1
|
Lamarre J, Wilson DR. Short-term dietary changes are reflected in the cerebral content of adult ring-billed gulls. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240616. [PMID: 39113770 PMCID: PMC11303033 DOI: 10.1098/rsos.240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) are produced primarily in aquatic ecosystems and are considered essential nutrients for predators given their structural role in vertebrates' cerebral tissues. Alarmingly, with urbanization, many aquatic animals now rely on anthropogenic foods lacking n3-LCPUFAs. In this study undertaken in Newfoundland (Canada), we tested whether recent or longer term diet explains the cerebral fatty acid composition of ring-billed gulls (Larus delawarensis), a seabird that now thrives in cities. During the breeding season, cerebral levels of n3-LCPUFAs were significantly higher for gulls nesting in a natural habitat and foraging on marine food (mean ± s.d.: 32 ± 1% of total identified fatty acids) than for urban nesters exploiting rubbish (27 ± 1%). Stable isotope analysis of blood and feathers showed that urban and natural nesters shared similar diets in autumn and winter, suggesting that the difference in cerebral n3-LCPUFAs during the breeding season was owing to concomitant and transient differences in diet. We also experimentally manipulated gulls' diets throughout incubation by supplementing them with fish oil rich in n3-LCPUFAs, a caloric control lacking n3-LCPUFAs, or nothing, and found evidence that fish oil increased urban nesters' cerebral n3-LCPUFAs. These complementary analyses provide evidence that the brain of this seabird remains plastic during adulthood and responds to short-term dietary changes.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| | - David R. Wilson
- Department of Psychology, Memorial University of Newfoundland, St John’s, Newfoundland and LabradorA1B 3X9, Canada
| |
Collapse
|
2
|
Barracho T, Hatch SA, Kotzerka J, Garthe S, Schraft HA, Whelan S, Elliott KH. Survival costs of reproduction are independent of energy costs in a seabird, the pelagic cormorant. Ecol Evol 2024; 14:e11414. [PMID: 39045503 PMCID: PMC11264352 DOI: 10.1002/ece3.11414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
Life-history theory predicts that investment in reproduction should decrease survival (the 'cost of reproduction'). It is often assumed that energy allocation drives such trade-offs, with limited energy available for both reproduction and survival. However, the underlying mechanisms remain poorly understood, maybe because survival costs of reproduction are only apparent when resources are limited. Here, we took advantage of a natural experiment created by fluctuating environmental conditions to compare energy expenditure of a seabird, the pelagic cormorant (Phalacrocorax pelagicus), between contrasting population-scale scenarios of survival costs of reproduction. We used multi-state capture-recapture modelling across 16 years to identify which breeding seasons induced high survival costs (survival ratebreeders < survival ratenon/failed breeders) and we concomitantly estimated energy expenditure of chick-rearing males using time-energy budget models across 4 years. Daily energy expenditure (DEE) of chick-rearing pelagic cormorants varied significantly among years. However, survival costs of reproduction were observed in only 1 year, and contrary to our expectations, variation in DEE was not associated with population-level survival costs. Similarly, at the individual level, DEE in 1 year did not predict the probability of being observed again at the colony in following years (apparent survival). Finally, DEE was independent of brood size and brood age, but older individuals tended to expend less energy than younger ones. Given the lack of an apparent energetic 'cost of reproduction', lower DEE in older birds could be due to improved efficiency rather than avoidance of costs in old birds. Although future studies should account for potential sex-specific energetic constraints by including data on female energy expenditure, we conclude that a direct link between the rate of energy expenditure during breeding and subsequent survival is unlikely in this system.
Collapse
Affiliation(s)
- Téo Barracho
- Department of Natural Resource SciencesMcGill UniversitySte‐Anne‐de‐BellevueQuebecCanada
| | - Scott A. Hatch
- Institute for Seabird Research and ConservationAnchorageAlaskaUSA
| | - Jana Kotzerka
- Research and Technology Center (FTZ)University of KielBuesumGermany
| | - Stefan Garthe
- Research and Technology Center (FTZ)University of KielBuesumGermany
| | | | - Shannon Whelan
- Department of Natural Resource SciencesMcGill UniversitySte‐Anne‐de‐BellevueQuebecCanada
| | - Kyle H. Elliott
- Department of Natural Resource SciencesMcGill UniversitySte‐Anne‐de‐BellevueQuebecCanada
| |
Collapse
|
3
|
Lemaître JF, Moorad J, Gaillard JM, Maklakov AA, Nussey DH. A unified framework for evolutionary genetic and physiological theories of aging. PLoS Biol 2024; 22:e3002513. [PMID: 38412150 PMCID: PMC10898761 DOI: 10.1371/journal.pbio.3002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Why and how we age are 2 intertwined questions that have fascinated scientists for many decades. However, attempts to answer these questions remain compartmentalized, preventing a comprehensive understanding of the aging process. We argue that the current lack of knowledge about the evolution of aging mechanisms is due to a lack of clarity regarding evolutionary theories of aging that explicitly involve physiological processes: the disposable soma theory (DST) and the developmental theory of aging (DTA). In this Essay, we propose a new hierarchical model linking genes to vital rates, enabling us to critically reevaluate the DST and DTA in terms of their relationship to evolutionary genetic theories of aging (mutation accumulation (MA) and antagonistic pleiotropy (AP)). We also demonstrate how these 2 theories can be incorporated in a unified hierarchical framework. The new framework will help to generate testable hypotheses of how the hallmarks of aging are shaped by natural selection.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France
| | - Jacob Moorad
- Institute of Ecology & Evolution, School of Biological Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Daniel H. Nussey
- Institute of Ecology & Evolution, School of Biological Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Bossu CM, Rodriguez M, Rayne C, Chromczak DA, Higgins PG, Trulio LA, Ruegg KC. Genomic approaches to mitigating genetic diversity loss in declining populations. Mol Ecol 2023; 32:5228-5240. [PMID: 37610278 DOI: 10.1111/mec.17109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
The accelerating pace of global biodiversity loss is exacerbated by habitat fragmentation and subsequent inbreeding in small populations. To address this problem, conservation practitioners often turn to assisted breeding programmes with the aim of enhancing genetic diversity in declining populations. Although genomic information is infrequently included in these efforts, it has the potential to significantly enhance the success of such programmes. In this study, we showcase the value of genomic approaches for increasing genetic diversity in assisted breeding efforts, specifically focusing on a highly inbred population of Western burrowing owls. To maximize genetic diversity in the resulting offspring, we begin by creating an optimal pairing decision tree based on sex, kinship and patterns of homozygosity across the genome. To evaluate the effectiveness of our strategy, we compare genetic diversity, brood size and nestling success rates between optimized and non-optimized pairs. Additionally, we leverage recently discovered correlations between telomere length and fitness across species to investigate whether genomic optimization could have long-term fitness benefits. Our results indicate that pairing individuals with contrasting patterns of homozygosity across the genome is an effective way to increase genetic diversity in offspring. Although short-term field-based metrics of success did not differ significantly between optimized and non-optimized pairs, offspring from optimized pairs had significantly longer telomeres, suggesting that genetic optimization can help reduce the risk of inbreeding depression. These findings underscore the importance of genomic tools for informing efforts to preserve the adaptive potential of small, inbred populations at risk of further decline.
Collapse
Affiliation(s)
- Christen M Bossu
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Marina Rodriguez
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Christine Rayne
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| | - Debra A Chromczak
- Burrowing Owl Researcher & Consultant, Riegelsville, Pennsylvania, USA
| | | | - Lynne A Trulio
- Department of Environmental Studies, San José State University, San Jose, California, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Colorado, Fort Collins, USA
| |
Collapse
|
5
|
Morland F, Ewen JG, Simons MJP, Brekke P, Hemmings N. Early-life telomere length predicts life-history strategy and reproductive senescence in a threatened wild songbird. Mol Ecol 2023; 32:4031-4043. [PMID: 37173827 PMCID: PMC10947174 DOI: 10.1111/mec.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Telomeres are well known for their associations with lifespan and ageing across diverse taxa. Early-life telomere length can be influenced by developmental conditions and has been shown positively affect lifetime reproductive success in a limited number of studies. Whether these effects are caused by a change in lifespan, reproductive rate or perhaps most importantly reproductive senescence is unclear. Using long-term data on female breeding success from a threatened songbird (the hihi, Notiomystis cincta), we show that the early-life telomere length of individuals predicts the presence and rate of future senescence of key reproductive traits: clutch size and hatching success. In contrast, senescence of fledging success is not associated with early-life telomere length, which may be due to the added influence of biparental care at this stage. Early-life telomere length does not predict lifespan or lifetime reproductive success in this species. Females may therefore change their reproductive allocation strategy depending on their early developmental conditions, which we hypothesise are reflected in their early-life telomere length. Our results offer new insights on the role that telomeres play in reproductive senescence and individual fitness and suggest telomere length can be used as a predictor for future life history in threatened species.
