1
|
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis-From Bench to Clinic. Cells 2024; 13:2086. [PMID: 39768177 PMCID: PMC11674340 DOI: 10.3390/cells13242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with a complex and not fully understood etiopathological background involving inflammatory and neurodegenerative processes. CHI3L1 has been implicated in pathological conditions such as inflammation, injury, and neurodegeneration, and is likely to play a role in the physiological development of the CNS. CHI3L1 is primarily produced by CNS macrophages, microglia, and activated astrocytes. The CHI3L1 expression pattern in MS lesions might support the important role of astrocytes in modulating inflammatory processes in this disease. The potential applications of CHI3L1 as a biomarker in MS are multifactorial. The measurement of CHI3L1 in body fluids might find its role in the early diagnosis of MS. In further stages, the monitoring of CHI3L1 levels might provide information on disease severity and progression, enabling a better adjustment of therapeutic strategies. Importantly, CHI3L1 might potentially serve as a marker of ongoing glial activation, reflecting the dynamic response of the CNS cells to the inflammatory processes in MS. Although preliminary findings have been promising, further research is needed to validate the utility of CHI3L1 measurements in the diagnosis and prediction of the progression of MS. Additionally, comparisons with other biomarkers might be useful in clinical practice.
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Anna Jurewicz
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Małgorzata Domowicz
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Alicja Ewiak-Paszyńska
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland
| |
Collapse
|
2
|
Mrabet S, Sghaier I, Souissi A, Gharbi A, Abida Y, Kacem I, Gargouri-Berrechid A, Gouider R. Neurofilaments light chains as a diagnostic and predictive biomarker for Tunisian Multiple Sclerosis patients. Mult Scler Relat Disord 2024; 91:105901. [PMID: 39341199 DOI: 10.1016/j.msard.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) course was shown to be more severe among North Africans compared to Caucasians. Validation of prognostic biomarkers of disease activity and severity is a priority in our practice. OBJECTIVE We aimed to investigate the association between baseline cerebrospinal fluid (CSF) and serum NfL (sNFL) levels and disease activity and disability accrual in a cohort of Tunisian patients with MS. METHODS A cross-sectional study was conducted, in the department of Neurology of Razi Hospital, including patients diagnosed with MS. Patient's data were retrieved from our local MS database. Blood and CSF sampling were performed at the first visit. sNFL levels were measured using the Enzyme-Linked Immuno-Sorbent Assay (ELISA) sandwich technique. RESULTS Three hundred MS patients were enrolled (sex-ratio= 3.05; mean age at MS onset=28.83 years+9.55, mean MS course = 10.21 years+8.96). MS phenotype was predominately relapsing (73%). CSF NfL levels were significantly correlated to the serum ones. NfL concentrations were significantly associated with MS activity (p = 0.012), disease progression (p = 0.001), and higher Multiple Sclerosis Severity Scores (MSSS) (p = 0.0017, r = 0.28). CONCLUSIONS These results support the value of NfL as a sensitive and clinically meaningful CSF and blood biomarker to evaluate MS activity and outcomes among Tunisian MS patients.
Collapse
Affiliation(s)
- Saloua Mrabet
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amira Souissi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Alya Gharbi
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Youssef Abida
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Amina Gargouri-Berrechid
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia
| | - Riadh Gouider
- Neurology Department, LR18SP03, Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 15, Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia; Clinical Investigation Center (CIC) "Neurosciences and Mental Health", Razi University Hospital, 1 rue des orangers, Manouba, Tunis 2010, Tunisia.
| |
Collapse
|
3
|
Alvarez E, Steinman L, Fox EJ, Hartung HP, Qian P, Wray S, Robertson D, Selmaj K, Wynn D, Mok K, Xu Y, Bodhinathan K, Miskin HP, Cree BAC. Improvements in no evidence of disease activity with ublituximab vs. teriflunomide in the ULTIMATE phase 3 studies in relapsing multiple sclerosis. Front Neurol 2024; 15:1473284. [PMID: 39512280 PMCID: PMC11542255 DOI: 10.3389/fneur.2024.1473284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Background Ublituximab is a novel anti-CD20 monoclonal antibody glycoengineered for enhanced antibody-dependent cellular cytotoxicity. The phase 3 ULTIMATE I and II studies showed significant improvements in annualized relapse rate, total number of gadolinium-enhancing (Gd+) T1 lesions, and total number of new or enlarging T2 at Week 96, as well as improvement in the proportion of participants with no evidence of disease activity (NEDA) from Weeks 24-96 with ublituximab vs. teriflunomide. Methods In ULTIMATE I (NCT03277261; www.clinicaltrials.gov) (N = 549) and II (NCT03277248; www.clinicaltrials.gov) (N = 545), participants with relapsing multiple sclerosis received ublituximab 450 mg intravenous infusion every 24 weeks (following Day 1 infusion of 150 mg and Day 15 infusion of 450 mg) or teriflunomide 14 mg oral once daily for 96 weeks. Pooled post hoc analyses evaluated NEDA by treatment epoch and participant subtype: age ( ≤ 38 or >38 years), early or later disease (<3 or ≥3 years following diagnosis), treatment history (treatment naïve or previously treated), 0 or ≥1 Gd+ T1 lesions at baseline, and Expanded Disability Status Scale score ≤ 3.5 or >3.5 at baseline. NEDA was defined as no confirmed relapses, no Gd+ T1 lesions, no new or enlarging T2 lesions, and no disability progression confirmed for ≥12 weeks. Results NEDA rates in the ublituximab vs. teriflunomide cohorts by treatment epoch were: Weeks 0-96, 44.6% vs. 12.4% (3.6 × improvement); Weeks 24-96 (re-baselined), 82.1% vs. 22.5% (3.6 × improvement); and Weeks 48-96 (re-baselined), 88.2% vs. 30.4% (2.9 × improvement) (all p < 0.0001). The primary driver of disease activity in ublituximab-treated participants was new or enlarging T2 lesions during Weeks 0-24. 41.8% of ublituximab-treated participants who had evidence of disease activity in the first year (Weeks 0-48) experienced NEDA in the second year of treatment (Weeks 48-96) compared with 17.3% of teriflunomide-treated participants. At Weeks 24-96 (re-baselined), rates of NEDA were significantly higher with ublituximab than teriflunomide in all participant subtypes (all p < 0.0001). Conclusions ULTIMATE I and II pooled post hoc analyses demonstrated a consistent NEDA benefit among ublituximab-treated participants across treatment epochs and key participant subpopulations.
Collapse
Affiliation(s)
- Enrique Alvarez
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, CA, United States
| | | | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Medical University of Vienna, Vienna, Austria
- Palacký University Olomouc, Olomouc, Czechia
| | - Peiqing Qian
- Swedish Neuroscience Institute, Seattle, WA, United States
| | - Sibyl Wray
- Hope Neurology, Knoxville, TN, United States
| | - Derrick Robertson
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | - Krzysztof Selmaj
- Center of Neurology, Łódź, Poland
- Department of Neurology, University of Warmia and Mazury, Olsztyn, Poland
| | - Daniel Wynn
- Consultants in Neurology, Northbrook, IL, United States
| | - Koby Mok
- TG Therapeutics, New York, NY, United States
| | - Yihuan Xu
- TG Therapeutics, New York, NY, United States
| | | | | | - Bruce A. C. Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Passali M, Galea I, Knudsen MH, Lau LC, Cramer SP, Frederiksen JL. Cerebrospinal fluid neurofilament light chain in acute optic neuritis and its predictive ability of multiple sclerosis. J Neurol 2024; 271:6127-6135. [PMID: 39052040 PMCID: PMC11377639 DOI: 10.1007/s00415-024-12587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Studies on the capability of cerebrospinal fluid neurofilament light chain (cNfL) to predict multiple sclerosis (MS) conversion in clinically isolated syndromes have yielded varying results. OBJECTIVES To expand our understanding of cNfL in optic neuritis (ON) and investigate whether incorporating cNfL into the 2017 McDonald criteria could accelerate the diagnosis of MS in patients with ON. METHODS cNfL was measured in diagnostic samples from 74 patients with verified ON. MS was diagnosed using the 2017 McDonald criteria with a minimum observation time of two years from ON onset. RESULTS 20.5% of 44 MS-converters did not fulfil the 2017 McDonald criteria at ON onset. A doubling of cNfL was associated with 207% (74%-514%) higher odds of MS (p = 0.00042, adjusted for age). Fulfilment of ≥ 1 MRI criterion for dissemination in space (DIS) and presence of brain contrast-enhancing lesions were associated with higher cNfL. Furthermore, cNfL correlated with inter-eye differences in retinal nerve fiber layer (RNFL) thickness (Spearman's ρ = 0.46, p = 8 × 10-5). Incorporating cNfL ≥ 906 pg/mL as a substitute for either dissemination in time or one MRI criterion for DIS increased the sensitivity (90.9% vs. 79.6%) and accuracy (91.9% vs. 87.8%), but also reduced the specificity (93.3% vs. 100%) of the 2017 McDonald criteria. CONCLUSION cNfL was related to MS diagnostic parameters and the degree of RNFL swelling. Clinical use of cNfL may aid in identification of ON patients with increased risk of MS until larger studies have elaborated on the potential loss of specificity if used diagnostically.
Collapse
Affiliation(s)
- Moschoula Passali
- Optic Neuritis Clinic, Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Maria Højberg Knudsen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Laurie Chi Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stig Præstekjær Cramer
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jette Lautrup Frederiksen
- Optic Neuritis Clinic, Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shaygannejad A, Rafiei N, Vaheb S, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1050. [PMID: 39064479 PMCID: PMC11279275 DOI: 10.3390/medicina60071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in MS and NMOSD. A systematic search of electronic databases, including PubMed, Embase, Scopus, and Web of Sciences, was conducted up to 20 December 2023 to identify studies that measured GFAP levels in people with MS (PwMS) and people with NMOSD (PwNMOSD). R software version 4.3.3. with the random-effect model was used to pool the effect size with its 95% confidence interval (CI). Of 4109 studies, 49 studies met our inclusion criteria encompassing 3491 PwMS, 849 PwNMOSD, and 1046 healthy controls (HCs). The analyses indicated that the cerebrospinal fluid level of GFAP (cGFAP) and serum level of GFAP (sGFAP) were significantly higher in PwMS than HCs (SMD = 0.7, 95% CI: 0.54 to 0.86, p < 0.001, I2 = 29%, and SMD = 0.54, 95% CI: 0.1 to 0.99, p = 0.02, I2 = 90%, respectively). The sGFAP was significantly higher in PwNMOSD than in HCs (SMD = 0.9, 95% CI: 0.73 to 1.07, p < 0.001, I2 = 10%). Among PwMS, the Expanded Disability Status Scale (EDSS) exhibited significant correlations with cGFAP (r = 0.43, 95% CI: 0.26 to 0.59, p < 0.001, I2 = 91%) and sGFAP (r = 0.36, 95% CI: 0.23 to 0.49, p < 0.001, I2 = 78%). Regarding that GFAP is increased in MS and NMOSD and has correlations with disease features, it can be a potential biomarker in MS and NMOSD and indicate the disease progression and disability in these disorders.
