1
|
Zhang J, Song K, Jin F, Jia F, Liang J, Wang F, Zhang J. A novel strategy of artificially regulating plant rhizosphere microbial community to promote plant tolerance to cold stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175184. [PMID: 39089386 DOI: 10.1016/j.scitotenv.2024.175184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fengyuan Jin
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
3
|
Barnes CJ, Bünner MS, Ramírez-Flores MR, Nielsen IB, Ramos-Madrigal J, Zharikova D, McLaughlin CM, Gilbert MT, Sawers RJH. The ancestral environment of teosinte populations shapes their root microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:64. [PMID: 39210412 PMCID: PMC11363609 DOI: 10.1186/s40793-024-00606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes. RESULTS The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations. CONCLUSIONS Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.
Collapse
Affiliation(s)
- Christopher J Barnes
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
- The Globe Institute, Øster Voldgade 5 -7, Copenhagen K, 1350, Denmark.
| | - Maria Sophie Bünner
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - M Rosario Ramírez-Flores
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Ida Broman Nielsen
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jazmin Ramos-Madrigal
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Daria Zharikova
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Chloee M McLaughlin
- Department of Plant Science, The Pennsylvania State University, State College, University Park, PA, USA
| | - M Thomas Gilbert
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, University Park, PA, USA
| |
Collapse
|
4
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
6
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
7
|
Morales-Quintana L, Rabert C, Mendez-Yañez A, Ramos P. Transcriptional and structural analysis of non-specific lipid transfer proteins modulated by fungal endophytes in Antarctic plants under drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14359. [PMID: 38797943 DOI: 10.1111/ppl.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Angela Mendez-Yañez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Patricio Ramos
- Plant-microorganisms Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Licciardello G, Doppler M, Sicher C, Bueschl C, Ruso D, Schuhmacher R, Perazzolli M. Metabolic changes in tomato plants caused by psychrotolerant Antarctic endophytic bacteria might be implicated in cold stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14352. [PMID: 38764037 DOI: 10.1111/ppl.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Climate change is responsible for mild winters and warm springs that can induce premature plant development, increasing the risk of exposure to cold stress with a severe reduction in plant growth. Tomato plants are sensitive to cold stress and beneficial microorganisms can increase their tolerance. However, scarce information is available on mechanisms stimulated by bacterial endophytes in tomato plants against cold stress. This study aimed to clarify metabolic changes stimulated by psychrotolerant endophytic bacteria in tomato plants exposed to cold stress and annotate compounds possibly associated with cold stress mitigation. Tomato seeds were inoculated with two bacterial endophytes isolated from Antarctic Colobanthus quitensis plants (Ewingella sp. S1.OA.A_B6 and Pseudomonas sp. S2.OTC.A_B10) or with Paraburkholderia phytofirmans PsJN, while mock-inoculated seeds were used as control. The metabolic composition of tomato plants was analyzed immediately after cold stress exposure (4°C for seven days) or after two and four days of recovery at 25°C. Under cold stress, the content of malondialdehyde, phenylalanine, ferulic acid, and p-coumaric acid was lower in bacterium-inoculated compared to mock-inoculated plants, indicating a reduction of lipid peroxidation and the stimulation of phenolic compound metabolism. The content of two phenolic compounds, five putative phenylalanine-derived dipeptides, and three further phenylalanine-derived compounds was higher in bacterium-inoculated compared to mock-inoculated samples under cold stress. Thus, psychrotolerant endophytic bacteria can reprogram polyphenol metabolism and stimulate the accumulation of secondary metabolites, like 4-hydroxybenzoic and salicylic acid, which are presumably involved in cold stress mitigation, and phenylalanine-derived dipeptides possibly involved in plant stress responses.
Collapse
Affiliation(s)
- Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Trento, Italy
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Carmela Sicher
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Christoph Bueschl
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - David Ruso
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
9
|
Ueno AC, Vila-Aiub MM, Gundel PE. Intergenerational consequences of an auxin-like herbicide on plant sensitivity to a graminicide mediated by a fungal endophyte. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168522. [PMID: 37956837 DOI: 10.1016/j.scitotenv.2023.168522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
In agroecosystems, herbicides are the predominant anthropogenic selection pressure for agriculture weed species. While weeds are the primary target, herbicides can have adverse impacts on non-target plant beneficial microorganisms. We aimed to investigate the influence of a foliar endophytic fungus (Epichloë occultans) on the sensitivity of Lolium multiflorum to a graminicide herbicide (diclofop-methyl) during both plant ontogeny and progeny. Susceptible individuals to diclofop-methyl with and without endophyte were pre-exposed to the auxin 2,4-D herbicide. This herbicide is known to stimulate the metabolic detoxification mechanism (CYP-450) of diclofop-methyl. Regardless of the endophyte, 2,4-D pre-treatment increased mother plant survival to nearly 100 % under diclofop treatment but not in the progeny. Furthermore, maternal plant exposure to 2,4-D reduced endophyte transmission to the seeds and from seed-to-seedlings. Our findings suggest that, despite a reduction in diclofop-methyl sensitivity during the ontogeny of mother plants, 2,4-D-mediated induction of likely CYP-450 metabolism is not intergenerationally transmitted and shows detrimental effects on the symbiotic endophyte persistence.
Collapse
Affiliation(s)
- Andrea C Ueno
- Instituto de Investigación Interdisciplinaria (I(3)), Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
| | - Martin M Vila-Aiub
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro E Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
Sanhueza T, Hernández I, Sagredo-Sáez C, Villanueva-Guerrero A, Alvarado R, Mujica MI, Fuentes-Quiroz A, Menendez E, Jorquera-Fontena E, Valadares RBDS, Herrera H. Juvenile Plant-Microbe Interactions Modulate the Adaptation and Response of Forest Seedlings to Rapid Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:175. [PMID: 38256729 PMCID: PMC10819047 DOI: 10.3390/plants13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/24/2024]
Abstract
The negative impacts of climate change on native forest ecosystems have created challenging conditions for the sustainability of natural forest regeneration. These challenges arise primarily from abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable lack of reports on native forest plants. This review aims to summarize the critical studies conducted on the diversity of juvenile plant-microbe interactions in forest plants and to highlight the main benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies have consistently demonstrated the positive effects of juvenile plant-microbiota interactions and have highlighted the potential beneficial attributes to improve plantlet development. In addition, this review discusses the beneficial attributes of managing juvenile plant-microbiota symbiosis in the context of native forest restoration, including its impact on plant responses to phytopathogens, promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared hyphal networks, stimulation of native soil microbial communities, and modulation of gene and protein expression to enhance adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tedy Sanhueza
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Ionel Hernández
- Plant Physiology and Biochemistry Department, National Institute of Agricultural Science, Carretera a Tapaste Km 3 y ½, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Cristiane Sagredo-Sáez
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Angela Villanueva-Guerrero
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Maria Isabel Mujica
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Esther Menendez
- Departamento de Microbiología y Genética, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Catolica de Temuco, Temuco P.O. Box 15-D, Chile;
| | | | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
- Laboratorio de Ecosistemas y Bosques, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
11
|
Balasjin NM, Maki JS, Schläppi MR. Pseudomonas mosselii improves cold tolerance of Asian rice ( Oryza sativa L.) in a genotype-dependent manner by increasing proline in japonica and reduced glutathione in indica varieties. Can J Microbiol 2024; 70:15-31. [PMID: 37699259 DOI: 10.1139/cjm-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cold stress is an important factor limiting rice production and distribution. Identifying factors that contribute to cold tolerance in rice is of primary importance. While some plant specific genetic factors involved in cold tolerance have been identified, the role of the rice microbiome remains unexplored. In this study, we evaluated the influence of plant growth promoting bacteria (PGPB) with the ability of phosphate solubilization on rice cold tolerance and survival. To reach this goal, inoculated and uninoculated 2-week-old seedlings were cold stressed and evaluated for survival and other phenotypes such as electrolyte leakage (EL) and necessary elements for cold tolerance. The results of this study showed that of the five bacteria, Pseudomonas mosselii, improved both indica and japonica varietal plants' survival and decreased EL, indicating increased membrane integrity. We observed different possible cold tolerance mechanisms in japonica and indica plants such as increases in proline and reduced glutathione levels, respectively. This bacterium also improved the shoot growth of cold exposed indica plants during the recovery period. This study confirmed the host genotype dependent activity of P. mosselii and indicated that there is an interaction between specific plant genes and bacterial genes that causes different plant responses to cold stress.
