in a novel host species. Heredity (Edinb) 2022; 129:327-335. [PMID: 36352206 PMCID: PMC9708653 DOI: 10.1038/s41437-022-00569-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Microbes that protect against infection inhabit hosts across the tree of life. It is unclear whether and how the host immune system may affect the formation of new protective symbioses. We investigated the transcriptomic response of Caenorhabditis elegans following novel interactions with a protective microbe (Enterococcus faecalis) able to defend against infection by pathogenic Staphylococcus aureus. We have previously shown that E. faecalis can directly limit pathogen growth within hosts. In this study, we show that colonisation by protective E. faecalis caused the differential expression of 1,557 genes in pathogen infected hosts, including the upregulation of immune genes such as lysozymes and C-type lectins. The most significantly upregulated host lysozyme gene, lys-7, impacted the competitive abilities of E. faecalis and S. aureus when knocked out. E. faecalis has an increased ability to resist lysozyme activity compared to S. aureus, suggesting that the protective microbe could gain a competitive advantage from this host response. Our finding that protective microbes can benefit from immune-mediated competition after introduction opens up new possibilities for biocontrol design and our understanding of symbiosis evolution. Crosstalk between the host immune response and microbe-mediated protection should favour the continued investment in host immunity and avoid the potentially risky evolution of host dependence.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Georgia C Drew
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
33
|
Mrabet S, Romdhane W, Fradi A, Boukadida R, Azzabi A, Guedri Y, Sahtout W, BenAicha N, Abdessayed N, Mokni M, Zellama D, Achour A. Severe Acute Interstitial Nephritis, Dermatitis, and Hemolytic Anemia due to Polyparasitic Infection in an Immunocompetent Male Patient. Am J Mens Health 2022; 16:15579883221139914. [PMID: 36484293 PMCID: PMC9742931 DOI: 10.1177/15579883221139914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute interstitial nephritis (AIN) is a relevant cause of acute renal failure. Drugs are the predominant cause, followed by infections and idiopathic lesions. AIN, as a form of hypersensitivity reaction, is an uncommon manifestation in the setting of human parasitic infections. We report a case of a polyparasitic infection (Giardia lamblia, Entamoeba coli, and Endolimax nana) resulting in a severe biopsy-proven AIN in a 61-year-old male patient. Despite the antiparasitic treatment followed by corticosteroid therapy, and during the 6-month follow-up period, the patient remained dialysis-dependent, and he developed autoimmune hemolytic anemia. Extensive search for another infection or neoplasia was negative. Immunological tests were also negative. The resulting hypersensitivity reaction to the triple parasite infection would have led to fatal evolution for the kidneys affected by this unusual type of AIN.
Collapse
Affiliation(s)
- Sanda Mrabet
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Wiem Romdhane
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Fradi
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Raja Boukadida
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Awatef Azzabi
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Yosra Guedri
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Wissal Sahtout
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Narjess BenAicha
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Nihed Abdessayed
- Department of Pathology, Farhat Hached University Hospital Sousse, Sousse, Tunisia
| | - Moncef Mokni
- Department of Pathology, Farhat Hached University Hospital Sousse, Sousse, Tunisia
| | - Dorsaf Zellama
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| | - Abdellatif Achour
- Department of Nephrology, Dialysis, and Transplantation, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
34
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
35
|
Xu H, Zeng YH, Yin WL, Lu HB, Gong XX, Zhang N, Zhang X, Long H, Ren W, Cai XN, Huang AY, Xie ZY. Prevalence of Bacterial Coinfections with Vibrio harveyi in the Industrialized Flow-through Aquaculture Systems in Hainan Province: A Neglected High-Risk Lethal Causative Agent to Hybrid Grouper. Int J Mol Sci 2022; 23:ijms231911628. [PMID: 36232925 PMCID: PMC9570405 DOI: 10.3390/ijms231911628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.