Collapse
Affiliation(s)
- Aysa Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran;
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
6
|
Vecchio D, Puricelli C, Malucchi S, Virgilio E, Martire S, Perga S, Passarelli F, Valentino P, Di Sapio A, Cantello R, Dianzani U, Comi C. Serum and cerebrospinal fluid neurofilament light chains measured by SIMOA™, Ella™, and Lumipulse™ in multiple sclerosis naïve patients. Mult Scler Relat Disord 2024; 82:105412. [PMID: 38198989 DOI: 10.1016/j.msard.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Neurofilament light chains (NfL) are cytoskeletal biomarkers of axonal damage, about 40-fold higher in cerebrospinal fluid (CSF) compared to serum, and requiring ultrasensitive techniques to be measured in this latter fluid. OBJECTIVES To compare CSF and serum NfL levels in multiple sclerosis (MS) patients using different platforms. METHODS 60 newly diagnosed relapsing-remitting MS patients (38 females; median age: 36.5 years, range: 15-60) were enrolled before steroid or disease-modifying treatments. CSF and serum NfL were measured with: the commercial Ella™ microfluidic platform (Bio-Techne), the Lumipulse™ Chemiluminescent Enzyme ImmunoAssay (Fujirebio), and the SIMOA™ on the SR-X instrument using NF-light assays (Quanterix). RESULTS CSF and serum NfL absolute levels strongly correlated between assays, although being more elevated with Ella™. Passing-Bablok regression showed high agreement in measuring CSF NfL between assays (with greater proportional difference using Ella™), and very high agreement for serum comparing SIMOA™ and Lumipulse™. Similarly, the Bland-Altman comparison evidenced lower biases for Lumipulse™ for both fluids. CONCLUSIONS CSF and serum NfL in naïve MS patients are reliably measured with all assays. Although not interchangeable, SIMOA™ and Lumipulse™ showed high agreement for serum and CSF values.
Collapse
Affiliation(s)
- D Vecchio
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy.
| | - C Puricelli
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - S Malucchi
- Neurology Unit, CRESM University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - E Virgilio
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| | - S Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - S Perga
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - F Passarelli
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - P Valentino
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - A Di Sapio
- Neurology Unit, CRESM University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - R Cantello
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| | - U Dianzani
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - C Comi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| |
Collapse
|
7
|
Kamenskikh EM, Alifirova VM, Pashkovskaya DV, Titova MA, Koroleva ES, Levchuk LA, Ivanova SA. [Serum neurofilament light chains in assessing the course of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:89-93. [PMID: 38261289 DOI: 10.17116/jnevro202412401189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To study a role of serum neurofilament light chains (sNFL) in assessment of course and progression of multiple sclerosis (MS) in the population of patients with MS in the Tomsk region. MATERIAL AND METHODS The study involved 93 patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) (nRRMS=75, nSPMS=18). The study was carried out in a two-stage design: the first stage was a cross-sectional study for the entire sample; the second stage was a prospective observation with two visits for patients with relapse. sNFL concentration was determined by solid-phase ELISA. RESULTS There was no statistically significant difference between RRMS and SPMS, and relapse and remission groups in terms of sNFL levels. Patients with a MS duration exceeding 14 years had higher rates of sNFL than those with a shorter duration (p=0.02). The subjects of the second study stage showed a decrease in sNFL from 2.05 (1.86; 2.19) pg/ml to 1.92 (1.87; 2.04) pg/ml (p=0.005), and slowdown in sNFL reduction correlated with the severity of cognitive impairment (k=0.52; p<0.05). CONCLUSION Dynamic monitoring of sNFL allows the evaluation of the activity of the disease, as well as making an assumption about the compensatory possibilities of subsequent recovery.
Collapse
Affiliation(s)
| | | | | | - M A Titova
- Siberian State Medical University, Tomsk, Russia
| | - E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| | - L A Levchuk
- Mental Health Research Institute - Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - S A Ivanova
- Siberian State Medical University, Tomsk, Russia
- Mental Health Research Institute - Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Midaglia L, Rovira A, Miró B, Río J, Fissolo N, Castilló J, Sánchez A, Montalban X, Comabella M. Association of magnetic resonance imaging phenotypes and serum biomarker levels with treatment response and long-term disease outcomes in multiple sclerosis patients. Eur J Neurol 2024; 31:e16077. [PMID: 37754568 PMCID: PMC11235849 DOI: 10.1111/ene.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to evaluate whether magnetic resonance imaging (MRI) phenotypes defined by inflammation and neurodegeneration markers correlate with serum levels of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in relapsing-remitting multiple sclerosis (RRMS) patients; and to explore the role of radiological phenotypes and biomarker levels on treatment response and long-term prognostic outcomes. METHODS Magnetic resonance imaging scans from 80 RRMS patients were classified at baseline of interferon-beta (IFNβ) treatment into radiological phenotypes defined by high and low inflammation and high and low neurodegeneration, based on the number of contrast-enhancing lesions, brain parenchymal fraction and the relative volume of non-enhancing black holes on T1-weighted images. Serum levels of NfL and GFAP were measured at baseline with single molecule array (Simoa) assays. MRI phenotypes and serum biomarker levels were investigated for their association with IFNβ response, and times to second-line therapies, secondary-progressive MS (SPMS) conversion and Expanded Disability Status Scale (EDSS) 6.0. RESULTS Mean (SD) follow-up was 17 (2.9) years. Serum NfL levels and GFAP were higher in the high inflammation (p = 0.04) and high neurodegeneration phenotypes (p = 0.03), respectively. The high inflammation phenotype was associated with poor response to IFNβ treatment (p = 0.04) and with shorter time to second-line therapies (p = 0.04). In contrast, the high neurodegeneration phenotype was associated with shorter time to SPMS (p = 0.006) and a trend towards shorter time to EDSS 6.0 (p = 0.09). High serum NfL levels were associated with poor response to IFNβ treatment (p = 0.004). CONCLUSIONS Magnetic resonance imaging phenotypes defined by inflammation and neurodegeneration correlate with serum biomarker levels, and both have prognostic implications in treatment response and long-term disease outcomes.
Collapse
Affiliation(s)
- Luciana Midaglia
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Berta Miró
- Unitat d'Estadística i BioinformàticaInstitut de Recerca Vall d'Hebron (VHIR)BarcelonaSpain
| | - Jordi Río
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Nicolás Fissolo
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Joaquín Castilló
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alex Sánchez
- Unitat d'Estadística i BioinformàticaInstitut de Recerca Vall d'Hebron (VHIR)BarcelonaSpain
| | - Xavier Montalban
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Manuel Comabella
- Servei de Neurologia‐Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'HebronUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
9
|
Stavropoulou De Lorenzo S, Bakirtzis C, Konstantinidou N, Kesidou E, Parissis D, Evangelopoulos ME, Elsayed D, Hamdy E, Said S, Grigoriadis N. How Early Is Early Multiple Sclerosis? J Clin Med 2023; 13:214. [PMID: 38202221 PMCID: PMC10780129 DOI: 10.3390/jcm13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The development and further optimization of the diagnostic criteria for multiple sclerosis (MS) emphasize the establishment of an early and accurate diagnosis. So far, numerous studies have revealed the significance of early treatment administration for MS and its association with slower disease progression and better late outcomes of the disease with regards to disability accumulation. However, according to current research results, both neuroinflammatory and neurodegenerative processes may exist prior to symptom initiation. Despite the fact that a significant proportion of individuals with radiologically isolated syndrome (RIS) progress to MS, currently, there is no available treatment approved for RIS. Therefore, our idea of "early treatment administration" might be already late in some cases. In order to detect the individuals who will progress to MS, we need accurate biomarkers. In this review, we present notable research results regarding the underlying pathology of MS, as well as several potentially useful laboratory and neuroimaging biomarkers for the identification of high-risk individuals with RIS for developing MS. This review aims to raise clinicians' awareness regarding "subclinical" MS, enrich their understanding of MS pathology, and familiarize them with several potential biomarkers that are currently under investigation and might be used in clinical practice in the future for the identification of individuals with RIS at high risk for conversion to definite MS.
Collapse
Affiliation(s)
- Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | | | - Dina Elsayed
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Eman Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Sameh Said
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| |
Collapse
|
10
|
Ghezzi A, Neuteboom RF. Neurofilament Light Chain in Adult and Pediatric Multiple Sclerosis: A Promising Biomarker to Better Characterize Disease Activity and Personalize MS Treatment. Neurol Ther 2023; 12:1867-1881. [PMID: 37682513 PMCID: PMC10630260 DOI: 10.1007/s40120-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Many biological markers have been explored in multiple sclerosis (MS) to better quantify disease burden and better evaluate response to treatments, beyond clinical and MRI data. Among these, neurofilament light chain (Nf-L), although non-specific for this disease and found to be increased in other neurological conditions, has been shown to be the most promising biomarker for assessing axonal damage in MS, with a definite role in predicting the development of MS in patients at the first neurological episode suggestive of MS, and also in a preclinical phase. There is strong evidence that Nf-L levels are increased more in relapsing versus stable MS patients, and that they predict future disease evolution (relapses, progression, MRI measures of activity/progression) in MS patients, providing information on response to therapy, helping to anticipate clinical decisions in patients with an apparently stable evolution, and identifying patient non-responders to disease-modifying treatments. Moreover, Nf-L can contribute to the better understanding of the mechanisms of demyelination and axonal damage in adult and pediatric MS. A fundamental requirement for its clinical use is the accurate standardization of normal values, corrected for confounding factors, in particular age, sex, body mass index, and presence of comorbidities. In this review, a guide is provided to update clinicians on the use of Nf-L in clinical activity.
Collapse
Affiliation(s)
- Angelo Ghezzi
- Dipartimento di Scienze della Salute, Università Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100, Novara, Italy.
| | - R F Neuteboom
- Department of Neurology, ErasMS Center, Erasmus MC, PO Box 2040, 3000, Rotterdam, The Netherlands
| |
Collapse
|
11
|
López-Gómez J, Sacristán Enciso B, Caro Miró MA, Querol Pascual MR. Clinically isolated syndrome: Diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia 2023; 38:663-670. [PMID: 37858891 DOI: 10.1016/j.nrleng.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION In most cases, multiple sclerosis (MS) initially presents as clinically isolated syndrome (CIS). Differentiating CIS from other acute or subacute neurological diseases and estimating the risk of progression to clinically definite MS is essential since presenting a second episode in a short time is associated with poorer long-term prognosis. DEVELOPMENT We conducted a literature review to evaluate the usefulness of different variables in improving diagnostic accuracy and predicting progression from CIS to MS, including magnetic resonance imaging (MRI) and such biofluid markers as oligoclonal IgG and IgM bands, lipid-specific oligoclonal IgM bands in the CSF, CSF kappa free light-chain (KFLC) index, neurofilament light chain (NfL) in the CSF and serum, and chitinase 3-like protein 1 (CHI3L1) in the CSF and serum. CONCLUSIONS Codetection of oligoclonal IgG bands and MRI lesions reduces diagnostic delays and suggests a high risk of CIS progression to MS. A KFLC index > 10.6 and CSF NfL concentrations > 1150 ng/L indicate that CIS is more likely to progress to MS within one year (40%-50%); 90% of patients with CIS and serum CHI3L1 levels > 33 ng/mL and 100% of those with lipid-specific oligoclonal IgM bands present MS within one year of CIS onset.
Collapse
Affiliation(s)
- J López-Gómez
- Unidad de Proteínas, Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, Spain.
| | - B Sacristán Enciso
- Sección de Proteínas y Autoinmunidad, Servicio de Análisis Clínicos, Hospital de Mérida, Badajoz, Spain
| | - M A Caro Miró
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, Spain
| | - M R Querol Pascual
- Servicio de Neurología, Hospital Universitario de Badajoz, Badajoz, Spain
| |
Collapse
|
12
|
Åkesson J, Hojjati S, Hellberg S, Raffetseder J, Khademi M, Rynkowski R, Kockum I, Altafini C, Lubovac-Pilav Z, Mellergård J, Jenmalm MC, Piehl F, Olsson T, Ernerudh J, Gustafsson M. Proteomics reveal biomarkers for diagnosis, disease activity and long-term disability outcomes in multiple sclerosis. Nat Commun 2023; 14:6903. [PMID: 37903821 PMCID: PMC10616092 DOI: 10.1038/s41467-023-42682-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Sensitive and reliable protein biomarkers are needed to predict disease trajectory and personalize treatment strategies for multiple sclerosis (MS). Here, we use the highly sensitive proximity-extension assay combined with next-generation sequencing (Olink Explore) to quantify 1463 proteins in cerebrospinal fluid (CSF) and plasma from 143 people with early-stage MS and 43 healthy controls. With longitudinally followed discovery and replication cohorts, we identify CSF proteins that consistently predicted both short- and long-term disease progression. Lower levels of neurofilament light chain (NfL) in CSF is superior in predicting the absence of disease activity two years after sampling (replication AUC = 0.77) compared to all other tested proteins. Importantly, we also identify a combination of 11 CSF proteins (CXCL13, LTA, FCN2, ICAM3, LY9, SLAMF7, TYMP, CHI3L1, FYB1, TNFRSF1B and NfL) that predict the severity of disability worsening according to the normalized age-related MS severity score (replication AUC = 0.90). The identification of these proteins may help elucidate pathogenetic processes and might aid decisions on treatment strategies for persons with MS.