Collapse
Affiliation(s)
| | - James S Maki
- Marquette University, Biological Sciences Department, Milwaukee, WI, USA
| | - Michael R Schläppi
- Marquette University, Biological Sciences Department, Milwaukee, WI, USA
| |
Collapse
|
12
|
Molina-Montenegro MA, Escobedo VM, Atala C. Inoculation with extreme endophytes improves performance and nutritional quality in crop species grown under exoplanetary conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1139704. [PMID: 37426965 PMCID: PMC10325655 DOI: 10.3389/fpls.2023.1139704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
Introduction Technological advances have made possible long space travels and even exoplanetary colonies in the future. Nevertheless, the success of these activities depends on our ability to produce edible plants in stressful conditions such as high radiation, extreme temperatures and low oxygen levels. Since beneficial microorganisms, such as fungal endophytes from extreme environments, have helped agriculture cope with those difficulties, endophytic fungi may be a putative tool to ensure plant growth under exoplanetary conditions. Additionally, growing crops in polyculture has been shown to increase productivity and spatial efficiency, which is essential given the likely space restrictions in such conditions. Methods We evaluated the effect of the inoculation with a mix of two fungal endophytes from the Atacama Desert on performance (survival and biomass) and nutritional quality of three crop species (lettuce, chard and spinach) grown under exoplanetary conditions. In addition, we measured the amount of antioxidants (flavonoids and phenolics) as possible mechanisms to cope with such abiotic conditions. The exoplanetary conditions were; high UV radiation, low temperature, low water availability, and low oxygen levels. These crops were put in growing chambers in monoculture, dual culture and polyculture (the three species in the same pot) for 30 days. Results and Discussion Our results show that inoculation with extreme endophytes improved survival by ca. 15 - 35% and biomass by ca. 30 - 35% in all crop species. The most evident increase was when grown in polyculture, except for survival in spinach, where inoculated plants had higher survival only in dual culture. Nutritional quality and the amount of the antioxidant compounds antioxidants increased in all crop species when inoculated with the endophytes. Overall, fungal endophytes isolated from extreme environments such as the Atacama Desert, the driest desert in the world, could be a key biotechnological tool for future space agriculture, helping plants cope with environmental stress. Additionally, inoculated plants should be grown in polyculture to increase crop turnover and space-use efficiency. Lastly, these results provide useful insights to face the future challenges of space-farming.
Collapse
Affiliation(s)
- Marco A. Molina-Montenegro
- Centre for Integrative Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Victor M. Escobedo
- Centre for Integrative Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Instituto de Investigación Interdisciplinaria (I), Universidad de Talca, Talca, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
13
|
Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023; 380:835-840. [PMID: 37228219 DOI: 10.1126/science.adf2027] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change is pushing species outside of their evolved tolerances. Plant populations must acclimate, adapt, or migrate to avoid extinction. However, because plants associate with diverse microbial communities that shape their phenotypes, shifts in microbial associations may provide an alternative source of climate tolerance. Here, we show that tree seedlings inoculated with microbial communities sourced from drier, warmer, or colder sites displayed higher survival when faced with drought, heat, or cold stress, respectively. Microbially mediated drought tolerance was associated with increased diversity of arbuscular mycorrhizal fungi, whereas cold tolerance was associated with lower fungal richness, likely reflecting a reduced burden of nonadapted fungal taxa. Understanding microbially mediated climate tolerance may enhance our ability to predict and manage the adaptability of forest ecosystems to changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabelle George
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Chen S, Cao P, Li T, Wang Y, Liu X. Microbial diversity patterns in the root zone of two Meconopsis plants on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15361. [PMID: 37250704 PMCID: PMC10224674 DOI: 10.7717/peerj.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
In the extreme alpine climate of the Qinghai-Tibet Plateau (QTP), plant growth and reproduction are limited by extremely cold temperatures, low soil moisture, and scarce nutrient availability. The root-associated microbiome indirectly promotes plant growth and plays a role in the fitness of plants on the QTP, particularly in Tibetan medicinal plants. Despite the importance of the root-associated microbiome, little is known about the root zone. This study used high-throughput sequencing to investigate two medicinal Meconopsis plants, M. horridula and M. integrifolia, to determine whether habitat or plant identity had a more significant impact on the microbial composition of the roots. The fungal sequences were obtained using ITS-1 and ITS-2, and bacterial sequences were obtained using 16S rRNA. Different microbial patterns were observed in the microbial compositions of fungi and bacteria in the root zones of two Meconopsis plants. In contrast to bacteria, which were not significantly impacted by plant identity or habitat, the fungi in the root zone were significantly impacted by plant identity, but not habitat. In addition, the synergistic effect was more significant than the antagonistic effect in the correlation between fungi and bacteria in the root zone soil. The fungal structure was influenced by total nitrogen and pH, whereas the structure of bacterial communities was influenced by soil moisture and organic matter. Plant identity had a greater influence on fungal structure than habitat in two Meconopsis plants. The dissimilarity of fungal communities suggests that more attention should be paid to fungi-plant interactions.