Collapse
Affiliation(s)
- Fay Morland
- Department of BiosciencesUniversity of SheffieldSheffieldUK
- Institute of Zoology, Zoological Society of LondonLondonUK
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | - John G. Ewen
- Institute of Zoology, Zoological Society of LondonLondonUK
| | | | | | | |
Collapse
|
6
|
Sirman AE, Schmidt JE, Clark ME, Kittilson JD, Reed WL, Heidinger BJ. Compensatory Growth Is Accompanied by Changes in Insulin-Like Growth Factor 1 but Not Markers of Cellular Aging in a Long-Lived Seabird. Am Nat 2023; 202:78-91. [PMID: 37384761 DOI: 10.1086/724599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractDeveloping organisms often plastically modify growth in response to environmental circumstances, which may be adaptive but is expected to entail long-term costs. However, the mechanisms that mediate these growth adjustments and any associated costs are less well understood. In vertebrates, one mechanism that may be important in this context is the highly conserved signaling factor insulin-like growth factor 1 (IGF-1), which is frequently positively related to postnatal growth and negatively related to longevity. To test this idea, we exposed captive Franklin's gulls (Leucophaeus pipixcan) to a physiologically relevant nutritional stressor by restricting food availability during postnatal development and examined the effects on growth, IGF-1, and two potential biomarkers of cellular and organismal aging (oxidative stress and telomeres). During food restriction, experimental chicks gained body mass more slowly and had lower IGF-1 levels than controls. Following food restriction, experimental chicks underwent compensatory growth, which was accompanied by an increase in IGF-1 levels. Interestingly, however, there were no significant effects of the experimental treatment or of variation in IGF-1 levels on oxidative stress or telomeres. These findings suggest that IGF-1 is responsive to changes in resource availability but is not associated with increased markers of cellular aging during development in this relatively long-lived species.
Collapse
|
7
|
Fiorillo BF, Faggioni GP, Cerezer FO, Becker CG, Díaz‐Ricaurte JC, Martins M. Effects of environmental factors on the ecology and survival of a widespread, endemic Cerrado frog. Biotropica 2023. [DOI: 10.1111/btp.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Bruno F. Fiorillo
- Herp Trips, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Manacá Institute, Reserva Particular do Patrimônio Natural Trápaga São Miguel Arcanjo Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
| | | | - Felipe Osmari Cerezer
- Programa de Pós‐Graduacão em Biodiversidade Animal, Departamento de Ecologia e Evolução, CCNE Universidade Federal de Santa Maria Santa Maria Brazil
| | - C. Guilherme Becker
- Department of Biology The Pennsylvania State University University Park Pennsylvania USA
| | - Juan C. Díaz‐Ricaurte
- Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós‐Graduação em Ecologia Aplicada Universidade de São Paulo Piracicaba Brazil
- Horae Gene Therapy Center University of Massachusetts Medical School Worcester MA USA
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Semillero de investigación en Ecofisiologia y Biogeografía de Vertebrados (EcoBioVert), Grupo de Investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Programa de Biología, Facultad de Ciencias Básicas Universidad de la Amazonía Florencia Colombia
| | - Marcio Martins
- Departamento de Ecologia, Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
8
|
Meyer BS, Moiron M, Caswara C, Chow W, Fedrigo O, Formenti G, Haase B, Howe K, Mountcastle J, Uliano-Silva M, Wood J, Jarvis ED, Liedvogel M, Bouwhuis S. Sex-specific changes in autosomal methylation rate in ageing common terns. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.982443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Senescence, an age-related decline in survival and/or reproductive performance, occurs in species across the tree of life. Molecular mechanisms underlying this within-individual phenomenon are still largely unknown, but DNA methylation changes with age are among the candidates. Using a longitudinal approach, we investigated age-specific changes in autosomal methylation of common terns, relatively long-lived migratory seabirds known to show senescence. We collected blood at 1-, 3- and/or 4-year intervals, extracted DNA from the erythrocytes and estimated autosomal DNA methylation by mapping Reduced Representative Bisulfite Sequencing reads to a de novo assembled reference genome. We found autosomal methylation levels to decrease with age within females, but not males, and no evidence for selective (dis)appearance of birds of either sex in relation to their methylation level. Moreover, although we found positions in the genome to consistently vary in their methylation levels, individuals did not show such strong consistent variance. These results pave the way for studies at the level of genome features or specific positions, which should elucidate the functional consequences of the patterns observed, and how they translate to the ageing phenotype.
Collapse
|
9
|
Riecke TV, Hegelbach J, Schaub M. Reproductive senescence and mating tactic interact and conflict to drive reproductive success in a passerine. J Anim Ecol 2023; 92:838-849. [PMID: 36708046 DOI: 10.1111/1365-2656.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
An understanding of the drivers of individual fitness is a fundamental component of evolutionary ecology and life-history theory. Reproductive senescence, mate and mating tactic choice and latent heterogeneity in individual quality interact to affect individual fitness. We sought to disentangle the effects of these fitness drivers, where longitudinal data are required to understand their respective impacts. We used reproductive allocation and success data from a long-term (1989-2018) study of white-throated dippers Cinclus cinclus in Switzerland to simultaneously examine the effects of female and male age, mating tactic, nest initiation date and individual heterogeneity on reproductive performance. We modelled quadratic and categorical effects of age on reproductive parameters. The probability of polygyny increased with age in both sexes before declining in older age classes. Similarly, hatching probability in monogamous pairs and the number of nestlings hatched in both monogamous and polygynous pairs increased with female age before declining later in life. As predicted, offspring survival in monogamous pairs increased with male age before declining in older age classes, but male age had no effect on offspring survival in polygynous nesting attempts. Our results demonstrate that parental age, mating tactic and individual heterogeneity all affect reproductive success, and that the impacts of senescent decline are expressed across different demographic components as a function of sex-specific senescent decline and mating tactic.
Collapse
Affiliation(s)
| | - Johann Hegelbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Heidinger BJ, Slowinski SP, Sirman AE, Kittilson J, Gerlach NM, Ketterson ED. Experimentally elevated testosterone shortens telomeres across years in a free-living songbird. Mol Ecol 2022; 31:6216-6223. [PMID: 33503312 DOI: 10.1111/mec.15819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Reproductive investment often comes at a cost to longevity, but the mechanisms that underlie these long-term effects are not well understood. In male vertebrates, elevated testosterone has been shown to increase reproductive success, but simultaneously to decrease survival. One factor that may contribute to or serve as a biomarker of these long-term effects of testosterone on longevity is telomeres, which are often positively related to lifespan and have been shown to shorten in response to reproduction. In this longitudinal study, we measured the effects of experimentally elevated testosterone on telomere shortening in free-living, male dark-eyed juncos (Junco hyemalis carolinensis), a system in which the experimental elevation of testosterone has previously been shown to increase reproductive success and reduce survival. We found a small, significant effect of testosterone treatment on telomeres, with testosterone-treated males exhibiting significantly greater telomere shortening with age than controls. These results are consistent with the hypothesis that increased telomere shortening may be a long-term cost of elevated testosterone exposure. As both testosterone and telomeres are conserved physiological mechanisms, our results suggest that their interaction may apply broadly to the long-term costs of reproduction in male vertebrates.
Collapse
Affiliation(s)
- Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | | | - Aubrey E Sirman
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Jeffrey Kittilson
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Nicole M Gerlach
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
11
|
Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons. Sci Rep 2022; 12:16005. [PMID: 36163457 PMCID: PMC9512846 DOI: 10.1038/s41598-022-20240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Although once considered uncommon, there is growing evidence of widespread senescence in wildlife populations. However, few studies have examined the traits involved, inter-sexual differences, and environmental correlates of age-specific performance in raptors. We studied age-specific reproductive performance and actuarial senescence (decrease in survival probability with age) in a peregrine falcon population monitored for 21 years. We analysed changes with age in the number of offspring produced and incubation start date. We also inspected variation in lifespan and breeding lifespan (number of breeding occasions in a lifetime). In every case, we assessed associations between variations in traits and age, sex, recruitment age, and environmental conditions (cumulative rainfall during breeding season) experienced upon the first breeding attempt. We found scarce evidence for reproductive senescence. Only the incubation start date in females, which was delayed after approximately 8 cy (calendar years), suggested reproductive senescence in our study population. Regarding actuarial senescence, our data did not support it as we only found evidence of higher juvenile mortality. Furthermore, expected lifespan in peregrines recruited at 2 cy was associated with conditions experienced upon the first breeding attempt. The lifespan and breeding career of individuals recruited as yearlings and experiencing low rainfall upon first breeding did not significantly differ from those recruited as adults. However, those recruited as yearlings and experiencing poor environmental conditions upon the first breeding attempt showed reduced lifespan and breeding lifespan.
