1
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
2
|
Levine JI, An R, Kraft NJB, Pacala SW, Levine JM. Why ecologists struggle to predict coexistence from functional traits. Trends Ecol Evol 2024:S0169-5347(24)00253-2. [PMID: 39482198 DOI: 10.1016/j.tree.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
The rationale behind trait-based ecology is that shifting focus from species' taxonomic names to their measurable characteristics ('functional traits') leads to greater generality and predictive power. This idea has been applied to one of ecology's most intractable problems: the coexistence of competing species. But after 20 years, we lack clear evidence that functional traits effectively predict coexistence. Here, we present a theory-based argument for why this might be the case. Specifically, we argue that coexistence often depends on special quantities called 'process-informed metrics' (PIMs), which combine multiple traits and demographic characteristics in non-intuitive ways, obscuring any direct ties between individual traits and coexistence. We then lay a path forward for trait-based coexistence research that builds on mechanistic models of competition.
Collapse
Affiliation(s)
- Jacob I Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Ruby An
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Baruah G, Lakämper T. Stability, resilience and eco-evolutionary feedbacks of mutualistic networks to rising temperature. J Anim Ecol 2024; 93:989-1002. [PMID: 38859669 DOI: 10.1111/1365-2656.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Ecological networks comprising of mutualistic interactions can suddenly transition to undesirable states, such as collapse, due to small changes in environmental conditions such as a rise in local environmental temperature. However, little is known about the capacity of such interaction networks to adapt to a rise in temperature and the occurrence of critical transitions. Here, combining quantitative genetics and mutualistic dynamics in an eco-evolutionary framework, we evaluated the stability and resilience of mutualistic networks to critical transitions as environmental temperature increases. Specifically, we modelled the dynamics of an optimum trait that determined the tolerance of species to local environmental temperature as well as to species interaction. We then evaluated the impact of individual trait variation and evolutionary dynamics on the stability of feasible equilibria, the occurrence of threshold temperatures at which community collapses, and the abruptness of such community collapses. We found that mutualistic network architecture, that is the size of the community and the arrangement of species interactions, interacted with evolutionary dynamics to impact the onset of network collapses. Some networks had more capacity to track the rise in temperatures than others and thereby increased the threshold temperature at which the networks collapsed. However, such a result was modulated by the amount of heritable trait variation species exhibited, with high trait variation in the mean optimum phenotypic trait increasing the environmental temperature at which networks collapsed. Furthermore, trait variation not only increased the onset of temperatures at which networks collapsed but also increased the local stability of feasible equilibria. Our study argued that mutualistic network architecture interacts with species evolutionary dynamics and increases the capacity of networks to adapt to changes in temperature and thereby delayed the occurrence of community collapses.
Collapse
Affiliation(s)
- Gaurav Baruah
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| | - Tim Lakämper
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
4
|
Sherwin WB. Pan-Evo: The Evolution of Information and Biology's Part in This. BIOLOGY 2024; 13:507. [PMID: 39056700 PMCID: PMC11273748 DOI: 10.3390/biology13070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Many people wonder whether biology, including humans, will benefit or experience harm from new developments in information such as artificial intelligence (AI). Here, it is proposed that biological and non-biological information might be components of a unified process, 'Panevolution' or 'Pan-Evo', based on four basic operations-innovation, transmission, adaptation, and movement. Pan-Evo contains many types of variable objects, from molecules to ecosystems. Biological innovation includes mutations and behavioural changes; non-biological innovation includes naturally occurring physical innovations and innovation in software. Replication is commonplace in and outside biology, including autocatalytic chemicals and autonomous software replication. Adaptation includes biological selection, autocatalytic chemicals, and 'evolutionary programming', which is used in AI. The extension of biological speciation to non-biological information creates a concept called 'Panspeciation'. Panevolution might benefit or harm biology, but the harm might be minimal if AI and humans behave intelligently because humans and the machines in which an AI resides might split into vastly different environments that suit them. That is a possible example of Panspeciation and would be the first speciation event involving humans for thousands of years. This event will not be particularly hostile to humans if humans learn to evaluate information and cooperate better to minimise both human stupidity and artificial simulated stupidity (ASS-a failure of AI).
Collapse
Affiliation(s)
- William B Sherwin
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Science, UNSW-Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Jackson Z, Xue B. Dynamic Trait Distribution as a Source for Shifts in Interaction Strength and Population Density. Am Nat 2024; 204:1-14. [PMID: 38857344 DOI: 10.1086/730264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.
Collapse
|
6
|
Worthy SJ, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG. Intraspecific alternative phenotypes contribute to variation in species' strategies for growth. Oecologia 2024; 205:39-48. [PMID: 38652293 DOI: 10.1007/s00442-024-05553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Ecologists have historically sought to identify the mechanisms underlying the maintenance of local species diversity. High-dimensional trait-based relationships, such as alternative phenotypes, have been hypothesized as important for maintaining species diversity such that phenotypically dissimilar individuals compete less for resources but have similar performance in a given environment. The presence of alternative phenotypes has primarily been investigated at the community level, despite the importance of intraspecific variation to diversity maintenance. The aims of this research are to (1) determine the presence or absence of intraspecific alternative phenotypes in three species of tropical tree seedlings, (2) investigate if these different species use the same alternative phenotypes for growth success, and (3) evaluate how findings align with species co-occurrence patterns. We model species-specific relative growth rate with individual-level measurements of leaf mass per area (LMA) and root mass fraction (RMF), environmental data, and their interactions. We find that two of the three species have intraspecific alternative phenotypes, with individuals within species having different functional forms leading to similar growth. Interestingly, individuals within these species use the same trait combinations, high LMA × low RMF and low LMA × high RMF, in high soil nutrient environments to acquire resources for higher growth. This similarity among species in intraspecific alternative phenotypes and variables that contribute most to growth may lead to their negative spatial co-occurrence. Overall, we find that multiple traits or interactions between traits and the environment drive species-specific strategies for growth, but that individuals within species leverage this multi-dimensionality in different ways for growth success.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA.
| | - María N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caicai Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
7
|
Auguin E, Guinet C, Mourier J, Clua E, Gasco N, Tixier P. Behavioural heterogeneity across killer whale social units in their response to feeding opportunities from fisheries. Ecol Evol 2024; 14:e11448. [PMID: 38799391 PMCID: PMC11116761 DOI: 10.1002/ece3.11448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Intra-population heterogeneity in the behavioural response of predators to changes in prey availability caused by human activities can have major evolutionary implications. Among these activities, fisheries, while extracting resources, also provide new feeding opportunities for marine top predators. However, heterogeneity in the extent to which individuals have responded to these opportunities within populations is poorly understood. Here, we used 18 years of photo-identification data paired with statistical models to assess variation in the way killer whale social units within a subantarctic population (Crozet Islands) interact with fisheries to feed on fish caught on fishing gear (i.e., depredation behaviour). Our results indicate large heterogeneity in both the spatial and temporal extents of depredation across social units. While some frequently depredated on fishery catches over large areas, others sporadically did so and in small areas consistently over the years. These findings suggest that killer whale social units are exposed to varying levels of impacts of depredation, both negative (potential retaliation from fishers) and positive (food provisioning), on their life history traits, and may explain the contrasted demographic patterns observed within the declining population at Crozet but also potentially within the many other killer whale populations documented depredating on fisheries catches worldwide.