Collapse
Affiliation(s)
- He Xu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wen-Liang Yin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Hong-Bin Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xiao-Ni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Ai-You Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- College of Marine Sciences, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Correspondence: ; Tel.: +86-136-4866-9016
| |
Collapse
|
36
|
Alharbi W, Sandhu SK, Areshi M, Alotaibi A, Alfaidi M, Al-Qadhi G, Morozov AY. Revisiting implementation of multiple natural enemies in pest management. Sci Rep 2022; 12:15023. [PMID: 36056142 PMCID: PMC9440112 DOI: 10.1038/s41598-022-18120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
A major goal of biological control is the reduction and/or eradication of pests using various natural enemies, in particular, via deliberate infection of the target species by parasites. To enhance the biological control, a promising strategy seems to implement a multi-enemy assemblage rather than a single control agent. Although a large body of theoretical studies exists on co-infections in epidemiology and ecology, there is still a big gap in modelling outcomes of multi-enemy biological control. Here we theoretically investigate how the efficiency of biological control of a pest depends on the number of natural enemies used. We implement a combination of eco-epidemiological modelling and the Adaptive Dynamics game theory framework. We found that a progressive addition of parasite species increases the evolutionarily stable virulence of each parasite, and thus enhances the mortality of the target pest. However, using multiple enemies may have only a marginal effect on the success of biological control, or can even be counter-productive when the number of enemies is excessive. We found the possibility of evolutionary suicide, where one or several parasite species go extinct over the course of evolution. Finally, we demonstrate an interesting scenario of coexistence of multiple parasites at the edge of extinction.
Collapse
Affiliation(s)
- Weam Alharbi
- Department of Mathematics, Faculty of science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Simran K Sandhu
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Mounirah Areshi
- Department of Mathematics, Faculty of science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abeer Alotaibi
- Department of Mathematics, Faculty of science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohammed Alfaidi
- Department of Biology, University College of Duba, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ghada Al-Qadhi
- Department of Mathematics, Faculty of science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Andrew Yu Morozov
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK.
- Laboratory of Behaviour of Lower Vertebrates, Institute of Ecology and Evolution, Moscow, 119071, Russia.
| |
Collapse
|
37
|
Bernasconi A, Alassimone J, McDonald BA, Sánchez‐Vallet A. Asexual reproductive potential trumps virulence as a predictor of competitive ability in mixed infections. Environ Microbiol 2022; 24:4369-4381. [PMID: 35437879 PMCID: PMC9790533 DOI: 10.1111/1462-2920.16018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Natural infections frequently involve several co-infecting pathogen strains. These mixed infections can affect the extent of the infection, the transmission success of the pathogen and the eventual epidemic outcome. To date, few studies have investigated how mixed infections affect transmission between hosts. Zymoseptoria tritici is a highly diverse wheat pathogen in which multiple strains often coexist in the same lesion. Here we demonstrate that the most competitive strains often exclude their competitors during serial passages of mixed infections. The outcome of the competition depended on both the host genotype and the genotypes of the competing pathogen strains. Differences in virulence among the strains were not associated with competitive advantages during transmission, while differences in reproductive potential had a strong effect on strain competitive ability. Overall, our findings suggest that host specialization is determined mainly by the ability to successfully transmit offspring to new hosts during mixed infections.
Collapse
Affiliation(s)
- Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Andrea Sánchez‐Vallet
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| |
Collapse
|
38
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
39
|
Sieben AJ, Mihaljevic JR, Shoemaker LG. Quantifying mechanisms of coexistence in disease ecology. Ecology 2022; 103:e3819. [PMID: 35855596 DOI: 10.1002/ecy.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
Pathogen coexistence depends on ecological processes operating at both within and between-host scales, making it difficult to quantify which processes may promote or prevent coexistence. Here, we propose that adapting modern coexistence theory-traditionally applied in plant communities-to pathogen systems provides an exciting approach for examining mechanisms of coexistence operating across different spatial scales. We first overview modern coexistence theory and its mechanistic decomposition; we subsequently adapt the framework to quantify how spatial variation in pathogen density, host resources and immunity, and their interaction may promote pathogen coexistence. We apply this derivation to an example two pathogen, multi-scale model comparing two scenarios with generalist and strain-specific immunity: one with demographic equivalency among pathogens and one with demographic trade-offs among pathogens. We then show how host-pathogen feedbacks generate spatial heterogeneity that promote pathogen coexistence and decompose those mechanisms to quantify how each spatial heterogeneity contributes to that coexistence. Specifically, coexistence of demographically equivalent pathogens occurs due to spatial variation in host resources, immune responses, and pathogen aggregation. With a competition-colonization trade-off, the superior colonizer requires spatial heterogeneity to coexist, whereas the superior competitor does not. Finally, we suggest ways forward for linking theory and empirical tests of coexistence in disease systems.