Collapse
Affiliation(s)
- Julia Åkesson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
- Systems Biology Research Centre, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Sara Hojjati
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Robert Rynkowski
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Claudio Altafini
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, 581 83, Linköping, Sweden
| | - Zelmina Lubovac-Pilav
- Systems Biology Research Centre, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Johan Mellergård
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
13
|
Reeve K, On BI, Havla J, Burns J, Gosteli-Peter MA, Alabsawi A, Alayash Z, Götschi A, Seibold H, Mansmann U, Held U. Prognostic models for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. Cochrane Database Syst Rev 2023; 9:CD013606. [PMID: 37681561 PMCID: PMC10486189 DOI: 10.1002/14651858.cd013606.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that affects millions of people worldwide. The disease course varies greatly across individuals and many disease-modifying treatments with different safety and efficacy profiles have been developed recently. Prognostic models evaluated and shown to be valid in different settings have the potential to support people with MS and their physicians during the decision-making process for treatment or disease/life management, allow stratified and more precise interpretation of interventional trials, and provide insights into disease mechanisms. Many researchers have turned to prognostic models to help predict clinical outcomes in people with MS; however, to our knowledge, no widely accepted prognostic model for MS is being used in clinical practice yet. OBJECTIVES To identify and summarise multivariable prognostic models, and their validation studies for quantifying the risk of clinical disease progression, worsening, and activity in adults with MS. SEARCH METHODS We searched MEDLINE, Embase, and the Cochrane Database of Systematic Reviews from January 1996 until July 2021. We also screened the reference lists of included studies and relevant reviews, and references citing the included studies. SELECTION CRITERIA We included all statistically developed multivariable prognostic models aiming to predict clinical disease progression, worsening, and activity, as measured by disability, relapse, conversion to definite MS, conversion to progressive MS, or a composite of these in adult individuals with MS. We also included any studies evaluating the performance of (i.e. validating) these models. There were no restrictions based on language, data source, timing of prognostication, or timing of outcome. DATA COLLECTION AND ANALYSIS Pairs of review authors independently screened titles/abstracts and full texts, extracted data using a piloted form based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS), assessed risk of bias using the Prediction Model Risk Of Bias Assessment Tool (PROBAST), and assessed reporting deficiencies based on the checklist items in Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). The characteristics of the included models and their validations are described narratively. We planned to meta-analyse the discrimination and calibration of models with at least three external validations outside the model development study but no model met this criterion. We summarised between-study heterogeneity narratively but again could not perform the planned meta-regression. MAIN RESULTS We included 57 studies, from which we identified 75 model developments, 15 external validations corresponding to only 12 (16%) of the models, and six author-reported validations. Only two models were externally validated multiple times. None of the identified external validations were performed by researchers independent of those that developed the model. The outcome was related to disease progression in 39 (41%), relapses in 8 (8%), conversion to definite MS in 17 (18%), and conversion to progressive MS in 27 (28%) of the 96 models or validations. The disease and treatment-related characteristics of included participants, and definitions of considered predictors and outcome, were highly heterogeneous amongst the studies. Based on the publication year, we observed an increase in the percent of participants on treatment, diversification of the diagnostic criteria used, an increase in consideration of biomarkers or treatment as predictors, and increased use of machine learning methods over time. Usability and reproducibility All identified models contained at least one predictor requiring the skills of a medical specialist for measurement or assessment. Most of the models (44; 59%) contained predictors that require specialist equipment likely to be absent from primary care or standard hospital settings. Over half (52%) of the developed models were not accompanied by model coefficients, tools, or instructions, which hinders their application, independent validation or reproduction. The data used in model developments were made publicly available or reported to be available on request only in a few studies (two and six, respectively). Risk of bias We rated all but one of the model developments or validations as having high overall risk of bias. The main reason for this was the statistical methods used for the development or evaluation of prognostic models; we rated all but two of the included model developments or validations as having high risk of bias in the analysis domain. None of the model developments that were externally validated or these models' external validations had low risk of bias. There were concerns related to applicability of the models to our research question in over one-third (38%) of the models or their validations. Reporting deficiencies Reporting was poor overall and there was no observable increase in the quality of reporting over time. The items that were unclearly reported or not reported at all for most of the included models or validations were related to sample size justification, blinding of outcome assessors, details of the full model or how to obtain predictions from it, amount of missing data, and treatments received by the participants. Reporting of preferred model performance measures of discrimination and calibration was suboptimal. AUTHORS' CONCLUSIONS The current evidence is not sufficient for recommending the use of any of the published prognostic prediction models for people with MS in clinical routine today due to lack of independent external validations. The MS prognostic research community should adhere to the current reporting and methodological guidelines and conduct many more state-of-the-art external validation studies for the existing or newly developed models.
Collapse
Affiliation(s)
- Kelly Reeve
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - Begum Irmak On
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Havla
- lnstitute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | | | - Albraa Alabsawi
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zoheir Alayash
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Health Services Research in Dentistry, University of Münster, Muenster, Germany
| | - Andrea Götschi
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | | | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ulrike Held
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| |
Collapse
|
14
|
Chitnis T, Foley J, Ionete C, El Ayoubi NK, Saxena S, Gaitan-Walsh P, Lokhande H, Paul A, Saleh F, Weiner H, Qureshi F, Becich MJ, da Costa FR, Gehman VM, Zhang F, Keshavan A, Jalaleddini K, Ghoreyshi A, Khoury SJ. Clinical validation of a multi-protein, serum-based assay for disease activity assessments in multiple sclerosis. Clin Immunol 2023:109688. [PMID: 37414379 DOI: 10.1016/j.clim.2023.109688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
An 18-protein multiple sclerosis (MS) disease activity (DA) test was validated based on associations between algorithm scores and clinical/radiographic assessments (N = 614 serum samples; Train [n = 426; algorithm development] and Test [n = 188; evaluation] subsets). The multi-protein model was trained based on presence/absence of gadolinium-positive (Gd+) lesions and was also strongly associated with new/enlarging T2 lesions, and active versus stable disease (composite of radiographic and clinical evidence of DA) with improved performance (p < 0.05) compared to the neurofilament light single protein model. The odds of having ≥1 Gd + lesions with a moderate/high DA score were 4.49 times that of a low DA score, and the odds of having ≥2 Gd + lesions with a high DA score were 20.99 times that of a low/moderate DA score. The MSDA Test was clinically validated with improved performance compared to the top-performing single-protein model and can serve as a quantitative tool to enhance the care of MS patients.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Carolina Ionete
- University of Massachusetts Medical School, Worcester, MA, USA.
| | - Nabil K El Ayoubi
- Nehme and Thgerese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon.
| | - Shrishti Saxena
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | - Anu Paul
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Fermisk Saleh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard Weiner
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, CA, USA
| | | | | | | | - Samia J Khoury
- Nehme and Thgerese Tohme Multiple Sclerosis Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
15
|
Hegen H, Berek K, Bsteh G, Auer M, Altmann P, Di Pauli F, Grams A, Milosavljevic D, Ponleitner M, Poskaite P, Schnabl C, Wurth S, Zinganell A, Berger T, Walde J, Deisenhammer F. Kappa free light chain and neurofilament light independently predict early multiple sclerosis disease activity-a cohort study. EBioMedicine 2023; 91:104573. [PMID: 37086651 PMCID: PMC10148088 DOI: 10.1016/j.ebiom.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Inter-individual courses of multiple sclerosis (MS) are extremely variable. The objective of this study was to investigate whether κ-free light chain (κ-FLC) index and serum neurofilament light (sNfL) have an additive predictive value for MS disease activity. METHODS Patients with early MS who had cerebrospinal fluid (CSF) and serum sampling at disease onset were followed for four years. At baseline, age, sex, disease duration, number of T2-hyperintense (T2L), and contrast-enhancing T1 lesions (CEL) on MRI were determined. During follow-up, the occurrence of a second clinical attack and start of disease-modifying treatment (DMT) were registered. κ-FLC was measured by nephelometry, and κ-FLC index calculated as [CSF κ-FLC/serum κ-FLC]/albumin quotient. sNfL was determined by single-molecule array, and age- and body-mass-index adjusted Z scores were calculated. FINDINGS A total of 86 patients at a mean age of 33 ± 10 years and with a female predominance of 67% were included; 36 (42%) patients experienced a second clinical attack during follow-up. Cox regression analysis adjusted for age, sex, T2L, CEL, disease and follow-up duration, and DMT use during follow-up revealed that both κ-FLC index as well as sNfL Z score independently predict time to second clinical attack. The chance for freedom of relapse within 12 months was 2% in patients with high levels of κ-FLC index (>100) and high sNfL Z score (>3), 30% in patients with high κ-FLC index (>100) and lower sNfL Z score (≤3), 70% in patients with lower κ-FLC index (≤100) but high sNfL Z score (>3), and 90% in patients with lower levels of κ-FLC index (≤100) and sNfL Z score (≤3). INTERPRETATION κ-FLC index and sNfL Z score have an additive predictive value for early MS disease activity that is independent of known predictors. FUNDING This study was funded by a grant of the charitable foundation of the Austrian Multiple Sclerosis Society.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulina Poskaite
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sebastian Wurth
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Janette Walde
- Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
16
|
Cutter G, Rudick RA, de Moor C, Singh CM, Fisher E, Koster T, Lublin FD, Wolinsky JS, McFarland H, Jacobson S, Naylor ML. Serum neurofilament light-chain levels and long-term treatment outcomes in relapsing-remitting multiple sclerosis patients: A post hoc analysis of the randomized CombiRx trial. Mult Scler J Exp Transl Clin 2023; 9:20552173231169463. [PMID: 37139460 PMCID: PMC10150429 DOI: 10.1177/20552173231169463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background CombiRx was a randomized, double-blind, placebo-controlled phase 3 trial in treatment-naive relapsing-remitting multiple sclerosis (RRMS) patients randomized to intramuscular interferon beta-1a (IM IFN beta-1a), glatiramer acetate (GA), or both therapies. Objective This analysis investigated changes in serum neurofilament light-chain (sNfL) levels in response to treatment and assessed baseline sNfL as a predictor of relapse. Methods RRMS patients treated with IM IFN beta-1a 30 µg weekly + placebo (n = 159), GA 20 mg/mL daily + placebo (n = 172), or IM IFN beta-1a + GA (n = 344) were included. A linear mixed model compared sNfL values over time. Cox regression models analyzed baseline sNfL and gadolinium-enhancing (Gd+) lesions as predictors of relapse. Results In all treatment arms, the proportion of patients with sNfL ≥16 pg/mL decreased significantly from baseline to 6 months and was maintained at 36 months. A significantly higher percentage of patients with both baseline sNfL ≥16 pg/mL and ≥1 Gd+ lesion experienced relapses within 90 days compared to patients with sNfL <16 pg/mL and/or no Gd+ lesions. Conclusion sNfL levels were reduced within 6 months and remained low at 36 months. Results suggest that the combination of lesion activity and sNfL was a stronger predictor of relapse than either factor alone.