Collapse
Affiliation(s)
- Erwan Auguin
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
- Centre d'Etudes Biologiques de Chizé (CEBC)UMR 7372 CNRS‐La Rochelle Université – CNRSVilliers‐en‐BoisFrance
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé (CEBC)UMR 7372 CNRS‐La Rochelle Université – CNRSVilliers‐en‐BoisFrance
| | - Johann Mourier
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
| | - Eric Clua
- Université Paris Sciences & Lettres (PSL), CRIOBE USR3278, EPHE‐CNRS‐UPVDUniversité de PerpignanPerpignanFrance
- Laboratoire D'Excellence LabEX CORAILCRIOBE, Baie OpunohuPapetoaiFrench Polynesia
| | - Nicolas Gasco
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOREA)UMR 8067 – MNHN, CNRS, IRD, Su, UCN, UAParisFrance
| | - Paul Tixier
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
| |
Collapse
|
8
|
de Bruin T, De Laender F, Jadoul J, Schtickzelle N. Intraspecific demographic and trait responses to environmental change drivers are linked in two species of ciliate. BMC Ecol Evol 2024; 24:47. [PMID: 38632521 PMCID: PMC11022343 DOI: 10.1186/s12862-024-02241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.
Collapse
Affiliation(s)
- Tessa de Bruin
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium.
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), Namur Institute for Complex Systems (NAXYS), Université de Namur, Namur, Belgium
| | - Julie Jadoul
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute (ELI), Biodiversity Research Center (BDIV), Université Catholique de Louvain, Louvain‑La‑Neuve, Belgium
| |
Collapse
|
9
|
Yang J, Wang X, Carmona CP, Wang X, Shen G. Inverse relationship between species competitiveness and intraspecific trait variability may enable species coexistence in experimental seedling communities. Nat Commun 2024; 15:2895. [PMID: 38570481 PMCID: PMC10991546 DOI: 10.1038/s41467-024-47295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Theory suggests that intraspecific trait variability may promote species coexistence when competitively inferior species have higher intraspecific trait variability than their superior competitors. Here, we provide empirical evidence for this phenomenon in tree seedlings. We evaluated intraspecific variability and plastic response of ten traits in 6750 seedlings of ten species in a three-year greenhouse experiment. While we observed no relationship between intraspecific trait variability and species competitiveness in competition-free homogeneous environments, an inverse relationship emerged under interspecific competition and in spatially heterogeneous environments. We showed that this relationship is driven by the plastic response of the competitively inferior species: Compared to their competitively superior counterparts, they exhibited a greater increase in trait variability, particularly in fine-root traits, in response to competition, environmental heterogeneity and their combination. Our findings contribute to understanding how interspecific competition and intraspecific trait variability together structure plant communities.
Collapse
Affiliation(s)
- Jing Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiya Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No.2), Shanghai, 200092, China
| | - Guochun Shen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China.
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No.2), Shanghai, 200092, China.
| |
Collapse
|
10
|
Kalirad A, Sommer RJ. The role of plasticity and stochasticity in coexistence. Ecol Lett 2024; 27:e14370. [PMID: 38348631 DOI: 10.1111/ele.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024]
Abstract
Species coexistence in ecological communities is a central feature of biodiversity. Different concepts, i.e., contemporary niche theory, modern coexistence theory, and the unified neutral theory, have identified many building blocks of such ecological assemblies. However, other factors, such as phenotypic plasticity and stochastic inter-individual variation, have received little attention, in particular in animals. For example, how resource polyphenisms resulting in predator-prey interactions affect coexistence is currently unknown. Here, we present an integrative theoretical-experimental framework using the nematode plasticity model Pristionchus pacificus with its well-studied mouth-form dimorphism resulting in cannibalism. We develop an individual-based model that relies upon synthetic data based on our empirical measurements of fecundity and polyphenism to preserve demographic heterogeneity. We demonstrate how the interplay between plasticity and individual stochasticity result in all-or-nothing outcomes at the local level. Coexistence is made possible when spatial structure is introduced.
Collapse
Affiliation(s)
- Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Castro Sánchez-Bermejo P, Davrinche A, Matesanz S, Harpole WS, Haider S. Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. THE NEW PHYTOLOGIST 2023; 240:1390-1404. [PMID: 37710419 DOI: 10.1111/nph.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.
Collapse
Affiliation(s)
- Pablo Castro Sánchez-Bermejo
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Andréa Davrinche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Research Centre for Ecological Change (REC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - W Stanley Harpole
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04103, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Leuphana University of Lüneburg, Institute of Ecology, Lüneburg, 21335, Germany
| |
Collapse
|
12
|
Wickman J, Koffel T, Klausmeier CA. A Theoretical Framework for Trait-Based Eco-Evolutionary Dynamics: Population Structure, Intraspecific Variation, and Community Assembly. Am Nat 2023; 201:501-522. [PMID: 36958005 DOI: 10.1086/723406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractHow is trait diversity in a community apportioned between and within coevolving species? Disruptive selection may result in either a few species with large intraspecific trait variation (ITV) or many species with different mean traits but little ITV. Similar questions arise in spatially structured communities: heterogeneous environments could result in either a few species that exhibit local adaptation or many species with different mean traits but little local adaptation. To date, theory has been well-equipped to either include ITV or to dynamically determine the number of coexisting species, but not both. Here, we devise a theoretical framework that combines these facets and apply it to the above questions of how trait variation is apportioned within and between species in unstructured and structured populations, using two simple models of Lotka-Volterra competition. For unstructured communities, we find that as the breadth of the resource spectrum increases, ITV goes from being unimportant to crucial for characterizing the community. For spatially structured communities on two patches, we find no local adaptation, symmetric local adaptation, or asymmetric local adaptation, depending on how much the patches differ. Our framework provides a general approach to incorporate ITV in models of eco-evolutionary community assembly.
Collapse
|
13
|
Deschamps L, Proulx R, Rheault G, Gross N, Watson C, Maire V. Species richness drives selection of individuals within wetlands based on traits related to acquisition and utilization of light. Ecol Evol 2023; 13:e9959. [PMID: 37038518 PMCID: PMC10082176 DOI: 10.1002/ece3.9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Selection within natural communities has mainly been studied along large abiotic gradients, while the selection of individuals within populations should occur locally in response to biotic filters. To better leverage the role of the latter, we considered the hierarchal nature of environmental selection for the multiple dimensions of the trait space across biological levels, that is, from the species to the community and the ecosystem levels. We replicated a natural species richness gradient where communities included from two to 16 species within four wetlands (bog, fen, meadow, and marsh) contrasting in plant productivity. We sampled functional traits from individuals in each community and used hierarchical distributional modeling in order to analyze the independent variation of the mean and dispersion of functional trait space at ecosystem, community, and species levels. The plant productivity gradient observed between wetlands led to species turnover and selection of traits related to leaf nutrient conservation/acquisition strategy. Within wetlands, plant species richness drove trait variation across both communities and species. Among communities, variation of species richness correlated with the selection of individuals according to their use of vertical space and leaf adaptations to light conditions. Within species, intraspecific light-related trait variation in response to species richness was associated with stable population density for some species, while others reached low population density in more diverse communities. Within ecosystems, variation in biotic conditions selects individuals along functional dimensions that are independent of those selected across ecosystems. Within-species variations of light-related traits are related to demographic responses, linking biotic selection of individuals within communities to eco-evolutionary dynamics of species.