Collapse
|
12
|
Driessen MMG, Versteegh MA, Gerritsma YH, Tieleman BI, Pen I, Verhulst S. Effects of early-life conditions on innate immune function in adult zebra finches. J Exp Biol 2021; 224:269007. [PMID: 34087935 PMCID: PMC8214827 DOI: 10.1242/jeb.242158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/20/2021] [Indexed: 01/31/2023]
Abstract
Early life conditions can affect individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesized that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108–749 days) that were reared in either small or large broods. We used this experimental background to follow up our earlier finding that finches reared in large broods have a shorter lifespan. To render a broad overview of innate immune function, we used an array of six measures: bacterial killing capacity, hemagglutination, hemolysis, haptoglobin, nitric oxide and ovotransferrin. We found no convincing evidence for effects of natal brood size on any of the six measures of innate immune function. This raised the question whether the origin of variation in immune function was genetic, and we therefore estimated heritabilities using animal models. However, we found heritability estimates to be low (range 0.04–0.11) for all measured immune variables, suggesting variation in innate immune function can largely be attributed to environmental effects independent of early-life conditions as modified by natal brood size. Summary: Developmental hardship has many long-term implications, but its effects on adult immune function are unknown. We found no effects of a developmental manipulation on innate immune function during adulthood in zebra finches.
Collapse
Affiliation(s)
- Merijn M G Driessen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maaike A Versteegh
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Yoran H Gerritsma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
13
|
Bonneaud C, Tardy L, Hill GE, McGraw KJ, Wilson AJ, Giraudeau M. Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evol Lett 2020; 4:491-501. [PMID: 33312685 PMCID: PMC7719545 DOI: 10.1002/evl3.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/03/2022] Open
Abstract
The virulence‐transmission trade‐off hypothesis has provided a dominant theoretical basis for predicting pathogen virulence evolution, but empirical tests are rare, particularly at pathogen emergence. The central prediction of this hypothesis is that pathogen fitness is maximized at intermediate virulence due to a trade‐off between infection duration and transmission rate. However, obtaining sufficient numbers of pathogen isolates of contrasting virulence to test the shape of relationships between key pathogen traits, and doing so without the confounds of evolved host protective immunity (as expected at emergence), is challenging. Here, we inoculated 55 isolates of the bacterial pathogen, Mycoplasma gallisepticum, into non‐resistant house finches (Haemorhous mexicanus) from populations that have never been exposed to the disease. Isolates were collected over a 20‐year period from outbreak in disease‐exposed populations of house finches and vary markedly in virulence. We found a positive linear relationship between pathogen virulence and transmission rate to an uninfected sentinel, supporting the core assumption of the trade‐off hypothesis. Further, in support of the key prediction, there was no evidence for directional selection on a quantitative proxy of pathogen virulence and, instead, isolates of intermediate virulence were fittest. Surprisingly, however, the positive relationship between virulence and transmission rate was not underpinned by variation in pathogen load or replication rate as is commonly assumed. Our results indicate that selection favors pathogens of intermediate virulence at disease emergence in a novel host species, even when virulence and transmission are not linked to pathogen load.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, Biosciences University of Exeter Penryn Cornwall TR10 9FE United Kingdom
| | - Luc Tardy
- Centre for Ecology and Conservation, Biosciences University of Exeter Penryn Cornwall TR10 9FE United Kingdom
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn Alabama 36849-5414, United States of America
| | - Kevin J McGraw
- School of Life Sciences Arizona State University Tempe Arizona 85287-4501, United States of America
| | - Alastair J Wilson
- Centre for Ecology and Conservation, Biosciences University of Exeter Penryn Cornwall TR10 9FE United Kingdom
| | - Mathieu Giraudeau
- Centre for Ecology and Conservation, Biosciences University of Exeter Penryn Cornwall TR10 9FE United Kingdom.,School of Life Sciences Arizona State University Tempe Arizona 85287-4501, United States of America
| |
Collapse
|
14
|
Landes J, Engelhardt SC, Pelletier F. An introduction to event history analyses for ecologists. Ecosphere 2020. [DOI: 10.1002/ecs2.3238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Julie Landes
- Département de Biologie Université de Sherbrooke 2500, boulevard de l'Université Sherbrooke QuebecJ1K 2R1Canada
| | - Sacha C. Engelhardt
- Département de Biologie Université de Sherbrooke 2500, boulevard de l'Université Sherbrooke QuebecJ1K 2R1Canada
- Department of Biology Institute of Ecology and Evolution University of BernEthologische Station Hasli Wohlenstrasse 50a HinterkappelenCH‐3032Switzerland
| | - Fanie Pelletier
- Département de Biologie Université de Sherbrooke 2500, boulevard de l'Université Sherbrooke QuebecJ1K 2R1Canada
| |
Collapse
|
15
|
Makai G, Rodríguez-Muñoz R, Boonekamp JJ, Hopwood P, Tregenza T. Males and females differ in how their behaviour changes with age in wild crickets. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Spagopoulou F, Teplitsky C, Lind MI, Chantepie S, Gustafsson L, Maklakov AA. Silver-spoon upbringing improves early-life fitness but promotes reproductive ageing in a wild bird. Ecol Lett 2020; 23:994-1002. [PMID: 32239642 DOI: 10.1111/ele.13501] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 01/07/2023]
Abstract
Early-life conditions can have long-lasting effects and organisms that experience a poor start in life are often expected to age at a faster rate. Alternatively, individuals raised in high-quality environments can overinvest in early-reproduction resulting in rapid ageing. Here we use a long-term experimental manipulation of early-life conditions in a natural population of collared flycatchers (Ficedula albicollis), to show that females raised in a low-competition environment (artificially reduced broods) have higher early-life reproduction but lower late-life reproduction than females raised in high-competition environment (artificially increased broods). Reproductive success of high-competition females peaked in late-life, when low-competition females were already in steep reproductive decline and suffered from a higher mortality rate. Our results demonstrate that 'silver-spoon' natal conditions increase female early-life performance at the cost of faster reproductive ageing and increased late-life mortality. These findings demonstrate experimentally that natal environment shapes individual variation in reproductive and actuarial ageing in nature.
Collapse
Affiliation(s)
- Foteini Spagopoulou
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Céline Teplitsky
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Stéphane Chantepie
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Lars Gustafsson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden
| | - Alexei A Maklakov
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvagen 18D, 75236, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
17
|
Boonekamp JJ, Bauch C, Verhulst S. Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population. J Anim Ecol 2020; 89:1395-1407. [PMID: 32037534 PMCID: PMC7317873 DOI: 10.1111/1365-2656.13186] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
The assumption that reproductive effort decreases somatic state, accelerating ageing, is central to our understanding of life‐history variation. Maximal reproductive effort early in life is predicted to be maladaptive by accelerating ageing disproportionally, decreasing fitness. Optimality theory predicts that reproductive effort is restrained early in life to balance the fitness contribution of reproduction against the survival cost induced by the reproductive effort. When adaptive, the level of reproductive restraint is predicted to be inversely linked to the remaining life expectancy, potentially resulting in a terminal effort in the last period of reproduction. Experimental tests of the reproductive restraint hypothesis require manipulation of somatic state and subsequent investigation of reproductive effort and residual life span. To our knowledge the available evidence remains inconclusive, and hence reproductive restraint remains to be demonstrated. We modulated somatic state through a lifelong brood size manipulation in wild jackdaws and measured its consequences for age‐dependent mortality and reproductive success. The assumption that lifelong increased brood size reduced somatic state was supported: Birds rearing enlarged broods showed subsequent increased rate of actuarial senescence, resulting in reduced residual life span. The treatment induced a reproductive response in later seasons: Egg volume and nestling survival were higher in subsequent seasons in the increased versus reduced broods' treatment group. We detected these increases in egg volume and nestling survival despite the expectation that in the absence of a change in reproductive effort, the reduced somatic state indicated by the increased mortality rate would result in lower reproductive output. This leads us to conclude that the higher reproductive success we observed was the result of higher reproductive effort. Our findings show that reproductive effort negatively covaries with remaining life expectancy, supporting optimality theory and confirming reproductive restraint as a key factor underpinning life‐history variation.
