1
|
Trucco F, Lizio A, Roma E, di Bari A, Salmin F, Albamonte E, Casiraghi J, Pozzi S, Becchiati S, Antonaci L, Salvalaggio A, Catteruccia M, Tosi M, Marinella G, Danti FR, Bruschi F, Veneruso M, Parravicini S, Fiorillo C, Berardinelli A, Pini A, Moroni I, Astrea G, Battini R, D’Amico A, Ricci F, Pane M, Mercuri EM, Johnson NE, Sansone VA. Association between Reported Sleep Disorders and Behavioral Issues in Children with Myotonic Dystrophy Type 1-Results from a Retrospective Analysis in Italy. J Clin Med 2024; 13:5459. [PMID: 39336946 PMCID: PMC11432637 DOI: 10.3390/jcm13185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Sleep disorders have been poorly described in congenital (CDM) and childhood (ChDM) myotonic dystrophy despite being highly burdensome. The aims of this study were to explore sleep disorders in a cohort of Italian CDM and ChDM and to assess their association with motor and respiratory function and disease-specific cognitive and behavioral assessments. Methods: This was an observational multicenter study. Reported sleep quality was assessed using the Pediatric Daytime Sleepiness Scale (PDSS) and Pediatric Sleep Questionnaire (PSQ). Sleep quality was correlated to motor function (6 min walk test, 6MWT and grip strength; pulmonary function (predicted Forced Vital Capacity%, FVC% pred.); executive function assessed by BRIEF-2; autism traits assessed by Autism Spectrum Screening Questionnaire (ASSQ) and Repetitive Behavior Scale-revised (RBS-R); Quality of life (PedsQL) and disease burden (Congenital Childhood Myotonic Dystrophy Health Index, CCMDHI). Results: Forty-six patients were included, 33 CDM and 13 ChDM, at a median age of 10.4 and 15.1 years. Daytime sleepiness and disrupted sleep were reported by 30% children, in both subgroups of CDM and ChDM. Daytime sleepiness correlated with autism traits in CDM (p < 0.05). Disrupted sleep correlated with poorer executive function (p = 0.04) and higher disease burden (p = 0.03). Conclusions: Sleep issues are a feature of both CDM and ChDM. They correlate with behavioral issues and impact on disease burden.
Collapse
Affiliation(s)
- Federica Trucco
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
- Department of Neurorehabilitation, University of Milan, 20122 Milan, Italy
- Paediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genoa, Italy
| | - Andrea Lizio
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Elisabetta Roma
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Alessandra di Bari
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Francesca Salmin
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Emilio Albamonte
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Jacopo Casiraghi
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Susanna Pozzi
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Stefano Becchiati
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Laura Antonaci
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Anna Salvalaggio
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy; (A.S.); (F.R.)
| | - Michela Catteruccia
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Michele Tosi
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
| | - Federica R. Danti
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Fabio Bruschi
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Marco Veneruso
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini and DINOGMI, University of Genova, 16132 Genova, Italy; (M.V.); (C.F.)
| | - Stefano Parravicini
- Child and Adolescent Neuromuscular Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.P.); (A.B.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Fiorillo
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini and DINOGMI, University of Genova, 16132 Genova, Italy; (M.V.); (C.F.)
| | - Angela Berardinelli
- Child and Adolescent Neuromuscular Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.P.); (A.B.)
| | - Antonella Pini
- Pediatric Neuromuscular Unit, UOC Neuropsichiatria dell’età Pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Adele D’Amico
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Federica Ricci
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy; (A.S.); (F.R.)
| | - Marika Pane
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Eugenio M. Mercuri
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Nicholas E. Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Valeria A. Sansone
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
- Department of Neurorehabilitation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
2
|
Garmendia J, Labayru G, Souto Barreto PD, Vergara I, de Munain AL, Sistiaga A. Common Characteristics Between Frailty and Myotonic Dystrophy Type 1: A Narrative Review. Aging Dis 2024:AD.2024.0950. [PMID: 39325937 DOI: 10.14336/ad.2024.0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder often considered a model of accelerated aging due to the early appearance of certain age-related clinical manifestations and cellular and molecular aging markers. Frailty, a state of vulnerability related to aging, has been recently studied in neurological conditions but has received considerably less attention in neuromuscular disorders. This narrative review aims to describe 1) the common characteristics between Fried's frailty phenotype criteria (muscular weakness, slow gait speed, weight loss, exhaustion/fatigue, and low physical activity) and DM1, and 2) the psychological and social factors potentially contributing to frailty in DM1. This review gathered evidence suggesting that DM1 patients meet four of the five frailty phenotype criteria. Additionally, longitudinal studies report the deterioration of these criteria over time in DM1. Patients also exhibit psychological/cognitive and social factors that might contribute to frailty. Monitoring frailty criteria in the DM1 population could help to implement timely preventions and interventions to reduce the disease burden and severity of frailty symptoms.
Collapse
Affiliation(s)
- Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Philipe de Souto Barreto
- Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- CERPOP UMR 1295, Inserm, Université Paul Sabatier, Toulouse, France
| | - Itziar Vergara
- Osakidetza Health Care Directorate, PC-IHO Research Unit of Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
- Primary Care Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Spain
| | - Adolfo López de Munain
- Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
3
|
Winblad S, Eliasdottir O, Nordström S, Lindberg C. Neurocognitive disorder in Myotonic dystrophy type 1. Heliyon 2024; 10:e30875. [PMID: 38778932 PMCID: PMC11109806 DOI: 10.1016/j.heliyon.2024.e30875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cognitive deficits and abnormal cognitive aging have been associated with Myotonic dystrophy type 1 (DM1), but the knowledge of the extent and progression of decline is limited. The aim of this study was to examine the prevalence of signs of neurocognitive disorder (mild cognitive impairment and dementia) in adult patients with DM1. A total of 128 patients with childhood, juvenile, adult, and late onset DM1 underwent a screening using the Montreal Cognitive Assessment (MoCA). Demographic and clinical information was collected. The results revealed that signs of neurocognitive disorder were relatively rare among the participants. However, 23.8 % of patients with late onset DM1 (aged over 60 years) scored below MoCA cut-off (=23), and this group also scored significantly worse compared to patients with adult onset. Age at examination were negatively correlated with MoCA scores, although it only explained a small portion of the variation in test results. Other demographic and clinical factors showed no association with MoCA scores. In conclusion, our findings indicate a low prevalence of signs of neurocognitive disorder in adult patients with DM1, suggesting that cognitive deficits rarely progress to severe disorders over time. However, the performance of patients with late onset DM1 suggests that this phenotype warrants further exploration in future studies, including longitudinal and larger sample analyses.
Collapse
Affiliation(s)
- Stefan Winblad
- Icon Lab, Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Olöf Eliasdottir
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sara Nordström
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Ørstavik K, Solbakken G, Rasmussen M, Sanaker PS, Fossmo HL, Bryne E, Knutsen-Øy T, Elgsås T, Heiberg A. Myotonic dystrophy type 1 - a multiorgan disorder. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2024; 144:23-0687. [PMID: 38651711 DOI: 10.4045/tidsskr.23.0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Myotonic dystrophy type 1 is an autosomal dominant, inherited multiorgan disorder that can affect people of all ages. It is the most prevalent inherited muscular disease in adults. Late diagnosis points to limited knowledge among the medical community that symptoms other than typical muscular symptoms can dominate. The condition often worsens with each generation and some families are severely affected. Significantly delayed diagnosis means a risk of more serious development of the disorder and inadequate symptomatic treatment. We hope that this clinical review article may lead to more rapid diagnosis and better follow-up of this patient group.
Collapse
Affiliation(s)
- Kristin Ørstavik
- Seksjon for sjeldne nevromuskulære tilstander, Oslo universitetssykehus, og, Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet
| | - Gro Solbakken
- Avdeling for nevrologi, revmatologi og rehabilitering, Drammen sykehus, Vestre Viken
| | - Magnhild Rasmussen
- Barneavdeling for nevrofag, Oslo universitetssykehus, og, Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet
| | | | - Hanne Ludt Fossmo
- Enhet for medfødte og arvelige nevromuskulære tilstander, Oslo universitetssykehus, Rikshospitalet, og, Vikersund Kurbad
| | - Einar Bryne
- Barnehabiliteringen, Sykehuset i Vestfold, Tønsberg
| | | | | | | |
Collapse
|
5
|
Wu Y, Wei Q, Lin J, Shang H, Ou R. Cognitive impairment, neuroimaging abnormalities, and their correlations in myotonic dystrophy: a comprehensive review. Front Cell Neurosci 2024; 18:1369332. [PMID: 38638300 PMCID: PMC11024338 DOI: 10.3389/fncel.2024.1369332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Myotonic dystrophy (DM) encompasses a spectrum of neuromuscular diseases characterized by myotonia, muscle weakness, and wasting. Recent research has led to the recognition of DM as a neurological disorder. Cognitive impairment is a central nervous system condition that has been observed in various forms of DM. Neuroimaging studies have increasingly linked DM to alterations in white matter (WM) integrity and highlighted the relationship between cognitive impairment and abnormalities in WM structure. This review aims to summarize investigations into cognitive impairment and brain abnormalities in individuals with DM and to elucidate the correlation between these factors and the potential underlying mechanisms contributing to these abnormalities.