Collapse
Affiliation(s)
- Lucas Deschamps
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Raphaël Proulx
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Guillaume Rheault
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro SupUnité Mixte de Recherche Ecosystème PrairialClermont‐FerrandFrance
| | - Christopher Watson
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| | - Vincent Maire
- Département des sciences de l'environnementUniversité du Québec à Trois‐RivièresTrois RivièresCanada
| |
Collapse
|
14
|
Girard‐Tercieux C, Maréchaux I, Clark AT, Clark JS, Courbaud B, Fortunel C, Guillemot J, Künstler G, le Maire G, Pélissier R, Rüger N, Vieilledent G. Rethinking the nature of intraspecific variability and its consequences on species coexistence. Ecol Evol 2023; 13:e9860. [PMID: 36911314 PMCID: PMC9992775 DOI: 10.1002/ece3.9860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.
Collapse
Affiliation(s)
| | | | - Adam T. Clark
- Institute of BiologyKarl‐Franzens University of GrazGrazAustria
| | - James S. Clark
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Univ. Grenoble Alpes, INRAE, LESSEMSt‐Martin‐d'HèresFrance
| | | | - Claire Fortunel
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Joannès Guillemot
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | | | - Guerric le Maire
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | - Raphaël Pélissier
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- Department of EcologyFrench Institute of PondicherryPuducherryIndia
| | - Nadja Rüger
- Department of EconomicsUniversity of LeipzigLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Smithsonian Tropical Research InstituteBalboaPanama
| | | |
Collapse
|
15
|
Raffard A, Campana JLM, Legrand D, Schtickzelle N, Jacob S. Resident-Disperser Differences and Genetic Variability Affect Communities in Microcosms. Am Nat 2023; 201:363-375. [PMID: 36848519 DOI: 10.1086/722750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractDispersal is a key process mediating ecological and evolutionary dynamics. Its effects on the dynamics of spatially structured systems, population genetics, and species range distribution can depend on phenotypic differences between dispersing and nondispersing individuals. However, scaling up the importance of resident-disperser differences to communities and ecosystems has rarely been considered, in spite of intraspecific phenotypic variability being an important factor mediating community structure and productivity. Here, we used the ciliate Tetrahymena thermophila, in which phenotypic traits are known to differ between residents and dispersers, to test (i) whether these resident-disperser differences affect biomass and composition in competitive communities composed of four other Tetrahymena species and (ii) whether these effects are genotype dependent. We found that dispersers led to a lower community biomass compared with residents. This effect was highly consistent across the 20 T. thermophila genotypes used, despite intraspecific variability in resident-disperser phenotypic differences. We also found a significant genotypic effect on biomass production, showing that intraspecific variability has consequences for communities. Our study suggests that individual dispersal strategy can scale up to community productivity in a predictable way, opening new perspectives to the functioning of spatially structured ecosystems.
Collapse
|
16
|
Wheeler GR, Brassil CE, Knops JMH. Functional traits' annual variation exceeds nitrogen-driven variation in grassland plant species. Ecology 2023; 104:e3886. [PMID: 36208107 PMCID: PMC10078297 DOI: 10.1002/ecy.3886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023]
Abstract
Effective application of functional trait approaches to ecological questions requires understanding the patterns of trait variation within species as well as between them. However, few studies address the potential for intraspecific variation to occur on a temporal basis and, thus, for trait-based findings to be contingent upon sampling year. To quantify annual variation in the functional traits of grassland plant species, we measured specific leaf area, leaf dry matter content, plant height, and chlorophyll content in 12 shortgrass prairie plant species. We repeated these measurements across 4 years, both in long-term nitrogen addition plots and in corresponding control plots. Three of the four traits showed significant year-to-year variation in a linear mixed model analysis, generally following a pattern of more acquisitive leaf economics spectrum traits in higher rainfall years. Furthermore, two of the measured traits responded interactively to nitrogen addition and sampling year, although only one, leaf dry matter content, showed the expected pattern of stronger nitrogen responses in high rainfall years. For leaf dry matter content and specific leaf area, trait responses to sampling year were larger than responses to the nitrogen addition treatment. These findings illustrate that species' functional traits can respond strongly to environmental changes across years, and thus that trait variation in a species or community is likely to extend beyond the values and patterns observed in any single year.
Collapse
Affiliation(s)
- George R Wheeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chad E Brassil
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Johannes M H Knops
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Health and Environmental Sciences, Xian Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
17
|
Walker RH, Hutchinson MC, Potter AB, Becker JA, Long RA, Pringle RM. Mechanisms of individual variation in large herbivore diets: Roles of spatial heterogeneity and state-dependent foraging. Ecology 2023; 104:e3921. [PMID: 36415899 PMCID: PMC10078531 DOI: 10.1002/ecy.3921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.
Collapse
Affiliation(s)
- Reena H Walker
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Matthew C Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Arjun B Potter
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Justine A Becker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA.,Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
18
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
19
|
Schreiber SJ, Levine JM, Godoy O, Kraft NJB, Hart SP. Does deterministic coexistence theory matter in a finite world? Ecology 2023; 104:e3838. [PMID: 36168209 DOI: 10.1002/ecy.3838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
Contemporary studies of species coexistence are underpinned by deterministic models that assume that competing species have continuous (i.e., noninteger) densities, live in infinitely large landscapes, and coexist over infinite time horizons. By contrast, in nature, species are composed of discrete individuals subject to demographic stochasticity and occur in habitats of finite size where extinctions occur in finite time. One consequence of these discrepancies is that metrics of species' coexistence derived from deterministic theory may be unreliable predictors of the duration of species coexistence in nature. These coexistence metrics include invasion growth rates and niche and fitness differences, which are now commonly applied in theoretical and empirical studies of species coexistence. In this study, we tested the efficacy of deterministic coexistence metrics on the duration of species coexistence in a finite world. We introduce new theoretical and computational methods to estimate coexistence times in stochastic counterparts of classic deterministic models of competition. Importantly, we parameterized this model using experimental field data for 90 pairwise combinations of 18 species of annual plants, allowing us to derive biologically informed estimates of coexistence times for a natural system. Strikingly, we found that for species expected to deterministically coexist, community sizes containing only 10 individuals had predicted coexistence times of more than 1000 years. We also found that invasion growth rates explained 60% of the variation in intrinsic coexistence times, reinforcing their general usefulness in studies of coexistence. However, only by integrating information on both invasion growth rates and species' equilibrium population sizes could most (>99%) of the variation in species coexistence times be explained. This integration was achieved with demographically uncoupled single-species models solely determined by the invasion growth rates and equilibrium population sizes. Moreover, because of a complex relationship between niche overlap/fitness differences and equilibrium population sizes, increasing niche overlap and increasing fitness differences did not always result in decreasing coexistence times, as deterministic theory would predict. Nevertheless, our results tend to support the informed use of deterministic theory for understanding the duration of species' coexistence while highlighting the need to incorporate information on species' equilibrium population sizes in addition to invasion growth rates.