Collapse
Affiliation(s)
- Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Brusa JL, Rotella JJ, Garrott RA, Paterson JT, Link WA. Variation of annual apparent survival and detection rates with age, year and individual identity in male Weddell seals (
Leptonychotes weddellii
) from long‐term mark‐recapture data. POPUL ECOL 2019. [DOI: 10.1002/1438-390x.12036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jamie L. Brusa
- Department of EcologyMontana State University Bozeman Montana
| | - Jay J. Rotella
- Department of EcologyMontana State University Bozeman Montana
| | | | | | | |
Collapse
|
19
|
Wylde Z, Spagopoulou F, Hooper AK, Maklakov AA, Bonduriansky R. Parental breeding age effects on descendants' longevity interact over 2 generations in matrilines and patrilines. PLoS Biol 2019; 17:e3000556. [PMID: 31765371 PMCID: PMC6901263 DOI: 10.1371/journal.pbio.3000556] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/09/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does and that breeding age effects can interact over 2 generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over 2 generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grand-parental ages at breeding on descendants' mortality rate and life span in both matrilines and patrilines. These breeding age effects were not modulated by grand-parental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intrapopulation variation in mortality and longevity.
Collapse
Affiliation(s)
- Zachariah Wylde
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Foteini Spagopoulou
- Uppsala Centre for Evolution and Genomics, Uppsala University, Uppsala, Sweden
| | - Amy K. Hooper
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexei A. Maklakov
- Uppsala Centre for Evolution and Genomics, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Cohen AA, Coste CFD, Li X, Bourg S, Pavard S. Are trade‐offs really the key drivers of ageing and life span? Funct Ecol 2019. [DOI: 10.1111/1365-2435.13444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan A. Cohen
- Groupe de recherche PRIMUS Department of Family Medicine University of Sherbrooke Sherbrooke QC Canada
| | - Christophe F. D. Coste
- Center for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| | - Xiang‐Yi Li
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Salomé Bourg
- CNRS Laboratoire de Biométrie et Biologie Évolutive UMR5558 Université Lyon 1 Villeurbanne France
| | - Samuel Pavard
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| |
Collapse
|
21
|
Abstract
Despite tremendous progress in recent years, our understanding of the evolution of ageing is still incomplete. A dominant paradigm maintains that ageing evolves due to the competing energy demands of reproduction and somatic maintenance leading to slow accumulation of unrepaired cellular damage with age. However, the centrality of energy trade-offs in ageing has been increasingly challenged as studies in different organisms have uncoupled the trade-off between reproduction and longevity. An emerging theory is that ageing instead is caused by biological processes that are optimized for early-life function but become harmful when they continue to run-on unabated in late life. This idea builds on the realization that early-life regulation of gene expression can break down in late life because natural selection is too weak to optimize it. Empirical evidence increasingly supports the hypothesis that suboptimal gene expression in adulthood can result in physiological malfunction leading to organismal senescence. We argue that the current state of the art in the study of ageing contradicts the widely held view that energy trade-offs between growth, reproduction, and longevity are the universal underpinning of senescence. Future research should focus on understanding the relative contribution of energy and function trade-offs to the evolution and expression of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
22
|
Sawecki J, Miros E, Border SE, Dijkstra PD. Reproduction and maternal care increase oxidative stress in a mouthbrooding cichlid fish. Behav Ecol 2019. [DOI: 10.1093/beheco/arz133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractInvestment in reproduction and postzygotic parental care is an energetically costly yet fundamental aspect of the life-history strategies in many species. Recently, oxidative stress has received attention as a potential mediator in the trade-off between reproduction, growth, and survival. During activities that increase metabolic activity, such as providing offspring care, an overproduction of reactive oxygen species can occur that cannot be counteracted by antioxidants, leading to oxidative stress and tissue damage. Here, we investigated the oxidative costs of reproduction and maternal care over the course of the reproductive cycle in a mouthbrooding cichlid fish within socially stable and unstable environments. We manipulated social stability by disrupting the habitat in socially unstable tanks. We expected to see an increase in the burden of maternal care within unstable environments due to increased male harassment of females as a byproduct of increased male–male aggression. We found that brooding females have higher levels of oxidative stress than nonbrooding females and oxidative stress fluctuates throughout the reproductive cycle. These fluctuations were driven by a spike in reactive oxygen metabolites at the beginning of brood care followed by an increase in antioxidant defense. Surprisingly, the link between reproduction and oxidative stress was not different between females from stable or unstable environments. Our study illustrates a more complete picture of the physiological costs of reproduction and parental care throughout different stages of care rather than a simplistic end-point observation of how reproduction and parental care affect an individual.
Collapse
Affiliation(s)
- Jacob Sawecki
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Emily Miros
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
23
|
Abstract
The demonstration of life span plasticity in natural populations would provide a powerful test of evolutionary theories of senescence. Plastic senescence is not easily explained by mutation accumulation or antagonistic pleiotropy but is a corollary of the disposable soma theory. The life span differences among castes of the eusocial Hymenoptera are potentially some of the most striking and extreme examples of life span plasticity. Although these differences are often assumed to be plastic, this has never been demonstrated conclusively because differences in life span may be caused by the proximate effects of different levels of environmental hazard experienced by castes. Here age-dependent and age-independent components of instantaneous mortality rates of the honey bee (Apis mellifera) were estimated from published life tables for natural and seminatural populations to determine whether differences in life span between queens and workers and between different types of workers are indeed plastic. These differences in life span were found to be due to differences in the rate of actuarial senescence, which correlate positively with the rate of extrinsic mortality, in accordance with the central prediction of evolutionary theories of senescence. Although all three evolutionary theories of senescence could in principle explain such plastic senescence, given differential gene expression between castes or life stages, only the disposable soma theory adequately explains the adaptive regulation of somatic maintenance in response to different environmental conditions that appears to underlie life span plasticity.
Collapse
|
24
|
Landes J, Henry P, Hardy I, Perret M, Pavard S. Female reproduction bears no survival cost in captivity for gray mouse lemurs. Ecol Evol 2019; 9:6189-6198. [PMID: 31236213 PMCID: PMC6580269 DOI: 10.1002/ece3.5124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022] Open
Abstract
The survival cost of reproduction has been revealed in many free-ranging vertebrates. However, recent studies on captive populations failed to detect this cost. Theoretically, this lack of survival/reproduction trade-off is expected when resources are not limiting, but these studies may have failed to detect the cost, as they may not have fully accounted for potential confounding effects, in particular interindividual heterogeneity. Here, we investigated the effects of current and past reproductive effort on later survival in captive females of a small primate, the gray mouse lemur. Survival analyses showed no cost of reproduction in females; and the pattern was even in the opposite direction: the higher the reproductive effort, the higher the chances of survival until the next reproductive event. These conclusions hold even while accounting for interindividual heterogeneity. In agreement with aforementioned studies on captive vertebrates, these results remind us that reproduction is expected to be traded against body maintenance and the survival prospect only when resources are so limiting that they induce an allocation trade-off. Thus, the cost of reproduction has a major extrinsic component driven by environmental conditions.