Collapse
Affiliation(s)
| | | | | | | | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mijajlovic M, Bozovic I, Pavlovic A, Rakocevic-Stojanovic V, Gluscevic S, Stojanovic A, Basta I, Meola G, Peric S. Transcranial brain parenchyma sonographic findings in patients with myotonic dystrophy type 1 and 2. Heliyon 2024; 10:e26856. [PMID: 38434309 PMCID: PMC10907768 DOI: 10.1016/j.heliyon.2024.e26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) and 2 (DM2) are genetically determined progressive muscular disorders with multisystemic affection, including brain involvement. Transcranial sonography (TCS) is a reliable diagnostic tool for the investigation of deep brain structures. We sought to evaluate TCS findings in genetically confirmed DM1 and DM2 patients, and further correlate these results with patients' clinical features. Methods This cross-sectional study included 163 patients (102 DM1, 61 DM2). Echogenicity of the brainstem raphe (BR) and substantia nigra (SN) as well as the diameter of the third ventricle (DTV) were assessed by TCS. Patients were evaluated using the Hamilton Depression Rating Scale, Fatigue Severity Scale and Daytime Sleepiness Scale. Results SN hyperechogenicity was observed in 40% of DM1 and 34% of DM2 patients. SN hypoechogenicity was detected in 17% of DM1 and 7% of DM2 patients. BR hypoechogenicity was found in 36% of DM1 and 47% of DM2 subjects. Enlarged DTV was noted in 19% of DM1 and 15% of DM2 patients. Older, weaker, depressive, and fatigued DM1 patients were more likely to have BR hypoechogenicity (p < 0.05). DTV correlated with age and disease duration in DM1 (p < 0.01). In DM2 patients SN hyperechogenicity correlated with fatigue. Excessive daytime sleepiness was associated with hypoechogenic BR (p < 0.05) and enlarged DVT (p < 0.01) in DM2 patients. Conclusions TCS is an easy applicable and sensitive neuroimaging technique that could offer new information regarding several brainstem structures in DM1 and DM2. This may lead to better understanding of the pathogenesis of the brain involvement in DM with possible clinical implications.
Collapse
Affiliation(s)
- Milija Mijajlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivo Bozovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakocevic-Stojanovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Gluscevic
- Neurology Clinic, Clinical Center of Montenegro, Podgorica, Montenegro
| | | | - Ivana Basta
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Milan, Italy
| | - Stojan Peric
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Patel N, Berggren KN, Hung M, Bates K, Dixon MM, Bax K, Adams H, Butterfield RJ, Campbell C, Johnson NE. Neurobehavioral Phenotype of Children With Congenital Myotonic Dystrophy. Neurology 2024; 102:e208115. [PMID: 38359368 PMCID: PMC11384658 DOI: 10.1212/wnl.0000000000208115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES To describe the neurobehavioral phenotype of congenital myotonic dystrophy. Congenital myotonic dystrophy (CDM) is the most severe form of myotonic dystrophy, characterized by symptom presentation at birth and later, cognitive impairment, autistic features, and disordered sleep. METHODS The neurobehavioral phenotype was assessed in this cross-sectional study by a neuropsychological battery consisting of the Wechsler Preschool and Primary Scale of Intelligence, Third Edition, Weschler Intelligence Scale for Children, Fourth Edition, Vineland Adaptive Behavior Scale, Second Edition (Vineland-II), Behavior Rating Inventory of Executive Function including preschool and teacher reports, Autism Spectrum Screening Questionnaire, Social Communication Scale, and Repetitive Behavior Scale-Revised. Sleep quality was evaluated with the Pediatric Sleep Questionnaire and Pediatric Daytime Sleepiness Scale. RESULTS Fifty-five children with CDM, ages 5 weeks to 14 years, were enrolled. The mean age and (CTG)n repeats (±SD) were 6.4 ± 3.8 years and 1,263 ± 432, respectively. The mean IQ was 64.1 ± 14.9 on the Weschler scales with 65.6% of participants falling in the extremely low range for IQ. Adaptive functioning was significantly low for 57.1% of participants (n = 20). Caregiver report of executive functioning indicated 23.1% (9/39) of participants had clinically elevated levels of dysfunction, though teacher report was discrepant and indicated 53.3% of participants with CDM fell in this range (8/15). Spearman correlations were strongly positive (p ≤ 0.05) for estimated full scale IQ, overall adaptive functioning and with daily living and socialization domain standard scores on the Vineland-II ranging from r = 0.719 to r = 0.849 for all ages. Aspects of executive function were directly related to features of autism and sleep quality. Social communication was inversely related to all aspects of daily functioning, except communication, and directly related to aspects of autism behavior. DISCUSSION Depressed IQ, adaptive skills, and executive functioning, poor sleep quality, and features of autism and altered social functioning individually describe different aspects of the neurobehavioral phenotype in CDM. These neurobehavioral and sleep measures could help quantitatively measure and assess the burden of cognitive impairment in CDM.
Collapse
Affiliation(s)
- Namita Patel
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Kiera N Berggren
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Man Hung
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Kameron Bates
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Melissa M Dixon
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Karen Bax
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Heather Adams
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Russell J Butterfield
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Craig Campbell
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| | - Nicholas E Johnson
- From the Department of Neurology (N.P.), University of Rochester Medical Center, NY; Departments of Neurology and Pediatrics (H.A.), University of Rochester School of Medicine and Dentistry, NY; Department of Neurology and Center for Inherited Muscle Research (K.N.B., K. Bates, N.E.J.), Virginia Commonwealth University, Richmond; College of Dental Medicine (M.H.), Roseman University of Health Sciences, South Jordan, UT; Department of Pediatrics (M.M.D., R.J.B.), University of Utah, Salt Lake City; and Department of Psychology (K. Bax), and Department of Pediatrics (C.C.), London Children's Hospital, University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Koscik TR, van der Plas E, Long JD, Cross S, Gutmann L, Cumming SA, Monckton DG, Shields RK, Magnotta V, Nopoulos PC. Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1. Neuromuscul Disord 2023; 33:660-669. [PMID: 37419717 PMCID: PMC10529200 DOI: 10.1016/j.nmd.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023]
Abstract
Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.
Collapse
Affiliation(s)
- Timothy R Koscik
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Ellen van der Plas
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Biostatistics, College of Public Health, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Stephen Cross
- Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA
| | - Laurie Gutmann
- Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard K Shields
- Department of Radiology, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Vincent Magnotta
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Pater R, Garmendia J, Gallais B, Graham C, Voet N. 267th ENMC International workshop: psychological interventions for improving quality of life in slowly progressive neuromuscular disorders. Neuromuscul Disord 2023; 33:562-569. [PMID: 37331200 DOI: 10.1016/j.nmd.2023.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
This workshop aimed to develop recommendations for psychological interventions to support people living with slowly progressive neuromuscular disorders (NMD). The workshop comprised clinicians, researchers, people living with NMD and their relatives. First, participants considered the key psychological challenges presented by NMD and the impact of NMD on relationships and mental health. Later, several psychological approaches for enhancing well-being in NMD were described. The results of randomised controlled trials of Cognitive Behaviour Therapy and Acceptance and Commitment Therapy for improving fatigue, quality of life, and mood in adults with NMD were examined. Then the group considered ways to adapt therapies for cognitive impairments or neurodevelopmental differences that occur in some NMD, alongside ways to support children and adolescents with NMD and their family members. Based on the evidence from randomised controlled trials, carefully conducted observational studies, and the coherence of these data with the experience of those living with NMD, the group recommends that psychological interventions should be embedded in the routine clinical care offered to people living with NMD.
Collapse
Affiliation(s)
- Ronne Pater
- Klimmendaal, Rehabilitation Center, Arnhem, The Netherlands; Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology; Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Benjamin Gallais
- ÉCOBES - Research and Transfer, Cegep de Jonquière, Jonquière, Canada
| | | | - Nicoline Voet
- Klimmendaal, Rehabilitation Center, Arnhem, The Netherlands; Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Fortin J, Côté I, Gagnon C, Gallais B. Do classical and computerized cognitive tests have equal intrarater reliability in myotonic dystrophy type 1? Neuromuscul Disord 2023; 33:490-497. [PMID: 37209494 DOI: 10.1016/j.nmd.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic inherited neuromuscular disease leading to central nervous system symptoms, including cognitive impairments, among multiple other symptoms. However, information is presently lacking regarding the psychometric properties of neuropsychological tests and promising computerized cognitive tests, such as the Cambridge Neuropsychological Test Automated Battery (CANTABⓇ). This type of information is critical to improve clinical trial readiness and provide knowledge of DM1 natural history. The aims of the present study were (1) to document the intrarater reliability of classic paper-pencil tests assessing visuospatial working memory, cognitive flexibility, attention, episodic memory and apathy, and (2) to compare these findings with their equivalent computerized automated tests from the CANTABⓇ. Thirty participants were seen twice at four-week intervals. Results showed that the Stroop Color and Word Test (ICC = 0.741-0.869) and the Ruff 2 & 7 (ICC = 0.703-0.871) appear to be reliable paper-and-pencil tests in the DM1 population. For the CANTABⓇ, a similar observation was made for the Multitasking test (ICC = 0.588-0.792). Further studies should explore the applicability and concurrent validity of the CANTAB® and classic neuropsychological assessments in additional cohorts of DM1 patients.
Collapse
Affiliation(s)
- Julie Fortin
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Hôpital de Jonquière, Saguenay, QC, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle Côté
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Hôpital de Jonquière, Saguenay, QC, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Hôpital de Jonquière, Saguenay, QC, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche Charles-Le-Moyne, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, Hôpital de Jonquière, Saguenay, QC, Canada; ÉCOBES - Recherche et transfert, 2505, rue Saint-Hubert, Cégep de Jonquière, Saguenay, QC G7 × 7W2, Canada.
| |
Collapse
|
11
|
Garmendia J, Labayru G, Zulaica M, Villanúa J, López de Munain A, Sistiaga A. Shedding light on motor premanifest myotonic dystrophy type 1: A molecular, muscular and central nervous system follow-up study. Eur J Neurol 2023; 30:215-223. [PMID: 36256504 PMCID: PMC10092190 DOI: 10.1111/ene.15604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease that is characterized by heterogeneous manifestations. Although muscular impairment is central to DM1, a premanifest DM1 form has been proposed for those characterized by the absence of muscle signs in precursory phases. Nevertheless, subtle signs and/or symptoms related to other systems, such as the central nervous system (CNS), may emerge and progress gradually. This study aimed to validate the premanifest DM1 concept and to characterize and track affected individuals from a CNS centred perspective. METHODS Retrospective data of 120 participants (23 premanifest DM1, 25 manifest DM1 and 72 healthy controls) were analysed transversally and longitudinally (over 11.17 years). Compiled data included clinical, neuropsychological and neuroradiological (brain volume and white matter lesion, WML) measures taken at two time points. RESULTS Manifest DM1 showed significantly more molecular affectation, worse performance on neuropsychological domains, lower grey and white matter volumes and a different pattern of WMLs than premanifest DM1. The latter was slightly different from healthy controls regarding brain volume and WMLs. Additionally, daytime sleepiness and molecular expansion size explained 50% of the variance of the muscular deterioration at follow-up in premanifest individuals. CONCLUSIONS Premanifest DM1 individuals showed subtle neuroradiological alterations, which suggests CNS involvement early in the disease. Based on follow-up data, a debate emerges around the existence of a 'non-muscular DM1' subtype and/or a premanifest phase, as a precursory stage to other DM1 manifestations.