Collapse
Affiliation(s)
- Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Simon P Hart
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Olusoji OD, Barabás G, Spaak JW, Fontana S, Neyens T, De Laender F, Aerts M. Measuring individual‐level trait diversity: a critical assessment of methods. OIKOS 2022. [DOI: 10.1111/oik.09178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oluwafemi D. Olusoji
- Center for Statistics, Data Science Inst., Hasselt Univ. Hasselt Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Inst. of Life‐Earth‐Environment (ILEE), Namur Inst. for Complex Systems (NAXYS), Univ. de Namur Namur Belgium
| | - György Barabás
- Division of Ecological and Environmental Modeling, Linköping Univ. Linköping Sweden
- ELTE‐MTA Theoretical Biology and Evolutionary Ecology Research Group Budapest Hungary
- Inst. of Evolution, Centre for Ecological Research Budapest Hungary
| | - Jurg W. Spaak
- Research Unit in Environmental and Evolutionary Biology (URBE), Inst. of Life‐Earth‐Environment (ILEE), Namur Inst. for Complex Systems (NAXYS), Univ. de Namur Namur Belgium
| | - Simone Fontana
- Nature Conservation and Landscape Ecology, Univ. of Freiburg Freiburg Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Inst. WSL Birmensdorf Switzerland
- Abteilung Natur und Landschaft, Amt für Natur, Jagd und Fischerei, Kanton St. Gallen St. Gallen Switzerland
| | - Thomas Neyens
- Center for Statistics, Data Science Inst., Hasselt Univ. Hasselt Belgium
- L‐BioStat, Dept of Public Health and Primary Care, Faculty of Medicine, KU Leuven Leuven Belgium
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology (URBE), Inst. of Life‐Earth‐Environment (ILEE), Namur Inst. for Complex Systems (NAXYS), Univ. de Namur Namur Belgium
| | - Marc Aerts
- Center for Statistics, Data Science Inst., Hasselt Univ. Hasselt Belgium
| |
Collapse
|
21
|
Lu J, Cordes PH, Maraun M, Scheu S. High consistency of trophic niches in generalist arthropod species (Oribatida, Acari) across soil depth and forest type. Ecol Evol 2022; 12:e9572. [PMID: 36523514 PMCID: PMC9745105 DOI: 10.1002/ece3.9572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Many traits including trophic niche parameters are attributed to species. However, generalist species may vary in trophic niches with environments, making species-based knowledge hard to extrapolate beyond local food webs. Here we tested trophic consistency in oribatid mite species (Acari), one of the most abundant arthropods that occupy all trophic levels in soil food webs. We used stable isotope analysis to compare trophic niches of 40 Oribatida species that co-occur in litter (OL) and soil (0-5 cm, mainly OF/H, AH) of five forest types (native European beech, non-native Douglas fir, range-expanding Norway spruce, two beech-conifer mixed forests). Although stable isotope signatures of bulk material differed between litter and soil, 13C and 15 N values of Oribatida species were remarkably stable irrespective of soil depth. Furthermore, Oribatida were more enriched in 13C in European beech than in coniferous forests, but forest type little affected 15 N values of Oribatida across a range of site conditions. We conclude that Oribatida species occupy virtually identical trophic niches (δ13C and δ15N values) irrespective of the soil depth they colonize and that forest management including non-native tree species little affects trophic position (δ15N values) of oribatid mites. Our findings suggest that the trophic position can be used as a trait in community analysis of Oribatida across forest ecosystems. Our results further indicate that trophic niches of generalist species can be highly consistent irrespective of environment.
Collapse
Affiliation(s)
- Jing‐Zhong Lu
- Johann‐Friedrich‐Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Peter Hans Cordes
- Johann‐Friedrich‐Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Mark Maraun
- Johann‐Friedrich‐Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Stefan Scheu
- Johann‐Friedrich‐Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
- Center of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| |
Collapse
|
22
|
Zaiats A, Requena‐Mullor JM, Germino MJ, Forbey JS, Richardson BA, Caughlin TT. Spatial models can improve the experimental design of field-based transplant gardens by preventing bias due to neighborhood crowding. Ecol Evol 2022; 12:e9630. [PMID: 36532138 PMCID: PMC9750843 DOI: 10.1002/ece3.9630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/16/2022] Open
Abstract
Field-based transplant gardens, including common and reciprocal garden experiments, are a powerful tool for studying genetic variation and gene-by-environment interactions. These experiments assume that individuals within the garden represent independent replicates growing in a homogenous environment. Plant neighborhood interactions are pervasive across plant populations and could violate assumptions of transplant garden experiments. We demonstrate how spatially explicit models for plant-plant interactions can provide novel insights on genotypes' performance in field-transplant garden designs. We used individual-based models, based on data from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial plant-plant interactions on between-group differences in plant growth. We found that planting densities within the range of those used in many common gardens can bias experimental outcomes. Our results demonstrate that higher planting densities can lead to inflated group differences and may confound genotypes' competitive ability and genetically underpinned variation. Synthesis. We propose that spatially explicit models can help avoid biased results by informing the design and analysis of field-based transplant garden experiments. Alternately, including neighborhood effects in post hoc analyses of transplant garden experiments is likely to provide novel insights into the roles of biotic factors and density dependence in genetic differentiation.
Collapse
Affiliation(s)
| | | | - Matthew J. Germino
- U.S. Geological Survey Forest and Rangeland Ecosystem Science CenterBoiseIdahoUSA
| | | | | | | |
Collapse
|
23
|
Mafakheri M, Bakhshipour M, Omrani M, Gholizadeh H, Rahimi N, Mobaraki A, Rahimi M. The impact of environmental and climatic variables on genetic diversity and plant functional traits of the endangered tuberous orchid (Orchis mascula L.). Sci Rep 2022; 12:19765. [PMID: 36396718 PMCID: PMC9672365 DOI: 10.1038/s41598-022-19864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how environmental factors shape patterns of genetic and phenotypic variations in a species is necessary for conservation and plant breeding. However, these factors have not yet been completely understood in tuberous orchid species used to make 'Salep', an important ingredient in traditional medicine and beverages in middle eastern countries and India. In many areas, increasing demand has pushed species to the brink of extinction. In this study, 198 genotypes from 18 populations of the endangered species Orchis mascula L. spanning a large-scale climatic gradient in northern Iran were used to investigate patterns of genetic diversity and plant functional traits. Populations were sampled from three land cover types (woodland, shrubland, and pastureland/grassland). Plant height, stem length, number of flowers, bulb fresh and dry weight, glucomannan, and starch concentrations showed high variation among populations and were significantly related to land cover type. In general, genetic diversity was high, particularly in those from eastern Hyrcanian; additionally, populations showed a high level of genetic differentiation (G'st = 0.35) with low gene flow (Nm = 0.46). The majority of genetic differentiation occurred within populations (49%) and land cover types (20%). The population structural analysis using the AFLP marker data in K = 4 showed a high geographical affinity for 198 O. mascula genotypes, with some genotypes having mixed ancestry. Temperature and precipitation were found to shape genetic and phenotypic variation profoundly. Significant isolation by the environment was observed, confirming the strong effect of environmental variables on phenotypic and genetic variation. Marker-trait association studies based on MLM1 and MLM2 models revealed significant associations of P-TGG + M-CTT-33 and E-AGG + M-CGT-22 markers with plant height and glucomannan content. Overall, a combination of large-scale climatic variables and land cover types significantly shaped genetic diversity and functional trait variation in O. mascula populations.