Collapse
Affiliation(s)
- Shuting Chen
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ting Li
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yuyan Wang
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Xing Liu
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Shen F, Wang G, Liu X, Zhu S. Exogenous inoculation of endophyte Penicillium sp. alleviated pineapple internal browning during storage. Heliyon 2023; 9:e16258. [PMID: 37234623 PMCID: PMC10205634 DOI: 10.1016/j.heliyon.2023.e16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pineapple is ranked sixth in terms of global fruit production and the most traded tropical fruit worldwide. Internal browning (IB), a physiological disorder of pineapple fruit after harvest, limits the export and industry development of pineapple. Evidence confirmed that endophyte played a pivotal role in plant disease. This study investigated the relationship between endophyte fungi community structure, population abundance in healthy and IB pineapple fruit; as well as the effect of endophyte Penicillium sp. inoculation on pineapple IB. Intended to explore a new effective measure for controlling IB and reducing postharvest losses in pineapple by an economical and environmentally friendly approach. We found the abundance of endophyte fungi in healthy pineapple fruit was different from that in IB fruit by high-throughput sequencing. The results emphasized that the endophyte Penicillium sp. inoculation dramatically alleviated pineapple IB intensity and severity, delayed crown withering and fruit yellowing, and maintained the exterior quality traits during the postharvest period at 20 °C. Penicillium sp. retarded H2O2 accumulation and increased the total phenols level in pineapple. Application of Penicillium sp. also maintained the higher antioxidant capacity by increasing antioxidant enzyme activity and ascorbic acids levels, regulated of the homeostasis of endogenous hormones, and increased the abundance of Penicillium sp. in the fruit. In summary, Penicillium sp. retarded the occurrence of IB and enhanced the storability of pineapple at postharvest, and this economical and environmentally friendly technology is convenient to spread in agriculture.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Corresponding author. 483 Wushan Road, Tianhe District, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Bastías DA, Ueno AC, Gundel PE. Global Change Factors Influence Plant- Epichloë Associations. J Fungi (Basel) 2023; 9:446. [PMID: 37108902 PMCID: PMC10145611 DOI: 10.3390/jof9040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
There is an increasing interest in determining the influence of global change on plant-microorganism interactions. We review the results of experiments that evaluated the effects of the global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon dioxide levels and low temperatures differentially influenced the growth of plants and endophytes, which could compromise the symbioses. Furthermore, we summarise the plant stage in which the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just a few of them. While only studied in response to ozone and drought, evidence showed that the effects of these factors on symbiotic plants persisted trans-generationally. We also identified the putative mechanisms that would explain the effects of the factors on plant-endophyte associations. These mechanisms included the increased contents of reactive oxygen species and defence-related phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants, reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and photosynthesis levels. Knowledge gaps regarding the effects of global change on plant-endophyte associations were identified and discussed.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Andrea C. Ueno
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Talca 3480094, Chile
| | - Pedro E. Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Facultad de Agronomía, IFEVA, CONICET, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
17
|
Papik J, Strejcek M, Musilova L, Guritz R, Leewis MC, Leigh MB, Uhlik O. Legacy Effects of Phytoremediation on Plant-Associated Prokaryotic Communities in Remediated Subarctic Soil Historically Contaminated with Petroleum Hydrocarbons. Microbiol Spectr 2023; 11:e0444822. [PMID: 36975310 PMCID: PMC10100700 DOI: 10.1128/spectrum.04448-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Phytoremediation of petroleum hydrocarbons in subarctic regions relies on the successful establishment of plants that stimulate petroleum-degrading microorganisms, which can be challenging due to the extreme climate, limited nutrients, and difficulties in maintaining sites in remote locations. A long-term phytoremediation experiment was initiated in Alaska in 1995 with the introduction of grasses and/or fertilizer to petroleum hydrocarbon (PHC)-contaminated soils that were subsequently left unmanaged. In 2011, the PHC concentrations were below detection limits in all soils tested and the originally planted grasses had been replaced by volunteer plant species that had colonized the site. Here, we sought to understand how the original treatments influenced the structure of prokaryotic communities associated with plant species that colonized the soils and to assess the interactions between the rhizospheric and endophytic communities of the colonizing vegetation 20 years after the experiment was established. Metataxonomic analysis performed using 16S rRNA gene sequencing revealed that the original type of contaminated soil and phytoremediation strategy influenced the structure of both rhizospheric and endophytic communities of colonizing plants, even 20 years after the treatments were applied and following the disappearance of the originally planted grasses. Our findings demonstrate that the choice of initial phytoremediation strategy drove the succession of microorganisms associated with the colonizing vegetation. The outcome of this study provides new insight into the establishment of plant-associated microbial communities during secondary succession of subarctic areas previously contaminated by PHCs and indicates that the strategies for restoring these ecosystems influence the plant-associated microbiota in the long term. IMPORTANCE Subarctic ecosystems provide key services to local communities, yet they are threatened by pollution caused by spills and disposal of petroleum waste. Finding solutions for the remediation and restoration of subarctic soils is valuable for reasons related to human and ecosystem health, as well as environmental justice. This study provides novel insight into the long-term succession of soil and plant-associated microbiota in subarctic soils that had been historically contaminated with different sources of PHCs and subjected to distinct phytoremediation strategies. We provide evidence that even after the successful removal of PHCs and the occurrence of secondary succession, the fingerprint of the original source of contamination and the initial choice of remediation strategy can be detected as a microbial legacy in the rhizosphere, roots, and shoots of volunteer vegetation even 2 decades after the contamination had occurred. Such information needs to be borne in mind when designing and applying restoration approaches for PHC-contaminated soils in subarctic ecosystems.
Collapse
Affiliation(s)
- Jakub Papik
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Michal Strejcek
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Lucie Musilova
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Rodney Guritz
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Agriculture and Agri-Food Canada, Quebec, Quebec, Canada
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Ondrej Uhlik
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| |
Collapse
|
18
|
Wang J, Li Y, Gao J. Time Effects of Global Change on Forest Productivity in China from 2001 to 2017. PLANTS (BASEL, SWITZERLAND) 2023; 12:1404. [PMID: 36987091 PMCID: PMC10051691 DOI: 10.3390/plants12061404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
With global warming, the concentrations of fine particulate matter (PM2.5) and greenhouse gases, such as CO2, are increasing. However, it is still unknown whether these increases will affect vegetation productivity. Exploring the impacts of global warming on net primary productivity (NPP) will help us understand how ecosystem function responds to climate change in China. Using the Carnegie-Ames-Stanford Approach (CASA) ecosystem model based on remote sensing, we investigated the spatiotemporal changes in NPP across 1137 sites in China from 2001 to 2017. Our results revealed that: (1) Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) were significantly positively correlated with NPP (p < 0.01), while PM2.5 concentration and CO2 emissions were significantly negatively correlated with NPP (p < 0.01). (2) The positive correlation between temperature, rainfall and NPP gradually weakened over time, while the negative correlation between PM2.5 concentration, CO2 emissions and NPP gradually strengthened over time. (3) High levels of PM2.5 concentration and CO2 emissions had negative effects on NPP, while high levels of MAT and MAP had positive effects on NPP.
Collapse
Affiliation(s)
- Jiangfeng Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Yanhong Li
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int J Mol Sci 2023; 24:ijms24021153. [PMID: 36674663 PMCID: PMC9867233 DOI: 10.3390/ijms24021153] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Endophytes, which are widely found in host plants and have no harmful effects, are a vital biological resource. Plant endophytes promote plant growth and enhance plants' resistance to diseases, pests, and environmental stresses. In addition, they enhance the synthesis of important secondary metabolites in plants and improve the potential applicability of plants in agriculture, medicine, food, and horticulture. In this review, we summarize the recent progress in understanding the interaction between endophytes and plants and summarize the construction of synthetic microbial communities (SynComs) and metaomics analysis of the interaction between endophytes and plants. The application and development prospects of endophytes in agriculture, medicine, and other industries are also discussed to provide a reference for further study of the interaction between endophytes and plants and further development and utilization of endophytes.