Collapse
Affiliation(s)
- Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBER, Centro de Investigación Biomédica en Red (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Miren Zulaica
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBER, Centro de Investigación Biomédica en Red (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Jorge Villanúa
- Osatek, Donostia University Hospital, Donostia-San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBER, Centro de Investigación Biomédica en Red (CIBERNED), Institute Carlos III, Madrid, Spain.,Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBER, Centro de Investigación Biomédica en Red (CIBERNED), Institute Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Fujino H, Suwazono S, Ueda Y, Kobayashi M, Nakayama T, Imura O, Matsumura T, Takahashi MP. Longitudinal Changes in Neuropsychological Functioning in Japanese Patients with Myotonic Dystrophy Type 1: A Five Year Follow-Up Study. J Neuromuscul Dis 2023; 10:1083-1092. [PMID: 37599536 PMCID: PMC10657671 DOI: 10.3233/jnd-230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy that causes various symptoms, including those of the central nervous system. Some studies have reported cognitive decline in patients with DM1, although the available evidence is limited. OBJECTIVE This study aimed to describe longitudinal differences in neuropsychological function in patients with DM1. METHODS A total of 66 Japanese adult patients with DM1 were investigated using a neuropsychological battery to assess several cognitive domains, including memory, processing speed, and executive function. The patients underwent neuropsychological evaluation approximately five years after baseline (Times 1 and 2). RESULTS Thirty-eight patients underwent a second neuropsychological evaluation. The participants in the Time 2 evaluation were younger than those who did not participate in Time 2. Patients showed a decline in the Mini-Mental State Examination, Trail Making Test (TMT), Block Design, and Symbol Digit Modalities Test at Time 2 (P < 0.05). Age at Time 1 was associated with a decline in TMT-A and TMT-B scores (rho = 0.57 and 0.45, respectively). CONCLUSION These results suggest a cognitive decline in patients with DM1 and warrant further investigation into the possible effects of age-related changes.
Collapse
Affiliation(s)
- Haruo Fujino
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Japan
- Graduate School of Human Sciences, Osaka University, Suita, Japan
| | - Shugo Suwazono
- Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, Ginowan, Japan
| | | | - Michio Kobayashi
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | | | - Osamu Imura
- Faculty of Social Sciences, Nara University, Nara, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Masanori P. Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
13
|
Jiang Q, Lin J, Li C, Hou Y, Shang H. Gray Matter Abnormalities in Myotonic Dystrophy Type 1: A Voxel-Wise Meta-Analysis. Front Neurol 2022; 13:891789. [PMID: 35873771 PMCID: PMC9301187 DOI: 10.3389/fneur.2022.891789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundA growing number of voxel-based morphometry (VBM) studies have demonstrated widespread gray matter (GM) abnormalities in myotonic dystrophy type 1 (DM1), but the findings are heterogeneous. This study integrated previous VBM studies to identify consistent GM changes in the brains of patients with DM1.MethodsSystematic retrieval was conducted in Web of Science, Pubmed, and Embase databases to identify VBM studies that met the inclusion requirements. Data were extracted. The Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software was used for meta-analysis of voxel aspects.ResultsA total of eight VBM studies were included, including 176 patients with DM1 and 198 healthy controls (HCs). GM volume in patients with DM1 was extensively reduced compared with HCs, including bilateral rolandic operculum, bilateral posterior central gyrus, bilateral precentral gyrus, right insula, right heschl gyrus, right superior temporal gyrus, bilateral supplementary motor area, bilateral middle cingulate gyrus/paracingulate gyrus, left paracentral lobule, and bilateral caudate nucleus. Meta-regression analysis found that regional GM abnormalities were associated with disease duration and Rey-Osterrieth Complex Figure (ROCF)-recall scores.ConclusionDM1 is not only a disease of muscle injury but also a multisystem disease involving brain motor and neuropsychiatric regions, providing a basis for the pathophysiological mechanism of DM1.
Collapse
|
14
|
Ricci FS, Vacchetti M, Brusa C, D'Alessandro R, La Rosa P, Martone G, Davico C, Vitiello B, Mongini TE. Cognitive, neuropsychological and emotional-behavioural functioning in a sample of children with myotonic dystrophy type 1. Eur J Paediatr Neurol 2022; 39:59-64. [PMID: 35679764 DOI: 10.1016/j.ejpn.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/05/2021] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
AIM An observational longitudinal study to evaluate the feasibility of assessing cognitive, neuropsychological and emotional-behavioural functioning in children with myotonic dystrophy type 1 (DM1), and to estimate prospectively changes in functioning over time. METHOD Ten DM1 patients, aged 1.5-16 years (mean 9.1), 5 with congenital DM1, and 5 with childhood DM1, were assessed with standardized measures of intellectual, neuropsychological, and emotional-behavioural functioning. For 6 patients, assessments were repeated 2 years later. RESULTS At baseline, intellectual disability was found both in the congenital and the childhood group. A clear-cut reduction of the mean and individual developmental/intelligence quotient after 2 years was demonstrated in re-tested patients. As regards to the neuropsychological aspects, the baseline evaluation identified impairments in visuospatial skills and attentional functions, with no clear trend observed after two years. In executive functions, no significant profile was identified even though impairments were detected in a few patients. At the emotional-behavioural assessment, scores in clinical range were found, but they remained heterogeneous and no trends could be recognized. CONCLUSION Several aspects of CNS functions in DM1 children deserve better definition and a longitudinal assessment. A comprehensive protocol should include cognitive, neuropsychological, emotional and behavioural assessment but larger longitudinal studies are needed to better evaluate the trajectories over time and inform practice.
Collapse
Affiliation(s)
- Federica S Ricci
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy.
| | - Martina Vacchetti
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy
| | - Chiara Brusa
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy
| | - Rossella D'Alessandro
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy
| | - Paola La Rosa
- Section of Child and Adolescent Neuropsychiatry, Health District TO3, Turin, Italy
| | - Gianluca Martone
- Department of Public Health and Pediatric Sciences, Section of Pediatric, University of Turin, Italy
| | - Chiara Davico
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Italy
| | - Tiziana E Mongini
- Department of Neuroscience, Section of Neurology 1, University of Turin, Italy
| |
Collapse
|
15
|
A validated WAIS-IV short-form to estimate intellectual functioning in Myotonic Dystrophy type-1. Neuromuscul Disord 2022; 32:749-753. [DOI: 10.1016/j.nmd.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
|
16
|
Laforce RJ, Dallaire-Théroux C, Racine AM, Dent G, Salinas-Valenzuela C, Poulin E, Cayer AM, Bédard-Tremblay D, Rouleau-Bonenfant T, St-Onge F, Schraen-Maschke S, Beauregard JM, Sergeant N, Puymirat J. Tau positron emission tomography, cerebrospinal fluid and plasma biomarkers of neurodegeneration, and neurocognitive testing: an exploratory study of participants with myotonic dystrophy type 1. J Neurol 2022; 269:3579-3587. [PMID: 35103843 PMCID: PMC9217820 DOI: 10.1007/s00415-022-10970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate Tau pathology using multimodal biomarkers of neurodegeneration and neurocognition in participants with myotonic dystrophy type 1 (DM1). METHODS We recruited twelve participants with DM1 and, for comparison, two participants with Alzheimer's Disease (AD). Participants underwent cognitive screening and social cognition testing using the Dépistage Cognitif de Québec (DCQ), among other tests. Biomarkers included Tau PET with [18F]-AV-1451, CSF (Aβ, Tau, phospho-Tau), and plasma (Aβ, Tau, Nf-L, GFAP) studies. RESULTS Of the twelve DM1 participants, seven completed the full protocol (Neurocognition 11/12; PET 7/12, CSF 9/12, plasma 12/12). Three DM1 participants were cognitively impaired (CI). On average, CI DM1 participants had lower scores on the DCQ compared to cognitively unimpaired (CU) DM1 participants (75.5/100 vs. 91.4/100) and were older (54 vs. 44 years old) but did not differ in years of education (11.3 vs. 11.1). The majority (6/7) of DM1 participants had no appreciable PET signal. Only one of the CI participants presented with elevated Tau PET SUVR in bilateral medial temporal lobes. This participant was the eldest and most cognitively impaired, and had the lowest CSF Aβ 1-42 and the highest CSF Tau levels, all suggestive of co-existing AD. CSF Tau and phospho-Tau levels were higher in the 3 CI compared to CU DM1 participants, but with a mean value lower than that typically observed in AD. Nf-L and GFAP were elevated in most DM1 participants (9/11 and 8/11, respectively). Finally, CSF phospho-Tau was significantly correlated with plasma Nf-L concentrations. CONCLUSIONS AND RELEVANCE We observed heterogenous cognitive and biomarker profiles in individuals with DM1. While some participants presented with abnormal PET and/or CSF Tau, these patterns were highly variable and only present in a small subset. Although DM1 may indeed represent a non-AD Tauopathy, the Tau-PET tracer used in this study was unable to detect an in vivo Tau DM1 signature in this small cohort. Interestingly, most DM1 participants presented with elevated plasma Nf-L and GFAP levels, suggestive of other, possibly related, central brain alterations which motivate further research. This pioneering study provides novel insights towards the potential relationship between biomarkers and neurocognitive deficits commonly seen in DM1.