Collapse
Affiliation(s)
- Mohammad Mafakheri
- grid.27860.3b0000 0004 1936 9684Department of Plant Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Mehdi Bakhshipour
- grid.411872.90000 0001 2087 2250Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, P.O. Box, Rasht, 41635-1314 Iran
| | - Mina Omrani
- grid.1020.30000 0004 1936 7371School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351 Australia
| | - Hamid Gholizadeh
- grid.411622.20000 0000 9618 7703Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran Iran
| | - Najmeh Rahimi
- grid.24805.3b0000 0001 0687 2182Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM USA
| | - Ali Mobaraki
- grid.411872.90000 0001 2087 2250Department of Horticultural Sciences, Faculty of Agricultural Sciences, University of Guilan, P.O. Box, Rasht, 41635-1314 Iran
| | - Mehdi Rahimi
- grid.448905.40000 0004 4910 146XDepartment of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
24
|
Soil heterogeneity and species composition jointly affect individual variation of three forage grasses. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Cavalieri A, Groß D, Dutay A, Weiner J. Do plant communities show constant final yield? Ecology 2022; 103:e3802. [PMID: 35796439 PMCID: PMC9788247 DOI: 10.1002/ecy.3802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
Total biomass production of plant monocultures growing over a range of densities and harvested after a period of growth increases monotonically with density and then levels out at higher densities. This pattern is called constant final yield (CFY) and is considered one of the most general phenomena in plant ecology. If CFY applies to plant communities, it would be a key to understanding and predicting many community-level phenomena. We tested two primary hypotheses experimentally: (1) Mixtures of several species show CFY. (2) If so, the proportion of biomass production by the component species in a mixture does not change at densities above the density that reaches CFY. We performed a series of glasshouse experiments over 3 years using a "community density series," in which the overall density of five species was varied while their proportions remained unchanged. In the first experiment, we grew a mixture of annual and perennial herbaceous species in mesocosms, and all species were also grown in monocultures at the corresponding densities. A similar experiment was performed in the second and third years, but only with annuals. A third experiment with mixtures only was performed in pots over 2 years. In all cases, aboveground biomass was harvested, separated by species, dried, and weighed. Perennials with underground storage organs produced maximum aboveground biomass at low or intermediate densities. In the second experiment, two of the species produced maximum biomass at the second-highest density in monoculture, while mixtures of all five species showed classical CFY behavior, and the contribution of the species to the mixture changed very little above the lowest density producing CFY. The results of the third experiment were also consistent with the hypotheses. In conclusion, CFY in aboveground biomass production was observed in communities of annual species, and the contribution of the individual species was relatively insensitive to an increase in density above that reaching CFY, i.e., competitive performance of the species changed with density until CFY was reached. Evidence for CFY was stronger in mixture than in monoculture. Coexistence theory must include density as well as frequency dependence if densities are below CFY.
Collapse
Affiliation(s)
- Andrea Cavalieri
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Dorothee Groß
- Institute of Landscape and Plant EcologyUniversity of HohenheimStuttgartGermany
| | | | - Jacob Weiner
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
26
|
Olszewski P, Puchałka R, Sewerniak P, Koprowski M, Ulrich W. Does intraspecific trait variability affect understorey plant community assembly? ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Li TX, Shen-Tu XL, Xu L, Zhang WJ, Duan JP, Song YB, Dong M. Intraspecific and sex-dependent variation of leaf traits along altitude gradient in the endangered dioecious tree Taxus fuana Nan Li & R.R. Mill. FRONTIERS IN PLANT SCIENCE 2022; 13:996750. [PMID: 36325570 PMCID: PMC9618961 DOI: 10.3389/fpls.2022.996750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Plant intraspecific trait variation (ITV) including sex-dependent differences are matters of many ecological consequences, from individual to ecosystem, especially in endangered and rare species. Taxus fuana is an endangered dioecious species with small and isolated populations endemic to the Himalayas region. Little is known about its trait variation between sexes, and among populations. In this study, 18 leaf traits from 179 reproductive trees (males and females) along the altitude (2600-3200m a.s.l.) of the T. fuana populations distributed in Gyirong County, Tibet, China, were measured. ITV and sources of variation in leaf traits were assessed. The relationship between leaf traits of males and females and altitude was analyzed separately. Variations in leaf traits of T. fuana ranged from 3.1% to 24.2%, with the smallest in leaf carbon content and the largest in leaf thickness to area ratio. On average 78.13% of the variation in leaf traits was from within populations and 21.87% among populations. The trends in leaf width, leaf nitrogen to phosphorus ratio, leaf carbon to nitrogen ratio, leaf carbon isotope ratio, and leaf nitrogen isotope ratio in relation to altitude were the same for males and females. Leaf length to width ratio varied significantly with altitude only in males, while leaf phosphorus content, leaf nitrogen content, and leaf carbon to phosphorus ratio varied significantly with altitude only in females. The correlation coefficients of most leaf traits of females with altitude were larger than that of males. In the relationship between leaf traits, there was a high similarity among males and females, but the altitude accounted for more explanation in females than in males. Our results suggested that the variation in leaf traits of T. fuana was small and did not dominate the interspecific competition in the local communities. Adaptation to the altitude gradient of T. fuana might be through altering nutrient storage processes and water use efficiency. Adaptation of male and female T. fuana to environmental changes showed differences, where the males were more tolerant and the females responded greatly to altitude. The differences in adaptation strategies between male and female T. fuana may be detrimental to the maintenance of their populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Dong
- *Correspondence: Yao-Bin Song, ; Ming Dong,
| |
Collapse
|
28
|
Intraspecific competitive interactions rapidly evolve via spontaneous mutations. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Wang Y, Chen J, Zhang L, Feng L, Yan L, Li F, Zhao X, Yu L, Liu N. Relationship between diversity and stability of a karst plant community. Ecol Evol 2022; 12:e9254. [PMID: 36035266 PMCID: PMC9412136 DOI: 10.1002/ece3.9254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
The relationships among species diversity, functional diversity, functional redundancy, and community stability are central to community and ecosystem ecology. In this paper, a "space substitution for time" approach is used to study the plant communities at different stages of the natural recovery process of degraded karst vegetation on the karst plateau of Guizhou. These restoration stages include the herbaceous stage, herbaceous and shrub transition stage, shrub stage, tree and shrub transition stage, and tree stage. We calculated the functional diversity and functional redundancy of the community based on functional characteristics and mediated the relationship between functional diversity, functional redundancy, and stability of the plant community through changes in functional diversity and functional redundancy. This study aims to reveal the mechanisms of changes in species diversity and community stability and thus further reveals the intrinsic reasons for maintaining the stability of karst plant communities. The most important results include the following: (1) Species diversity, functional redundancy, and stability gradually increased with restoration, and there were significant differences among the different stages; functional diversity increased at first and then decreased, and reached the highest level at the tree and shrub transition stage; (2) Plant height and specific leaf area were functional traits that influenced the diversity and stability of the plant community, with plant height being positively correlated with plant community diversity and stability, and specific leaf area being negatively correlated with plant community diversity and stability; (3) During the community's recovery, functional diversity and functional redundancy interacted to maintain stability. In the early and late stages of recovery, the effect of functional redundancy on stability was greater than that of functional diversity, but it was the opposite in the middle stages; (4) The tree and shrub transition stage is the likely point at which the functional diversity of plant communities in karst areas reaches saturation, and the growth rate of functional redundancy after functional diversity saturation is greater than that before saturation. Overall, community stability increased with species diversity; habitat heterogeneity increased functional diversity in the early stages of recovery; and habitat homogeneity increased functional redundancy.