Collapse
Affiliation(s)
- Gary Cutter
- Gary Cutter, Department of Biostatistics,
The University of Alabama at Birmingham, 1665 University Boulevard, Birmingham,
AL 35233, USA.
| | - Richard A Rudick
- Department of Neurology, Biogen Inc, Cambridge, MA, USA, at the time of these analyses
| | - Carl de Moor
- Biostatistics, Biogen Inc, Cambridge, MA, USA, at the time of these analyses
| | - Carol M Singh
- Biogen Digital Health, Biogen Inc, Cambridge, MA, USA
| | - Elizabeth Fisher
- Value Based Medicine, Biogen Inc, Cambridge, MA, USA, at the time of these analyses
| | - Thijs Koster
- Global Medical, Biogen Inc, Cambridge, MA, USA, at the time of these analyses
| | - Fred D Lublin
- Department of Neurology, Corinne Goldsmith
Dickinson Center for Multiple Sclerosis, New York, NY, USA and Friedman
Brain Institute, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of
Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Henry McFarland
- National Institute of Neurological Disorders
and Stroke, National Institutes of
Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute
of Neurological Disorders and Stroke, National Institutes of
Health, Bethesda, MD, USA
| | - Maria L Naylor
- Global Medical, Biogen Inc, Cambridge, MA, USA, at the time of these analyses
| |
Collapse
|
17
|
Ashkar A, Baig MMA, Arif A, Ali MM, Yousuf F, Ashkar R. Prognostic significance of neurofilament light in Fingolimod therapy for Multiple Sclerosis: A systemic review and meta-analysis based on randomized control trials. Mult Scler Relat Disord 2023; 69:104416. [PMID: 36495843 DOI: 10.1016/j.msard.2022.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This research was conducted to assess Neurofilament light chain (NfL) as prognostic factor for Multiple Sclerosis and effect of Fingolimod on plasma levels of NfL. MATERIALS AND METHODS A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to 7th September 2022. All statistical analyses were conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. Only those studies that involved Multiple sclerosis patients in which plasma levels of NfL was provided and Fingolimod was used in the treatment group. Fixed-effect model was used to pool the studies to assess NfL as prognostic factor, which was reported in the Hazards ratio (HR) and their corresponding 95% confidence interval (CI). Moreover, effect of Fingolimod on NfL levels was analysed qualitatively. RESULTS Five Randomized Controlled Trials were used in the study. Four studies were used in quantitative analysis which showed increased NfL was related to significant increase in cognitive disability worsening (HR= 1.66 [1.35, 2.05]; p< 0.00001; I2= 0%). The qualitative analysis method was employed to evaluate the factors correlating with increased NfL levels in Multiple Sclerosis patients. Five studies evaluated that there was significant decrease in NfL levels when Fingolimod was used as compared to placebo. 4 studies were included to correlated NfL levels with clinical and MRI parameters and association was found between increasing NfL levels and relapses, active/new T2 lesions and percentage of brain volume change. CONCLUSION The results of our meta-analysis and systematic review demonstrated statistically significant effect of NfL as a prognostic marker with its level being decreased significantly when Fingolimod was used for treating Multiple Sclerosis.
Collapse
Affiliation(s)
- Anusha Ashkar
- Dow University of Health Sciences, Baba-E-Urdu Road, Karachi 74200, Pakistan.
| | | | - Areej Arif
- Dow University of Health Sciences, Baba-E-Urdu Road, Karachi 74200, Pakistan
| | - Maheen Mazhar Ali
- Dow University of Health Sciences, Baba-E-Urdu Road, Karachi 74200, Pakistan
| | - Fareeha Yousuf
- Dow University of Health Sciences, Baba-E-Urdu Road, Karachi 74200, Pakistan
| | | |
Collapse
|
18
|
Steffen F, Uphaus T, Ripfel N, Fleischer V, Schraad M, Gonzalez-Escamilla G, Engel S, Groppa S, Zipp F, Bittner S. Serum Neurofilament Identifies Patients With Multiple Sclerosis With Severe Focal Axonal Damage in a 6-Year Longitudinal Cohort. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200055. [PMID: 36411080 PMCID: PMC9679887 DOI: 10.1212/nxi.0000000000200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Immunomodulatory therapies reduce the relapse rate but only marginally control disability progression in patients with MS. Although serum neurofilament light chain (sNfL) levels correlate best with acute signs of inflammation (e.g., relapses and gadolinium-enhancing [Gd+] lesions), their role in predicting progressive biology and irreversible axonal damage is less clear. We aimed to determine the ability of sNfL to dissect distinct measures of disease severity and predict future (no) evidence of disease activity (EDA/no evidence of disease activity [NEDA]). METHODS One hundred fifty-three of 221 patients with relapsing-remitting MS initially enrolled in the Neurofilament and longterm outcome in MS cohort at the MS outpatient clinic of the University Medical Center Mainz (Germany) met the inclusion criteria for this prospective observational cohort study with a median follow-up of 6 years (interquartile range 4-7 years). Progressive disease forms were excluded. Inclusion criteria consisted of Expanded Disability Status Scale (EDSS) assessment within 3 months and MRI within 12 months around blood sampling at baseline (y0) and follow-up (y6). EDSS progression at y6 had to be confirmed 12 weeks later. sNfL was measured by single-molecule array, and the following additional variables were recorded: therapy, medical history, and detailed MRI parameters (T2 hyperintense lesions, Gd+ lesions, and new persistent T1 hypointense lesions). RESULTS Patients experiencing EDSS progression or new persistent T1 lesions at y6 showed increased sNfL levels at y0 compared with stable patients or patients with inflammatory activity only. As a potential readily accessible marker of neurodegeneration, we incorporated the absence of persistent T1 lesions to the NEDA-3 concept (NEDA-3T1: n = 54, 35.3%; EDAT1: n = 99, 64.7%) and then evaluated a risk score with factors that distinguish patients with and without NEDA-3T1 status. Adding sNfL to this risk score significantly improved NEDA-3T1 prediction (0.697 95% CI 0.616-0.770 vs 0.819 95% CI 0.747-0.878, p < 0.001). Patients with sNfL values ≤8.6 pg/mL showed a 76% risk reduction for EDAT1 at y6 (hazard ratio 0.244, 95% CI 0.142-0.419, p < 0.001). DISCUSSION sNfL levels associate with severe focal axonal damage as reflected by development of persistent T1 lesions. Baseline sNfL values predicted NEDA-3T1 status at 6-year follow-up.
Collapse
Affiliation(s)
- Falk Steffen
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Timo Uphaus
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nina Ripfel
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muriel Schraad
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sinah Engel
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- From the Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
19
|
Rival M, Thouvenot E, Du Trieu de Terdonck L, Laurent-Chabalier S, Demattei C, Uygunoglu U, Castelnovo G, Cohen M, Okuda DT, Kantarci OH, Pelletier D, Azevedo C, Marin P, Lehmann S, Siva A, Mura T, Lebrun-Frenay C. Neurofilament Light Chain Levels Are Predictive of Clinical Conversion in Radiologically Isolated Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200044. [PMID: 36280258 PMCID: PMC9621336 DOI: 10.1212/nxi.0000000000200044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the predictive value of serum neurofilament light chain (sNfL) and CSF NfL (cNfL) in patients with radiologically isolated syndrome (RIS) for evidence of disease activity (EDA) and clinical conversion (CC). METHODS sNfL and cNfL were measured at RIS diagnosis by single-molecule array (Simoa). The risk of EDA and CC according to sNfL and cNfL was evaluated using the Kaplan-Meier analysis and multivariate Cox regression models including age, spinal cord (SC) or infratentorial lesions, oligoclonal bands, CSF chitinase 3-like protein 1, and CSF white blood cells. RESULTS Sixty-one patients with RIS were included. At diagnosis, sNfL and cNfL were correlated (Spearman r = 0.78, p < 0.001). During follow-up, 47 patients with RIS showed EDA and 36 patients showed CC (median time 12.6 months, 1-86). When compared with low levels, medium and high cNfL (>260 pg/mL) and sNfL (>5.0 pg/mL) levels were predictive of EDA (log rank, p < 0.01 and p = 0.02, respectively). Medium-high cNfL levels were predictive of CC (log rank, p < 0.01). In Cox regression models, cNfL and sNfL were independent factors of EDA, while SC lesions, cNfL, and sNfL were independent factors of CC. DISCUSSION cNfL >260 pg/mL and sNfL >5.0 pg/mL at diagnosis are independent predictive factors of EDA and CC in RIS. Although cNfL predicts disease activity better, sNfL is more accessible than cNfL and can be considered when a lumbar puncture is not performed. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in people with radiologic isolated syndrome (RIS), initial serum and CSF NfL levels are associated with subsequent evidence of disease activity or clinical conversion.
Collapse
Affiliation(s)
- Manon Rival
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Eric Thouvenot
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France.
| | - Lucile Du Trieu de Terdonck
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sabine Laurent-Chabalier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christophe Demattei
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Ugur Uygunoglu
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Giovanni Castelnovo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Mikael Cohen
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Darin T Okuda
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Orhun H Kantarci
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Daniel Pelletier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christina Azevedo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Philippe Marin
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sylvain Lehmann
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Aksel Siva
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Thibault Mura
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christine Lebrun-Frenay
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| |
Collapse
|
20
|
Barizzone N, Leone M, Pizzino A, Kockum I, Martinelli-Boneschi F, D’Alfonso S. A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:1430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
Affiliation(s)
- Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 17176 Stockholm, Sweden
| | - Filippo Martinelli-Boneschi
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit and Multiple Sclerosis Centre, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Sandra D’Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
21
|
Aloizou AM, Liampas I, Provatas A, Brotis A, Siokas V, Bakritzis C, Liakos P, Tsouris Z, Dardiotis E. Baseline neurofilament levels in cerebrospinal fluid do not correlate with long-term prognosis in multiple sclerosis. Mult Scler Relat Disord 2022; 64:103940. [DOI: 10.1016/j.msard.2022.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
|
22
|
Comparative Analysis of Neurodegeneration and Axonal Dysfunction Biomarkers in the Cerebrospinal Fluid of Patients with Multiple Sclerosis. J Clin Med 2022; 11:jcm11144122. [PMID: 35887886 PMCID: PMC9324050 DOI: 10.3390/jcm11144122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Given the significant role of neurodegeneration in the progression of multiple sclerosis (MS) and insufficient therapies, there is an urgent need to better understand this pathology and to find new biomarkers that could provide important insight into the biological mechanisms of the disease. Thus, the present study aimed to compare different neurodegeneration and axonal dysfunction biomarkers in MS and verify their potential clinical usefulness. METHODS A total of 59 patients, who underwent CSF analysis during their diagnostics, were enrolled in the study. Quantitative analysis of neurodegeneration biomarkers was performed through immunological tests. Oligoclonal bands were detected by isoelectric focusing on agarose gel, whereas the concentrations of immunoglobulins and albumin were measured using nephelometry. RESULTS Our studies showed that NfL, RTN4, and tau protein enabled the differentiation of MS patients from the control group. Additionally, the baseline CSF NfL levels positively correlated with the tau and MRI results, whereas the RTN4 concentrations were associated with the immunoglobulin quotients. The AUC for NfL was the highest among the tested proteins, although the DeLong test of the ROC curves showed no significant difference between the AUCs for NfL and RTN4. CONCLUSION The CSF NfL, RTN-4, and tau levels at the time of diagnosis could be potential diagnostic markers of multiple sclerosis, although NfL seems to have the best clinical value.