Collapse
Affiliation(s)
- Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada.
| | | | | | | | | | - Elizabeth Poulin
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Anne-Marie Cayer
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | | | | | - Frédéric St-Onge
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Susanna Schraen-Maschke
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | | | - Nicolas Sergeant
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jack Puymirat
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| |
Collapse
|
17
|
Bélair N, Côté I, Gagnon C, Mathieu J, Duchesne E. Explanatory factors of dynamic balance impairment in myotonic dystrophy type 1. Muscle Nerve 2022; 65:683-687. [PMID: 35212003 DOI: 10.1002/mus.27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION/AIMS Myotonic dystrophy type 1 (DM1) is a neuromuscular disease affecting many systems and for which muscle weakness is one of the cardinal symptoms. People with DM1 also present with balance-related impairments and high fall risk. The aim of this study was to explore explanatory factors of dynamic balance impairment in the DM1 population. METHODS A secondary analysis of data collected as part of a larger study was performed. The Mini Balance Evaluation System Test (Mini-BESTest) was used to assess dynamic balance. Age, sex, and CTG repeat length in blood were retrieved from medical records and research files. The maximal isometric muscle strength of five lower limb muscle groups (hip flexors and extensors, knee flexors and extensors, and ankle dorsiflexors) was quantitatively assessed as well as fatigue. Standard multiple regression analysis was used. RESULTS Fifty-two individuals (31 men) aged between 24 and 81 years were included. The final model explains 65.9% of the balance score; ankle dorsiflexor muscle strength was the strongest explanatory factor, followed by CTG repeat length, age and fatigue to a lesser extent. DISCUSSION Dynamic balance is impaired in people with DM1. Results of this study suggest that rehabilitation interventions aimed at improving strength of the ankle dorsiflexors and managing fatigue could help to improve dynamic balance in this specific population.
Collapse
Affiliation(s)
- Nicolas Bélair
- Unité d'enseignement en physiothérapie, Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Isabelle Côté
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, Jonquière, Québec, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, Jonquière, Québec, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CR-CHUS), Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, Jonquière, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Elise Duchesne
- Unité d'enseignement en physiothérapie, Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, Jonquière, Québec, Canada.,Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada.,Centre de recherche Charles-Le Moyne (CRCLM), Sherbrooke, Québec, Canada
| |
Collapse
|
18
|
Morin A, Funkiewiez A, Routier A, Le Bouc R, Borderies N, Galanaud D, Levy R, Pessiglione M, Dubois B, Eymard B, Michon CC, Angeard N, Behin A, Laforet P, Stojkovic T, Azuar C. Unravelling the impact of frontal lobe impairment for social dysfunction in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac111. [PMID: 35611304 PMCID: PMC9123843 DOI: 10.1093/braincomms/fcac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/14/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Myotonic dystrophy type 1 is an autosomal dominant multisystemic disorder affecting muscular and extra muscular systems, including the central nervous system. Cerebral involvement in myotonic dystrophy type 1 is associated with subtle cognitive and behavioural disorders, of major impact on socio-professional adaptation. The social dysfunction and its potential relation to frontal lobe neuropsychology remain under-evaluated in this pathology. The neuroanatomical network underpinning that disorder is yet to disentangle. Twenty-eight myotonic dystrophy type 1 adult patients (mean age: 46 years old) and 18 age and sex-matched healthy controls were included in the study. All patients performed an exhaustive neuropsychological assessment with a specific focus on frontal lobe neuropsychology (motivation, social cognition and executive functions). Among them, 18 myotonic dystrophy type 1 patients and 18 healthy controls had a brain MRI with T1 and T2 Flair sequences. Grey matter segmentation, Voxel-based morphometry and cortical thickness estimation were performed with Statistical Parametric Mapping Software SPM12 and Freesurfer software. Furthermore, T2 white matter lesions and subcortical structures were segmented with Automated Volumetry Software. Most patients showed significant impairment in executive frontal functions (auditory working memory, inhibition, contextualization and mental flexibility). Patients showed only minor difficulties in social cognition tests mostly in cognitive Theory of Mind, but with relative sparing of affective Theory of Mind and emotion recognition. Neuroimaging analysis revealed atrophy mostly in the parahippocampal and hippocampal regions and to a lesser extent in basal ganglia, regions involved in social navigation and mental flexibility, respectively. Social cognition scores were correlated with right parahippocampal gyrus atrophy. Social dysfunction in myotonic dystrophy type 1 might be a consequence of cognitive impairment regarding mental flexibility and social contextualization rather than a specific social cognition deficit such as emotion recognition. We suggest that both white matter lesions and grey matter disease could account for this social dysfunction, involving, in particular, the frontal-subcortical network and the hippocampal/arahippocampal regions, brain regions known, respectively, to integrate contextualization and social navigation.
Collapse
Affiliation(s)
- Alexandre Morin
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neurologie, CHU Rouen, Centre National de Référence Maladie d’Alzheimer du sujet jeune, 76000 Rouen, France
| | - Aurelie Funkiewiez
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Alexandre Routier
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Raphael Le Bouc
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Urgences cérébro-vasculaires, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Nicolas Borderies
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Damien Galanaud
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Richard Levy
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
- Unité de Neuro-Psychiatrie Comportementale (IHU), Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Mathias Pessiglione
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Claire-Cecile Michon
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Nathalie Angeard
- U1129, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Pascal Laforet
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Raymond Poincaré, APHP, 92380 Garches, France
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Carole Azuar
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| |
Collapse
|
19
|
Rosado Bartolomé A, Puertas Martín V, Domínguez González C, Ramos Miranda M. Alteración cognitiva en la distrofia miotónica tipo 1 (enfermedad de Steinert). Semergen 2022; 48:208-213. [DOI: 10.1016/j.semerg.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
|
20
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
21
|
Deutsch GK, Hagerman KA, Sampson J, Dent G, Dekdebrun J, Parker DM, Thornton CA, Heatwole CR, Subramony SH, Mankodi AK, Ashizawa T, Statland JM, Arnold WD, Moxley RT, Day JW. Brief assessment of cognitive function in myotonic dystrophy: multicenter longitudinal study using computer-assisted evaluation. Muscle Nerve 2022; 65:560-567. [PMID: 35179228 PMCID: PMC9102286 DOI: 10.1002/mus.27520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS Myotonic dystrophy type 1 (DM1) is known to affect cognitive function, but the best methods to assess CNS involvement in multicenter studies have not been determined. This study's primary aim was to evaluate the potential of computerized cognitive tests to assess cognition in DM1. METHODS We conducted a prospective, longitudinal, observational study of 113 adults with DM1 at 6 sites. Psychomotor speed, attention, working memory, and executive functioning were assessed at baseline, 3-months and 12-months using computerized cognitive tests. Results were compared with assessments of muscle function and patient reported outcomes (PROs), including the Myotonic Dystrophy Health Index (MDHI) and EQ-5D-5L. RESULTS Based on intra-class correlation coefficients (ICCs), computerized cognitive tests had moderate to good reliability for psychomotor speed (0.76), attention (0.82), working memory speed (0.79), working memory accuracy (0.65), and executive functioning (0.87). Performance at baseline was lowest for working memory accuracy (p < 0.0001). Executive function performance improved from baseline to 3-months (p < 0.0001), without further changes over one year. There was a moderate correlation between poorer executive function and larger CTG repeat size (r = -0.433). There were some weak associations between PROs and cognitive performance. DISCUSSION Computerized tests of cognition are feasible in multicenter studies of DM1. Poor performance was exhibited in working memory, which may be a useful variable in clinical trials. Learning effects may have contributed to the improvement in executive functioning. The relationship between PROs and cognitive impairment in DM1 requires further study. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gayle K Deutsch
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Katharine A Hagerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Jacinda Sampson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | | | - Jeanne Dekdebrun
- The University of Rochester Medical Center, Rochester, New York, United States
| | - Dana M Parker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Charles A Thornton
- The University of Rochester Medical Center, Rochester, New York, United States
| | - Chad R Heatwole
- The University of Rochester Medical Center, Rochester, New York, United States
| | - Sub H Subramony
- University of Florida McKnight Brain Institute, Gainesville, Florida, United States
| | - Ami K Mankodi
- National Institute of Neurological Disorders and Stroke, Rockville, Maryland, United States
| | | | | | - W David Arnold
- The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Richard T Moxley
- The University of Rochester Medical Center, Rochester, New York, United States
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | | |
Collapse
|
22
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
23
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
24
|
Miller JN, Kruger A, Moser DJ, Gutmann L, van der Plas E, Koscik TR, Cumming SA, Monckton DG, Nopoulos PC. Cognitive Deficits, Apathy, and Hypersomnolence Represent the Core Brain Symptoms of Adult-Onset Myotonic Dystrophy Type 1. Front Neurol 2021; 12:700796. [PMID: 34276551 PMCID: PMC8280288 DOI: 10.3389/fneur.2021.700796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults, and is primarily characterized by muscle weakness and myotonia, yet some of the most disabling symptoms of the disease are cognitive and behavioral. Here we evaluated several of these non-motor symptoms from a cross-sectional time-point in one of the largest longitudinal studies to date, including full-scale intelligence quotient, depression, anxiety, apathy, sleep, and cerebral white matter fractional anisotropy in a group of 39 adult-onset myotonic dystrophy type 1 participants (27 female) compared to 79 unaffected control participants (46 female). We show that intelligence quotient was significantly associated with depression (P < 0.0001) and anxiety (P = 0.018), but not apathy (P < 0.058) or hypersomnolence (P = 0.266) in the DM1 group. When controlling for intelligence quotient, cerebral white matter fractional anisotropy was significantly associated with apathy (P = 0.042) and hypersomnolence (P = 0.034), but not depression (P = 0.679) or anxiety (P = 0.731) in the myotonic dystrophy type 1 group. Finally, we found that disease duration was significantly associated with apathy (P < 0.0001), hypersomnolence (P < 0.001), IQ (P = 0.038), and cerebral white matter fractional anisotropy (P < 0.001), but not depression (P = 0.271) or anxiety (P = 0.508). Our results support the hypothesis that cognitive deficits, hypersomnolence, and apathy, are due to the underlying neuropathology of myotonic dystrophy type 1, as measured by cerebral white matter fractional anisotropy and disease duration. Whereas elevated symptoms of depression and anxiety in myotonic dystrophy type 1 are secondary to the physical symptoms and the emotional stress of coping with a chronic and debilitating disease. Results from this work contribute to a better understanding of disease neuropathology and represent important therapeutic targets for clinical trials.