Collapse
Affiliation(s)
- Yang Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Jin Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Limin Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
- Institute of Mountain Resources of Guizhou Academy of SciencesGuiyangChina
| | - Ling Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Linbin Yan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Fangbing Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Xiangwei Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Lifei Yu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐Bioengineering, Guizhou UniversityGuiyangGuizhou ProvinceChina
| | - Na Liu
- Guizhou Academy of Forestry SciencesGuiyangChina
| |
Collapse
|
30
|
Holdridge EM, Vasseur DA. Intraspecific variation promotes coexistence under competition for essential resources. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Bowler CH, Weiss‐Lehman C, Towers IR, Mayfield M, Shoemaker LG. Accounting for demographic uncertainty increases predictions for species coexistence: A case study with annual plants. Ecol Lett 2022; 25:1618-1628. [PMID: 35633300 PMCID: PMC9328198 DOI: 10.1111/ele.14011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Natural systems contain more complexity than is accounted for in models of modern coexistence theory. Coexistence modelling often disregards variation arising from stochasticity in biological processes, heterogeneity among individuals and plasticity in trait values. However, these unaccounted-for sources of uncertainty are likely to be ecologically important and have the potential to impact estimates of coexistence. We applied a Bayesian modelling framework to data from an annual plant community in Western Australia to propagate uncertainty in coexistence outcomes using the invasion criterion and ratio of niche to fitness differences. We found accounting for this uncertainty altered predictions of coexistence versus competitive exclusion for 3 out of 14 species pairs and yielded a probability of priority effects for an additional species pair. The propagation of uncertainty arising from sources of biological complexity improves our ability to predict coexistence more accurately in natural systems.
Collapse
Affiliation(s)
- Catherine H. Bowler
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Isaac R. Towers
- School of Biological, Earth, and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | | | | |
Collapse
|
32
|
Franco‐Trecu V, Botta S, de Lima RC, Negrete J, Naya DE. Testing the niche variation hypothesis in pinnipeds. Mamm Rev 2022. [DOI: 10.1111/mam.12297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Franco‐Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias Universidad de la República Igua 4225 11400 Montevideo Uruguay
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha – EcoMega, Instituto de Oceanografia Universidade Federal do Rio Grande – FURG Avenida Italia km8 s/n Rio Grande RS 96203900 Brazil
| | - Renan C. de Lima
- Laboratório de Ecologia e Conservação da Megafauna Marinha – EcoMega, Instituto de Oceanografia Universidade Federal do Rio Grande – FURG Avenida Italia km8 s/n Rio Grande RS 96203900 Brazil
| | - Javier Negrete
- Departamento de Biología de Predadores Tope Instituto Antártico Argentino Av. 25 de Mayo 1143(B1650HMK) San Martin Buenos Aires Argentina
- Facultad de Ciencias Naturales Universidad Nacional de La Plata Av. 122 y 60 S/N (1900) La Plata Buenos Aires Argentina
| | - Daniel E. Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias Universidad de la República Igua 4225 11400 Montevideo Uruguay
| |
Collapse
|
33
|
Berkhout BW, Morozov A. Assassin snails (Anentome helena) as a biological model for exploring the effects of individual specialisation within generalist predators. PLoS One 2022; 17:e0264996. [PMID: 35286318 PMCID: PMC8920249 DOI: 10.1371/journal.pone.0264996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Quantifying feeding behaviour of generalist predators at the population and individual levels is crucial for understanding the structure and functioning of food webs. Individual predator/consumer feeding niches can be significantly narrower than that of the population across animal taxa. In such species, the population of a generalist predator becomes essentially an ensemble of specialist individuals and this often highly affects the dynamics of the prey-predator interactions. Currently, few experimental systems exist that are both easily technically manipulated in a lab and are reliable to accurately assess effects of individual specialisation within generalist predators. Here we argue that a freshwater predaceous snail, Anentome helena (also known as an ‘assassin snail’), is a convenient and reliable experimental system to study feeding of a generalist predator on multiple food types which exhibits well-pronounced specialisation of foraging individuals. Using A. helena we experimentally test: (i) how relative prey abundances in the environment affect the feeding patterns, (ii) whether the feeding patterns are consistent over the duration of the experimental period, and (iii) compare the feeding niche breadth of individuals to that of the laboratory population. By offering four different prey snail species, at a range of relative abundances, we show that there are consistent patterns in feeding. Importantly, the consumption of each prey was independent of the relative abundance at which they were present. Individual predators showed selectivity to a particular prey, i.e. the population of assassin snails seems to be formed of individuals that specialise on different prey. Our findings would contribute to the recent revision and the ongoing debate on the classification of predator species into generalists and specialists.
Collapse
Affiliation(s)
- Boris W. Berkhout
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
- * E-mail:
| | - Andrew Morozov
- Department of Mathematics, University of Leicester, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Thomas BJ, Fychan R, McCalman HM, Sanderson R, Thomas H, Marley CL. Vicia sativa
as a grazed forage for lactating ewes in a temperate grassland production system. Food Energy Secur 2022. [DOI: 10.1002/fes3.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Benjamin J. Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Rhun Fychan
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Heather M. McCalman
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Ruth Sanderson
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Howard Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Christina L. Marley
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| |
Collapse
|
35
|
Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett 2022; 25:307-319. [PMID: 34808704 PMCID: PMC9299012 DOI: 10.1111/ele.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
A popular idea in ecology is that trait variation among individuals from the same species may promote the coexistence of competing species. However, theoretical and empirical tests of this idea have yielded inconsistent findings. We manipulated intraspecific trait diversity in a ciliate competing with a nematode for bacterial prey in experimental microcosms. We found that intraspecific trait variation inverted the original competitive hierarchy to favour the consumer with variable traits, ultimately resulting in competitive exclusion. This competitive outcome was driven by foraging traits (size, speed and directionality) that increased the ciliate's fitness ratio and niche overlap with the nematode. The interplay between consumer trait variation and competition resulted in non-additive cascading effects-mediated through prey defence traits-on prey community assembly. Our results suggest that predicting consumer competitive population dynamics and the assembly of prey communities will require understanding the complexities of trait variation within consumer species.