Collapse
Affiliation(s)
- Andrew J Sieben
- Department of Botany, University of Wyoming, Laramie, WY.,School of Medicine, Emory University, Atlanta, GA
| | - Joseph R Mihaljevic
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | | |
Collapse
|
40
|
Walsman JC, Cressler CE. Predation shifts coevolution toward higher host contact rate and parasite virulence. Proc Biol Sci 2022; 289:20212800. [PMID: 35858064 PMCID: PMC9277270 DOI: 10.1098/rspb.2021.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
Collapse
Affiliation(s)
- Jason C. Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
41
|
Silva ARD, Andrade GB, Carvalho JKMR, Barreto WTG, Santos FM, Sousa KCMD, André MR, Ferreira LC, Menezes RC, Herrera HM. The outcomes of polyparasitism in stray cats from Brazilian Midwest assessed by epidemiological, hematological and pathological data. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e004222. [PMID: 35792756 DOI: 10.1590/s1984-29612022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the epidemiological, hematological, and pathological data of Leishmania spp., Toxoplasma gondii, Platynosomum illiciens, feline immunodeficiency virus (FIV), and feline leukemia virus (FeLV) infections and the coinfections in stray cats of an endemic area for leishmaniasis. The diagnosis was performed by serological tests and necropsy. We described gross lesions and histopathological findings. We used immunohistochemistry and chromogenic in situ hybridization for L. infantum detection. We found infection in 27 out of 50 sampled cats, among them, 14 presented coinfections. A strong correlation between splenomegaly and lymphadenomegaly with FeLV, and an association between hepatic lesions and cachexia with parasitism due to P. illiciens were observed. Moreover, we found a significant increase in the monocyte count in the FeLV-infected and a decrease in the red blood cell count in the FIV-infected animals. Amastigote forms of Leishmania spp. and tissue changes were detected in lymphoid organs of an animal coinfected with P. illiciens, T. gondii, and FIV. Polyparasitism recorded in stray cats of the Brazilian Midwest should be considered in effective control strategies for public health diseases. Moreover, stray cats of Campo Grande may be a source of infection of FIV, FeLV and P. illiciens for populations of domiciled cats.
Collapse
Affiliation(s)
| | - Gisele Braziliano Andrade
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
| | | | - Wanessa Teixeira Gomes Barreto
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Filipe Martins Santos
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
| | | | - Marcos Rogério André
- Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Luiz Claudio Ferreira
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas - INI, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Caldas Menezes
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas - INI, Rio de Janeiro, RJ, Brasil
| | - Heitor Miraglia Herrera
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Departamento de Medicina Veterinária, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| |
Collapse
|
42
|
Pigeault R, Chevalier M, Cozzarolo CS, Baur M, Arlettaz M, Cibois A, Keiser A, Guisan A, Christe P, Glaizot O. Determinants of haemosporidian single- and co-infection risks in western palearctic birds. Int J Parasitol 2022; 52:617-627. [PMID: 35760376 DOI: 10.1016/j.ijpara.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviors influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Laboratoire EBI, Equipe EES, UMR CNRS 7267, 86000 Poitiers, France.
| | - Mathieu Chevalier
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Ifremer, Centre de Bretagne, DYNECO-LEBCO, CS 10070, 29280 Plouzané, France
| | - Camille-Sophie Cozzarolo
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Biogéosciences, UMR 6282 CNRS, université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Molly Baur
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | | | - Alice Cibois
- Natural History Museum of Geneva, C.P. 6434, CH-1211 Genève 6, Switzerland
| | - André Keiser
- Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| |
Collapse
|
43
|
Walsman JC, Janecka MJ, Clark DR, Kramp RD, Rovenolt F, Patrick R, Mohammed RS, Konczal M, Cressler CE, Stephenson JF. Shoaling guppies evade predation but have deadlier parasites. Nat Ecol Evol 2022; 6:945-954. [PMID: 35618818 DOI: 10.1038/s41559-022-01772-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mary J Janecka
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael D Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina Patrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan S Mohammed
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.,Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
45
|
Hunter M, Fusco D. Superinfection exclusion: A viral strategy with short-term benefits and long-term drawbacks. PLoS Comput Biol 2022; 18:e1010125. [PMID: 35536864 PMCID: PMC9122224 DOI: 10.1371/journal.pcbi.1010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/20/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Viral superinfection occurs when multiple viral particles subsequently infect the same host. In nature, several viral species are found to have evolved diverse mechanisms to prevent superinfection (superinfection exclusion) but how this strategic choice impacts the fate of mutations in the viral population remains unclear. Using stochastic simulations, we find that genetic drift is suppressed when superinfection occurs, thus facilitating the fixation of beneficial mutations and the removal of deleterious ones. Interestingly, we also find that the competitive (dis)advantage associated with variations in life history parameters is not necessarily captured by the viral growth rate for either infection strategy. Putting these together, we then show that a mutant with superinfection exclusion will easily overtake a superinfecting population even if the latter has a much higher growth rate. Our findings suggest that while superinfection exclusion can negatively impact the long-term adaptation of a viral population, in the short-term it is ultimately a winning strategy.