Collapse
Affiliation(s)
- Jacob N Miller
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alison Kruger
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David J Moser
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Laurie Gutmann
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ellen van der Plas
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Timothy R Koscik
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peggy C Nopoulos
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
25
|
New developments in myotonic dystrophies from a multisystemic perspective. Curr Opin Neurol 2021; 34:738-747. [PMID: 33990102 DOI: 10.1097/wco.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The multisystemic involvement of myotonic dystrophies (DMs) intricates disease monitoring, patients' care and trial design. This update of the multifaceted comorbidities observed in DMs aims to assist neurologists in the complex management of patients and to encourage further studies for still under-investigated aspects of the disease. RECENT FINDINGS We reviewed the most recent studies covering pathogenesis and clinical aspects of extra-muscular involvement in DM1 and DM2. The largest body of evidence regards the cardiac and respiratory features, for which experts' recommendations have been produced. Gastrointestinal symptoms emerge as one of the most prevalent complaints in DMs. The alteration of insulin signaling pathways, involved in gastrointestinal manifestations, carcinogenesis, muscle function, cognitive and endocrinological aspects, gain further relevance in the light of recent evidence of metformin efficacy in DM1. Still, too few studies are performed on large DM2 cohorts, so that current recommendations mainly rely on data gathered in DM1 that cannot be fully translated to DM2. SUMMARY Extra-muscular manifestations greatly contribute to the overall disease burden. A multidisciplinary approach is the key for the management of patients. Consensus-based recommendations for DM1 and DM2 allow high standards of care but further evidence are needed to implement these recommendations.
Collapse
|
26
|
Breton É, Légaré C, Overend G, Guay SP, Monckton D, Mathieu J, Gagnon C, Richer L, Gallais B, Bouchard L. DNA methylation at the DMPK gene locus is associated with cognitive functions in myotonic dystrophy type 1. Epigenomics 2020; 12:2051-2064. [PMID: 33301350 DOI: 10.2217/epi-2020-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Myotonic dystrophy type 1 (DM1) is caused by an unstable trinucleotide (CTG) expansion at the DMPK gene locus. Cognitive dysfunctions are often observed in the condition. We investigated the association between DMPK blood DNA methylation (DNAm) and cognitive functions in DM1, considering expansion length and variant repeats (VRs). Method: Data were obtained from 115 adult-onset DM1 patients. Molecular analyses consisted of pyrosequencing, small pool PCR and Southern blot hybridization. Cognitive functions were assessed by validated neuropsychological tests. Results: For patients without VRs (n = 103), blood DNAm at baseline independently contributed to predict cognitive functions 9 years later. Patients with VRs (n = 12) had different DNAm and cognitive profiles. Conclusion: DNAm allows to better understand DM1-related cognitive dysfunction etiology.
Collapse
Affiliation(s)
- Édith Breton
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Cécilia Légaré
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada
| | - Gayle Overend
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon-Pierre Guay
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Darren Monckton
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada
| | - Louis Richer
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Health Sciences, Université du Québec à Chicoutimi (UQAC), Saguenay, Québec G7H 2B1, Canada
| | - Benjamin Gallais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Centre de recherche Charles-Le-Moyne-Saguenay-Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Université de Sherbrooke, Saguenay, Québec G7H 5H6, Canada.,ÉCOBES - Recherche et transfert, Cégep de Jonquière, Saguenay, Québec G7X 7W2, Canada
| | - Luigi Bouchard
- Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Jonquière, Saguenay, Québec G7X 7X2, Canada.,Department of Medical Biology, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec G7H 5H6, Canada
| |
Collapse
|
27
|
Longitudinal study in patients with myotonic dystrophy type 1: correlation of brain MRI abnormalities with cognitive performances. Neuroradiology 2020; 63:1019-1029. [PMID: 33237431 DOI: 10.1007/s00234-020-02611-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Myotonic dystrophy type 1 (DM1) is a muscular dystrophy with neurological, cognitive, and radiological abnormalities. The developmental or degenerative nature of these abnormalities, and their progression over time, remains unclear. The aim of this study is to perform a longitudinal assessment of imaging and cognitive performances in a group of patients with DM1. METHODS A longitudinal observational study was conducted in a group of 33 DM1 patients. All patients underwent cognitive and MRI evaluation, including the use of structural and diffusion tensor imaging techniques, at baseline and follow-up evaluation (4 years). Longitudinal changes in white matter lesion (WML), volumetric analysis, and diffusivity values were assessed and correlated with neuropsychological test findings. RESULTS An increase in WML was observed in 16 patients (48.5%). An increase in ventricular system volume and a decrease in volume of the left thalamus, caudates, putamen, and hippocampus were observed (p < 0.001). Global cortical volume showed a significant decrease (p < 0.001), although no changes were observed in white matter volume. A significant increase in mean diffusivity and decrease in fractional anisotropy for the white matter were found (p < 0.001). Neuropsychological evaluation showed a significant deterioration in test performance that measures working memory (Letter-Number Sequencing, p = 0.049) and visuospatial skills (Benton Visual Retention Test, p = 0.001). These findings were significantly associated with WML load (working memory p = 0.002 and visuospatial skills p = 0.021) and mean diffusivity increase (visuospatial skills p = 0.003 in the corpus callosum and working memory p = 0.043 in the right cerebral white matter). CONCLUSION White matter and grey matter involvement in DM1 patients is progressive. Patients experience a worsening in cognitive impairment that correlates with white matter involvement. These findings support the neurodegenerative nature of this disease.
Collapse
|
28
|
Simoncini C, Spadoni G, Lai E, Santoni L, Angelini C, Ricci G, Siciliano G. Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Front Neurol 2020; 11:624. [PMID: 33117249 PMCID: PMC7575726 DOI: 10.3389/fneur.2020.00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Increasing evidences indicate that in Myotonic Dystrophy type 1 (DM1 or Steinert disease), an autosomal dominant multisystem disorder caused by a (CTG)n expansion in DMPK gene on chromosome 19q13. 3, is the most common form of inherited muscular dystrophy in adult patients with a global prevalence of 1/8000, and involvement of the central nervous system can be included within the core clinical manifestations of the disease. Variable in its severity and progression rate over time, likely due to the underlying causative molecular mechanisms; this component of the clinical picture presents with high heterogeneity involving cognitive and behavioral alterations, but also sensory-motor neural integration, and in any case, significantly contributing to the disease burden projected to either specific functional neuropsychological domains or quality of life as a whole. Principle manifestations include alterations of the frontal lobe function, which is more prominent in patients with an early onset, such as in congenital and childhood onset forms, here associated with severe intellectual disabilities, speech and language delay and reduced IQ-values, while in adult onset DM1 cognitive and neuropsychological findings are usually not so severe. Different methods to assess central nervous system involvement in DM1 have then recently been developed, these ranging from more classical psychometric and cognitive functional instruments to sophisticated psycophysic, neurophysiologic and especially computerized neuroimaging techniques, in order to better characterize this disease component, at the same time underlining the opportunity to consider it a suitable marker on which measuring putative effectiveness of therapeutic interventions. This is the reason why, as outlined in the conclusive section of this review, the Authors are lead to wonder, perhaps in a provocative and even paradoxical way to arise the question, whether or not the myologist, by now the popular figure in charge to care of a patient with the DM1, needs to remain himself a neurologist to better appreciate, evaluate and speculate on this important aspect of Steinert disease.
Collapse
Affiliation(s)
- Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Spadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Lai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenza Santoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Labayru G, Jimenez‐Marin A, Fernández E, Villanua J, Zulaica M, Cortes JM, Díez I, Sepulcre J, López de Munain A, Sistiaga A. Neurodegeneration trajectory in pediatric and adult/late DM1: A follow-up MRI study across a decade. Ann Clin Transl Neurol 2020; 7:1802-1815. [PMID: 32881379 PMCID: PMC7545612 DOI: 10.1002/acn3.51163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To characterize the progression of brain structural abnormalities in adults with pediatric and adult/late onset DM1, as well as to examine the potential predictive markers of such progression. METHODS 21 DM1 patients (pediatric onset: N = 9; adult/late onset: N = 12) and 18 healthy controls (HC) were assessed longitudinally over 9.17 years through brain MRI. Additionally, patients underwent neuropsychological, genetic, and muscular impairment assessment. Inter-group comparisons of total and voxel-level regional brain volume were conducted through Voxel Based Morphometry (VBM); cross-sectionally and longitudinally, analyzing the associations between brain changes and demographic, clinical, and cognitive outcomes. RESULTS The percentage of GM loss did not significantly differ in any of the groups compared with HC and when assessed independently, adult/late DM1 patients and their HC group suffered a significant loss in WM volume. Regional VBM analyses revealed subcortical GM damage in both DM1 groups, evolving to frontal regions in the pediatric onset patients. Muscular impairment and the outcomes of certain neuropsychological tests were significantly associated with follow-up GM damage, while visuoconstruction, attention, and executive function tests showed sensitivity to WM degeneration over time. INTERPRETATION Distinct patterns of brain atrophy and its progression over time in pediatric and adult/late onset DM1 patients are suggested. Results indicate a possible neurodevelopmental origin of the brain abnormalities in DM1, along with the possible existence of an additional neurodegenerative process. Fronto-subcortical networks appear to be involved in the disease progression at young adulthood in pediatric onset DM1 patients. The involvement of a multimodal integration network in DM1 is discussed.