Collapse
Affiliation(s)
| | - Iina Hepolehto
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiFinland
- Department of Computer ScienceUniversity of HelsinkiFinland
| | | |
Collapse
|
36
|
Detto M, Levine JM, Pacala SW. Maintenance of high diversity in mechanistic forest dynamics models of competition for light. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matteo Detto
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Jonathan M. Levine
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
37
|
Laskowski KL, Alirangues Nuñez MM, Hilt S, Gessner MO, Mehner T. Predator Group Composition Indirectly Influences Food Web Dynamics through Predator Growth Rates. Am Nat 2022; 199:330-344. [DOI: 10.1086/717812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kate L. Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Marta M. Alirangues Nuñez
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Mark O. Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany; and Department of Ecology, Berlin Institute of Technology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Thomas Mehner
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| |
Collapse
|
38
|
Hamer J, Matthiessen B, Pulina S, Hattich GSI. Maintenance of Intraspecific Diversity in Response to Species Competition and Nutrient Fluctuations. Microorganisms 2022; 10:113. [PMID: 35056562 PMCID: PMC8779635 DOI: 10.3390/microorganisms10010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Intraspecific diversity is a substantial part of biodiversity, yet little is known about its maintenance. Understanding mechanisms of intraspecific diversity shifts provides realistic detail about how phytoplankton communities evolve to new environmental conditions, a process especially important in times of climate change. Here, we aimed to identify factors that maintain genotype diversity and link the observed diversity change to measured phytoplankton morpho-functional traits Vmax and cell size of the species and genotypes. In an experimental setup, the two phytoplankton species Emiliania huxleyi and Chaetoceros affinis, each consisting of nine genotypes, were cultivated separately and together under different fluctuation and nutrient regimes. Their genotype composition was assessed after 49 and 91 days, and Shannon's diversity index was calculated on the genotype level. We found that a higher intraspecific diversity can be maintained in the presence of a competitor, provided it has a substantial proportion to total biovolume. Both fluctuation and nutrient regime showed species-specific effects and especially structured genotype sorting of C. affinis. While we could relate species sorting with the measured traits, genotype diversity shifts could only be partly explained. The observed context dependency of genotype maintenance suggests that the evolutionary potential could be better understood, if studied in more natural settings including fluctuations and competition.
Collapse
Affiliation(s)
- Jorin Hamer
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
| | - Birte Matthiessen
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
| | - Silvia Pulina
- Aquatic Ecology Group, Department of Architecture, Design and Urban Planning, University of Sassari, 07100 Sassari, Italy;
| | - Giannina S. I. Hattich
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
39
|
Hoshizaki K, Takahashi S, Tanaka H, Oki S, Matsushita M. Stochasticity of individual competition and local matchup inequality for saplings in a niche-structured forest. Ecology 2021; 103:e3624. [PMID: 34967952 DOI: 10.1002/ecy.3624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Abstract
Ecologists have recently accepted the notion that species coexistence involves both niche and neutral processes, but few studies have explained how both of these opposite views can explain coexistence in the same community. Here we focus on competition among sessile organisms and explored first the extent to which species-based niche reflects local 'matchups' between nearby individuals, using 726 saplings of 10 temperate tree species, and second the members engaging in the matchups, which have rarely been quantified despite the importance in mixed-species forests. Growth responses to light showed considerable species-level differences, suggesting commonly seen regeneration niches. Outcomes of the individual matchups were basically predictable from the species mean response, but also with substantial contribution of within-species variation. We found strong imbalance in matchup frequencies, such that some individuals meet more individuals of differing species but others meet fewer, as well as many isolated, competition-free ones. The niche and neutral processes appear to reflect, respectively, between- and within-species differences, and our findings suggest that even when niche segregation is discernible, the role of stochasticity for the frequency of local competition, as well as its outcomes, cannot be discounted in species coexistence. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Satoshi Takahashi
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Hiroshi Tanaka
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Shinji Oki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Michinari Matsushita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, Japan
| |
Collapse
|
40
|
Stump SM, Song C, Saavedra S, Levine JM, Vasseur DA. Synthesizing the effects of individual‐level variation on coexistence. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Simon Maccracken Stump
- Department of Ecology & Evolutionary Biology Yale University New Haven Connecticut 06511 USA
| | - Chuliang Song
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Jonathan M. Levine
- Department of Ecology & Evolutionary Biology Princeton University Princeton New Jersey 08544 USA
| | - David A. Vasseur
- Department of Ecology & Evolutionary Biology Yale University New Haven Connecticut 06511 USA
| |
Collapse
|
41
|
Steinmetz B, Shnerb NM. Competition with abundance-dependent fitness and the dynamics of heterogeneous populations in fluctuating environment. J Theor Biol 2021; 531:110880. [PMID: 34454942 DOI: 10.1016/j.jtbi.2021.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Species competition takes place in a fluctuating environment, so the selective forces on different populations vary through time. In many realistic situations the mean fitness and the amplitude of its temporal variations are abundance-dependent. Here we present a theory of two-species competition with abundance-dependent stochastic fitness variations and solve for the chance of ultimate fixation, the time to absorption and the time to fixation. We then examine the ability of this two-species system to serve as an effective model for high-diversity assemblages and to account for the presence of an intra-specific differential response to environmental variations. The effective model is shown to capture the main features of competition between composite populations.
Collapse
Affiliation(s)
- Bnaya Steinmetz
- Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel.
| |
Collapse
|
42
|
Milles A, Dammhahn M, Jeltsch F, Schlägel U, Grimm V. Fluctuations in density-dependent selection drive the evolution of a pace-of-life-syndrome within and between populations. Am Nat 2021; 199:E124-E139. [DOI: 10.1086/718473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Uchmański J. Can a More Variable Species Win Interspecific Competition? Acta Biotheor 2021; 69:591-628. [PMID: 33576895 PMCID: PMC8594215 DOI: 10.1007/s10441-021-09408-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
An individual-based approach is used to describe population dynamics. Two kinds of models have been constructed with different distributions illustrating individual variability. In both models, the growth rate of an individual and its final body weight at the end of the growth period, which determines the number of offspring, are functions of the amount of resources assimilated by an individual. In the model with a symmetric distribution, the half saturation constant in the Michaelis-Menten function describing the relationship between the growth of individuals and the amount of resources has a normal distribution. In the model with an asymmetric distribution, resources are not equally partitioned among individuals. The individual who acquired more resources in the past, will acquire more resources in the future. A single population comprising identical individuals has a very short extinction time. If individuals differ in the amount of food assimilated, this time significantly increases irrespectively of the type of model describing population dynamics. Individuals of two populations of competing species use common resources. For larger differences in individual variability, the more variable species will have a longer extinction time and will exclude less variable species. Both populations can also coexist when their variabilities are equal or even when they are slightly different, in the latter case under the condition of high variability of both species. These conclusions have a deterministic nature in the case of the model with the asymmetric distribution-repeated simulations give the same results. In the case of the model with the symmetric distribution, these conclusions are of a statistical nature-if we repeat the simulation many times, then the more variable species will have a longer extinction time more frequently, but some results will happen (although less often) when the less variable species has a longer extinction time. Additionally, in the model with the asymmetric distribution, the result of competition will depend on the way of the introduction of variability into the model. If the higher variability is due to an increase in the proportion of individuals with a low assimilation of resources, it can produce a longer extinction time of the less variable species.
Collapse
Affiliation(s)
- Janusz Uchmański
- Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938, Warsaw, Poland.