Collapse
|
20
|
Xiong C, Lu Y. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:833-849. [PMID: 36184075 DOI: 10.1111/1758-2229.13126] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Soils are a main repository of biodiversity harbouring immense diversity of microbial species that plays a central role in fundamental ecological processes and acts as the seed bank for emergence of the plant microbiome in cropland ecosystems. Crop-associated microbiomes play an important role in shaping plant performance, which includes but not limited to nutrient uptake, disease resistance, and abiotic stress tolerance. Although our understanding of structure and function of soil and plant microbiomes has been rapidly advancing, most of our knowledge comes from ecosystems in natural environment. In this review, we present an overview of the current knowledge of diversity and function of microbial communities along the soil-plant continuum in agroecosystems. To characterize the ecological mechanisms for community assembly of soil and crop microbiomes, we explore how crop host and environmental factors such as plant species and developmental stage, pathogen invasion, and land management shape microbiome structure, microbial co-occurrence patterns, and crop-microbiome interactions. Particularly, the relative importance of deterministic and stochastic processes in microbial community assembly is illustrated under different environmental conditions, and potential sources and keystone taxa of the crop microbiome are described. Finally, we highlight a few important questions and perspectives in future crop microbiome research.
Collapse
Affiliation(s)
- Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Perazzolli M, Vicelli B, Antonielli L, Longa CMO, Bozza E, Bertini L, Caruso C, Pertot I. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Sci Rep 2022; 12:18839. [PMID: 36336707 PMCID: PMC9637742 DOI: 10.1038/s41598-022-23582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold conditions.
Collapse
Affiliation(s)
- Michele Perazzolli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Bianca Vicelli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Livio Antonielli
- grid.4332.60000 0000 9799 7097Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Claudia M. O. Longa
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Elisa Bozza
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Laura Bertini
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Carla Caruso
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Ilaria Pertot
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| |
Collapse
|
22
|
Tufail MA, Ayyub M, Irfan M, Shakoor A, Chibani CM, Schmitz RA. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: A meta-comparison spanning 12 years (2010-2021). PHYSIOLOGIA PLANTARUM 2022; 174:e13806. [PMID: 36271716 DOI: 10.1111/ppl.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.
Collapse
Affiliation(s)
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Soil and Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| | - Awais Shakoor
- Teagasc, Environment, Soils, and Land-Use Department, Wexford, Ireland
| | | | - Ruth A Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
23
|
Luecke NC, de Mesquita CPB, Luong M, Schmidt SK, Suding KN, Crawford KM. Causes and consequences of differences in soil and seed microbiomes for two alpine plants. Oecologia 2022; 200:385-396. [PMID: 36224498 DOI: 10.1007/s00442-022-05271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Seed and soil microbiomes strongly affect plant performance, and these effects can scale-up to influence plant community structure. However, seed and soil microbial community composition are variable across landscapes, and different microbial communities can differentially influence multiple plant metrics (biomass, germination rate), and community stabilizing mechanisms. We determined how microbiomes inside seeds and in soils varied among alpine plant species and communities that differed in plant species richness and density. Across 10 common alpine plant species, we found a total of 318 bacterial and 128 fungal operational taxonomic units (OTUs) associated with seeds, with fungal richness affected by plant species identity more than sampling location. However, seed microbes had only marginally significant effects on plant germination success and timing. In contrast, soil microbes associated with two different plant species had significant effects on plant biomass, and their effect depended both on the plant species and the location the soils were sampled from. This led to significant changes in plant-soil feedback at different locations that varied in plant density and richness, such that plant-soil feedback favored plant species coexistence in some locations and opposed coexistence at other locations. Importantly, we found that coexistence-facilitating feedback was associated with low plant species richness, suggesting that soil microbes may promote the diversity of colonizing plants during the course of climate change and glacial recession.
Collapse
Affiliation(s)
- Noah C Luecke
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | | - Madeline Luong
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA.,Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
24
|
Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, Castro-Nallar E. Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Front Microbiol 2022; 13:916210. [PMID: 36160194 PMCID: PMC9493328 DOI: 10.3389/fmicb.2022.916210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jaime Alarcón
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Florence Gutzwiller
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gallardo-Cerda
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Marco Molina-Montenegro
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
- Division of Emergency Medicine, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Children’s National Hospital, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- *Correspondence: Eduardo Castro-Nallar,
| |
Collapse
|
25
|
Volk GM, Bonnart R, de Oliveira ACA, Henk AD. Minimizing the deleterious effects of endophytes in plant shoot tip cryopreservation. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11489. [PMID: 36258787 PMCID: PMC9575093 DOI: 10.1002/aps3.11489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 05/05/2023]
Abstract
Plant cryopreservation technologies are used within gene banks for the long-term preservation of vegetatively propagated collections. Surface-sterilized plant tissues grown in the field, greenhouse/screenhouse, growth chamber, or in vitro are the source of shoot tips subjected to vitrification-based cryopreservation methods. Here, we describe the methods used to minimize microbial contamination during the tissue culture initiation process. We also discuss the occurrence and possible elimination of endophytes after extended in vitro culture and during recovery after liquid nitrogen exposure. We describe two case studies in which bacterial endophytes were observed in Citrus gene bank accessions during recovery after cryopreservation. These were identified using the MinION Oxford Nanopore system and Kirby-Bauer disc diffusion assays to examine the bacterial responses to antibiotic exposure. The methods used in this case study could be applied to identify endophytes to better target antimicrobial treatments of plant tissue collections.
Collapse
Affiliation(s)
- Gayle M. Volk
- USDA‐ARS National Laboratory for Genetic Resources Preservation1111 S. Mason St.Fort CollinsColorado80521USA
| | - Remi Bonnart
- USDA‐ARS National Laboratory for Genetic Resources Preservation1111 S. Mason St.Fort CollinsColorado80521USA
| | | | - Adam D. Henk
- USDA‐ARS National Laboratory for Genetic Resources Preservation1111 S. Mason St.Fort CollinsColorado80521USA
| |
Collapse
|
26
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
27
|
Bastías DA, Applegate ER, Johnson LJ, Card SD. Factors controlling the effects of mutualistic bacteria on plants associated with fungi. Ecol Lett 2022; 25:1879-1888. [PMID: 35810320 PMCID: PMC9544109 DOI: 10.1111/ele.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Plants interacting with mutualistic fungi (MF) or antagonistic fungi (AF) can form associations with bacteria. We assessed whether the performance gain conferred by mutualistic bacteria to fungal-associated plants is affected by the interaction between symbiont traits, type of bacterial-protective traits against AF and abiotic/biotic stresses. Results showed that (A) performance gain conferred by bacteria to MF-associated plants was greater when symbionts promoted distinct rather than similar plant functions, (B) bacterial-based alleviation of the AF's negative effect on plants was independent of the type of protective trait, (C) bacteria promoted a greater performance of symbiotic plants in presence of biotic, but not abiotic, stress compared to stress-free situations. The plant performance gain was not affected by any fungal-bacterial trait combination but optimised when bacteria conferred resistance traits in biotic stress situations. The effects of bacteria on fungal-associated plants were controlled by the interaction between the symbionts' functional traits and the relationship between bacterial traits and abiotic/biotic stresses.