Collapse
|
23
|
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1164. [PMID: 35534236 PMCID: PMC9128043 DOI: 10.1212/nxi.0000000000001164] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is an autoimmune disease confined in the CNS, and its course is frequently subtle and variable. Therefore, predictive biomarkers are needed. In this scenario, we conducted a systematic review and meta-analysis to evaluate the reliability of chitinase 3-like 1 as a biomarker of MS. METHODS Research through the main scientific databases (PubMed, Scopus, Web of Science, and Cochrane Library) published from January 2010 to December 2020 was performed using the following keywords: "chitinase 3-like 1 and multiple sclerosis" and "YKL40 and multiple sclerosis." Articles were selected according to the 2020 updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by 2 authors independently, and data were extracted; 20 of the 90 studies screened were included in the meta-analysis. The main efficacy measure was represented by the standardized mean difference of CSF and blood CHI3L1 levels; Review Manager version 5.4 and R software applications were used for analysis. RESULTS Higher levels of CHI3L1 were found in CSF of 673 patients with MS compared with 336 healthy controls (size-weighted mean difference [SMD] 50.88; 95% CI = 44.98-56.79; p < 0.00001) and in 461 patients with MS than 283 patients with clinically isolated syndrome (CIS) (SMD 28.18; 95% CI = 23.59-32.76; p < 0.00001). Mean CSF CHI3L1 levels were significantly higher in 561 converting than 445 nonconverting CIS (SMD 30.6; 95% CI = 28.31-32.93; p < 0.00001). CSF CHI3L1 levels were significantly higher in patients with primary progressive MS (PPMS) than in patients with relapsing-remitting MS (RRMS) (SMD 43.15; 95% CI = 24.41-61.90; p < 0.00001) and in patients with secondary progressive MS (SMD 41.86 with 95% CI = 32.39-51.33; p < 0.00001). CSF CHI3L1 levels in 407 patients with MS during remission phase of disease were significantly higher than those in 395 patients with MS with acute relapse (SMD 10.48; 95% CI = 08.51-12.44; p < 0.00001). The performances of CHI3L1 in blood for differentiating patients with MS from healthy controls were not significant (SMD 0.48; 95% CI = -1.18 to 2.14; p: 0.57). DISCUSSION CSF levels of CHI3L1 have a strong correlation with the MS pathologic course, in particular with the mechanism of progression of the disease; it helps to distinguish the PPMS from the RRMS. The potential role of CHI3L1 in serum needs to be further studied in the future.
Collapse
Affiliation(s)
- Stefano Floro
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Tiziana Carandini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Anna Margherita Pietroboni
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Milena Alessandra De Riz
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Elio Scarpini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Daniela Galimberti
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| |
Collapse
|
24
|
Rise HH, Brune S, Chien C, Berge T, Bos SD, Andorrà M, Valdeolivas IP, Beyer MK, Sowa P, Scheel M, Brandt AU, Asseyer S, Blennow K, Pedersen ML, Zetterberg H, de Schotten MT, Cellerino M, Uccelli A, Paul F, Villoslada P, Harbo HF, Westlye LT, Høgestøl EA. Brain disconnectome mapping derived from white matter lesions and serum neurofilament light levels in multiple sclerosis: A longitudinal multicenter study. Neuroimage Clin 2022; 35:103099. [PMID: 35772194 PMCID: PMC9253471 DOI: 10.1016/j.nicl.2022.103099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Connectivity-based approaches incorporating the distribution and magnitude of the extended brain network aberrations caused by lesions may offer higher sensitivity for axonal damage in patients with multiple sclerosis (MS) than conventional lesion characteristics. Using individual brain disconnectome mapping, we tested the longitudinal associations between putative imaging-based brain network aberrations and levels of serum neurofilament light chain (NfL) as a neuroaxonal injury biomarker. METHODS MS patients (n = 312, mean age 42.9 years, 71 % female) and healthy controls (HC) (n = 59, mean age 39.9 years, 78 % female) were prospectively enrolled at four European MS centres, and reassessed after two years (MS, n = 242; HC, n = 30). Post-processing of 3 Tesla (3 T) MRI data was performed at one centre using a harmonized pipeline, and disconnectome maps were calculated using BCBtoolkit based on individual lesion maps. Global disconnectivity (GD) was defined as the average disconnectome probability in each patient's white matter. Serum NfL concentrations were measured by single molecule array (Simoa). Robust linear mixed models (rLMM) with GD or T2-lesion volume (T2LV) as dependent variables, patient as a random factor, serum NfL, age, sex, timepoint for visit, diagnosis, treatment, and center as fixed factors were run. RESULTS rLMM revealed significant associations between GD and serum NfL (t = 2.94, p = 0.003), age (t = 4.21, p = 2.5 × 10-5), and longitudinal changes in NfL (t = -2.29, p = 0.02), but not for sex (t = 0.63, p = 0.53) or treatments (t = 0.80-0.83, p = 0.41-0.42). Voxel-wise analyses revealed significant associations between dysconnectivity in cerebellar and brainstem regions and serum NfL (t = 7.03, p < 0.001). DISCUSSION In our prospective multi-site MS cohort, rLMMs demonstrated that the extent of global and regional brain disconnectivity is sensitive to a systemic biomarker of axonal damage, serum NfL, in patients with MS. These findings provide a neuroaxonal correlate of advanced disconnectome mapping and provide a platform for further investigations of the functional and potential clinical relevance of brain disconnectome mapping in patients with brain disorders.
Collapse
Affiliation(s)
- Henning H Rise
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Synne Brune
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Claudia Chien
- Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin & Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research Center, Germany; Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Germany; Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department for Psychiatry and Psychotherapy, Germany
| | - Tone Berge
- Department of Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway; Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Steffan D Bos
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Magí Andorrà
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | | | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Piotr Sowa
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Michael Scheel
- Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Germany; Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Germany
| | - Alexander U Brandt
- Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin & Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research Center, Germany; Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Germany; Department of Neurology, University of California, Irvine, CA, USA
| | - Susanna Asseyer
- Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin & Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research Center, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives- UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Maria Cellerino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Friedemann Paul
- Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin & Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research Center, Germany; Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Germany; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pablo Villoslada
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen, Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Einar A Høgestøl
- Department of Psychology, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
25
|
Brune S, Høgestøl EA, de Rodez Benavent SA, Berg-Hansen P, Beyer MK, Leikfoss IS, Bos SD, Sowa P, Brunborg C, Andorra M, Pulido Valdeolivas I, Asseyer S, Brandt A, Chien C, Scheel M, Blennow K, Zetterberg H, Kerlero de Rosbo N, Paul F, Uccelli A, Villoslada P, Berge T, Harbo HF. Serum neurofilament light chain concentration predicts disease worsening in multiple sclerosis. Mult Scler 2022; 28:1859-1870. [PMID: 35658739 PMCID: PMC9493412 DOI: 10.1177/13524585221097296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Serum neurofilament light (sNfL) chain is a promising biomarker reflecting
neuro-axonal injury in multiple sclerosis (MS). However, the ability of sNfL
to predict outcomes in real-world MS cohorts requires further
validation. Objective: The aim of the study is to investigate the associations of sNfL
concentration, magnetic resonance imaging (MRI) and retinal optical
coherence tomography (OCT) markers with disease worsening in a longitudinal
European multicentre MS cohort. Methods: MS patients (n = 309) were prospectively enrolled at four
centres and re-examined after 2 years (n = 226). NfL
concentration was measured by single molecule array assay in serum. The
patients’ phenotypes were thoroughly characterized with clinical
examination, retinal OCT and MRI brain scans. The primary outcome was
disease worsening at median 2-year follow-up. Results: Patients with high sNfL concentrations (⩾8 pg/mL) at baseline had increased
risk of disease worsening at median 2-year follow-up (odds ratio (95%
confidence interval) = 2.8 (1.5–5.3), p = 0.001). We found
no significant associations of MRI or OCT measures at baseline with risk of
disease worsening. Conclusion: Serum NfL concentration was the only factor associated with disease
worsening, indicating that sNfL is a useful biomarker in MS that might be
relevant in a clinical setting.
Collapse
Affiliation(s)
- Synne Brune
- Institute of clinical Medicine, University of Oslo, Oslo, Norway/Department of Neurology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Einar A Høgestøl
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway/Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Pål Berg-Hansen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway/Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Sørum Leikfoss
- Department of Neurology, Oslo University Hospital, Oslo, Norway/Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Steffan D Bos
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway/Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Piotr Sowa
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Magi Andorra
- Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | | | - Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Alexander Brandt
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany/Department of Neuroradiology, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden/Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK/UK Dementia Research Institute at UCL, London, UK/Hong Kong Center for Neurodegenerative Diseases, Shatin, Hong Kong, China
| | - Nicole Kerlero de Rosbo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany/NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy/Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy/IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pablo Villoslada
- Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Tone Berge
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway/Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway/Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Rival M, Galoppin M, Thouvenot E. Biological Markers in Early Multiple Sclerosis: the Paved Way for Radiologically Isolated Syndrome. Front Immunol 2022; 13:866092. [PMID: 35572543 PMCID: PMC9094445 DOI: 10.3389/fimmu.2022.866092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Radiologically Isolated Syndrome (RIS) is characterized by MRI-typical brain lesions fulfilling the 2009 Okuda criteria, detected in patients without clinical conditions suggestive of MS. Half of all RIS patients convert to MS within 10 years. The individual course of the disease, however, is highly variable with 12% of RIS converting directly to progressive MS. Demographic and imaging markers have been associated with the risk of clinical MS in RIS: male sex, younger age, infra-tentorial, and spinal cord lesions on the index scan and gadolinium-enhancing lesions on index or follow-up scans. Although not considered as a distinct MS phenotype, RIS certainly shares common pathological features with early active and progressive MS. In this review, we specifically focus on biological markers that may help refine the risk stratification of clinical MS and disability for early treatment. Intrathecal B-cell activation with cerebrospinal fluid (CSF) oligoclonal bands, elevated kappa free light chains, and cytokine production is specific to MS, whereas neurofilament light chain (NfL) levels reflect disease activity associated with neuroaxonal injury. Specific microRNA profiles have been identified in RIS converters in both CSF and blood. CSF levels of chitinases and glial acidic fibrillary protein (GFAP) reflecting astrogliosis might help predict the evolution of RIS to progressive MS. Innovative genomic, proteomic, and metabolomic approaches have provided several new candidate biomarkers to be explored in RIS. Leveraging data from randomized controlled trials and large prospective RIS cohorts with extended follow-up to identify, as early as possible, biomarkers for predicting greater disease severity would be invaluable for counseling patients, managing treatment, and monitoring.
Collapse
Affiliation(s)
- Manon Rival
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Manon Galoppin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Eric Thouvenot
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
27
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
28
|
Gomes ABAGR, Adoni T. Differential diagnosis of demyelinating diseases: what's new? ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:137-142. [PMID: 35976299 PMCID: PMC9491438 DOI: 10.1590/0004-282x-anp-2022-s109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acquired demyelinating disorders lead to overlapping visual, pyramidal, sensory, autonomic, and cerebellar deficits and may lead to severe disability. Early diagnosis and start of treatment are fundamental towards preventing further attacks and halting disability. OBJECTIVE In this paper we provide an updated overview of the differential diagnoses of acquired demyelinating disorders. METHODS We performed a critical targeted review of the diagnoses of the most prevalent demyelinating disorders: multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD). RESULTS We discuss the workup, diagnostic criteria and new biomarkers currently being used for the diagnosis of these disease entities taking into account the particularities of the Brazilian population and healthcare system. CONCLUSION A comprehensive analysis of medical history, physical examination, biomedical and imaging data should be performed to obtain differential diagnosis. Diagnostic criteria should be mindfully employed considering ethnic and environmental particularities of each patient.