- Tyumen State University, 10 Semakov St., Tyumen, Russia, 625003.
| |
Collapse
|
44
|
Libourel C, Baron E, Lenglet J, Amsellem L, Roby D, Roux F. The Genomic Architecture of Competitive Response of Arabidopsis thaliana Is Highly Flexible Among Plurispecific Neighborhoods. FRONTIERS IN PLANT SCIENCE 2021; 12:741122. [PMID: 34899774 PMCID: PMC8656689 DOI: 10.3389/fpls.2021.741122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Plants are daily challenged by multiple abiotic and biotic stresses. A major biotic constraint corresponds to competition with other plant species. Although plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of Arabidopsis thaliana, we set up a genome wide association study (GWAS) to estimate the extent of genetic variation of competitive response in 12 plant species assemblages, based on three competitor species (Poa annua, Stellaria media, and Veronica arvensis). Based on five phenotypic traits, we detected strong crossing reaction norms not only between the three bispecific neighborhoods but also among the plurispecific neighborhoods. The genetic architecture of competitive response was highly dependent on the identity and the relative abundance of the neighboring species. In addition, most of the enriched biological processes underlying competitive responses largely differ among neighborhoods. While the RNA related processes might confer a broad range response toolkit for multiple traits in diverse neighborhoods, some processes, such as signaling and transport, might play a specific role in particular assemblages. Altogether, our results suggest that plants can integrate and respond to different species assemblages depending on the identity and number of each neighboring species, through a large range of candidate genes associated with diverse and unexpected processes leading to developmental and stress responses.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Etienne Baron
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratoire Evolution, Ecologie et Paléontologie, UMR CNRS 8198, Université de Lille, Villeneuve d’Ascq Cedex, France
| | - Juliana Lenglet
- Laboratoire Evolution, Ecologie et Paléontologie, UMR CNRS 8198, Université de Lille, Villeneuve d’Ascq Cedex, France
| | - Laurent Amsellem
- Laboratoire Evolution, Ecologie et Paléontologie, UMR CNRS 8198, Université de Lille, Villeneuve d’Ascq Cedex, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratoire Evolution, Ecologie et Paléontologie, UMR CNRS 8198, Université de Lille, Villeneuve d’Ascq Cedex, France
| |
Collapse
|
45
|
Kikuchi DW, Reinhold K. Modelling migration in birds: competition's role in maintaining individual variation. Proc Biol Sci 2021; 288:20210323. [PMID: 34753351 PMCID: PMC8580437 DOI: 10.1098/rspb.2021.0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Animals exhibit extensive intraspecific variation in behaviour. Causes of such variation are less well understood. Here, we ask when competition leads to the maintenance of multiple behavioural strategies. We model variability using the timing of bird migration as an example. Birds often vary in when they return from non-breeding grounds to establish breeding territories. We assume that early-arriving birds (counting permanent residents as 'earliest') select the best territories. But arriving before the optimal (frequency-independent) breeding date incurs a fitness penalty. Using simulations, we find stable sets of return dates. When year-round residency is viable, the greatest between-individual variation occurs when a small proportion of permanent residents is favoured, and the rest of the population varies in their return times. However, when fitness losses due to year-round residency exceed the benefits of breeding in the worst territory, all individuals migrate, although their return dates often vary continuously. In that case, individual variation is inversely related to fitness risks and positively related to territory inequality. This result is applicable across many systems: when there is more to gain through competition, or when its risks are small, a diversity of individual strategies prevails. Additionally, stability can depend upon the distribution of resources.
Collapse
Affiliation(s)
- D. W. Kikuchi
- Evolutionary Biology Department, Universität Bielefeld, Konsequenz 45, 33615 Bielefeld, Germany
| | - K. Reinhold
- Evolutionary Biology Department, Universität Bielefeld, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
46
|
Thompson MJ, Capilla-Lasheras P, Dominoni DM, Réale D, Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol Evol 2021; 37:171-182. [PMID: 34690006 DOI: 10.1016/j.tree.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have explored how urbanisation affects the mean phenotypes of populations, but it remains unknown how urbanisation impacts phenotypic variation, a key target of selection that shapes, and is shaped by, eco-evolutionary processes. Our review suggests that urbanisation may often increase intraspecific phenotypic variation through several processes; a conclusion aligned with results from our illustrative analysis on tit morphology across 13 European city/forest population pairs. Urban-driven changes in phenotypic variation will have immense implications for urban populations and communities, particularly through urbanisation's effects on individual fitness, species interactions, and conservation. We call here for studies that incorporate phenotypic variation in urban eco-evolutionary research alongside advances in theory.
Collapse
Affiliation(s)
- M J Thompson
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - P Capilla-Lasheras
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D M Dominoni
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D Réale
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - A Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
47
|
Moran NP, Caspers BA, Chakarov N, Ernst UR, Fricke C, Kurtz J, Lilie ND, Lo LK, Müller C, R R, Takola E, Trimmer PC, van Benthem KJ, Winternitz J, Wittmann MJ. Shifts between cooperation and antagonism driven by individual variation: a systematic synthesis review. OIKOS 2021. [DOI: 10.1111/oik.08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nicholas P. Moran
- Centre for Ocean Life DTU‐Aqua, Technical Univ. of Denmark Lyngby Denmark
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
| | | | | | - Ulrich R. Ernst
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
- Apicultural State Inst., Univ. of Hohenheim Stuttgart Germany
| | - Claudia Fricke
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Navina D. Lilie
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
- Dept of Animal Behaviour, Bielefeld Univ. Bielefeld Germany
| | - Lai Ka Lo
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | | | - Reshma R
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Elina Takola
- Inst. of Ecology and Evolution, Friedrich Schiller Univ. Jena Jena Germany
| | | | | | | | | |
Collapse
|
48
|
Proß T, Bruelheide H, Potvin C, Sporbert M, Trogisch S, Haider S. Reprint of: Drivers of within-tree leaf trait variation in a tropical planted forest varying in tree species richness. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Ulrich W, Olszewski P, Puchałka R, Sewerniak P, Koprowski M. Inter‐ and intraspecific spatial distributions, spatial segregation by dominants and emergent neutrality in understorey plants. OIKOS 2021. [DOI: 10.1111/oik.08269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Werner Ulrich
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Piotr Olszewski
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Radosław Puchałka
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Piotr Sewerniak
- Dept of Soil Science and Landscape Management, Nicolaus Copernicus Univ.Toruń Poland
| | - Marcin Koprowski
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| |
Collapse
|
50
|
Brass DP, Cobbold CA, Ewing DA, Purse BV, Callaghan A, White SM. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol Lett 2021; 24:2406-2417. [PMID: 34412157 DOI: 10.1111/ele.13862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Predicting complex species-environment interactions is crucial for guiding conservation and mitigation strategies in a dynamically changing world. Phenotypic plasticity is a mechanism of trait variation that determines how individuals and populations adapt to changing and novel environments. For individuals, the effects of phenotypic plasticity can be quantified by measuring environment-trait relationships, but it is often difficult to predict how phenotypic plasticity affects populations. The assumption that environment-trait relationships validated for individuals indicate how populations respond to environmental change is commonly made without sufficient justification. Here we derive a novel general mathematical framework linking trait variation due to phenotypic plasticity to population dynamics. Applying the framework to the classical example of Nicholson's blowflies, we show how seemingly sensible predictions made from environment-trait relationships do not generalise to population responses. As a consequence, trait-based analyses that do not incorporate population feedbacks risk mischaracterising the effect of environmental change on populations.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.,Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, University Place, Glasgow, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| |
Collapse
|