Collapse
Affiliation(s)
- Garazi Labayru
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Antonio Jimenez‐Marin
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Biomedical Research Doctorate ProgramUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Esther Fernández
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Jorge Villanua
- OsatekDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
| | - Miren Zulaica
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| | - Jesus M. Cortes
- Biocruces‐Bizkaia Health Research InstituteBarakaldoBizkaiaSpain
- Cell Biology and Histology DepartmentUniversity of the Basque Country (UPV/EHU)LeioaSpain
- IKERBASQUEThe Basque Foundation for ScienceBilbaoSpain
| | - Ibai Díez
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Neurotechnology LaboratoryTecnalia Health DepartmentDerioSpain
| | - Jorge Sepulcre
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Adolfo López de Munain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
- Neurology DepartmentDonostia University HospitalDonostia‐ San SebastiánGipuzkoaSpain
- Neuroscience DepartmentUniversity of the Basque Country (UPV/EHU)Donostia‐San SebastiánGipuzkoaSpain
| | - Andone Sistiaga
- Personality, Assessment and psychological treatment department; Psychology FacultyUniversity of the Basque Country (UPV/EHU)San SebastiánGipuzkoaSpain
- Neuroscience AreaBiodonostia Research Institute, OsakidetzaDonostia‐San SebastiánGipuzkoaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Institute Carlos IIIMadridSpain
| |
Collapse
|
30
|
Ramon-Duaso C, Gener T, Consegal M, Fernández-Avilés C, Gallego JJ, Castarlenas L, Swanson MS, de la Torre R, Maldonado R, Puig MV, Robledo P. Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in Mbnl2 Knockout Mice and Reduces Microglia Overexpression. Cereb Cortex 2020; 29:2978-2997. [PMID: 30060068 DOI: 10.1093/cercor/bhy164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting muscle and central nervous system (CNS) function. The cellular mechanisms underlying CNS alterations are poorly understood and no useful treatments exist for the neuropsychological deficits observed in DM1 patients. We investigated the progression of behavioral deficits present in male and female muscleblind-like 2 (Mbnl2) knockout (KO) mice, a rodent model of CNS alterations in DM1, and determined the biochemical and electrophysiological correlates in medial prefrontal cortex (mPFC), striatum and hippocampus (HPC). Male KO exhibited more cognitive impairment and depressive-like behavior than female KO mice. In the mPFC, KO mice showed an overexpression of proinflammatory microglia, increased transcriptional levels of Dat, Drd1, and Drd2, exacerbated dopamine levels, and abnormal neural spiking and oscillatory activities in the mPFC and HPC. Chronic treatment with methylphenidate (MPH) (1 and 3 mg/kg) reversed the behavioral deficits, reduced proinflammatory microglia in the mPFC, normalized prefrontal Dat and Drd2 gene expression, and increased Bdnf and Nrf2 mRNA levels. These findings unravel the mechanisms underlying the beneficial effects of MPH on cognitive deficits and depressive-like behaviors observed in Mbnl2 KO mice, and suggest that MPH could be a potential candidate to treat the CNS deficiencies in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Consegal
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Juan José Gallego
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Laura Castarlenas
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Maldonado
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.,Laboratory of Neuropharmacology, Department of Experimental al Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
31
|
Gutschmidt K, Wenninger S, Montagnese F, Schoser B. Dyslexia and cognitive impairment in adult patients with myotonic dystrophy type 1: a clinical prospective analysis. J Neurol 2020; 268:484-492. [PMID: 32851461 PMCID: PMC7880941 DOI: 10.1007/s00415-020-10161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cognitive impairments in patients with myotonic dystrophy type 1 (DM1) have often been described, however, there are only few studies differentiating between partial performance disorders and mental retardation in common. This study focused on the evaluation of reading performance and the frequency of dyslexia in adult DM1 patients. METHODS We performed a prospective cohort study including genetically confirmed adult DM1 patients registered in the DM registry of Germany or the internal database of the Friedrich-Baur-Institute, Munich, Germany. For the assessment of the patients' reading and spelling performance, we used the standardized and validated test 'Salzburger Lese- und Rechtschreibtest' (SLRT II). The 'CFT-20 R Grundintelligenztest Skala 2' in revised ("R") version (CFT 20-R), determining the intelligence level, was appropriate to differentiate between dyslexia and general mental retardation. The diagnosis of dyslexia, the combined reading and spelling disorder, was based on the guidelines for diagnosis and therapy of children and adolescents with dyslexia 2015 (S3-guideline) providing (1) the criterion of the divergence from age level and (2) the criterion of IQ-divergence. RESULTS Fifty-seven DM1 patients participated in our study. Evaluating the reading performance, 16 patients fulfilled the divergence criteria of the age level and 2 patients the IQ-divergence criteria. In total, the diagnosis of a reading disorder was given in 18 DM1 patients (31.6 %). In 11 out of these 18 patients with a reading disorder, a relevant impairment of spelling performance was observed with at least three spelling errors. As there are no normative values for adults in spelling performance, we assume a combined reading disorder and dyslexia, in those 11 DM1 patients (19.3 %). Regarding the separate analyses of the test procedures, in the SLRT II the performance was below average in 40.4 % of all patients for 'word reading' and in 61.4 % of all patients for 'pseudoword reading'. There was a significant positive correlation between the CTG expansion size and a reading disorder (p=0.027). The average IQ of 17 examined DM1 patients was in the lower normal range (86.1 ± 19.1). 54.5 % of patients with reading disorder had a normal IQ. CONCLUSION The calculated prevalence of dyslexia in the DM1 study cohort was 19.3 % and thus considerably increased compared to the normal German population. As dyslexia is not equivalent to a general cognitive impairment, it is important not to miss dyslexic features in cognitive inconspicuous DM1 patients. Case-by-case one should consider a differential diagnostic approach, as individualized therapies can be offered to support dyslexic patients in their performance.
Collapse
Affiliation(s)
- K Gutschmidt
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - S Wenninger
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - F Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - B Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
32
|
Kamali T, Hagerman KA, Day JW, Sampson J, Lim KO, Mueller BA, Wozniak J. Diagnosis of Myotonic Dystrophy Based on Resting State fMRI Using Convolutional Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1714-1717. [PMID: 33018327 DOI: 10.1109/embc44109.2020.9176455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Myotonic dystrophies (DM) are neuromuscular conditions that cause widespread effects throughout the body. There are brain white matter changes on MRI in patients with DM that correlate with neuropsychological functional changes. How these brain alterations causally relate to the presence and severity of cognitive symptoms remains largely unknown. Deep neural networks have significantly improved the performance of image classification of huge datasets. However, its application in brain imaging is limited and not well described, due to the scarcity of labeled training data. In this work, we propose an approach for the diagnosis of DM based on a spatio-temporal deep learning paradigm. The obtained accuracy (73.71%) and sensitivities and specificities showed that the implemented approach based on 4-D convolutional neural networks leads to a compact, discriminative, and fast computing DM-based clinical medical decision support system.Clinical relevance- Many adults with DM experience cognitive and neurological effects impacting their quality of life, and ability to maintain employment. A robust and reliable DM-based clinical decision support system may help reduce the long diagnostic delay common to DM. Furthermore, it can help neurologists better understand the pathophysiology of the disease and analyze effects of new drugs that aim to address the neurological symptoms of DM.
Collapse
|
33
|
Ramon-Duaso C, Rodríguez-Morató J, Selma-Soriano E, Fernández-Avilés C, Artero R, de la Torre R, Pozo ÓJ, Robledo P. Protective effects of mirtazapine in mice lacking the Mbnl2 gene in forebrain glutamatergic neurons: Relevance for myotonic dystrophy 1. Neuropharmacology 2020; 170:108030. [PMID: 32171677 DOI: 10.1016/j.neuropharm.2020.108030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized by muscle weakness and wasting and by important central nervous system-related symptoms including impairments in executive functions, spatial abilities and increased anxiety and depression. The Mbnl2 gene has been implicated in several phenotypes consistent with DM1 neuropathology. In this study, we developed a tissue-specific knockout mouse model lacking the Mbnl2 gene in forebrain glutamatergic neurons to examine its specific contribution to the neurobiological perturbations related to DM1. We found that these mice exhibit long-term cognitive deficits and a depressive-like state associated with neuronal loss, increased microglia and decreased neurogenesis, specifically in the dentate gyrus (DG). Chronic treatment with the atypical antidepressant mirtazapine (3 and 10 mg/kg) for 21 days rescued these behavioral alterations, reduced inflammatory microglial overexpression, and reversed neuronal loss in the DG. We also show that mirtazapine re-established 5-HT1A and histaminergic H1 receptor gene expression in the hippocampus. Finally, metabolomics studies indicated that mirtazapine increased serotonin, noradrenaline, gamma-aminobutyric acid and adenosine production. These data suggest that loss of Mbnl2 gene in the glutamatergic neurons of hippocampus and cortex may underlie the most relevant DM1 neurobiological and behavioral features, and provide evidence that mirtazapine could be a novel potential candidate to alleviate these debilitating symptoms in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain; CIPF-INCLIVA Joint Unit, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain; CIPF-INCLIVA Joint Unit, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
34
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
36
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Guía clínica para el diagnóstico y seguimiento de la distrofia miotónica tipo 1, DM1 o enfermedad de Steinert. Neurologia 2020; 35:185-206. [DOI: 10.1016/j.nrl.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/05/2019] [Indexed: 01/18/2023] Open
|
37
|
Gutiérrez Gutiérrez G, Díaz-Manera J, Almendrote M, Azriel S, Eulalio Bárcena J, Cabezudo García P, Camacho Salas A, Casanova Rodríguez C, Cobo A, Díaz Guardiola P, Fernández-Torrón R, Gallano Petit M, García Pavía P, Gómez Gallego M, Gutiérrez Martínez A, Jericó I, Kapetanovic García S, López de Munaín Arregui A, Martorell L, Morís de la Tassa G, Moreno Zabaleta R, Muñoz-Blanco J, Olivar Roldán J, Pascual Pascual S, Peinado Peinado R, Pérez H, Poza Aldea J, Rabasa M, Ramos A, Rosado Bartolomé A, Rubio Pérez M, Urtizberea J, Zapata-Wainberg G, Gutiérrez-Rivas E. Clinical guide for the diagnosis and follow-up of myotonic dystrophy type 1, MD1 or Steinert's disease. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Lenzoni S, Bozzoni V, Burgio F, de Gelder B, Wennberg A, Botta A, Pegoraro E, Semenza C. Recognition of emotions conveyed by facial expression and body postures in myotonic dystrophy (DM). Cortex 2020; 127:58-66. [PMID: 32169676 DOI: 10.1016/j.cortex.2020.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/04/2019] [Accepted: 02/07/2020] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Neuromuscular diseases may be of neuropsychological interest insofar as they may affect representations based on embodied cognition theories. Previous studies have shown impaired ability to recognize facial emotions and an association between facial emotion recognition and visuospatial abilities in myotonic dystrophy type 1 (DM1) patients. Here we examined the ability of both DM1 and DM2 patients to recognize emotions expressed by body postures and its relation, and their association with cognitive performance. METHODS Participants included 34 DM1 patients, 8 DM2 patients, and 24 healthy control subjects. Emotional recognition ability was assessed through two computerized matching tasks (face and bodies). A neuropsychological battery was used to measure cognition in three domains and global cognition. We used univariate and adjusted linear regression models to investigate the association between cognition and emotion recognition performance. RESULTS DM patients (combined DM1 and DM2) performed worse on emotional facial expression (p = .006) and body posture (p = .004) accuracy measures than healthy controls. In linear regression models, DM patients' facial expression accuracy was associated with executive function (p = .013) and visuospatial (p < .001) z-scores. Body posture accuracy was associated with visuospatial (p = .001) and memory (p = .012) z-scores. There were no associations among controls or between cognition and reaction time. DISCUSSION These findings suggest that impaired emotional recognition among DM patients is also extended to emotions conveyed by body postures. Consistent with embodied cognition theories, people affected in their body and its movement may have impaired sensorimotor representation in ways that have yet to be fully understood.