Collapse
Affiliation(s)
- Daniel A. Bastías
- Grasslands Research Centre, AgResearch LimitedPalmerston NorthNew Zealand
| | - Emma R. Applegate
- Grasslands Research Centre, AgResearch LimitedPalmerston NorthNew Zealand
| | - Linda J. Johnson
- Grasslands Research Centre, AgResearch LimitedPalmerston NorthNew Zealand
| | - Stuart D. Card
- Grasslands Research Centre, AgResearch LimitedPalmerston NorthNew Zealand
| |
Collapse
|
28
|
Xing C, Li J, Yuan H, Yang J. Physiological and transcription level responses of microalgae Auxenochlorella protothecoides to cold and heat induced oxidative stress. ENVIRONMENTAL RESEARCH 2022; 211:113023. [PMID: 35276186 DOI: 10.1016/j.envres.2022.113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Temperature is a crucial factor affecting microalgae CO2 capture and utilization. However, an in-depth understanding of how microalgae respond to temperature stress is still unclear. In particular, the regulation mechanism under opposite temperature (heat and cold) stress had not yet been reported. In this study, the physicochemical properties and transcription level of related genes of microalgae Auxenochlorella protothecoides UTEX 2341 under heat and cold stress were investigated. Heat stress (Hs) caused a drastic increase of reactive oxygen species (ROS) in UTEX 2341. As key elements responded to Hs, superoxide dismutase (SOD) enzyme increased by 150%, 70%, and 30% in activity, and nitric oxide (NO) grew by 409.6%, 212.5%, and 990.4% in content compared with the control at 48 h, 96 h, 168 h. Under cold stress (Cs), ROS increased in the early stage and decreased in the later stage. As key factors responded to Cs, proline (Pro) increased respectively by 285%, 383%, and 81% in content, and heat shock transcriptional factor HSFA1d increased respectively by 161%, 71%, and 204% in transcript level compared with the control at 48 h, 96 h, 168 h. Furthermore, the transcript level of antioxidant enzymes or antioxidant coding genes was consistent with the changing trend of enzymes activity or antioxidant content. Notably, both glutathione (GSH) and heat shock protein 97 (hsp 97) were up-regulated in response to Hs and Cs. In conclusion, GSH and hsp 97 were the core elements of UTEX 2341 in response to both Hs and Cs. SOD and NO were the key elements that responded to Hs, while proline and HSFA1d were the key elements that responded to Cs. This study provided a basis for the understanding of the response mechanism of microalgae under temperature stress and the improvement of the microalgae tolerance to temperature stress.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jinyu Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Wang Q, Liu Y, Su Y, Cheng C, Shang B, Agathokleous E, Feng Z. Effects of elevated ozone on bacterial communities inhabiting the phyllo- and endo-spheres of rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154705. [PMID: 35318051 DOI: 10.1016/j.scitotenv.2022.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
To explore the effects of elevated ozone (O3) on microbial communities inhabiting phyllo- and endo-spheres of Japonica rice leaves, cultivars Nangeng 5055 (NG5055) and Wuyujing 27 (WYJ27) were grown in either charcoal-filtered air (CF) or elevated O3 (ambient O3 + 40 ppb, E-O3) in field open-top chambers (OTCs) during a growing season. E-O3 increased the values of the Shannon (43-80%) and Simpson (34-51%) indexes of the phyllo-and endo-spheric bacterial communities in NG5055. E-O3 also increased the values of the phyllosphere Simpson index by 58% and the endosphere Shannon index by 54% in WYJ27. Both diversity indexes positively correlated with the contents of nitrogen, phosphorus, magnesium, and soluble sugar, and negatively correlated with the contents of starch and condensed tannins. The leaf-associated bacterial community composition significantly changed in both rice cultivars under E-O3. Moreover, the leaf-associated bacterial communities in NG5055 were more sensitive to E-O3 than those in WYJ27. The chemical properties explained 70% and 98% of variations in the phyllosphere and endosphere bacterial communities, respectively, suggesting a predominant role of chemical status for the endospheric bacterial community. Most variation (57.3%) in the endosphere bacterial community assembly was explained by phosphorus. Gammaproteobacteria and Pantoea were found to be the most abundant class (63-76%) and genus (38-48%) in the phyllosphere and endosphere, respectively. E-O3 significantly increased the relative abundance of Bacteroidetes in the phyllosphere bacterial community and decreased the relative abundance of Gammaproteobacteria in the endophytic community. In conclusion, elevated O3 increased the diversity of bacterial communities of leaf phyllosphere and endosphere, and leaf chemical properties had a more pronounced effect on the endosphere bacterial community.
Collapse
Affiliation(s)
- Qi Wang
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanyuan Liu
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Su
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cheng Cheng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bo Shang
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
30
|
Lumibao CY, Torres Martínez L, Megonigal JP, Van Bael SA, Blum MJ. Microbial mediation of salinity stress response varies by plant genotype and provenance over time. Mol Ecol 2022; 31:4571-4585. [DOI: 10.1111/mec.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Candice Y. Lumibao
- University of Tennessee Department of Ecology & Evolutionary Biology Knoxville TN USA
- Texas A&M University – Corpus Christi, Department of Life Sciences Corpus Christi Texas USA
| | | | | | - Sunshine A. Van Bael
- Tulane University Department of Ecology & Evolutionary Biology New Orleans LA USA
| | - Michael J. Blum
- University of Tennessee Department of Ecology & Evolutionary Biology Knoxville TN USA
| |
Collapse
|
31
|
Atala C, Acuña-Rodríguez IS, Torres-Díaz C, Molina-Montenegro MA. Fungal endophytes improve the performance of host plants but do not eliminate the growth/defence trade-off. THE NEW PHYTOLOGIST 2022; 235:384-387. [PMID: 35546483 DOI: 10.1111/nph.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, 3420000, Chile
| | - Ian S Acuña-Rodríguez
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, 3460000, Chile
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Marco A Molina-Montenegro
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, 3460000, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, 1780000, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, 3460000, Chile
| |
Collapse
|
32
|
Wooliver R, Vtipilthorpe EE, Wiegmann AM, Sheth SN. A viewpoint on ecological and evolutionary study of plant thermal performance curves in a warming world. AOB PLANTS 2022; 14:plac016. [PMID: 35615255 PMCID: PMC9126585 DOI: 10.1093/aobpla/plac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/06/2023]
Abstract
We can understand the ecology and evolution of plant thermal niches through thermal performance curves (TPCs), which are unimodal, continuous reaction norms of performance across a temperature gradient. Though there are numerous plant TPC studies, plants remain under-represented in syntheses of TPCs. Further, few studies quantify plant TPCs from fitness-based measurements (i.e. growth, survival and reproduction at the individual level and above), limiting our ability to draw conclusions from the existing literature about plant thermal adaptation. We describe recent plant studies that use a fitness-based TPC approach to test fundamental ecological and evolutionary hypotheses, some of which have uncovered key drivers of climate change responses. Then, we outline three conceptual questions in ecology and evolutionary biology for future plant TPC studies: (i) Do populations and species harbour genetic variation for TPCs? (ii) Do plant TPCs exhibit plastic responses to abiotic and biotic factors? (iii) Do fitness-based TPCs scale up to population-level thermal niches? Moving forward, plant ecologists and evolutionary biologists can capitalize on TPCs to understand how plasticity and adaptation will influence plant responses to climate change.