Collapse
Affiliation(s)
- Julie Landes
- Eco‐Anthropologie, UMR 7206CNRS, MNHN, Univ. Paris DiderotParisFrance
- Mécanismes Adaptatifs et Evolution (MECADEV ‐ UMR 7179)CNRS, MNHNBrunoyFrance
- Département de Biologie, Faculté des SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Pierre‐Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV ‐ UMR 7179)CNRS, MNHNBrunoyFrance
| | - Isabelle Hardy
- Mécanismes Adaptatifs et Evolution (MECADEV ‐ UMR 7179)CNRS, MNHNBrunoyFrance
| | - Martine Perret
- Mécanismes Adaptatifs et Evolution (MECADEV ‐ UMR 7179)CNRS, MNHNBrunoyFrance
| | - Samuel Pavard
- Eco‐Anthropologie, UMR 7206CNRS, MNHN, Univ. Paris DiderotParisFrance
| |
Collapse
|
25
|
Lind MI, Ravindran S, Sekajova Z, Carlsson H, Hinas A, Maklakov AA. Experimentally reduced insulin/IGF-1 signaling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring. Evol Lett 2019; 3:207-216. [PMID: 31007945 PMCID: PMC6457396 DOI: 10.1002/evl3.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal gene expression in late-life lies at the heart of ageing.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Sanjana Ravindran
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Zuzana Sekajova
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Andrea Hinas
- Department of Cell and Molecular BiologyUppsala UniversityUppsala751 24Sweden
| | - Alexei A. Maklakov
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
26
|
Tompkins EM, Anderson DJ. Sex-specific patterns of senescence in Nazca boobies linked to mating system. J Anim Ecol 2019; 88:986-1000. [PMID: 30746683 DOI: 10.1111/1365-2656.12944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/15/2018] [Indexed: 01/19/2023]
Abstract
Under life-history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex-specific ageing in the context of a given mating system. Nazca boobies (Sula granti; a seabird) practise serial monogamy and biparental care. A male-biased population sex ratio results in earlier and more frequent breeding by females. Based on sex-specific reproductive schedules, females were expected to show faster age-related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late-life performance and accelerate senescence. Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early-/late-life fitness trade-offs within each sex. Within-sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort-level differences in early-adult environments. Females showed marginally more intense actuarial senescence and stronger age-related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late-life reproductive performance in both sexes and thus did not support a causal link between early-reproduction/late-life fitness trade-offs and sex differences in ageing. A high-quality diet in early adulthood reduced late-life survival (females) and accelerated senescence for fledging success (males). This study documents clear variation in ageing patterns-by sex, early-adult environment and early-adult reproductive effort-with implications for the role mating systems and early-life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age- and condition-dependent mate choice interacting with this population's male-biased sex ratio and mate rotation.
Collapse
Affiliation(s)
- Emily M Tompkins
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina
| | - David J Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
27
|
Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci Rep 2019; 9:486. [PMID: 30679484 PMCID: PMC6345771 DOI: 10.1038/s41598-018-36463-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Although several factors have been highlighted to explain the influence of urbanization on bird fitness and survival, the role of persistent toxicants such as lead (Pb), which is typically present in urban areas worldwide, has seldom been studied despite the ecological importance of such a widespread stressor. Studying free-living European blackbirds (Turdus merula) in city parks, we tested the hypothesis that low-dose chronic exposure to Pb could shape the life-history traits of urban birds. The feather concentrations of Pb and cadmium were typical of urban areas and low-to-moderate contamination of sites. Although the lifetime breeding success of females decreased with increasing exposure to Pb, the lifespan and survival probabilities of blackbirds increased with Pb contamination regardless of gender. Breeding effort-dependent patterns in the relationship between lifespan and Pb levels were highlighted. No significant relationships were detected between cadmium and life-history traits. The results suggest a possible trade-off between self-maintenance and reproduction, with the most affected birds redirecting allocations towards their own survival, which is consistent with the “stress hormone hypothesis”. These findings suggest that Pb pollution in urban environments may shape avian ecological features and be one of the drivers of wildlife responses to urbanization and that some urban areas may function as ecological traps driven by pollutants.
Collapse
|
28
|
Rodríguez-Muñoz R, Boonekamp JJ, Liu XP, Skicko I, Fisher DN, Hopwood P, Tregenza T. Testing the effect of early-life reproductive effort on age-related decline in a wild insect. Evolution 2019; 73:317-328. [PMID: 30597559 PMCID: PMC6590129 DOI: 10.1111/evo.13679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
The disposable soma theory of ageing predicts that when organisms invest in reproduction they do so by reducing their investment in body maintenance, inducing a trade‐off between reproduction and survival. Experiments on invertebrates in the lab provide support for the theory by demonstrating the predicted responses to manipulation of reproductive effort or lifespan. However, experimental studies in birds and evidence from observational (nonmanipulative) studies in nature do not consistently reveal trade‐offs. Most species studied previously in the wild are mammals and birds that reproduce over multiple discrete seasons. This contrasts with temperate invertebrates, which typically have annual generations and reproduce over a single season. We expand the taxonomic range of senescence study systems to include life histories typical of most temperate invertebrates. We monitored reproductive effort, ageing, and survival in a natural field cricket population over ten years to test the prediction that individuals investing more in early‐reproduction senesce faster and die younger. We found no evidence of a trade‐off between early‐life reproductive effort and survival, and only weak evidence for a trade‐off with phenotypic senescence. We discuss the possibility that organisms with multiple discrete breeding seasons may have greater opportunities to express trade‐offs between reproduction and senescence.
Collapse
Affiliation(s)
- Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Jelle J Boonekamp
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Xing P Liu
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Ian Skicko
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - David N Fisher
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4L8, Canada
| | - Paul Hopwood
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Tom Tregenza
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| |
Collapse
|
29
|
Rodríguez-Muñoz R, Boonekamp JJ, Liu XP, Skicko I, Haugland Pedersen S, Fisher DN, Hopwood P, Tregenza T. Comparing individual and population measures of senescence across 10 years in a wild insect population. Evolution 2019; 73:293-302. [PMID: 30597539 PMCID: PMC6590638 DOI: 10.1111/evo.13674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Declines in survival and performance with advancing age (senescence) have been widely documented in natural populations, but whether patterns of senescence across traits reflect a common underlying process of biological ageing remains unclear. Senescence is typically characterized via assessments of the rate of change in mortality with age (actuarial senescence) or the rate of change in phenotypic performance with age (phenotypic senescence). Although both phenomena are considered indicative of underlying declines in somatic integrity, whether actuarial and phenotypic senescence rates are actually correlated has yet to be established. Here we present evidence of both actuarial and phenotypic senescence from a decade‐long longitudinal field study of wild insects. By tagging every individual and using continuous video monitoring with a network of up to 140 video cameras, we were able to record survival and behavioral data on an entire adult population of field crickets. This reveals that both actuarial and phenotypic senescence vary substantially across 10 annual generations. This variation allows us to identify a strong correlation between actuarial and phenotypic measures of senescence. Our study demonstrates age‐related phenotypic declines reflected in population level mortality rates and reveals that observations of senescence in a single year may not be representative of a general pattern.
Collapse
Affiliation(s)
- Rolando Rodríguez-Muñoz
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Jelle J Boonekamp
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Xing P Liu
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Ian Skicko
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Sophie Haugland Pedersen
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - David N Fisher
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4L8, Canada
| | - Paul Hopwood
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Tom Tregenza
- School of Biosciences, Centre for Ecology & Conservation, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| |
Collapse
|
30
|
Graham JL, Bauer CM, Heidinger BJ, Ketterson ED, Greives TJ. Early-breeding females experience greater telomere loss. Mol Ecol 2019; 28:114-126. [PMID: 30565787 DOI: 10.1111/mec.14952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 08/02/2024]
Abstract
Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of biological wear and tear as they shorten with age and in response to stress. Using historical data from a long-term study population of dark-eyed juncos (Junco hyemalis), we found that telomere loss between years was greater in earlier breeding females, regardless of chronological age. There was no relationship between telomere loss and the annual number of eggs laid or chicks that reached independence. However, telomere loss was greater when temperatures were cooler, and cooler temperatures generally occur early in the season. This suggests that environmental conditions could be the primary cause of accelerated telomere loss in early breeders.
Collapse
Affiliation(s)
- Jessica L Graham
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota
| | - Carolyn M Bauer
- Department of Biology, Adelphi University, Garden City, New York
| | - Britt J Heidinger
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota
| | | | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
31
|
|
32
|
Nenko I, Hayward AD, Simons MJP, Lummaa V. Early-life environment and differences in costs of reproduction in a preindustrial human population. PLoS One 2018; 13:e0207236. [PMID: 30540747 PMCID: PMC6291071 DOI: 10.1371/journal.pone.0207236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/27/2018] [Indexed: 11/19/2022] Open
Abstract
Reproduction is predicted to trade-off with long-term maternal survival, but the survival costs often vary between individuals, cohorts and populations, limiting our understanding of this trade-off, which is central to life-history theory. One potential factor generating variation in reproductive costs is variation in developmental conditions, but the role of early-life environment in modifying the reproduction-survival trade-off has rarely been investigated. We quantified the effect of early-life environment on the trade-off between female reproduction and survival in pre-industrial humans by analysing individual-based life-history data for >80 birth cohorts collected from Finnish church records, and between-year variation in local crop yields, annual spring temperature, and infant mortality as proxies of early-life environment. We predicted that women born during poor environmental conditions would show higher costs of reproduction in terms of survival compared to women born in better conditions. We found profound variation between the studied cohorts in the correlation between reproduction and longevity and in the early-life environment these cohorts were exposed to, but no evidence that differences in early-life environment or access to wealth affected the trade-off between reproduction and survival. Our results therefore do not support the hypothesis that differences in developmental conditions underlie the observed heterogeneity in reproduction-survival trade-off between individuals.