Collapse
Affiliation(s)
| | - Tarso Adoni
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
- Hospital Sírio-Libanês, Centro de Esclerose Múltipla, São Paulo SP, Brazil
| |
Collapse
|
29
|
Huehnchen P, Schinke C, Bangemann N, Dordevic AD, Kern J, Maierhof SK, Hew L, Nolte L, Körtvelyessy P, Göpfert JC, Ruprecht K, Somps CJ, Blohmer JU, Sehouli J, Endres M, Boehmerle W. Neurofilament proteins as potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022; 7:154395. [PMID: 35133982 PMCID: PMC8986065 DOI: 10.1172/jci.insight.154395] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Paclitaxel chemotherapy frequently induces dose-limiting sensory axonal polyneuropathy. As sensory symptoms are challenging to assess objectively in clinical routine, an easily accessible biomarker for chemotherapy-induced polyneuropathy (CIPN) holds the potential to improve early diagnosis. Here, we describe neurofilament light chain (NFL), a marker for neuroaxonal damage, as translational surrogate marker for CIPN. METHODS NFL concentrations were measured in an in vitro model of CIPN, exposing induced pluripotent stem cell-derived sensory neurons (iPSC-DSN) to paclitaxel. Breast and ovarian cancer patients undergoing paclitaxel chemotherapy, breast cancer control patients without chemotherapy and healthy controls were recruited in a cohort study and examined before chemotherapy (V1) and after 28 weeks (V2, after chemotherapy). CIPN was assessed by the validated Total Neuropathy Score reduced, which combines patient-reported symptoms with data from clinical examinations. Serum NFL (NFLs) concentrations were measured at both visits with single molecule array technology (SIMOA). RESULTS NFL is released from iPSC-DSN upon paclitaxel incubation in a dose- and time-dependent manner and inversely correlates with iPSC-DSN viability. NFLs strongly increased in paclitaxel-treated patients with CIPN, but not in chemotherapy patients without CIPN or controls, resulting in an 86 % sensitivity and 87 % specificity. A NFLs increase of +36 pg/ml from baseline was associated with a predicted CIPN probability of >0.5. CONCLUSION NFLs correlates with CIPN development and severity, which may guide neurotoxic chemotherapy in the future. TRIAL REGISTRATION NCT02753036FUNDING. DFG (EXC 257 NeuroCure), BMBF (01 EO 0801), AnimalFreeResearch Organization, EU Horizon 2020 Innovative Medicines Initiative 2 Joint Undertaking (TransBioLine, 821283).
Collapse
Affiliation(s)
- Petra Huehnchen
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Schinke
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Bangemann
- Gynecology and Systemic Gynecology, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Adam D Dordevic
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Kern
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Smilla K Maierhof
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lois Hew
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Nolte
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Körtvelyessy
- Department of Experimental Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Jens C Göpfert
- Naturwissenschaftliches und Medizinisches Institut, Universität Tübingen, Reutlingen, Germany
| | - Klemens Ruprecht
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christopher J Somps
- Drug Safety Research and Development, Pfizer, Groton, United States of America
| | - Jens-Uwe Blohmer
- Department of Gynecology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Petrou P, Kassis I, Ginzberg A, Hallimi M, Karussis D. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:55-58. [PMID: 35641166 PMCID: PMC8895488 DOI: 10.1093/stcltm/szab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neurofilament light chains (NF-L) were shown to serve as a reliable biomarker of neurodegeneration in multiple sclerosis (MS). The chemokine receptor CXCL13 was shown to correlate with CNS inflammatory activity and to predict the future progression of MS. Objective To evaluate the levels of NF-L and CXCL13 in the cerebrospinal fluid (CSF) following treatment with mesenchymal stem cells (MSC) in patients with progressive MS. Methods The CSF samples were obtained from 48 patients with progressive MS who participated in a double-blind randomized phase II clinical trial that tested the effects of intrathecal (IT) or intravenous (IV) transplantation of mesenchymal stem cells (MSC), at baseline (before the first injection of the MSC) and at 6 months following treatment with MSC, or sham treatment. The CSF specimens were tested in a blinded way, using a single-molecule array (SIMOA) technique. Findings The CSF levels of NF-L were significantly lower at 6 months following treatment with MSC-IT when compared with the baseline, pre-treatment measurements (P = .026, Wilcoxon paired test). Nine out of 15 tested patients in the MSC-IT group had a reduction in NF-L levels of more than 50% (median decrease: −4449 pg/mL) when compared with 5/15 in the MSC-IV group (median decrease: −151 pg/mL) and 1/15 in the placebo group (median increase: +2450 pg/mL) (P = .001 for MSC-IT vs. placebo, chi-square test). CXCL13 levels were also reduced at 6 months following MSC-IT treatment but not to a statistically significant level. Conclusions Our findings indicate possible neuroprotective effects of MSC transplantation in patients with MS. Clinical trial registration NCT02166021
Collapse
Affiliation(s)
- Panayiota Petrou
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ibrahim Kassis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ariel Ginzberg
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Michelle Hallimi
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Dimitrios Karussis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
- Corresponding author: Dimitrios Karussis, MD, PhD, Unit of Neuroimmunology, Hadassah Medical Organization, Ein-Karem, Jerusalem, Israel, IL-91120. Tel: +972-2-6776639;
| |
Collapse
|
31
|
Bhan A, Jacobsen C, Dalen I, Bergsland N, Zivadinov R, Alves G, Myhr KM, Farbu E. CSF neurofilament light chain predicts 10-year clinical and radiologic worsening in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211060337. [PMID: 34900328 PMCID: PMC8652913 DOI: 10.1177/20552173211060337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neurofilament light chain (NfL) is an attractive biomarker of disease
activity and progression in MS, but there is a lack in long-term prognostic
data. Objective To test the long-term clinical and radiological prognostic value of
cerebrospinal fluid (CSF)-NfL among newly diagnosed patients with MS. Methods Newly diagnosed MS patients where followed prospectively with baseline
CSF-NfL and repeated MRI and clinical assessments for up to 10 years.
Associations between baseline CSF-NfL and longitudinal MRI and clinical
assessments were found by Generalized Estimating Equations analysis. Results Forty-two participants were included. CSF-NfL at baseline was significantly
associated with the rate of atrophy in globus pallidus
(p = 0.009) and hippocampus (p = 0.001) as
evaluated by MRI. Baseline volumes of thalamus (β −0.33; 95% CI −0.57 to
−0.10, p = 0.006), T1 (β 0.28; 95% CI 0.11 to 0.44,
p = 0.001) and T2 (β 0.16; 95% CI 0.04 to 0.27,
p = 0.008) lesions and baseline levels of CSF-NfL (β
0.9; 95% CI 0.3 to 1.5, p = 0.002) significantly predicted
EDSS worsening over 10 years. Baseline CSF-NfL gave a comparable prediction
to the best MRI volumetric predictors. Conclusion CSF-NfL predicted the clinical and radiological course of newly diagnosed
patients with MS over a 10-year period, underlining its prognostic role.
Collapse
Affiliation(s)
- Alok Bhan
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Cecilie Jacobsen
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Dalen
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Guido Alves
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Elisabeth Farbu
- Neuroscience Research Group, Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
32
|
Kouchaki E, Dashti F, Mirazimi SMA, Alirezaei Z, Jafari SH, Hamblin MR, Mirzaei H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI JOURNAL 2021; 20:1308-1325. [PMID: 34602928 PMCID: PMC8481790 DOI: 10.17179/excli2021-3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
The treatments for multiple sclerosis (MS) have improved over the past 25 years, but now the main question for physicians is deciding who should receive treatment, for how long, and when to switch to other options. These decisions are typically based on treatment tolerance and a reasonable expectation of long-term efficacy. A significant unmet need is the lack of accurate laboratory measurements for diagnosis, and monitoring of treatment response, including deterioration and disease progression. There are few validated biomarkers for MS, and in practice, physicians employ two biomarkers discovered fifty years ago for MS diagnosis, often in combination with MRI scans. These biomarkers are intrathecal IgG and oligoclonal bands in the CSF (cerebrospinal fluid). Neurofilament light chain (NfL) is a relatively new biomarker for MS diagnosis and follow up. Neurofilaments are neuron-specific cytoskeleton proteins that can be measured in various body compartments. NfL is a new biomarker for MS that can be measured in serum samples, but this still needs further study to specify the laboratory cut-off values in clinical practice. In the present review we discuss the evidence for NfL as a reliable biomarker for the early detection and management of MS. Moreover, we highlight the correlation between MRI and NfL, and ask whether they can be combined.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- MS Fellowship, Department of Neurology, School of Medicine, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
33
|
Dichev V, Kazakova M, Sarafian V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev Neurosci 2021; 31:539-553. [PMID: 32045356 DOI: 10.1515/revneuro-2019-0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases comprise a large number of disorders with high impact on human health. Neurodegenerative processes are caused by various etiological factors and differ in their clinical presentation. Neuroinflammation is widely discussed as both a cause and a consequence in the manifestation of these disorders. The interplay between the two entities is considered as a major contributor to the ongoing disease progression. An attentive search and implementation of new and reliable markers specific for the processes of inflammation and degeneration is still needed. YKL-40 is a secreted glycoprotein produced by activated glial cells during neuroinflammation. Neuron-specific enolase (NSE), expressed mainly by neuronal cells, is a long-standing marker for neuronal damage. The aim of this review is to summarize, clarify, and evaluate the potential significance and relationship between YKL-40 and NSE as biomarkers in the monitoring and prognosis of a set of neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. YKL-40 appears to be a more reliable biomarker in neurological diseases than NSE. The more prominent expression pattern of YKL-40 could be explained with the more obvious involvement of glial cells in pathological processes accompanying each neurodegenerative disease, whereas reduced NSE levels are likely related to low metabolic activity and increased death of neurons.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
34
|
Franks PW, Melén E, Friedman M, Sundström J, Kockum I, Klareskog L, Almqvist C, Bergen SE, Czene K, Hägg S, Hall P, Johnell K, Malarstig A, Catrina A, Hagström H, Benson M, Gustav Smith J, Gomez MF, Orho-Melander M, Jacobsson B, Halfvarson J, Repsilber D, Oresic M, Jern C, Melin B, Ohlsson C, Fall T, Rönnblom L, Wadelius M, Nordmark G, Johansson Å, Rosenquist R, Sullivan PF. Technological readiness and implementation of genomic-driven precision medicine for complex diseases. J Intern Med 2021; 290:602-620. [PMID: 34213793 DOI: 10.1111/joim.13330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.