Collapse
Affiliation(s)
- Sabrina Lenzoni
- Department of Neurosciences (Padova Neuroscience Center), Università degli Studi di Padova, Italy.
| | - Virginia Bozzoni
- Department of Neurosciences (Padova Neuroscience Center), Università degli Studi di Padova, Italy.
| | | | | | - Alexandra Wennberg
- Department of Neurosciences (Padova Neuroscience Center), Università degli Studi di Padova, Italy.
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome Tor Vergata, Rome, Italy.
| | - Elena Pegoraro
- Department of Neurosciences (Padova Neuroscience Center), Università degli Studi di Padova, Italy.
| | - Carlo Semenza
- Department of Neurosciences (Padova Neuroscience Center), Università degli Studi di Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
39
|
Wang J, Liu M, Shang W, Chen Z, Peng G. Myotonic dystrophy type 1 accompanied with normal pressure hydrocephalus: a case report and literature review. BMC Neurol 2020; 20:53. [PMID: 32050933 PMCID: PMC7017494 DOI: 10.1186/s12883-020-01636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common disease that can cause muscle weakness and atrophy among adults. Normal pressure hydrocephalus (NPH) is characterized by the triad of gait disturbance, cognitive impairment and urinary incontinence. The association between DM1 and NPH is extremely rare. We report a Chinese female patient with DM1 in association with NPH. Case presentation The patient presented with a history of 3-year of walking instability and cognitive impairment. Her brain MRI showed ventriculomegaly with normal cerebrospinal fluid (CSF) pressure and the CSF tap-test was positive, which indicated the diagnosis of probable NPH. DM1 was confirmed by genetic testing. Conclusions Four patients with DM1-NPH association were found before. The association between NPH and DM1 may not be just a coincidence, NPH may occur in DM1 later in life and it is vital to recognize the association as a shunt surgery may improve patients’ quality of life.
Collapse
Affiliation(s)
- Junyang Wang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ming Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Wenjie Shang
- Department of Neurology, Shengzhou People's Hospital, 666 Dangui Road, Shengzhou, 312403, China
| | - Zhongqin Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
40
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
41
|
Look at the cognitive deficits in patients with myotonic dystrophy type 1: an exploratory research on the effects of virtual reality. Int J Rehabil Res 2019; 43:90-94. [PMID: 31851022 DOI: 10.1097/mrr.0000000000000384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myotonic dystrophy type 1 is a neuromuscular disease, characterized by a progressive loss of strength, muscle stiffness, and difficulty in relaxation. Myotonic dystrophy type 1 patients can present several neuropsychological deficits, as well as anxiety and mood disorders. Aim of this study is to evaluate the feasibility and the effect of virtual reality in the cognitive and behavioral recovery of myotonic dystrophy type 1 patients. Eleven patients (8 female and 3 male) underwent a specific cognitive rehabilitation program including a conventional neuropsychological treatment followed by a virtual reality neurorehabilitation training using the Virtual Reality Rehabilitation System (Khymeia, Italy). Virtual reality improved many cognitive domains, including executive function, attention, verbal and visuo-spatial abilities, as well as mood and coping strategies. Due to the high prevalence of neuropsychological symptoms in patients with myotonic dystrophy type 1, cognitive rehabilitation should enter into the framework of these patients to potentially boost cognitive and behavioral function and improve quality of life.
Collapse
|
42
|
Labayru G, Diez I, Sepulcre J, Fernández E, Zulaica M, Cortés JM, López de Munain A, Sistiaga A. Regional brain atrophy in gray and white matter is associated with cognitive impairment in Myotonic Dystrophy type 1. NEUROIMAGE-CLINICAL 2019; 24:102078. [PMID: 31795042 PMCID: PMC6861566 DOI: 10.1016/j.nicl.2019.102078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022]
Abstract
Predominance of white matter impairment in DM1 is questioned. Age poses vulnerability to grey matter loss in specific areas in DM1. White matter alterations in DM1 may be developmental. Muscular and genetic features are associated with brain abnormalities in DM1. Neuropsychology is an unspecific but strong predictor of gray matter damage in DM1.
Background Myotonic Dystrophy type 1 (DM1) is a slowly progressive myopathy characterized by varying multisystemic involvement. Several cerebral features such as brain atrophy, ventricular enlargement, and white matter lesions (WMLs) have frequently been described. The aim of this study is to investigate the structural organization of the brain that defines the disease through multimodal imaging analysis, and to analyze the relation between structural cerebral changes and DM1 clinical and neuropsychological profiles. Method 31 DM1 patients and 57 healthy controls underwent an MRI scan protocol, including T1, T2 and DTI. Global gray matter (GM), global white matter (WM), and voxel-level Voxel Based Morphometry (VBM) and voxel-level microstructural WM abnormalities through Diffusion Tensor Imaging (DTI) were assessed through group comparisons and linear regression analysis with age, degree of muscular impairment (MIRS score), CTG expansion size and neuropsychological outcomes from a comprehensive assessment. Results Compared with healthy controls, DM1 patients showed a reduction in both global GM and WM volume; and further regional GM decrease in specific primary sensory, multi-sensory and association cortical regions. Fractional anisotropy (FA) was reduced in both total brain and regional analysis, being most marked in frontal, paralimbic, temporal cortex, and subcortical regions. Higher ratings on muscular impairment and longer CTG expansion sizes predicted a greater volume decrease in GM and lower FA values. Age predicted global GM reduction, specifically in parietal regions. At the cognitive level, the DM1 group showed significant negative correlations between IQ estimate, visuoconstructive and executive neuropsychological scores and both global and regional volume decrease, mainly distributed in the frontal, parietal and subcortical regions. Conclusions In this study, we describe the structural brain signatures that delineate the involvement of the CNS in DM1. We show that specific sensory and multi-sensory — as well as frontal cortical areas — display potential vulnerability associated with the hypothesized neurodegenerative nature of DM1 brain abnormalities.
Collapse
Affiliation(s)
- Garazi Labayru
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Personality, Assessment and psychological treatment department; Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastian, Gipuzkoa, Spain.
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Neurotechnology Laboratory, Tecnalia Health Department, Derio, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Esther Fernández
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Osatek, Donostia University Hospital, Donostia-San Sebastian, Gipuzkoa, Spain; Radiolody Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Miren Zulaica
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Jesús M Cortés
- Biocruces Health Research Institute. Hospital Universitario de Cruces, Barakaldo, Spain; Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Neurology Department, Donostia University Hospital, Donostia-San Sebastian, Gipuzkoa, Spain; Neurosciences Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Andone Sistiaga
- Neuroscience Area, Biodonostia Research Institute, San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Personality, Assessment and psychological treatment department; Psychology Faculty, University of the Basque Country (UPV/EHU), San Sebastian, Gipuzkoa, Spain
| |
Collapse
|
43
|
Stokes M, Varughese N, Iannaccone S, Castro D. Clinical and genetic characteristics of childhood-onset myotonic dystrophy. Muscle Nerve 2019; 60:732-738. [PMID: 31520483 DOI: 10.1002/mus.26716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is caused by a CTG (cytosine-thymine-guanine) trinucleotide repeat expansion. Congenital DM (CDM) presents in the first month of life, whereas individuals with infantile and juvenile DM1 have later onset of symptoms. METHODS We performed a retrospective chart review of patients with childhood-onset DM1 seen at one of three locations in Dallas, Texas between 1990 and 2018. Symptoms, disease course, cognitive features, and family history were reviewed. RESULTS Seventy-four patients were included; CDM was diagnosed in 52 patients. There was maternal inheritance in 74% of patients. CTG repeat number ranged from 143 to 2300. Neuropsychiatric and cognitive deficits were common. Over half of the patients had GI disturbances, and orthopedic complications were common. DISCUSSION Myotonic dystrophy type 1 in children requires a multidisciplinary approach to management. Presenting symptoms vary, and repeat expansion size does not necessarily directly relate to severity of symptoms. A consensus for outcome measures is required.