Collapse
Affiliation(s)
- Ilona Nenko
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| | - Adam D. Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Mirre J. P. Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Grunst ML, Grunst AS, Formica VA, Korody ML, Betuel AM, Barcelo-Serra M, Gonser RA, Tuttle EM. Actuarial senescence in a dimorphic bird: different rates of ageing in morphs with discrete reproductive strategies. Proc Biol Sci 2018; 285:20182053. [PMID: 30518574 PMCID: PMC6283936 DOI: 10.1098/rspb.2018.2053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 11/12/2022] Open
Abstract
It is often hypothesized that intra-sexual competition accelerates actuarial senescence, or the increase in mortality rates with age. However, an alternative hypothesis is that parental investment is more important to determining senescence rates. We used a unique model system, the white-throated sparrow (Zonotrichia albicollis), to study variation in actuarial senescence. In this species, genetically determined morphs display discrete mating strategies and disassortative pairing, providing an excellent opportunity to test the predictions of the above hypotheses. Compared to tan-striped males, white-striped males are more polygynous and aggressive, and less parental. Tan-striped females receive less parental support, and invest more into parental care than white-striped females, which are also more aggressive. Thus, higher senescence rates in males and white-striped birds would support the intra-sexual competition hypothesis, whereas higher senescence rates in females and tan-striped birds would support the parental investment hypothesis. White-striped males showed the lowest rate of actuarial senescence. Tan-striped females had the highest senescence rate, and tan-striped males and white-striped females showed intermediate, relatively equal rates. Thus, results were inconsistent with sexual selection and competitive strategies increasing senescence rates, and instead indicate that senescence may be accelerated by female-biased parental care, and lessened by sharing of parental duties.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Vincent A Formica
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Marisa L Korody
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- San Diego Zoo Institute for Conservation Research, San Diego, CA 92101, USA
| | - Adam M Betuel
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Atlanta Audubon Society, Atlanta, GA 30342, USA
| | | | - Rusty A Gonser
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Elaina M Tuttle
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
34
|
Fowler MA, Paquet M, Legault V, Cohen AA, Williams TD. Physiological predictors of reproductive performance in the European Starling ( Sturnus vulgaris). Front Zool 2018; 15:45. [PMID: 30479645 PMCID: PMC6249724 DOI: 10.1186/s12983-018-0288-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Background It is widely assumed that variation in fitness components has a physiological basis that might underlie selection on trade-offs, but the mechanisms driving decreased survival and future fecundity remain elusive. Here, we assessed whether physiological variables are related to workload ability or immediate fitness consequences and if they mediate future survival or reproductive success. We used data on 13 physiological variables measured in 93 female European starlings (Sturnus vulgaris) at two breeding stages (incubation, chick-rearing), for first-and second-broods over two years (152 observations). Results There was little co-variation among the physiological variables, either in incubating or chick-rearing birds, but some systematic physiological differences between the two stages. Chick-rearing birds had lower hematocrit and plasma creatine kinase but higher hemoglobin, triglyceride and uric acid levels. Only plasma corticosterone was repeatable between incubation and chick-rearing. We assessed relationships between incubation or chick-rearing physiology and measures of workload, current productivity, future fecundity or survival in a univariate manner, and found very few significant relationships. Thus, we next explored the utility of multivariate analysis (principal components analysis, Mahalanobis distance) to account for potentially complex physiological integration, but still found no clear associations. Conclusions This implies either that a) birds maintained physiological variables within a homeostatic range that did not affect their performance, b) there are relatively few links between physiology and performance, or, more likely, c) that the complexity of these relationships exceeds our ability to measure it. Variability in ecological context may complicate the relationship between physiology and behavior. We thus urge caution regarding the over-interpretation of isolated significant findings, based on single traits in single years, in the literature. Electronic supplementary material The online version of this article (10.1186/s12983-018-0288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melinda A Fowler
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada.,Present address: Springfield College Biology, 263 Alden Street, Springfield, MA 01109-3797 USA
| | - Mélissa Paquet
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Véronique Legault
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Alan A Cohen
- 3Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4 Canada
| | - Tony D Williams
- 1Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
35
|
Vrtílek M, Žák J, Blažek R, Polačik M, Cellerino A, Reichard M. Limited scope for reproductive senescence in wild populations of a short-lived fish. Naturwissenschaften 2018; 105:68. [DOI: 10.1007/s00114-018-1594-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023]
|
36
|
Noguera JC. Crickets increase sexual signalling and sperm protection but live shorter in the presence of rivals. J Evol Biol 2018; 32:49-57. [DOI: 10.1111/jeb.13390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Affiliation(s)
- José C. Noguera
- Grupo de Ecología Animal; Universidade de Vigo, Torre CACTI; Vigo Spain
| |
Collapse
|
37
|
Sköld-Chiriac S, Nilsson JÅ, Hasselquist D. Immune challenge induces terminal investment at an early breeding stage in female zebra finches. Behav Ecol 2018. [DOI: 10.1093/beheco/ary147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Grunst AS, Grunst ML, Formica VA, Korody ML, Betuel AM, Barcelo-Serra M, Ford S, Gonser RA, Tuttle EM. Morph-Specific Patterns of Reproductive Senescence: Connections to Discrete Reproductive Strategies. Am Nat 2018; 191:744-755. [PMID: 29750559 DOI: 10.1086/697377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How reproductive strategies contribute to patterns of senescence in natural populations remains contentious. We studied reproductive senescence in the dimorphic white-throated sparrow, an excellent species for exploring this issue. Within both sexes the morphs use distinct reproductive strategies, and disassortative pairing by morph results in pair types with distinct parental systems. White morph birds are more colorful and aggressive than tan counterparts, and white males compete for extrapair matings, whereas tan males are more parental. Tan males and white females share parental care equally, whereas white males provide little parental support to tan females. We found morph-specific patterns of reproductive senescence in both sexes. White males exhibited greater reproductive senescence than tan males. This result likely reflects the difficulty of sustaining a highly competitive reproductive strategy as aging progresses rather than high physiological costs of competitiveness, since white males were also long-lived. Moreover, morph was not consistently related to reproductive senescence across the sexes, arguing against especially high costs of the traits associated with white morph identity. Rather, tan females exhibited earlier reproductive senescence than white females and were short-lived, perhaps reflecting the challenges of unsupported motherhood. Results underscore the importance of social dynamics in determining patterns of reproductive senescence.
Collapse
|
39
|
Boonekamp JJ, Mulder E, Verhulst S. Canalisation in the wild: effects of developmental conditions on physiological traits are inversely linked to their association with fitness. Ecol Lett 2018; 21:857-864. [DOI: 10.1111/ele.12953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jelle J. Boonekamp
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; P.O.Box 11103 9700CC Groningen the Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; P.O.Box 11103 9700CC Groningen the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; P.O.Box 11103 9700CC Groningen the Netherlands
| |
Collapse
|
40
|
Kroeger SB, Blumstein DT, Armitage KB, Reid JM, Martin JGA. Age, state, environment, and season dependence of senescence in body mass. Ecol Evol 2018; 8:2050-2061. [PMID: 29468024 PMCID: PMC5817150 DOI: 10.1002/ece3.3787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023] Open
Abstract
Senescence is a highly variable process that comprises both age-dependent and state-dependent components and can be greatly affected by environmental conditions. However, few studies have quantified the magnitude of age-dependent and state-dependent senescence in key life-history traits across individuals inhabiting different spatially structured and seasonal environments. We used longitudinal data from wild female yellow-bellied marmots (Marmota flaviventer), living in two adjacent environments that differ in elevation and associated phenology, to quantify how age and individual state, measured as "time to death," affect body mass senescence in different environments. Further, we quantified how patterns of senescence differed between two biologically distinct seasons, spring, and late summer. Body mass senescence had an age-dependent component, expressed as a decrease in mass in old age. Overall, estimated age-dependent senescence was greater in females living in the more favorable lower elevation environment, than in the harsher higher elevation environment, and greater in late summer than in spring. Body mass senescence also had a state-dependent component, captured by effects of time to death, but only in the more favorable lower elevation environment. In spring, body mass gradually decreased from 2 years before death, whereas in late summer, state-dependent effects were expressed as a terminal decrease in body mass in the last year of life. Contrary to expectations, we found that senescence was more likely to be observed under more favorable environmental conditions, rather than under harsher conditions. By further demonstrating that senescence patterns differ among seasons, our results imply that within-year temporal environmental variation must be considered alongside spatial environmental variation in order to characterize and understand the pattern and magnitude of senescence in wild populations.