Collapse
Affiliation(s)
- Rachel Wooliver
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Emma E Vtipilthorpe
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Amelia M Wiegmann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
33
|
Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A. Microbe-Mediated Thermotolerance in Plants and Pertinent Mechanisms- A Meta-Analysis and Review. Front Microbiol 2022; 13:833566. [PMID: 35330772 PMCID: PMC8940538 DOI: 10.3389/fmicb.2022.833566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial symbionts can mediate plant stress responses by enhancing thermal tolerance, but less attention has been paid to measuring these effects across plant-microbe studies. We performed a meta-analysis of published studies as well as discussed with relevant literature to determine how the symbionts influence plant responses under non-stressed versus thermal-stressed conditions. As compared to non-inoculated plants, inoculated plants had significantly higher biomass and photosynthesis under heat stress conditions. A significantly decreased accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) indicated a lower oxidation level in the colonized plants, which was also correlated with the higher activity of catalase, peroxidase, glutathione reductase enzymes due to microbial colonization under heat stress. However, the activity of superoxide dismutase, ascorbate oxidase, ascorbate peroxidase, and proline were variable. Our meta-analysis revealed that microbial colonization influenced plant growth and physiology, but their effects were more noticeable when their host plants were exposed to high-temperature stress than when they grew under ambient temperature conditions. We discussed the mechanisms of microbial conferred plant thermotolerance, including at the molecular level based on the available literature. Further, we highlighted and proposed future directions toward exploring the effects of symbionts on the heat tolerances of plants for their implications in sustainable agricultural production.
Collapse
Affiliation(s)
| | - Mst. I. Zahan
- Scientific Officer (Breeding Division), Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Mohammad S. Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad S. A. Sarker
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute (BJRI), Dhaka, Bangladesh
| | - Anindita Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
34
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
35
|
Chen P, He W, Shen Y, Zhu L, Yao X, Sun R, Dai C, Sun B, Chen Y. Interspecific Neighbor Stimulates Peanut Growth Through Modulating Root Endophytic Microbial Community Construction. FRONTIERS IN PLANT SCIENCE 2022; 13:830666. [PMID: 35310651 PMCID: PMC8928431 DOI: 10.3389/fpls.2022.830666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Plants have evolved the capability to respond to interspecific neighbors by changing morphological performance and reshaping belowground microbiota. However, whether neighboring plants influence the microbial colonization of the host's root and further affect host performance is less understood. In this study, using 16S rRNA high-throughput sequencing of peanut (Arachis hypogaea L.) roots from over 5 years of mono- and intercropping field systems, we found that neighbor maize can alter the peanut root microbial composition and re-shape microbial community assembly. Interspecific maize coexistence increased the colonization of genera Bradyrhizobium and Streptomyces in intercropped peanut roots. Through endophytic bacterial isolation and isolate back inoculation experiments, we demonstrated that the functional potentials of available nutrient accumulation and phytohormones production from Bradyrhizobium and Streptomyces endowed them with the ability to act as keystones in the microbial network to benefit peanut growth and production with neighbor competition. Our results support the idea that plants establish a plant-endophytic microbial holobiont through root selective filtration to enhance host competitive dominance, and provide a promising direction to develop modern diversified planting for harnessing crop microbiomes for the promotion of crop growth and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Pin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiangzhi Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chuanchao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Yan Chen,
| |
Collapse
|
36
|
The Current Scenario of the Distribution, Functionality, and Ecosystemic Role of the Arbuscular Mycorrhizal Symbiosis in Chile. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Juurakko CL, diCenzo GC, Walker VK. Cold Acclimation in Brachypodium Is Accompanied by Changes in Above-Ground Bacterial and Fungal Communities. PLANTS (BASEL, SWITZERLAND) 2021; 10:2824. [PMID: 34961295 PMCID: PMC8704670 DOI: 10.3390/plants10122824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023]
Abstract
Shifts in microbiota undoubtedly support host plants faced with abiotic stress, including low temperatures. Cold-resistant perennials prepare for freeze stress during a period of cold acclimation that can be mimicked by transfer from growing conditions to a reduced photoperiod and a temperature of 4 °C for 2-6 days. After cold acclimation, the model cereal, Brachypodium distachyon, was characterized using metagenomics supplemented with amplicon sequencing (16S ribosomal RNA gene fragments and an internal transcribed spacer region). The bacterial and fungal rhizosphere remained largely unchanged from that of non-acclimated plants. However, leaf samples representing bacterial and fungal communities of the endo- and phyllospheres significantly changed. For example, a plant-beneficial bacterium, Streptomyces sp. M2, increased more than 200-fold in relative abundance in cold-acclimated leaves, and this increase correlated with a striking decrease in the abundance of Pseudomonas syringae (from 8% to zero). This change is of consequence to the host, since P. syringae is a ubiquitous ice-nucleating phytopathogen responsible for devastating frost events in crops. We posit that a responsive above-ground bacterial and fungal community interacts with Brachypodium's low temperature and anti-pathogen signalling networks to help ensure survival in subsequent freeze events, underscoring the importance of inter-kingdom partnerships in the response to cold stress.
Collapse
Affiliation(s)
- Collin L. Juurakko
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
- Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
38
|
Assessing Crop Water Requirements and a Case for Renewable-Energy-Powered Pumping System for Wheat, Cotton, and Sorghum Crops in Sudan. ENERGIES 2021. [DOI: 10.3390/en14238133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change is changing global weather patterns, with an increase in droughts expected to impact crop yields due to water scarcity. Crops can be provided with water via underground pumping systems to mitigate water shortages. However, the energy required to pump water tends to be expensive and hazardous to the environment. This paper explores different sites in Sudan to assess the crop water requirements as the first stage of developing renewable energy sources based on water pumping systems. The crop water requirements are calculated for different crops using the CROPWAT and CLIMWAT simulation tools from the Food and Agriculture Organization (FAO) of the United Nations. Further, the crop water requirements are translated into electrical energy requirements. Accurate calculations of the energy needed will help in developing cost-effective energy systems that can help in improving yields and reducing carbon emissions. The results suggest that the northern regions tend to have higher energy demands and that the potential for renewable energy should be explored in these regions, which are more susceptible to drought and where crops tend to be under higher stress due to adverse climate conditions.