Collapse
Affiliation(s)
- P W Franks
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - E Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - M Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Sundström
- Department of Cardiology, Akademiska Sjukhuset, Uppsala, Sweden.,George Institute for Global Health, Camperdown, NSW, Australia.,Medical Sciences, Uppsala University, Uppsala, Sweden
| | - I Kockum
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Klareskog
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - K Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Malarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pfizer, Worldwide Research and Development, Stockholm, Sweden
| | - A Catrina
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H Hagström
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - M Benson
- Department of Pediatrics, Linkopings Universitet, Linkoping, Sweden.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Gustav Smith
- Department of Cardiology and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M F Gomez
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - M Orho-Melander
- From the, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - B Jacobsson
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Genetics and Bioinformatics, Oslo, Norway.,Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - J Halfvarson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - D Repsilber
- Functional Bioinformatics, Örebro University, Örebro, Sweden
| | - M Oresic
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI, Finland
| | - C Jern
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - B Melin
- Department of Radiation Sciences, Oncology, Umeå Universitet, Umeå, Sweden
| | - C Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, CBAR, University of Gothenburg, Gothenburg, Sweden.,Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - T Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Johansson
- Institute for Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - R Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Rosenstein I, Axelsson M, Novakova L, Blennow K, Zetterberg H, Lycke J. Exploring CSF neurofilament light as a biomarker for MS in clinical practice; a retrospective registry-based study. Mult Scler 2021; 28:872-884. [PMID: 34392718 PMCID: PMC9024026 DOI: 10.1177/13524585211039104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neurofilament light (NFL) has been increasingly recognized for prognostic and therapeutic decisions. Objective: To validate the utility of cerebrospinal fluid NFL (cNFL) as a biomarker in clinical practice of relapsing-remitting multiple sclerosis (RRMS). Methods: RRMS patients (n = 757) who had cNFL analyzed as part of the diagnostic work-up in a single academic multiple sclerosis (MS) center, 2001–2018, were retrospectively identified. cNFL concentrations were determined with two different immunoassays and the ratio of means between them was used for normalization. Results: RRMS with relapse had 4.4 times higher median cNFL concentration (1134 [interquartile range (IQR) 499–2744] ng/L) than those without relapse (264 [125–537] ng/L, p < 0.001) and patients with gadolinium-enhancing lesions had 3.3 times higher median NFL (1414 [606.8–3210] ng/L) than those without (426 [IQR 221–851] ng/L, p < 0.001). The sensitivity and specificity of cNFL to detect disease activity was 75% and 98.5%, respectively. High cNFL at MS onset predicted progression to Expanded Disability Status Scale (EDSS) ⩾ 3 (p < 0.001, hazard ratios (HR) = 1.89, 95% CI = 1.44–2.65) and conversion to secondary progressive MS (SPMS, p = 0.001, HR = 2.5, 95% CI = 1.4–4.2). Conclusions: cNFL is a robust and reliable biomarker of disease activity, treatment response, and prediction of disability and conversion from RRMS to SPMS. Our data suggest that cNFL should be included in the assessment of patients at MS-onset.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden/Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden/Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK/UK Dementia Research Institute, University College London (UCL), London, UK
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
37
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
38
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
39
|
Sestito C, Leurs CE, Steenwijk MD, Brevé JJP, Twisk JWR, Wilhelmus MMM, Drukarch B, Teunissen CE, van Dam AM, Killestein J. Tissue Transglutaminase Expression Associates With Progression of Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e998. [PMID: 33906937 PMCID: PMC8105890 DOI: 10.1212/nxi.0000000000000998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
Objective The clinical course of multiple sclerosis (MS) is variable and largely unpredictable pointing to an urgent need for markers to monitor disease activity and progression. Recent evidence revealed that tissue transglutaminase (TG2) is altered in patient-derived monocytes. We hypothesize that blood cell–derived TG2 messenger RNA (mRNA) can potentially be used as biomarker in patients with MS. Methods In peripheral blood mononuclear cells (PBMCs) from 151 healthy controls and 161 patients with MS, TG2 mRNA was measured and correlated with clinical and MRI parameters of disease activity (annualized relapse rate, gadolinium-enhanced lesions, and T2 lesion volume) and disease progression (Expanded Disability Status Scale [EDSS], normalized brain volume, and hypointense T1 lesion volume). Results PBMC-derived TG2 mRNA levels were significantly associated with disease progression, i.e., worsening of the EDSS over 2 years of follow-up, normalized brain volume, and normalized gray and white matter volume in the total MS patient group at baseline. Of these, in patients with relapsing-remitting MS, TG2 expression was significantly associated with worsening of the EDSS scores over 2 years of follow-up. In the patients with primary progressive (PP) MS, TG2 mRNA levels were significantly associated with EDSS, normalized brain volume, and normalized gray and white matter volume at baseline. In addition, TG2 mRNA associated with T1 hypointense lesion volume in the patients with PP MS at baseline. Conclusion PBMC-derived TG2 mRNA levels hold promise as biomarker for disease progression in patients with MS. Classification of Evidence This study provides Class II evidence that in patients with MS, PBMC-derived TG2 mRNA levels are associated with disease progression.
Collapse
Affiliation(s)
- Claudia Sestito
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Cyra E Leurs
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Martijn D Steenwijk
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - John J P Brevé
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Jos W R Twisk
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Micha M M Wilhelmus
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Benjamin Drukarch
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| | - Anne-Marie van Dam
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands.
| | - Joep Killestein
- From Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, MS Center Amsterdam, Department of Anatomy and Neurosciences (C.S., M.D.S., J.J.P.B., M.M.M.W., B.D., A.-M.v.D.), Department of Neurology (C.E.L., J.K.), Department of Epidemiology and Biostatistics (J.W.R.T.), and Department of Clinical Chemistry (C.E.T.), Amsterdam, the Netherlands
| |
Collapse
|
40
|
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:642384. [PMID: 33889068 PMCID: PMC8055958 DOI: 10.3389/fnins.2021.642384] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease of the central nervous system characterized by demyelination and axonal damage. Diagnosis and prognosis are mainly assessed through clinical examination and neuroimaging. However, more sensitive biomarkers are needed to measure disease activity and guide treatment decisions in MS. Prompt and individualized management can reduce inflammatory activity and delay disease progression. Neurofilament Light chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular fluid following axonal injury, has been identified as a biomarker of disease activity in MS. Measurement of NfL levels can capture the extent of neuroaxonal damage, especially in early stages of the disease. A growing body of evidence has shown that NfL in cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis and treatment response. More recently, NfL has been shown to facilitate individualized treatment decisions for individuals with MS. In this review, we discuss the characteristics that make NfL a highly informative biomarker and depict the available technologies used for its measurement. We further discuss the growing role of serum and CSF NfL in MS research and clinical settings. Finally, we address some of the current topics of debate regarding the use of NfL in clinical practice and examine the possible directions that this biomarker may take in the future.
Collapse
Affiliation(s)
- Carolina Ferreira-Atuesta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Saúl Reyes
- Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovanonni
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Sharmilee Gnanapavan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
41
|
López-Gómez J, Sacristán-Enciso B, Caro-Miró MA, Querol Pascual MR. Clinically isolated syndrome: diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia 2021; 38:S0213-4853(21)00028-1. [PMID: 33757657 DOI: 10.1016/j.nrl.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION In most cases, multiple sclerosis (MS) initially presents as clinically isolated syndrome (CIS). Differentiating CIS from other acute or subacute neurological diseases and estimating the risk of progression to clinically definite MS is essential since presenting a second episode in a short time is associated with poorer long-term prognosis. DEVELOPMENT We conducted a literature review to evaluate the usefulness of different variables in improving diagnostic accuracy and predicting progression from CIS to MS, including magnetic resonance imaging (MRI) and such biofluid markers as oligoclonal IgG and IgM bands, lipid-specific oligoclonal IgM bands in the CSF, CSF kappa free light-chain (KFLC) index, neurofilament light chain (NfL) in the CSF and serum, and chitinase 3-like protein 1 (CHI3L1) in the CSF and serum. CONCLUSIONS Codetection of oligoclonal IgG bands and MRI lesions reduces diagnostic delays and suggests a high risk of CIS progression to MS. A KFLC index > 10.6 and CSF NfL concentrations > 1150 ng/L indicate that CIS is more likely to progress to MS within one year (40-50%); 90% of patients with CIS and serum CHI3L1 levels > 33 ng/mL and 100% of those with lipid-specific oligoclonal IgM bands present MS within one year of CIS onset.
Collapse
Affiliation(s)
- J López-Gómez
- Unidad de Proteínas, Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, España.
| | - B Sacristán-Enciso
- Sección de Proteínas y Autoinmunidad, Servicio de Análisis Clínicos, Hospital de Mérida, Badajoz, España
| | - M A Caro-Miró
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, España
| | - M R Querol Pascual
- Servicio de Neurología. Hospital Universitario de Badajoz, Badajoz, España
| |
Collapse
|
42
|
Skillbäck T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, Lindberg O, Mielke MM, Zettergren A, Ryden L, Westman E, Wahlund L, Skoog I, Kern S. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12141. [PMID: 33748393 PMCID: PMC7968119 DOI: 10.1002/dad2.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand. METHODS Participants were derived from two Swedish samples: the population-based H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the population-based study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age. RESULTS Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs. DISCUSSION The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Sara Shams
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Alejandra Machado
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Joana Pereira
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Olof Lindberg
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Michelle M. Mielke
- Department of Health Sciences ResearchDivision of Epidemiology and Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Anna Zettergren
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Lina Ryden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Eric Westman
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Lars‐Olof Wahlund
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| |
Collapse
|
43
|
Momtazmanesh S, Shobeiri P, Saghazadeh A, Teunissen CE, Burman J, Szalardy L, Klivenyi P, Bartos A, Fernandes A, Rezaei N. Neuronal and glial CSF biomarkers in multiple sclerosis: a systematic review and meta-analysis. Rev Neurosci 2021; 32:573-595. [PMID: 33594840 DOI: 10.1515/revneuro-2020-0145] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease associated with inflammatory demyelination and astroglial activation, with neuronal and axonal damage as the leading factors of disability. We aimed to perform a meta-analysis to determine changes in CSF levels of neuronal and glial biomarkers, including neurofilament light chain (NFL), total tau (t-tau), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein (GFAP), and S100B in various groups of MS (MS versus controls, clinically isolated syndrome (CIS) versus controls, CIS versus MS, relapsing-remitting MS (RRMS) versus progressive MS (PMS), and MS in relapse versus remission. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 64 articles in the meta-analysis, including 4071 subjects. For investigation of sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. Meta-analyses were performed for comparisons including at least three individual datasets. NFL, GFAP, t-tau, CHI3L1, and S100B were higher in MS and NFL, t-tau, and CHI3L1 were also elevated in CIS patients than controls. CHI3L1 was the only marker with higher levels in MS than CIS. GFAP levels were higher in PMS versus RRMS, and NFL, t-tau, and CHI3L1 did not differ between different subtypes. Only levels of NFL were higher in patients in relapse than remission. Meta-regression showed influence of sex and disease severity on NFL and t-tau levels, respectively and disease duration on both. Added to the role of these biomarkers in determining prognosis and treatment response, to conclude, they may serve in diagnosis of MS and distinguishing different subtypes.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Location VUmc, PK 2 BR 141, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joachim Burman
- Department of Neuroscience, Uppsala University Hospital, 75185Uppsala, Sweden
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00Prague 10, Czech Republic
| | - Adelaide Fernandes
- Department of Pharmacological Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003Lisbon, Portugal
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
44
|
Camara-Lemarroy CR, Silva C, Metz LM, Cerchiaro G, Greenfield J, Dowlatabadi R, Vogel HJ, Lee CH, Giuliani F, Nakhaei-Nejad M, Li DKB, Traboulsee A, Yong VW. Multimodal peripheral fluid biomarker analysis in clinically isolated syndrome and early multiple sclerosis. Mult Scler Relat Disord 2021; 50:102809. [PMID: 33581614 DOI: 10.1016/j.msard.2021.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/06/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increasing evidence suggests that various inflammatory, immunological and metabolic pathways are altered in the clinically isolated syndrome (CIS) of multiple sclerosis (MS). Moreover, recent diagnostic criteria have made possible the very early diagnosis of MS. We evaluated multiple fluid biomarkers in people with early MS and CIS. METHODS We measured blood levels of cytokines, matrix metalloproteinases (MMPs), serum metabolomics and immune cell immunophenotyping in participants in the Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. RESULTS When compared with healthy controls, people with early MS/CIS had higher levels of eotaxin, MCP-3, IL-1 receptor antagonist, IL-1β, IL-9 and IP-10, as well as MMPs 1, 8 and 9. In metabolomics analysis, the alanine, aspartate and glutamate metabolism and the synthesis and degradation of ketone bodies pathways were altered compared to healthy controls. There were no differences in lymphocyte subpopulation numbers. Out of all these biomarkers, only MMP-1 was able to differentiate between early MS and CIS, and was found to correlate with lesion volume and gadolinium enhancing lesions on MRI. CONCLUSION The immunological and metabolic profile of CIS and early MS is remarkably similar, supporting that these are a continuum of a common underlying pathophysiological process.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Claudia Silva
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne M Metz
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graziela Cerchiaro
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie Greenfield
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Reza Dowlatabadi
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
| | - Hans J Vogel
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
| | - Chieh-Hsin Lee
- Department of Medicine, University of Alberta, Alberta, Canada
| | | | | | - David K B Li
- Department of Medicine, University of British Columbia, Canada
| | | | - V Wee Yong
- Departments of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Tamam Y, Gunes B, Akbayir E, Kizilay T, Karaaslan Z, Koral G, Duzel B, Kucukali CI, Gunduz T, Kurtuncu M, Yilmaz V, Tuzun E, Turkoglu R. CSF levels of HoxB3 and YKL-40 may predict conversion from clinically isolated syndrome to relapsing remitting multiple sclerosis. Mult Scler Relat Disord 2020; 48:102697. [PMID: 33352356 DOI: 10.1016/j.msard.2020.102697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) often initiates with an acute episode of neurological disturbance, known as clinically isolated syndrome (CIS). There is an unmet need for biomarkers that differentiate patients who will convert to MS and who will remain as CIS after the first attack. METHODS First attack serum and cerebrospinal fluid (CSF) samples of 33 CIS patients were collected and these patients were divided as those who converted to MS (CIS-MS, n=17) and those who continued as CIS (CIS-CIS, n=16) in a 3-year follow-up period. Levels of homeobox protein Hox-B3 (HoxB3) and YKL-40 were measured by ELISA in samples of CIS-CIS, CIS-MS, relapsing remitting MS (RRMS) patients (n=15) and healthy controls (n=20). RESULTS CIS-CIS patients showed significantly reduced CSF levels of YKL-40 and increased serum/CSF levels of HoxB3 compared with CIS-MS and RRMS patients. CIS-MS and RRMS patients had comparable YKL-40 and HoxB3 level profiles. Receiver operating characteristic (ROC) curve analysis showed the highest sensitivity for CSF HoxB3 measurements in prediction of CIS-MS conversion. Kaplan-Meier analysis demonstrated that CIS patients with lower CSF HoxB3 (<3.678 ng/ml) and higher CSF YKL-40 (>654.9 ng/ml) displayed a significantly shorter time to clinically definite MS. CONCLUSION CSF levels of HoxB3 and YKL-40 appear to predict CIS to MS conversion, especially when applied in combination. HoxB3, which is a transcription factor involved in immune cell activity, stands out as a potential candidate molecule with biomarker capacity for MS.