Collapse
Affiliation(s)
- Svenja B. Kroeger
- Institute of Biological and Environmental SciencesSchool of Biological SciencesZoology BuildingUniversity of AberdeenAberdeenUK
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
- The Rocky Mountain Biological LaboratoryCrested ButteCOUSA
| | - Kenneth B. Armitage
- Ecology and Evolutionary Biology DepartmentThe University of KansasLawrenceKSUSA
| | - Jane M. Reid
- Institute of Biological and Environmental SciencesSchool of Biological SciencesZoology BuildingUniversity of AberdeenAberdeenUK
| | - Julien G. A. Martin
- Institute of Biological and Environmental SciencesSchool of Biological SciencesZoology BuildingUniversity of AberdeenAberdeenUK
| |
Collapse
|
41
|
Germain M, Pärt T, Gustafsson L, Doligez B. Natal dispersers pay a lifetime cost to increased reproductive effort in a wild bird population. Proc Biol Sci 2018; 284:rspb.2016.2445. [PMID: 28330917 DOI: 10.1098/rspb.2016.2445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/15/2017] [Indexed: 11/12/2022] Open
Abstract
Natal dispersal is assumed to be costly. Such costs can be difficult to detect, and fitness consequences of dispersal are therefore poorly known. Because of lower phenotypic quality and/or familiarity with the environment, natal dispersers may be less buffered against a sudden increase in reproductive effort. Consequently, reproductive costs associated with natal dispersal may mostly be detected in harsh breeding conditions. We tested this prediction by comparing lifetime reproductive success between natal dispersers and non-dispersers in a patchy population of collared flycatchers (Ficedula albicollis) when they reared either a non-manipulated brood or an experimentally increased or decreased brood. Natal dispersers achieved lower lifetime reproductive success than non-dispersers only under more stressful breeding conditions (i.e. when brood size was experimentally increased). This was mostly due to a lower number of recruits produced in the year of the increase. Our results suggest a cost associated with natal dispersal paid immediately after an increase in reproductive effort and not subsequently compensated for through increased survival or future offspring recruitment. Natal dispersers adjusted their breeding investment when reproductive effort is as predicted but seemed unable to efficiently face a sudden increase in effort, which could affect the influence of environmental predictability on dispersal evolution.
Collapse
Affiliation(s)
- Marion Germain
- UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université de Lyon, F69000, Lyon; Université Lyon 1, 18 Boulevard du 11 Novembre 1918, F69622 Villeurbanne, France .,Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.,Université de Lyon, Université Lyon 2, 69000 Lyon, France
| | - Tomas Pärt
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Lars Gustafsson
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Blandine Doligez
- UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université de Lyon, F69000, Lyon; Université Lyon 1, 18 Boulevard du 11 Novembre 1918, F69622 Villeurbanne, France
| |
Collapse
|
42
|
Briga M, Koetsier E, Boonekamp JJ, Jimeno B, Verhulst S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc Biol Sci 2018; 284:rspb.2016.2287. [PMID: 28053061 DOI: 10.1098/rspb.2016.2287] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Food availability modulates survival in interaction with (for example) competition, disease and predators, but to what extent food availability in natural populations affects survival independent of these factors is not well known. We tested the effect of food availability on lifespan and actuarial senescence in a large population of captive zebra finches by increasing the effort required to obtain food, reflecting natural contrasts in food availability. Food availability may not affect all individuals equally and we therefore created heterogeneity in phenotypic quality by raising birds with different numbers of siblings. Low food availability had no effect on lifespan for individuals from benign developmental conditions (raised in small broods), but shortened lifespan for individuals from harsh developmental conditions. The lifespan difference arose through higher baseline mortality rate of individuals from harsh developmental conditions, despite a decrease in the rate of actuarial senescence. We found no evidence for sex-specific environmental sensitivity, but females lived shorter than males due to increased actuarial senescence. Thus, low food availability by itself shortens lifespan, but only in individuals from harsh developmental conditions. Our food availability manipulation resembles dietary restriction as applied to invertebrates, where it extends lifespan in model organisms and we discuss possible reasons for the contrasting results.
Collapse
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Egbert Koetsier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
43
|
Maklakov AA, Carlsson H, Denbaum P, Lind MI, Mautz B, Hinas A, Immler S. Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. Proc Biol Sci 2018; 284:rspb.2017.0376. [PMID: 28615498 DOI: 10.1098/rspb.2017.0376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Evolutionary theory of ageing maintains that increased allocation to early-life reproduction results in reduced somatic maintenance, which is predicted to compromise longevity and late-life reproduction. This prediction has been challenged by the discovery of long-lived mutants with no loss of fecundity. The first such long-lived mutant was found in the nematode worm Caenorhabditis elegans Specifically, partial loss-of-function mutation in the age-1 gene, involved in the nutrient-sensing insulin/insulin-like growth factor signalling pathway, confers longevity, as well as increased resistance to pathogens and to temperature stress without appreciable fitness detriment. Here, we show that the long-lived age-1(hx546) mutant has reduced fecundity and offspring production in early-life, but increased fecundity, hatching success, and offspring production in late-life compared with wild-type worms under standard conditions. However, reduced early-life performance of long-lived mutant animals was not fully compensated by improved performance in late-life and resulted in reduced individual fitness. These results suggest that the age-1(hx546) allele has opposing effects on early-life versus late-life fitness in accordance with antagonistic pleiotropy (AP) and disposable soma theories of ageing. These findings support the theoretical conjecture that experimental studies based on standing genetic variation underestimate the importance of AP in the evolution of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Hanne Carlsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Philip Denbaum
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Martin I Lind
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Brian Mautz
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, PO Box 596, Uppsala 75124, Sweden
| | - Simone Immler
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| |
Collapse
|
44
|
Weithman C, Gibson D, Hunt K, Friedrich M, Fraser J, Karpanty S, Catlin D. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol Evol 2017; 7:11044-11056. [PMID: 29299280 PMCID: PMC5743479 DOI: 10.1002/ece3.3533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022] Open
Abstract
Breeding propensity, the probability that an animal will attempt to breed each year, is perhaps the least understood demographic process influencing annual fecundity. Breeding propensity is ecologically complex, as associations among a variety of intrinsic and extrinsic factors may interact to affect an animal's breeding decisions. Individuals that opt not to breed can be more difficult to detect than breeders, which can (1) lead to difficulty in estimation of breeding propensity, and (2) bias other demographic parameters. We studied the effects of sex, age, and population reproductive success on the survival and breeding propensity of a migratory shorebird, the piping plover (Charadrius melodus), nesting on the Missouri River. We used a robust design Barker model to estimate true survival and breeding propensity and found survival decreased as birds aged and did so more quickly for males than females. Monthly survival during the breeding season was lower than during migration or the nonbreeding season. Males were less likely to skip breeding (range: 1-17%) than females (range: 3-26%; βsex = -0.21, 95% CI: -0.38 to -0.21), and both sexes were less likely to return to the breeding grounds following a year of high reproductive success. Birds that returned in a year following relatively high population-wide reproductive output were in poorer condition than following a year with lower reproductive output. Younger adult birds and females were more likely to migrate from the breeding area earlier than older birds and males; however, all birds stayed on the breeding grounds longer when nest survival was low, presumably because of renesting attempts. Piping plovers used a variety of environmental and demographic cues to inform their reproduction, employing strategies that could maximize fitness on average. Our results support the "disposable soma" theory of aging and follow with predictions from life history theory, exhibiting the intimate connections among the core ecological concepts of senescence, carryover effects, and life history.