Collapse
|
39
|
Morales-Quintana L, Barrera A, Hereme R, Jara K, Rivera-Mora C, Valenzuela-Riffo F, Gundel PE, Pollmann S, Ramos P. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. Exposed to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:465-476. [PMID: 34717178 DOI: 10.1016/j.plaphy.2021.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédica, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, 3467987, Chile
| | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Karla Jara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Pedro E Gundel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - CONICET), Argentina
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
40
|
Ueno AC, Gundel PE, Ghersa CM, Agathokleous E, Martínez-Ghersa MA. Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution. ENVIRONMENTAL RESEARCH 2021; 202:111773. [PMID: 34324850 DOI: 10.1016/j.envres.2021.111773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone is among the global change factors that pose a threat to plants and microorganisms. Symbiotic microorganisms can assist plants to cope with stress, but their role in the tolerance of plants to ozone is poorly understood. Here, we subjected endophyte-symbiotic and non-symbiotic plants of Lolium multiflorum, an annual species widely distributed in temperate grasslands, to high and low (i.e., charcoal-filtered air) ozone levels at vegetative and reproductive phases. Exposure to high ozone reduced leaf photochemical efficiency and greenness in both symbiotic and non-symbiotic plants. However, ozone-induced oxidative damage at biochemical level (i.e., lipid peroxidation) was mostly detected in symbiotic plants. Ozone exposure at the vegetative phase did not affect the reproductive investment in seeds, indicating full recovery from stress. Ozone exposure at the reproductive phase reduced biomass and seed production only in symbiotic plants indicating a symbiont-associated cost. At low ozone, endophyte-symbiotic plants showed a steeper slope in the relationship between seed number and seed weight (i.e., a number-weight trade-off) compared to non-symbiotic plants. However, when plants were treated at the reproductive phase, ozone increased the imbalance between seed number and seed weight in both endophyte-symbiotic and non-symbiotic plants. Plants with endophytes at the reproductive stage produced fewer seeds, which were not compensated by increased seed weight. Thus, fungal mycelium growing within ovaries or ozone-induced antioxidant systems may result in costs that finally depress the fitness of plants. Despite ozone pollution could destabilize plant-endophyte mutualisms and render them dysfunctional, other endophyte-mediated benefits (e.g., resistance to herbivory, tolerance to drought) could over-compensate these losses and explain the high incidence of the symbiosis in nature.
Collapse
Affiliation(s)
- Andrea C Ueno
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina.
| | - Pedro E Gundel
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina; Instituto Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Claudio M Ghersa
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, China
| | | |
Collapse
|
41
|
Gallego-Lobillo P, Doyagüez EG, Jimeno ML, Villamiel M, Hernandez-Hernandez O. Enzymatic Synthesis and Structural Characterization of Novel Trehalose-Based Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12541-12553. [PMID: 34636545 PMCID: PMC8554766 DOI: 10.1021/acs.jafc.1c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Trehalose, α-d-glucopyranosyl-(1↔1)-α-d-glucopyranoside, is a disaccharide with multiple effects on the human body. Synthesis of new trehalose derivatives was investigated through transgalactosylation reactions using β-galactosidase from four different species. β-galactosidases from Bacillus circulans (B. circulans) and Aspergillus oryzae (A. oryzae) were observed to be the best biocatalysts, using lactose as the donor and trehalose as the acceptor. Galactosyl derivatives of trehalose were characterized using nuclear magnetic resonance spectroscopy. Trisaccharides were the most abundant oligosaccharides obtained followed by the tetrasaccharide fraction (19.5% vs 8.2% carbohydrates). Interestingly, the pentasaccharide [β-Galp-(1→4)]3-trehalose was characterized for the first time. Greater oligosaccharide production was observed using β-galactosidase from B. circulans than that obtained from A. oryzae, where the main structures were based on galactose monomers linked by β-(1→6) and β-(1→4) bonds with trehalose in the ending. These results indicate the feasibility of commercially available β-galactosidases for the synthesis of trehalose-derived oligosaccharides, which might have functional properties, excluding the adverse effects of the single trehalose.
Collapse
Affiliation(s)
- Pablo Gallego-Lobillo
- Institute
of Food Science Research (CIAL), Spanish Council of Scientific Research,
(CSIC)−Autonomous University of Madrid (UAM), Campus de la
Universidad Autónoma de Madrid, c/Nicolás Cabrera, 9, Madrid E-28049, Spain
| | - Elisa G. Doyagüez
- Centro
de Química Orgánica “Lora Tamayo” (CSIC), c/Juan de la Cierva, 3, Madrid E-28006, Spain
| | - María Luisa Jimeno
- Centro
de Química Orgánica “Lora Tamayo” (CSIC), c/Juan de la Cierva, 3, Madrid E-28006, Spain
| | - Mar Villamiel
- Institute
of Food Science Research (CIAL), Spanish Council of Scientific Research,
(CSIC)−Autonomous University of Madrid (UAM), Campus de la
Universidad Autónoma de Madrid, c/Nicolás Cabrera, 9, Madrid E-28049, Spain
| | - Oswaldo Hernandez-Hernandez
- Institute
of Food Science Research (CIAL), Spanish Council of Scientific Research,
(CSIC)−Autonomous University of Madrid (UAM), Campus de la
Universidad Autónoma de Madrid, c/Nicolás Cabrera, 9, Madrid E-28049, Spain
| |
Collapse
|
42
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
43
|
Ueno AC, Gundel PE, Molina-Montenegro MA, Ramos P, Ghersa CM, Martínez-Ghersa MA. Getting ready for the ozone battle: Vertically transmitted fungal endophytes have transgenerational positive effects in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2716-2728. [PMID: 33721328 DOI: 10.1111/pce.14047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.
Collapse
Affiliation(s)
- Andrea C Ueno
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Claudio M Ghersa
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
44
|
Zhou Y, Sommer ML, Hochholdinger F. Cold response and tolerance in cereal roots. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab334. [PMID: 34270744 DOI: 10.1093/jxb/erab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 05/02/2023]
Abstract
Cold stress adversely affects plant growth and is a limiting factor in crop productivity. Temperature volatility as a consequence of climate change will increase the effects of cold stress on crop cultivation. Low temperatures frequently occur early after planting in temperate climates and severely affect root development in cereals. In this review we address the question how cereal root systems respond to cold on different scales. First, we summarize the morphological, physiological and cellular responses of cereal roots to cold stress and how these processes are regulated by phytohormones. Subsequently, we highlight the status of the genetic and molecular dissection of cold tolerance with emphasis on the role of cold-responsive genes in improving cold tolerance in cereal roots. Finally, we discuss the role of beneficial microorganisms and mineral nutrients in ameliorating the effects of cold stress in cereal roots. A comprehensive knowledge of the molecular mechanisms underlying cold tolerance will ensure yield stability by enabling the generation of cold-tolerant crop genotypes.
Collapse
Affiliation(s)
- Yaping Zhou
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Mauritz Leonard Sommer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
45
|
Jain R, Bhardwaj P, Pandey SS, Kumar S. Arnebia euchroma, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves. Front Microbiol 2021; 12:696667. [PMID: 34335527 PMCID: PMC8322769 DOI: 10.3389/fmicb.2021.696667] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
The endophytic mutualism of plants with microorganisms often leads to several benefits to its host including plant health and survival under extreme environments. Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme cold and arid environments in the Himalayas. The present study was conducted to decipher the cultivable endophytic diversity associated with the leaf and root tissues of A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated and characterized at the molecular level. Among these, Proteobacteria was the most abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%) and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%) dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal communities as compared to root tissues. The abilities of endophytes to display plant growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were also investigated under in vitro conditions. Of all the endophytes, 21.51% produced ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34% produced siderophores. Six bacteria and one fungal endophyte displayed all the five PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial endophytes with multiple growth-promoting traits. These endophytes can be used for improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.