Collapse
Affiliation(s)
- Yusuf Tamam
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Betul Gunes
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tugce Kizilay
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Koral
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Berna Duzel
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gunduz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kurtuncu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
46
|
Schneider R, Bellenberg B, Gisevius B, Hirschberg S, Sankowski R, Prinz M, Gold R, Lukas C, Haghikia A. Chitinase 3-like 1 and neurofilament light chain in CSF and CNS atrophy in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e906. [PMID: 33172960 PMCID: PMC7713721 DOI: 10.1212/nxi.0000000000000906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Objective To investigate cross-sectional associations of CSF levels of neurofilament light chain (NfL) and of the newly emerging marker chitinase 3–like protein 1 (CHI3L1) with brain and spinal cord atrophy, which are established MRI markers of disease activity in MS, to study CHI3L1 and NfL in relapsing (RMS) and progressive MS (PMS), and to assess the expression of CHI3L1 in different cell types. Methods In a single-center study, 131 patients with MS (42 RMS and 89 PMS) were assessed for NfL and CHI3L1 concentrations in CSF, MRI-based spinal cord and brain volumetry, MS subtype, age, disease duration, and disability. We included 42 matched healthy controls receiving MRI. CHI3L1 expression of human brain cell types was examined in 2 published single-cell RNA sequencing data sets. Results CHI3L1 was associated with spinal cord volume (B = −1.07, 95% CI −2.04 to −0.11, p = 0.029) but not with brain volumes. NfL was associated with brain gray matter (B = −7.3, 95% CI −12.0 to −2.7, p = 0.003) but not with spinal cord volume. CHI3L1 was suitable to differentiate between progressive or relapsing MS (p = 0.015, OR 1.0103, CI for OR 1.002–1.0187), and its gene expression was found in MS-associated microglia and macrophages and in astrocytes of MS brains. Conclusions NfL and CHI3L1 in CSF were differentially related to brain and spinal cord atrophy. CSF CHI3L1 was associated with spinal cord volume loss and was less affected than NfL by disease duration and age, whereas CSF NfL was associated with brain gray matter atrophy. CSF NfL and CHI3L1 measurement provides complementary information regarding brain and spinal cord volumes. Classification of evidence This study provides Class II evidence that CSF CHI3L1 is associated with spinal cord volume loss and that CSF NfL is associated with gray matter atrophy.
Collapse
Affiliation(s)
- Ruth Schneider
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany.
| | - Barbara Bellenberg
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Barbara Gisevius
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Sarah Hirschberg
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Roman Sankowski
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Marco Prinz
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Ralf Gold
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Carsten Lukas
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| | - Aiden Haghikia
- From the Department of Neurology (R. Schneider, B.G., S.H., R.G., A.H.), Institute of Neuroradiology (R. Schneider, B.B., C.L.), and Department of Radiology and Nuclear Medicine (C.L.), St. Josef Hospital, Ruhr University Bochum; Institute of Neuropathology (R. Sankowski, M.P.), Medical Faculty, Signalling Research Centers BIOSS and CIBSS (M.P.), and Center for Basics in NeuroModulation (NeuroModulBasics) (M.P.), Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
47
|
Plavina T, Singh CM, Sangurdekar D, de Moor C, Engle B, Gafson A, Goyal J, Fisher E, Szak S, Kinkel RP, Sandrock AW, Su R, Kieseier BC, Rudick RA. Association of Serum Neurofilament Light Levels With Long-term Brain Atrophy in Patients With a First Multiple Sclerosis Episode. JAMA Netw Open 2020; 3:e2016278. [PMID: 33151313 PMCID: PMC7645699 DOI: 10.1001/jamanetworkopen.2020.16278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Data are needed on the potential long-term prognostic association of serum neurofilament light in multiple sclerosis (MS). OBJECTIVE To evaluate serum neurofilament light as a biomarker associated with long-term disease outcomes in clinically isolated syndrome. DESIGN, SETTING, AND PARTICIPANTS This post hoc cohort study used data from the Controlled High-Risk Avonex Multiple Sclerosis Prevention Study, a 36-month, multicenter, placebo-controlled interferon β-1a randomized clinical trial conducted from April 1996 to March 2000, and its long-term (5- and 10-year) extension study from February 2001 to March 2009. Participants included individuals with a symptomatic initial demyelinating event and brain magnetic resonance imaging (MRI) lesions suggestive of MS. Data were analyzed from April 2017 through 2019. EXPOSURE The variable of interest was naturally occurring serum neurofilament light concentration. MAIN OUTCOMES AND MEASURES Gadolinium-enhancing (Gd+) lesion number, T2 lesion volume, and brain parenchymal fraction, a measure of brain atrophy were measured at baseline and 5 and 10 years. Multivariate regression models evaluated whether age, sex, and baseline covariates, including serum neurofilament light, brain parenchymal fraction, Expanded Disability Status Scale, Gd+ lesion count, and T2 lesion volume, were associated with brain parenchymal fraction changes over 5 and 10 years. RESULTS Among 308 included participants (mean [SD] age, 33.2 [7.6] years; 234 [76.0%] women), baseline serum neurofilament light concentrations were associated with Gd+ lesions (Spearman r = 0.41; P < .001) and T2 lesion volume (Spearman r = 0.42; P < .001). Among covariates for brain parenchymal fraction change, serum neurofilament light concentration had the greatest correlation with change in brain parenchymal fraction at 5 years (Spearman r = -0.38; P < .001) and was the only variable associated with brain parenchymal fraction at 10 years (Spearman r = -0.45; P < .001). Participants in the highest vs lowest baseline serum neurofilament light tertiles showed brain parenchymal fraction reduction at 5 years (-1.83% [95% CI, -1.49% to -2.18%] vs -0.95% [95% CI, -0.78% to -1.12%]; P < .001) and 10 years (-3.54% [95% CI, -2.90% to -4.17%] vs -1.90% [95% CI, -1.43% to -2.37%]; P < .001). At 5 years, 6 of 45 participants (13.3%) in the highest neurofilament tertile and 2 of 52 participants (3.8%) in the lowest neurofilament tertile achieved an Expanded Disability Status Scale score of 3.5 or greater. CONCLUSIONS AND RELEVANCE This cohort study found that higher baseline serum neurofilament light levels were associated with increased brain atrophy over 5 and 10 years. These findings suggest that serum neurofilament light could be a biomarker associated with disease severity stratification in early MS and may help to guide intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Revere P. Kinkel
- Department of Neurosciences, University of California, San Diego
| | | | - Ray Su
- Biogen, Cambridge, Massachusetts
| | - Bernd C. Kieseier
- Biogen, Cambridge, Massachusetts
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
48
|
Mahler MR, Søndergaard HB, Buhelt S, von Essen MR, Romme Christensen J, Enevold C, Sellebjerg F. Multiplex assessment of cerebrospinal fluid biomarkers in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102391. [DOI: 10.1016/j.msard.2020.102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
|
49
|
Huss A, Otto M, Senel M, Ludolph AC, Abdelhak A, Tumani H. A Score Based on NfL and Glial Markers May Differentiate Between Relapsing-Remitting and Progressive MS Course. Front Neurol 2020; 11:608. [PMID: 32765393 PMCID: PMC7378743 DOI: 10.3389/fneur.2020.00608] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023] Open
Abstract
Background: The diagnostic use of biomarkers in body fluids of multiple sclerosis (MS) patients allows the monitoring of different pathophysiological aspects of the disease. We previously reported elevated cerebrospinal fluid (CSF) and serum levels of glial fibrillary acidic protein (GFAP) but not neurofilament light chain (NfL) in progressive (PMS) compared to relapsing–remitting MS (RRMS) patients. Objectives: We analyzed the glial marker chitinase-3-like protein 1 (CHI3L1) in the CSF and serum of PMS and RRMS patients. To capture the extent of glial processes in relation to axonal damage in each individual patient, we established a score based on CHI3L1, GFAP, and NfL and compared this score between RRMS and PMS patients and its association with the extended disability status scale (EDSS). Methods: For this retrospective study, we included 86 MS patients (47 RRMS and 39 PMS) and 20 patients with other non-inflammatory neurological diseases (OND) as controls. NfL and GFAP levels were determined by the single-molecule array (Simoa). CHI3L1 levels were measured with classical enzyme-linked immunosorbent assay. A score was calculated based on glial to axonal markers (CHI3L1*GFAP/NfL, referred to as “Glia score”). Results: CHI3L1 showed higher CSF levels in PMS vs. RRMS and controls (p < 0.001 and p < 0.0001, respectively), RMS vs. controls (p < 0.01), and higher serum levels for PMS vs. RRMS (p < 0.05). The Glia score was higher in the CSF of PMS compared to RRMS patients (p < 0.0001) and in the serum of PMS patients compared to RRMS (p < 0.01). Furthermore, the Glia score and CHI3L1 in serum but not in CSF correlated with the disability as determined by EDSS in the PMS group but not in the RRMS group (Spearman ρ = 0.46 and 0.45, p = 0.003 and 0.004, respectively). Discussion: Our data indicate the involvement of glial mechanisms during the pathogenesis of PMS. Moreover, a calculated score may help to differentiate between PMS and RMS in the CSF and monitor disease progression in the serum of PMS patients.
Collapse
Affiliation(s)
- André Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Ahmed Abdelhak
- Department of Neurology, University Hospital of Ulm, Ulm, Germany.,Department of Neurology and Stroke, University Hospital of Tuebingen, Tübingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Ulm, Germany.,Speciality Clinic of Neurology Dietenbronn, Schwendi, Germany
| |
Collapse
|
50
|
Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother 2020; 20:747-769. [DOI: 10.1080/14737175.2020.1760846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|