Collapse
Affiliation(s)
- Chelsea Weithman
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Daniel Gibson
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Kelsi Hunt
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Meryl Friedrich
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - James Fraser
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Sarah Karpanty
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Daniel Catlin
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| |
Collapse
|
45
|
Vedder O, Bouwhuis S. Heterogeneity in individual quality in birds: overall patterns and insights from a study on common terns. OIKOS 2017. [DOI: 10.1111/oik.04273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Oscar Vedder
- Inst. of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, DE-26386; Wilhelmshaven Germany
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen, PO Box 11103; NL-9700 CC Groningen the Netherlands
| | - Sandra Bouwhuis
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen, PO Box 11103; NL-9700 CC Groningen the Netherlands
| |
Collapse
|
46
|
Reichard M. Evolutionary perspectives on ageing. Semin Cell Dev Biol 2017; 70:99-107. [DOI: 10.1016/j.semcdb.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
|
47
|
Coste CFD, Austerlitz F, Pavard S. Trait level analysis of multitrait population projection matrices. Theor Popul Biol 2017; 116:47-58. [PMID: 28757374 DOI: 10.1016/j.tpb.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Abstract
In most matrix population projection models, individuals are characterized according to, usually, one or two traits such as age, stage, size or location. A broad theory of multitrait population projection matrices (MPPMs) incorporating larger number of traits was long held back by time and space computational complexity issues. As a consequence, no study has yet focused on the influence of the structure of traits describing a life-cycle on population dynamics and life-history evolution. We present here a novel vector-based MPPM building methodology that allows to computationally-efficiently model populations characterized by numerous traits with large distributions, and extend sensitivity analyses for these models. We then present a new method, the trait level analysis consisting in folding an MPPM on any of its traits to create a matrix with alternative trait structure (the number of traits and their characteristics) but similar asymptotic properties. Adding or removing one or several traits to/from the MPPM and analyzing the resulting changes in spectral properties, allows investigating the influence of the trait structure on the evolution of traits. We illustrate this by modeling a 3-trait (age, parity and fecundity) population designed to investigate the implications of parity-fertilitytrade-offs in a context of fecundity heterogeneity in humans. The trait level analysis, comparing models of the same population differing in trait structures, demonstrates that fertility selection gradients differ between cases with or without parity-fertility trade-offs. Moreover it shows that age-specific fertility has seemingly very different evolutionary significance depending on whether heterogeneity is accounted for. This is because trade-offs can vary strongly in strength and even direction depending on the trait structure used to model the population.
Collapse
Affiliation(s)
- Christophe F D Coste
- UMR 7206 EcoAnthropologie et Ethnobiologie, MNHN, Université Paris Diderot, F-75016, Paris, France.
| | - Frédéric Austerlitz
- UMR 7206 EcoAnthropologie et Ethnobiologie, MNHN, Université Paris Diderot, F-75016, Paris, France
| | - Samuel Pavard
- UMR 7206 EcoAnthropologie et Ethnobiologie, MNHN, Université Paris Diderot, F-75016, Paris, France
| |
Collapse
|
48
|
Froy H, Lewis S, Nussey DH, Wood AG, Phillips RA. Contrasting drivers of reproductive ageing in albatrosses. J Anim Ecol 2017; 86:1022-1032. [PMID: 28605018 PMCID: PMC5601251 DOI: 10.1111/1365-2656.12712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/29/2017] [Indexed: 11/27/2022]
Abstract
Age-related variation in reproductive performance is ubiquitous in wild vertebrate populations and has important consequences for population and evolutionary dynamics. The ageing trajectory is shaped by both within-individual processes, such as improvement and senescence, and the among-individual effects of selective appearance and disappearance. To date, few studies have compared the role of these different drivers among species or populations. In this study, we use nearly 40 years of longitudinal monitoring data to contrast the within- and among-individual processes contributing to the reproductive ageing patterns in three albatross species (two biennial and one annual breeder) and test whether these can be explained by differences in life histories. Early-life performance in all species increased with age and was predominantly influenced by within-individual improvements. However, reproductive senescence was detected in only two of the species. In the species exhibiting senescent declines, we also detected a terminal improvement in breeding success. This is suggestive of a trade-off between reproduction and survival, which was supported by evidence of selective disappearance of good breeders. We demonstrate that comparisons of closely related species which differ in specific aspects of their life history can shed light on the ecological and evolutionary forces shaping variation in ageing patterns.
Collapse
Affiliation(s)
- Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Sue Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Andrew G Wood
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| |
Collapse
|
49
|
Balme GA, Robinson HS, Pitman RT, Hunter LTB. Flexibility in the duration of parental care: Female leopards prioritise cub survival over reproductive output. J Anim Ecol 2017; 86:1224-1234. [PMID: 28605016 DOI: 10.1111/1365-2656.12713] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/25/2017] [Indexed: 11/29/2022]
Abstract
Deciding when to terminate care of offspring is a key consideration for parents. Prolonging care may increase fitness of current offspring, but it can also reduce opportunities for future reproduction. Despite its evolutionary importance, few studies have explored the optimal duration of parental care, particularly among large carnivores. We used a 40-year dataset to assess the trade-offs associated with the length of maternal care in leopards in the Sabi Sand Game Reserve, South Africa. We compared the costs imposed by care on the survival and residual reproductive value of leopard mothers against the benefits derived from maternal care in terms of increased offspring survival, recruitment and reproduction. We also examined the demographic and ecological factors affecting the duration of care in the light of five explanatory hypotheses: litter size, sex allocation, resource limitation, timing of independence and terminal investment. Duration of care exhibited by female leopards varied markedly, from 9 to 35 months. Mothers did not appear to suffer any short- or long-term survival costs from caring for cubs, but extending care reduced the number of litters that mothers could produce during their lifetimes. Interestingly, the duration of care did not appear to affect the post-independence survival or reproductive success of offspring (although it may have indirectly affected offspring survival by influencing dispersal distance). However, results from generalised linear mixed models showed that mothers prolonged care during periods of prey scarcity, supporting the resource limitation hypothesis. Female leopards also cared for sons longer than daughters, in line with the sex-allocation hypothesis. Cub survival is an important determinant of the lifetime reproductive success in leopards. By buffering offspring against environmental perturbation without jeopardising their own survivorship, female leopards apparently "hedge their bets" with current offspring rather than gamble on future offspring which have a small probability of surviving. In many species, parents put their own needs before that of their offspring. Leopard mothers appear sensitive to their offspring's demands, and adjust levels of care accordingly.
Collapse
Affiliation(s)
- Guy A Balme
- Panthera, New York, NY, USA.,Department of Biological Sciences, Institute for Communities and Wildlife in Africa, University of Cape Town, Cape Town, South Africa
| | - Hugh S Robinson
- Panthera, New York, NY, USA.,College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Luke T B Hunter
- Panthera, New York, NY, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
50
|
Cerchiara JA, Risques RA, Prunkard D, Smith JR, Kane OJ, Boersma PD. Magellanic penguin telomeres do not shorten with age with increased reproductive effort, investment, and basal corticosterone. Ecol Evol 2017; 7:5682-5691. [PMID: 28811878 PMCID: PMC5552965 DOI: 10.1002/ece3.3128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 12/25/2022] Open
Abstract
All species should invest in systems that enhance longevity; however, a fundamental adult life‐history trade‐off exists between the metabolic resources allocated to maintenance and those allocated to reproduction. Long‐lived species will invest more in reproduction than in somatic maintenance as they age. We investigated this trade‐off by analyzing correlations among telomere length, reproductive effort and output, and basal corticosterone in Magellanic penguins (Spheniscus magellanicus). Telomeres shorten with age in most species studied to date, and may affect adult survival. High basal corticosterone is indicative of stressful conditions. Corticosterone, and stress, has been linked to telomere shortening in other species. Magellanic penguins are a particularly good model organism for this question as they are an unusually long‐lived species, exceeding their mass‐adjusted predicted lifespan by 26%. Contrary to our hypothesis, we found adults aged 5 years to over 24 years of age had similar telomere lengths. Telomeres of adults did not shorten over a 3‐year period, regardless of the age of the individual. Neither telomere length, nor the rate at which the telomeres changed over these 3 years, correlated with breeding frequency or investment. Older females also produced larger volume clutches until approximately 15 years old and larger eggs produced heavier fledglings. Furthermore, reproductive success (chicks fledged/eggs laid) is maintained as females aged. Basal corticosterone, however, was not correlated with telomere length in adults and suggests that low basal corticosterone may play a role in the telomere maintenance we observed. Basal corticosterone also declined during the breeding season and was positively correlated with the age of adult penguins. This higher basal corticosterone in older individuals, and consistent reproductive success, supports the prediction that Magellanic penguins invest more in reproduction as they age. Our results demonstrate that telomere maintenance may be a component of longevity even with increased reproductive effort, investment, and basal corticosterone.
Collapse
Affiliation(s)
- Jack A Cerchiara
- Center for Ecosystem Sentinals Department of BiologyUniversity of Washington Seattle WA USA
| | | | - Donna Prunkard
- Department of Pathology University of Washington Seattle WA USA
| | - Jeffrey R Smith
- Center for Ecosystem Sentinals Department of BiologyUniversity of Washington Seattle WA USA.,School of Environmental and Forest Sciences University of Washington Seattle WA USA
| | - Olivia J Kane
- Center for Ecosystem Sentinals Department of BiologyUniversity of Washington Seattle WA USA
| | - P Dee Boersma
- Center for Ecosystem Sentinals Department of BiologyUniversity of Washington Seattle WA USA.,Wildlife Conservation Society The Bronx Zoo New York City, NY USA
| |
Collapse
|