Collapse
Affiliation(s)
- Rahul Jain
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Priyanka Bhardwaj
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
46
|
Wei X, Jiang F, Han B, Zhang H, Huang D, Shao X. New insight into the divergent responses of plants to warming in the context of root endophytic bacterial and fungal communities. PeerJ 2021; 9:e11340. [PMID: 34123582 PMCID: PMC8164412 DOI: 10.7717/peerj.11340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
Plant adaptation under climate changes is critical to the maintenance of terrestrial ecosystem structure and function. Studying the response of the endophytic community to climate warming is a novel way to reveal the mechanism of host environmental adaptability because of the prominent role endophytes play in host nutrient acquisition and stress tolerance. However, host performance was generally neglected in previous relevant research, which limits our understanding of the relationships between the endophytic community and host responses to climate warming. The present study selected two plants with different responses to climate warming. Elymus nutans is more suitable for growing in warm environments at low altitude compared to Kobresia pygmaea. K. pygmaea and E. nutans were sampled along an altitude gradient in the natural grassland of Qinghai-Tibet Plateau, China. Root endophytic bacterial and fungal communities were analyzed using high throughput sequencing. The results revealed that hosts growing in more suitable habitats held higher endophytic fungal diversity. Elevation and host identity significantly affected the composition of the root endophytic bacterial and fungal community. 16S rRNA functional prediction demonstrated that hosts that adapted to lower temperatures recruited endophytic communities with higher abundance of genes related to cold resistance. Hosts that were more suitable for warmer and drier environments recruited endophytes with higher abundance of genes associated with nutrient absorption and oxidation resistance. We associated changes in the endophytic community with hosts adaptability to climate warming and suggested a synchronism of endophytic communities and hosts in environmental adaptation.
Collapse
Affiliation(s)
- Xiaoting Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fengyan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hui Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Ding Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Restoration Ecology of Cold Area in Qinghai province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, China
| |
Collapse
|
47
|
Zou YN, Wu QS, Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:50-57. [PMID: 32745347 DOI: 10.1111/plb.13161] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 05/21/2023]
Abstract
With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems. AMF produce a limited oxidative burst in the arbuscule-containing root cortical cells. Similar to plants, AMF modulate a fungal network in enzymatic (e.g. GmarCuZnSOD and GintSOD1) and non-enzymatic (e.g. GintMT1, GinPDX1 and GintGRX1) antioxidant defence systems to scavenge ROS. Plants also respond to mycorrhization to enhance stress tolerance via metabolites and the induction of genes. The present review provides an overview of the network of plant - arbuscular mycorrhizal fungus dialogue in mitigating oxidative stress. Future studies should involve identifying genes and transcription factors from both AMF and host plants in response to drought stress, and utilize transcriptomics, proteomics and metabolomics to clarify a clear dialogue mechanism between plants and AMF in mitigating oxidative burst.
Collapse
Affiliation(s)
- Y-N Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Q-S Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - K Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
48
|
Torres-Díaz C, Valladares MA, Acuña-Rodríguez IS, Ballesteros GI, Barrera A, Atala C, Molina-Montenegro MA. Symbiotic Interaction Enhances the Recovery of Endangered Tree Species in the Fragmented Maulino Forest. FRONTIERS IN PLANT SCIENCE 2021; 12:663017. [PMID: 33936153 PMCID: PMC8081837 DOI: 10.3389/fpls.2021.663017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Beneficial plant-associated microorganisms, such as fungal endophytes, are key partners that normally improve plant survival under different environmental stresses. It has been shown that microorganisms from extreme environments, like those associated with the roots of Antarctica plants, can be good partners to increase the performance of crop plants and to restore endangered native plants. Nothofagus alessandrii and N. glauca, are among the most endangered species of Chile, restricted to a narrow and/or limited distributional range associated mainly to the Maulino forest in Chile. Here we evaluated the effect of the inoculation with a fungal consortium of root endophytes isolated from the Antarctic host plant Colobanthus quitensis on the ecophysiological performance [photosynthesis, water use efficiency (WUE), and growth] of both endangered tree species. We also, tested how Antarctic root-fungal endophytes could affect the potential distribution of N. alessandrii through niche modeling. Additionally, we conducted a transplant experiment recording plant survival on 2 years in order to validate the model. Lastly, to evaluate if inoculation with Antarctic endophytes has negative impacts on native soil microorganisms, we compared the biodiversity of fungi and bacterial in the rhizospheric soil of transplanted individuals of N. alessandrii inoculated and non-inoculated with fungal endophytes. We found that inoculation with root-endophytes produced significant increases in N. alessandrii and N. glauca photosynthetic rates, water use efficiencies and cumulative growth. In N. alessandrii, seedling survival was significantly greater on inoculated plants compared with non-inoculated individuals. For this species, a spatial distribution modeling revealed that, inoculation with root-fungal endophytes could potentially increase the current distributional range by almost threefold. Inoculation with root-fungal endophytes, did not reduce native rhizospheric microbiome diversity. Our results suggest that the studied consortium of Antarctic root-fungal endophytes improve the ecophysiological performance as well as the survival of inoculated trees and can be used as a biotechnological tool for the restoration of endangered tree species.
Collapse
Affiliation(s)
- Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Moisés A. Valladares
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | | | | | - Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Cristian Atala
- Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Facultad de Ciencias del Mar, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
49
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
50
|
Jiang W, Pan R, Buitrago S, Wu C, Abdelaziz ME, Oelmüller R, Zhang W. Transcriptome analysis of Arabidopsis reveals freezing-tolerance related genes induced by root endophytic fungus Piriformospora indica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:189-201. [PMID: 33707862 PMCID: PMC7907345 DOI: 10.1007/s12298-020-00922-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 05/05/2023]
Abstract
UNLABELLED Freezing stress is a serious environmental factor that obstructs plant development. The root endophytic fungus Piriformospora indica has proved to be effective to confer abiotic stress tolerance to host plants. To investigate how P. indica improves freezing tolerance, we compared the expression profiles of P. indica-colonized and uncolonized Arabidopsis seedlings either exposed to freezing stress or not. Nearly 24 million (93.5%) reads were aligned on the Arabidopsis genome. 634 genes were differentially expressed between colonized and uncolonized Arabidopsis exposed to freezing stress. Interestingly, 193 Arabidopsis genes did not respond to freezing stress but were up-regulated by P. indica under freezing stress. Freezing stress-responsive genes encoded various members of the WRKY, ERF, bHLH, HSF, MYB and NAC transcription factor families. The qRT-PCR analyses confirmed the high-throughput sequencing results for 28 genes. Functional enrichment analysis indicated that the fungus mainly controls genes for freezing-stress related proteins involved in lipid and ion transport, metabolism pathways and phytohormone signaling. Our findings identified novel target genes of P. indica in freezing-stress exposed plants and highlight the benefits of the endophyte for plants exposed to a less investigated environmental threat. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-020-00922-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Sebastian Buitrago
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | | | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, 07737 Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|