Collapse
Affiliation(s)
- Michael Hunter
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Diana Fusco
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Pinilla-Gallego MS, Irwin RE. Effects of an alternative host on the prevalence and intensity of infection of a bumble bee parasite. Parasitology 2022; 149:562-567. [PMID: 35067238 PMCID: PMC10090601 DOI: 10.1017/s003118202200004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022]
Abstract
Several bee parasites are transmitted through flowers, and some of them can infect multiple host species. Given the shared use of flowers by bee species, parasites can potentially encounter multiple host species, which could affect the evolution of parasite virulence. We used the trypanosomatid parasite Crithidia bombi and its host, the common eastern bumble bee (Bombus impatiens), to explore the effect of infecting an alternative host, the alfalfa leaf-cutter bee (Megachile rotundata), on parasite infectivity and ability to replicate. We conducted a serial passage experiment on primary and alternative hosts, assessing infectivity and intensity of infection during five passes. Parasite cells from each pass through the alternative host were also used to infect a group of primary hosts. We found that serial passes through the alternative host increased infectivity, but there was no effect on intensity of infection. Interestingly, both the probability and intensity of infection on the primary host increased after serial passage through the alternative host. This increase in intensity of infection could be due to maladaptation after selection of new C. bombi strains has occurred in the alternative host. This study suggests that host switching has the potential to affect the adaptation of bee parasites to their hosts.
Collapse
Affiliation(s)
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
47
|
The dynamics of disease mediated invasions by hosts with immune reproductive tradeoff. Sci Rep 2022; 12:4108. [PMID: 35260702 PMCID: PMC8904827 DOI: 10.1038/s41598-022-07962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The modern world involves both increasingly frequent introduction of novel invasive animals into new habitat ranges and novel epidemic-causing pathogens into new host populations. Both of these phenomena have been well studied. Less well explored, however, is how the success of species invasions may themselves be affected by the pathogens they bring with them. In this paper, we construct a simple, modified Susceptible-Infected-Recovered model for a vector-borne pathogen affecting two annually reproducing hosts. We consider an invasion scenario in which a susceptible native host species is invaded by a disease-resistant species carrying a vector-borne infection. We assume the presence of abundant, but previously disease-free, competent vectors. We find that the success of invasion is critically sensitive to the infectivity of the pathogen. The more the pathogen is able to spread, the more fit the invasive host is in competition with the more vulnerable native species; the pathogen acts as a ‘wingman pathogen,’ enhancing the probability of invader establishment. While not surprising, we provide a quantitative predictive framework for the long-term outcomes from these important coupled dynamics in a world in which compound invasions of hosts and pathogens are increasingly likely.
Collapse
|
48
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
49
|
Lewis JA, Penley MJ, Sylla H, Ahumada SD, Morran LT. Antagonistic Coevolution Limits the Range of Host Defense in C. elegans Populations. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.758745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites.
Collapse
|
50
|
Boldin B. The importance of ecological dynamics in evolutionary processes: a host-bacteriophage model revisited. J Theor Biol 2022; 539:111057. [PMID: 35181286 DOI: 10.1016/j.jtbi.2022.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
A recent study of adaptive dynamics of lysis propensity in temperate phages suggested that full lysogeny emerges as the outcome of bacteriophage evolution in a simple host-phage system. The conclusion is based on the premise that mutant strains necessarily appear in equilibrium host-phage environments. Revisiting the model, we show that the ecological system exhibits richer asymptotic dynamics and that, in a certain parameter regime, evolution may in fact drive lysis propensity towards an evolutionary singularity in which a non-zero proportion of phages initiate infection in a lytic cycle. These singularities act as points of evolutionary diversification, leading to periodic coexistence of two distinct phage strains on the evolutionary time-scale. One of the two strains in the dimorphic evolutionary singularity is fully lysogenic (in the sense that cell infection always leads to lysogeny), while the other is partially lytic. Our study thus highlights the importance of ecological interactions as a driver of evolution.
Collapse
Affiliation(s)
- Barbara Boldin
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia.
| |
Collapse
|