Collapse
Affiliation(s)
- Mathew Stokes
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Children's Medical Center Dallas, Dallas, Texas
| | - Natasha Varughese
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Children's Medical Center Dallas, Dallas, Texas
| | - Susan Iannaccone
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Children's Medical Center Dallas, Dallas, Texas
| | - Diana Castro
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Children's Medical Center Dallas, Dallas, Texas
| |
Collapse
|
44
|
Lindeblad G, Kroksmark AK, Ekström AB. Cognitive and adaptive functioning in congenital and childhood forms of myotonic dystrophy type 1: a longitudinal study. Dev Med Child Neurol 2019; 61:1214-1220. [PMID: 30706460 DOI: 10.1111/dmcn.14161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 11/27/2022]
Abstract
AIM To conduct a longitudinal follow-up of the development of global cognitive abilities and adaptive skills in individuals with congenital and childhood forms of myotonic dystrophy type 1 (DM1). METHOD Fifty-one participants (29 males, 22 females, mean age 19y 5mo, SD 4y 11mo, range 10y 10mo-28y 11mo) were divided into severe congenital (n=16), mild congenital (n=17), and childhood DM1 (n=18) subgroups. The average time between the first and second assessments was 7 years 8 months. Adaptive skills were evaluated using the Vineland Adaptive Behavior Scales and global cognitive functioning using Wechsler scales. RESULTS There was no statistically significant decline in cognitive abilities and adaptive behaviour. A tendency of decline regarding the level of intellectual disability was found in the congenital DM1 groups but not in the childhood group. In the congenital DM1 groups, the gap in relation to typically developing peers in cognitive and adaptive functioning increased. Predictors of change over time in adaptive skills were age and current level of intellectual disability: individuals with severe intellectual disability and younger individuals deteriorated the most. However, when raw scores were compared, no actual regression in adaptive functioning was found. INTERPRETATION The participants had not lost any important adaptive skills. Greater cognitive and adaptive development was found in the childhood group than in the congenital groups. WHAT THIS PAPER ADDS There is no absolute decline in cognitive and adaptive abilities in individuals with congenital and childhood myotonic dystrophy type 1. Pace of development is slow in comparison with normative data. The childhood group tended to show greater cognitive and adaptive development than the congenital groups.
Collapse
Affiliation(s)
| | - Anna-Karin Kroksmark
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Regional Pediatric Rehabilitation Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anne-Berit Ekström
- Regional Pediatric Rehabilitation Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| |
Collapse
|
45
|
Affiliation(s)
- Nathalie Angeard
- Memory, Brain & Cognition Lab (MC2 Lab, EA 7536), Sorbonne Paris Cité, Paris Descartes University, Boulogne-Billancourt, France
| |
Collapse
|
46
|
Berends J, Tieleman AA, Horlings CGC, Smulders FHP, Voermans NC, van Engelen BGM, Raaphorst J. High incidence of falls in patients with myotonic dystrophy type 1 and 2: A prospective study. Neuromuscul Disord 2019; 29:758-765. [PMID: 31540818 DOI: 10.1016/j.nmd.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
We aimed to examine the incidence as well as the circumstances and the consequences of falling in adult patients with myotonic dystrophy type 1 and 2 (DM1/DM2). We performed a prospective cohort study in 209 subjects, of which 102 had DM1, 42 had DM2 and 65 healthy controls. An assessment of their falls was carried out during 100 consecutive days. In addition, falls during the previous year were reported. The primary outcome measure was the number of self-reported falls per participant during these 100 days. The secondary outcome measures included self-reported causes, circumstances and consequences of the falls. Mean (SD) falls per participant in 100 days was seven- to eightfold higher in patients with DM1 (0.74 (0.14)) and DM2 (0.62 (0.20)) compared to the controls (0.09 (0.04); p < 0.001)). Sixteen percent of DM1 and 17% of DM2 patients fell at least twice. Two-thirds of the falls occurred inside. Fifty percent of falls resulted in an injury, including a head trauma in four patients. Compared to non-fallers, those patients who fell were older (DM1/DM2), had a lower DM1-Activ score (DM1), had more muscle weakness (DM1), and reported less confidence in balance (DM1). This study demonstrates a high incidence and clinical relevance of falling in patients with DM1 and DM2. Fall prevention strategies in both DM1 and DM2 should focus on adaptations of the home environment and the patient's interaction in this environment.
Collapse
Affiliation(s)
- Joost Berends
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Alide A Tieleman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Corinne G C Horlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology, Medical University Innsbruck, Austria.
| | - Fran H P Smulders
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Joost Raaphorst
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
47
|
Labayru G, Aliri J, Zulaica M, López de Munain A, Sistiaga A. Age-related cognitive decline in myotonic dystrophy type 1: An 11-year longitudinal follow-up study. J Neuropsychol 2019; 14:121-134. [PMID: 31407859 PMCID: PMC7078919 DOI: 10.1111/jnp.12192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Background Myotonic dystrophy type 1 (DM1) is an inherited multi‐systemic disease involving the central nervous system (CNS) and is consequently characterized by a range of cognitive impairments. However, whether this cognitive profile progresses over time is still a matter of debate. The aim of this study was to longitudinally assess a DM1 sample, in order to compare, for the first time, this progression with that of a control group. Clinical and socio‐demographic predictive factors potentially implicated in this possible decline are analysed. Method Seventy‐five DM1 patients with childhood, juvenile, adult, and late‐onset, and 54 control participants were re‐assessed in an 11‐year follow‐up with a comprehensive neuropsychological battery. The analyses employed were mixed ANOVA for repeated measures to test intergroup comparisons over time and multiple linear regression for predictive variable analysis. Results Myotonic dystrophy type 1 patients significantly worsened in visuospatial/visuoconstructive abilities and visual memory compared with controls. Multiple linear regression revealed that progression of cognitive impairment measured by copy of the Rey–Osterrieth complex figure was predicted by muscular impairment, whilst on the block design test age predicted the change with a cut‐off at 31 years of age. Discussion A domain‐specific progressive cognitive decline was found in DM1, with visuospatial/visuoconstructive abilities showing the greatest vulnerability to the passage of time. In addition to important clinical implications, these results suggest the need for the scientific community to delve deeper into the potential mechanisms underlying early cognitive decline in this population.
Collapse
Affiliation(s)
- Garazi Labayru
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Gipuzkoa, Spain.,Personality, Assessment and Psychological Treatment Department, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Jone Aliri
- Department of Social Psychology and Methodology of Behavioral Sciences, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Miren Zulaica
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Gipuzkoa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain.,Neurology Department, Donostia University Hospital, Donostia-San Sebastian, Gipuzkoa, Spain.,Neurosciences Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain
| | - Andone Sistiaga
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Gipuzkoa, Spain.,Personality, Assessment and Psychological Treatment Department, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Gipuzkoa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Woo J, Lee HW, Park JS. Differences in the pattern of cognitive impairments between juvenile and adult onset myotonic dystrophy type 1. J Clin Neurosci 2019; 68:92-96. [PMID: 31371188 DOI: 10.1016/j.jocn.2019.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/06/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To understand the different patterns of neuropsychological dysfunction observed between juvenile onset (jDM1) and adult onset (aDM1) myotonic dystrophy type 1. METHOD We enrolled 19 genetically confirmed DM1 patients, and neuropsychological tests-Wechsler Adult Intelligence Scale-Revised short form; Rey-Kim memory test; and Executive Intelligence Test for evaluating intelligence, memory, and executive function-were performed. Clinical parameters including cytosine-thymine-guanine (CTG) repeats, creatinine kinase level, pulmonary function test, six-minute walk test, motor scales, and cardiac function were evaluated. RESULTS Verbal intelligence was significantly lower in the jDM1 than the aDM1 group (7.50 ± 1.64 vs. 11.00 ± 2.54, respectively; p = 0.009), while no difference was observed in performance intelligence. There was significant differences between the two groups (p = 0.022) with respect to memory function, as specifically revealed by the pattern of lower function in the verbal memory of the jDM1 group. However, the executive function test showed no intergroup differences. CONCLUSION Verbal memory impairment significantly deteriorated in the jDM1 group as compared to the aDM1 group, reflecting a more profound neurodevelopmental change in the juvenile type.
Collapse
Affiliation(s)
- Jungmin Woo
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.
| |
Collapse
|
49
|
Guía clínica para el diagnóstico y seguimiento de la distrofia miotónica tipo 1, DM1 o enfermedad de Steinert. Med Clin (Barc) 2019; 153:82.e1-82.e17. [DOI: 10.1016/j.medcli.2018.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023]
|
50
|
Holmøy AKT, Johannessen CH, Hope S, van Walsem MR, Aanonsen NO, Hassel B. Uncovering health and social care needs among myotonic dystrophy patients: Utility of the Needs and Provisions Complexity Scale. Acta Neurol Scand 2019; 139:526-532. [PMID: 30848487 DOI: 10.1111/ane.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Myotonic dystrophy type 1 (DM1) is a slowly progressive multisystem disorder. Guidelines recommend multidisciplinary follow-up. We aimed to investigate the presence of unmet health and social care needs among patients with DM1 and whether unmet needs correlated with motor function, cognitive impairments, or quality of life. MATERIAL AND METHODS Patients were 22 adults with DM1. "Needs and Provisions Complexity Scale" (NPCS) was applied to evaluate the individual's needs and provision of health and social services. The Muscular Impairment Rating Scale (MIRS) was used to measure motor function and disease stage. All patients underwent neuropsychological testing. The EQ-5D-3L questionnaire was used to evaluate the patients' health-related quality of life (HRQoL). RESULTS Median time from diagnosis was 11 years (range: 1-40). Twenty patients had developed needs related to social care, personal care, and rehabilitation that had not been met, whereas need for medical follow-up was largely met. The more pronounced the muscular impairment, the more unmet needs were experienced by DM1 patients (r = 0.50, P = 0.019). Degree of unmet needs did not correlate with full-scale IQ (r = -0.27, P = 0.23) or HRQoL (r = -0.14, P = 0.55). CONCLUSION Using NPCS, we discovered that patients with DM1 had unmet needs with respect to social care, personal care, and rehabilitation although their need for medical follow-up was met. Thus, the use of NPCS helped bring our practice in better accordance with guidelines. A higher MIRS grade should alert the clinician to the likelihood of unmet needs.
Collapse
Affiliation(s)
| | - Cecilie Haggag Johannessen
- Department of Neurohabilitation Oslo University Hospital Ullevål Oslo Norway
- NORMENT, KG Jebsen Centre of Psychosis Research, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Sigrun Hope
- Department of Neurohabilitation Oslo University Hospital Ullevål Oslo Norway
- NORMENT, KG Jebsen Centre of Psychosis Research, Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Marleen R. van Walsem
- Department of Neurohabilitation Oslo University Hospital Ullevål Oslo Norway
- Research center for Habilitation and Rehabilitation Models and Services, Institute of Health and Society University of Oslo Oslo Norway
| | - Nils Olav Aanonsen
- Department of Neurohabilitation Oslo University Hospital Ullevål Oslo Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation Oslo University Hospital Ullevål Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| |
Collapse
|